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A. Alonso-Izquierdo ,1 S. Navarro-Obregón ,2 K. Oles ,3 J. Queiruga ,1

T. Romanczukiewicz ,3 and A. Wereszczynski 3

1Department of Applied Mathematics, University of Salamanca, Casas del Parque 2 and Institute of Fundamental Physics
and Mathematics, University of Salamanca, Plaza de la Merced 1, 37008–Salamanca, Spain

2Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain
3Institute of Theoretical Physics, Jagiellonian University, Lojasiewicza 11, Kraków, Poland

(Received 9 September 2023; accepted 27 November 2023; published 19 December 2023)

We construct a simple field theory in which a sphaleron, i.e., a saddle-point particle-like solution, forms a
semi-BPS state with a background defect that is an impurity. This means that there is no static force between
the sphaleron and the impurity. Therefore, such a sphaleron-impurity system is very much like usual BPS
multisolitons, however, still possessing an unstable direction allowing for its decay. We study dynamics of the
sphaleron in such a system.
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I. MOTIVATION

Sphalerons are highly nonperturbative static solutions,
existing in various nonlinear theories, and to some ex-
tent, resembling topological solitons [1]. They are localized,
typically particle-like field configurations obeying vacuum
boundary conditions, which, however, do not have to neces-
sarily carry any topological charge. What is important is that
they are saddle point solutions, i.e., posses an unstable direc-
tion along which they decay. Thus, their small perturbation
spectrum possesses a negative mode.

Sphalerons have been found in many theories with or
without topological solitons; see, e.g., Refs. [2–10], and for
a review see Ref. [11]. Therefore, they are more fundamen-
tal and generic objects than topological solitons. Of course,
the most prominent example is given by the electroweak
sphaleron [12]; see also Refs. [13–15]. On the contrary to
stable topological solitons, which are important for the static
or vacuum sectors of a theory (see, e.g., instantons and their
importance for the structure of the vacuum), sphalerons are
crucial also for real time dynamics, e.g., real-time transitions
between vacua or scattering processes. In the electroweak
theory the sphaleron is responsible for baryon charge violation
effects.

Although sphalerons are known to be very important for
time evolution of nonlinear theories, with and without topo-
logical solitons, they are much less understood than their
stable solitonic counterparts. Specifically, the study of their
dynamics or their impact on dynamics of topological solitons
is in a rather initial stage. One reason for that is the complexity
of interactions. Indeed, similarly as in the case of solitons, a
sphaleron interacts in the three main ways:

First, it can be attracted or repelled by sphalerons, solitons,
or other localized excitations of matter fields. It means that
there is a static force acting on a sphaleron due to the presence
of defects. This amounts to a kinetic motion.

Second, sphaleron may possess internal degrees of freedom
(DoF), i.e., normal, or even quasinormal modes, which may
be excited during scattering processes and which temporary
can store some fraction of energy. In the case of topologi-
cal solitons internal DoF amount to an appearance of fractal
structures in the final state formation via the resonant energy
transfer mechanism, [16,17]. In fact, it has recently been
shown that sphaleron can provide DoF which trigger resonant
transfer phenomenon in kink-antikink collisions [18]. Hence,
they can actively modify solitonic dynamics even though they
do not appear in the initial or finite state.

Third, sphaleron typically meets radiation which also can
modify its dynamics.

Another reason which increases the complexity of the
sphaleron dynamics is that it is not an ultimately stable so-
lution and therefore it has a negative, unstable mode. Hence,
its decay should be also taken into account. Interestingly,
this mode is extremely important for the recently discov-
ered sphaleron-oscillon correspondence [19] which states that
properties of sphaleron and its oscillon (i.e., an oscillon to
which this sphaleron decays) are intimately related. This un-
expected correspondence partially unifies these two, at the
first glance independent, phenomena further underlying the
importance of sphalerons in nonlinear dynamics.

In the case of topological soliton, there exists a very spe-
cial limit, called Bogomolnyi-Prasad-Sommerfield (BPS) limit
[20,21], which significantly simplifies dynamics and allows
for a very nontrivial insight into the static as well as dynamical
properties of solitons. In this limit there is no static force
between the solitons, which means that the energy of a class
of solutions in a topologically fixed sector is degenerated. For
example, the constituent solitons, in a multisoliton sector, can
be placed in any spatial point and all such solutions possess
exactly the same energy. Here the most famous examples are
the abelian Higgs vortices at the critical coupling, the t’Hooft-
Polyakov monopoles or the SU (2) Yang-Mills instantons.
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Importantly, the lowest energy dynamics of solitons in such
BPS models finds an elegant formulation in terms of geodesic
motion on a pertinent moduli space, which is a space of co-
ordinates parametrizing the energetically equivalent solutions
[22]. No such a BPS-type construction for sphalerons has been
studied yet.

The aim of the present work is to propose a framework in
which dynamics of a sphaleron does enjoy a sort of BPS limit.
We will call such objects semi-BPS sphalerons to underline
their similarities as well as differences in comparison with
the typical BPS solitons. Specifically, we introduce probably
the simplest family of theories where a sphaleron remains
to be a BPS-like state even in a presence of other localized
field configurations, which in our case will be a background,
nondynamical defect, i.e., an impurity. This choice is dictated
by an obvious reason. Namely, although providing a nontrivial
background, which may equivalently be treated as a nontrivial
medium, the impurity itself does not introduce new kinetic
DoF. This, together with the BPS-like property, may simplify
the complexity of the problem allowing for a new insight
into the problem of dynamics and interactions of localized
solutions.

However, it should be underlined that, in the case of the
sphaleron, being a semi-BPS object has a slightly different,
probably even more nontrivial, meaning. As always, it denotes
that:

(1) There is no static force between such a sphaleron and
other localized object (impurity/solitons etc.).

(2) The solution possesses a zero mode (although the im-
purity explicitly breaks the translational invariance).

However, a semi-BPS sphaleron does not saturate any
topological bound but has a negative mode which can lower
the energy of this semi-BPS solution due to a decay along
the unstable direction, exactly as required for a genuine
sphaleron. Due to that, even in its BPS-like limit the sphaleron
reveals much more involved pattern of interactions than its
BPS solitonic counterparts.

We remark that the notion of semi-BPS sphalerons agrees
with the concept of semi-BPS solutions, that is solutions
which solve a Bogomolny equation on a double-cover of a
complex φ-plane [23].

II. SPHALERON IN A SCALAR FIELD THEORY

Let us consider the standard real field theory in (1 + 1)
dimensions,

L =
∫ ∞

−∞

(
1

2
φ2

t − 1

2
φ2

x − U (φ)

)
dx. (1)

If the potential has two vacua as, for example, in the φ4

theory, Uφ4 = 1
2 (1 − φ2)2, then we have topological solitons,

usually called kink (or antikink) interpolating between the
vacua, φ+ > φ−. An important feature of a kink (or antikink)
is that it saturates the pertinent topological energy bound in
a given topological sector. Indeed, consider the static energy

integral

E =
∫ ∞

−∞

(
1

2
φ2

x + U (φ)

)
dx

=
∫ ∞

−∞

(
1√
2
φx ∓

√
U

)2

dx ±
∫ ∞

−∞

√
2Uφxdx

�
∣∣∣∣∣
∫ φ(∞)

φ(−∞)

√
2Udφ

∣∣∣∣∣ =
∫ φ+

φ−

√
2Udφ |Q|, (2)

where the field at infinities must have one of vacuum values.
Q is the topological charge, ±1 for the kink and antikink,
respectively. This inequality is saturated for solutions of the
so-called Bogomolny equations

1√
2
φx = ±

√
U . (3)

The kink obeys the equation with plus sign, while the antikink
with minus sign.

To find a genuine, spacially localized sphaleron we need a
potential where one of the global minima is transformed into
a local minimum. Hence, in such models, true vacuum φv is
supplemented by a false vacuum φ f . Without losing generality
we assume that φv > φ f . In addition, we chose that at the
false vacuum the potential takes the zero value, U (φ f ) = 0.
Since, U (φv ) < U (φ f ), there exists a field value φ0 at which
the potential also vanishes, U (φ0). We call this point a return
point.

Here we make a standard assumption that at the local
minimum, φ f , the potential behaves quadratically while the
additional zero φ0 is achieved linearly, i.e.,

U (φ) = m f

2
(φ f − φ)2 + O(φ f − φ)3 at φ → φ f (4)

and

U (φ) = β(φ0 − φ) + O(φ0 − φ)2 at φ → φ0 (5)

where m f and β are positive constants. A consequence of this
is that the false vacuum is approached exponentially at x →
±∞ but the zero φ0 can be approached at a finite point. The
extension to a higher order false vacuum is straightforward.

As an example, which we would like to exploit in the paper,
can serve a modified φ4 potential (e.g., Refs. [24,25])

Us(φ) = 2φ2(φ − tanh(s))

(
φ − 1

tanh(s)

)
, (6)

where s > 0 is a free parameter. For s → ∞ we recover the φ4

theory with two true vacua at φv = 0 and φv = 1. Otherwise,
there is only one true vacuum at

φv = 3
4 coth(2s) + 1

4

√
9 coth2(2s) − 8 (7)

and one false vacuum (local minimum) at φ f = 0 at which
Us(φ f ) = 0, see Fig. 1. In the limit s → 0 we effectively
recover the φ3 model where the true vacuum is sent to infinity
[19]. This potential has a quadratic zero at the false vacuum
and a linear zero at the return point φ0 = tanh(s). Another lin-
ear zero at φ = coth(s) is not important for our considerations.
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FIG. 1. The deformed φ4 potential Us(φ) for different s.

This model admits a sphaleron which interpolates between
the false vacuum and passes through the additional zero of the
potential [24]. Its exact form reads

�sph(x) = 1
2 [tanh(x + s) − tanh(x − s)]. (8)

It may be viewed as a superposition of the φ4 kink and an-
tikink located at ∓s, respectively; see Fig. 2. For sufficiently
large s we easily recognize both φ4 kink and antikink in the
sphaleron profile. For s → 0 the solution is approximately
1/ cosh2(x) which, up to some rescalings, is the φ3 sphaleron
[19,24,26].

In fact all potentials with a false vacuum amount to the ap-
pearance of such a sphaleron. Interestingly, it may be treated
as a solution which piecewisely obeys the Bogomolny equa-
tion. Namely,

1√
2
φx =

⎧⎨
⎩

+√
U x � 0,

−√
U x � 0.

(9)

At the gluing point (which here is set at the origin) the field
takes φ0 value. Therefore these two branches are connected
forming a C1 solution. In fact, one can easily show that all
derivatives are continuous at this point, which results in a
smooth C∞ sphaleron.

The fact that sphaleron is a piecewise solution of the
pertinent Bogomolny equations is a generic feature of all
sphalerons in models based on a single real scalar field in

FIG. 2. Sphalerons for different values of s in the model Us(φ).

(1 + 1) dimensions. It follows from the fact that they are static
solution of the equation of motion. But such an equation can
be always once integrated to a nonlinear multivalued ODE,
φ2

x = 2V + C, where C is an integration constant. Assuming
that a sphaleron has a finite energy (measured with respect to
the false vacuum) the integration constant must vanish. Thus,
we arrive at φ2

x = 2V . This may obviously lead to a Bogo-
molny equation with a fixed sign as happen for topologically
nontrivial solutions. However, it may lead to a solution for
which the sign of the Bogomolny equation changes. This is
the sphaleron.

All this can also be approached in a very elegant way in
terms of integration theory for kinks and sphalerons [23].

The fact that sphalerons in scalar field theories fulfill piece-
wisely the pertinent Bogomolny equation is a guideline which
will be exploited in the next part of the paper.

Of course, to prove that this is a sphaleron one has to com-
pute the linear perturbation spectrum and identify a negative,
unstable mode. This is indeed the case for our choice of the
potential. The easiest way to verify this is to compute the zero
mode and show that it possesses one node. Therefore there
must be a lower (negative) energy mode.

Needless to say that, since the theory is translational invari-
ant, the center of the sphaleron can be moved from the origin
to any spatially point x0. One may view this sphaleron as a
trivial BPS-like object. There is a (translation) zero mode but
its action on the solution is trivial. For example, the spectral
structure is x0 independent.

III. NONCHIRAL BPS-IMPURITY MODELS

Typically, in single scalar field theory, either kink or
sphaleron, if placed in the presence of other (antik)kink or
sphaleron, are subject to an attraction or repulsion. This also
means that such a multiparticle state usually does not have
any zero mode. As a consequence, it does not obey any
Bogomolny-type equation. Hence, it is not a BPS solution.

To find multikink BPS solutions one needs to add, in a very
special manner, at least one new scalar field [27,28], which
obviously, makes investigations more complicated both from
analytical as well as numerical point of view. However, it was
recently shown that it is possible to couple the scalar field φ

to a background, nondynamical field σ (x) in such a way that
BPS property is preserved [29,30]. It means that one obtains
the simplest BPS-type theory, still with only one dynamical
field. Indeed, here a soliton does not statically interact with
the other localized object, i.e., the impurity and therefore they
can be located at any distance from each other without change
in the energy.

We remark that there is much literature on soliton dy-
namics in impurity-scalar field models, see, for example,
Refs. [31–34], with various interesting results concerning,
e.g., appearance of chaotic behavior in kink-impurity col-
lisions [35,36]. However, in all such models the impurity
is coupled in a non-BPS manner, typically via a mod-
ification of the potential term. It means that there is a
static, attractive or repulsive, force between the kink and
impurity. Therefore, these models are not useful for our
purposes.
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The usual BPS-impurity modification changes one of the
Bogomolny equations (3) into the following equation [29,37]:

1√
2
φx = σ (x)W (φ), (10)

where W is a well-behaved function of φ and W 2 = U .
Such a modification of the Bogomolny equation can be

achieved if the original field theory is deformed as [29]

L =
∫ ∞

−∞

{
1

2
φ2

t − 1

2
[φx − σ (x)W (φ)]2

}
dx. (11)

Again, the existence of a first order Bogomolny equa-
tion implies that there is a family of energetically degenerate
kink-impurity solutions which are parameterized by a contin-
uous parameter a, called modulus and which may be related to
a distance between the kink and the impurity. In comparison
to the no impurity case, Eq. (3), the BPS sector is nontrivial.
For example, the linear mode structure of the soliton-impurity
BPS solution depends on the distance between the soliton and
impurity. This renders the BPS-impurity model an ideal, sim-
plified laboratory for studying the role of the internal modes
in kink dynamics in the limit of vanishing static force. In
fact, it allowed for the discovery of the spectral wall phe-
nomenon [38] which only very recently has been observed
in various solitonic models without any impurity [39,40]. The
BPS-impurity framework also allows for the computation of
one-loop corrections to kink-antikink processes; see Ref. [41].

Importantly, there is only one Bogomolny equation in this
deformed model. Hence, the resulting soliton can be treated
as a chiral kink. Based on the previous analysis, where we
underlined the importance of the existence of two Bogomolny
equations, we may conclude that, while there are BPS kink-
impurity or even BPS kink-antikink-impurity solutions, no
BPS sphaleron-impurity states are possible in this set-up.

To construct a model which possesses a BPS sphaleron-
impurity solution we have to modify BPS-impurity La-
grangian in such a way that two Bogomolny equations show
up. It means that we need a nonchiral BPS-impurity theory.

For that reason let us consider the following background
field deformed Lagrangian:

L =
∫ ∞

−∞

(
1

2
φ2

t − 1

2σ
φ2

x − σU (φ)

)
dx, (12)

where again σ is a given impurity. But now the background
field modifies the gradient term, too. In fact, such a modi-
fication of the gradient term can be attributed to nontrivial
geometry of medium, see, e.g., curved Josephson junction
[42,43]. To find Bogomolny equations we again analyze the
static energy integral

E =
∫ ∞

−∞

(
1

2σ
φ2

x + σU (φ)

)
dx

=
∫ ∞

−∞

(
1√
2σ

φx ∓
√

σU

)2

dx ±
∫ ∞

−∞

√
2Uφxdx

�
∣∣∣∣∣
∫ φ(∞)

φ(−∞)

√
2Udφ

∣∣∣∣∣ =
∫ φ+

φ−

√
2Udφ |Q|. (13)

The inequality is saturated if and only if

1√
2σ

φx = ±
√

σU . (14)

This proves that such a simple impurity model has two Bogo-
molny equations and therefore does not treat kink or antikink
differently. Note, that the impurity cannot be a function with
negative value but otherwise it is not restricted by any fine-
tuned condition. Similarly as before a sphaleron-impurity BPS
solution is a solution which piecewisely solves the impurity
modified Bogomolny equations (14). This requires a potential
with false vacuum, e.g., Eq. (6).

It should be emphasized that the impurity deforms the
original (impurity free) field equations in the region where
σ (x) �= 1. Typically in the literature impurity is assumed to
be a localized deformation which sufficiently fast tends to
0. From this point of view, one might introduce an impurity
�, such that σ = 1 + �, where now � describes a departure
from the impurity free theory. To keep a connection with pre-
vious works on the BPS impurity we prefer to use formulation
with σ function.

In fact, the impurity dependent Bogomolny equation can
be rewritten in the impurity free form after introducing a new
base space coordinate y,

dy

dx
= σ (x) ⇒ y =

∫
σdx + a, (15)

where a is an integration constant. Then, we arrive at the usual
(no impurity) Bogomolny equations,

φy = ±
√

2U . (16)

Solving these equations and replacing the y coordinate in
terms of the original coordinate x leads to a family of BPS
sphaleron-impurity solutions. Note, that this solution is pa-
rameterized by a modulus a reflecting the BPS property of the
solution.

Let us now turn to our potential (6) and for concreteness
assume the following form of the background field:

σ (x) = 1 + α

cosh2(x)
, (17)

which is an exponentially-like localized impurity centered at
the origin. α > −1 is a free parameter measuring its strength.
For α = 0 the impurity vanishes and we recover the usual
theory (1).

For our choice of the impurity the sphaleron-impurity so-
lution reads

�sph(x; a) = 1
2 {tanh[x + α tanh(x) + a + s]

− tanh[x + α tanh(x) + a − s]}, (18)

where the modulus a can be related to the distance between
the sphaleron (position of the maximum of the field) and the
impurity (origin). Indeed, for |a| � 1, we get the undeformed
sphaleron far away from the origin (impurity). However, as
a tends to 0, the sphaleron approaches the impurity and de-
forms. For positive α the original sphaleron gets squeezed as
approaching the impurity, while for α ∈ (−1, 0) it is widened.
As we approach the limiting value α → −1 derivative of the
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FIG. 3. The BPS sphaleron-impurity solution for different values of the modulus a. Upper panels: α = 1; lower panels α = −0.9. Left
panels: s = 1; right panels: s = 3.

field at the origin tends to 0. This behavior is presented in
Fig. 3.

We remark that the sphaleron-impurity solution enjoys a
reflection symmetry

�sph(−x; −a) = �sph(x; a). (19)

All these solutions possess exactly the same a-independent
energy,

E [�sph(x; a)] = 9 sinh(2s) + sinh(6s) − 24s cosh(2s)

6 sinh2(2s)
,

(20)
and form a BPS-type family of sphalerons in the sense ex-
plained before. The sphaleron can be placed at any distance
from the localized impurity without changing its energy. Thus,
there is no static force between the sphaleron and impurity.

In the next section we will analyze various aspects of
dynamics of such a semi-BPS sphaleron-impurity system.

IV. THE MODE STRUCTURE

Although the energy is degenerate while we change the
modulus a it is not the case for the linear mode structure. This
is related to the fact that the impurity is not just a uniform
vacuum and therefore nontrivially modifies the shape of the
sphaleron. To see that we consider the static BPS solution with
an addition of a small perturbation η(x, t ),

φ(x, t ) = �sph(x; a) + η(x, t ), (21)

and insert it into the full time-dependent field equation

φtt − 1

σ
φxx + σx

σ 2
φx + σUφ = 0. (22)

At linear order we get

ω2(a)η(x; a) =
[

− d

dx

(
1

σ

d

dx

)
+ σU ′′(�sph(x; a))

]
η(x; a),

(23)

where we assume that η(x, t ; a) = eiω(a)tη(x; a). Here, ω(a) is
frequency of the pertinent mode η(x; a). Dependence on the
modulus a is explicitly marked.

Asymptotically, for a → ±∞, the semi-BPS sphaleron
�sph(x; a) is just an infinitely separated system of the
sphaleron in the original (no impurity) model �sph(x) and
the impurity. Thus, the mode structure is just a superposition
of the modes of the free sphaleron and modes which are
added due to the background field itself. The former ones
are localized on the sphaleron while the later ones are lo-
calized on the impurity (here at the origin). In our example,
the free sphaleron, at least for not too small s, is just a pair
of well separated kink and antikink and therefore it has two
positive discrete modes η1,2(x) originated by the shape modes
of each of the constituent solitons. Thus, as s becomes larger
their frequencies tend to ω2

1,2 = 3. There is also a zero mode
η0(x) ∼ ∂x�sph(x). Finally, there is the negative mode, η−1(x)
whose frequency tends to 0 for s → ∞. In other words, the
sphaleron becomes quasistable for large s.

As we already noted the impurity may add some additional
modes. This is found by linear perturbation around φ = 0
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FIG. 4. The frequency of the bound mode of the impurity.

solution. In our example there is only one such a mode lo-
calized at the origin and it arises for α < 0, see Fig. 4. This
plot is independent of the value of the model parameter s.
It follows from the fact that U ′′(φ = 0) = 4. This mode will
actively participate in dynamics of the sphaleron.

If the sphaleron approaches the impurity, then it gets de-
formed and the spectral structure changes in a more and more
significant manner. Of course, due to the BPS nature of the so-
lution the zero mode still exists even though the translational
symmetry is lost,

η0(x; a) = N (s, α) ∂a�sph(x; a), (24)

where the normalization constant N (s, α) is fixed for a given
potential and background field., i.e., for given s and α. Im-
portantly, the zero mode has one node. This implies that the
solution is a genuine sphaleron with one negative energy,
unstable mode. In general, however, the spectral structure may
be deformed in a rather drastic way; see Fig. 5.

First, the background field can have impact on the unsta-
ble mode. Namely, as a → 0, the frequency of the unstable
mode frequency rises/lowers for negative/positive strength
α, respectively. Thus, approaching the origin the sphaleron
becomes more or less stable depending on the impurity.

Second, also the spectrum of the massive bound modes
changes. For sufficiently large positive impurity the bound
modes of the free sphaleron can cross the mass threshold at a
certain a = asw. This fact is known to trigger the spectral wall
phenomenon which has a significant impact on kink dynamics
[38]. In Sec. VI we will study this phenomenon closer.

Finally, we remark that there is an interesting possibility re-
lated to the change of the frequency of the negative mode. By
an appropriate choice of the impurity a genuine, fast decaying
sphaleron can be transformed into a quasistable sphaleron
with the negative mode very close to 0. This happens at a cer-
tain distance from the impurity due to the sphaleron-impurity
interaction.

V. THE GEODESIC DYNAMICS

In the well-known BPS soliton limit, BPS solutions sat-
urate the pertinent topological bound. This means that in a
given topological sector there are no solutions with lower en-
ergy. A natural consequence of that is that the simplest, lowest
energy dynamics occurs via transitions between energetically
equivalent BPS solutions, which reflects an excitation of the

FIG. 5. The dependence of the mode structure of the sphaleron-
impurity solution on the modulus a. Upper panel: s = 3, α = 3.
Lower panel: s = 3, α = −0.5.

zero mode. This found an elegant formulation as a geodesic
motion on the corresponding moduli space of the BPS states
[22].

In the case of the BPS sphalerons we do have a fam-
ily of energetically degenerate solutions M[a] = {�sph(x; a)}
and therefore the concept of geodesic motion may still make
sense. However, the sphaleron is not the global energy min-
imizer in its, here trivial, topological sector. Hence, in the
space of field configurations, there is an unstable direction
along the negative mode η−1(x; a). Therefore, looking from
this perspective the BPS sphaleron solutions span a sort of
unstable moduli space.

As always, the metric on such a moduli space is defined
as [1,11]

g(a) =
∫ ∞

−∞

(
d�sph(x; a)

da

)2

dx. (25)

This can be obtained by inserting the BPS sphaleron-impurity
solutions into the original field-theoretical Lagrangian and
promoting the modulus a to a time dependent collective coor-
dinate a(t ). Such an insertion gives rise to a one-dimensional
collective coordinate model (CCM),

L[a] = 1
2 g(a)ȧ2, (26)

whose solution is just a geodesic flow on the moduli space
M[a]. We omitted a dynamically unimportant constant poten-
tial term. Under particular circumstances the unstable mode
may remain unexcited also when the sphaleron passes through
the impurity. This frequently occurs when the sphaleron is
a quasistable solution which happens for sufficiently large
s. Then, one can expect that, for a long time, the evolution
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FIG. 6. Collision of the sphaleron (s = 3) for repulsive (α = 1)
and attractive (α = −0.5) BPS impurity, with vin = 0.195.

follows the geodesic flow on the unstable moduli space M[a].
This is precisely what we saw in our numerical analysis.

Specifically, in Fig. 6 we show profiles of the field while
the sphaleron passes through the impurity. In the upper panel,
for s = 3 and α = 2, the sphaleron is distorted by the impurity
exactly as dictated by the moduli space analysis. The initial
velocity of the sphaleron is vin = 0.15. The profiles at fixed
time t are consistent with the BPS solutions at some value of
the modulus a. Furthermore, actual full field theory dynamics
is also very well reproduced by the CCM geodesic flow; see
Fig. 7.

However, the sphaleron by definition possesses an unstable
mode and it may be excited, due to higher order nonlinear
effects, while the sphaleron goes through the impurity.

In Fig. 6, lower panel, we present an example of such a
process where after passing the impurity the sphaleron desta-

FIG. 7. Comparison between full numerics and the moduli space
flow dynamics for a nondecaying boosted sphaleron. The parameter
of the model are s = 3, α = 2. The initial velocity is v = 0.15.

bilizes and starts to decay. Whenever the unstable mode gets
excited then the geodesic flow on the M[a] space breaks down
and the sphaleron falls apart.

To conclude this section, the geodesic motion based on
the CCM model may still quite well describe the simplest
dynamics of a semi-BPS sphaleron but, as one might expect,
it is a less powerful tool if compared with BPS solitons.

VI. SPECTRAL WALL

Now we will go beyond the simplest geodesic dynam-
ics and investigate how excitation of massive bound modes
changes the interaction between the semi-BPS sphaleron and
impurity. In particular, we are interested in the case where a
bound mode of the static sphaleron-impurity solution crosses
the mass threshold at some a. It is known that such a property,
if existing in a BPS kink theories, gives rise to the spectral
wall phenomenon.

Speaking precisely, a spectral wall phenomenon is an ob-
stacle in soliton dynamics due to a transition of a mode into
the continuum spectrum. This happens for a certain value of a
moduli space coordinate a = asw which can be translated to a
distance xsw between the soliton and its collision partner (an-
other soliton or impurity). The effect strongly depends on the
amount of the mode exited on the soliton. If its amplitude A is
smaller than a critical value A < Acrit, then the soliton passes
xsw with a distortion growing with increasing of the amplitude.
We say that it passes the spectral wall. If A > Acrit, then the
soliton gets reflected by the spectral wall where the reflection
point occurs sooner for bigger A. Finally, if A = Acrit, then the
soliton forms a very long living quasistationary state at a fix
position x = xsw.

Interestingly, the spectral wall phenomenon has a very
selective nature. Namely, each mode which crosses the mass
threshold has its own spectral wall. Furthermore, position of
the spectral wall can be at very large distance from the inter-
action partner. Thus, it can trigger a long range interaction.

To study this issue in the context of sphaleron we take, as
an initial configuration, a boosted semi-BPS sphaleron with
one of its massive modes η(x; a) excited. We also assume
that at t = 0 the sphaleron is at a large distance x0 from the
impurity. Hence, at t = 0

φ(x, t ) = �sph[γ (x − vt + x0)]

+ Aη[γ (x − vt + x0)] cos[ωγ (t − vx)], (27)

which provides Cauchy data for the numerical analysis. Of
course, the included mode must hit the mass threshold for
some a (i.e., for some distance between the sphaleron and
origin). This is the case for a sufficiently big strength α of
the impurity. Furthermore, for simplicity we will search for
spectral walls in the quasistable sphaleron limit, that is for a
large s. In particular, in our example, we choose s = 8 and
α = 3. Due to that, the free sphaleron looks like a molecule
of kink and antikink of φ4 theory with a large separation
between the constituent solitons. Hence, its massive modes
are very well approximated by a symmetric and antisymmetric
superposition of the shape modes of the φ4 kinks

η±(x) = N±[ηsh(x + s) ± ηsh(x − s)], (28)
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FIG. 8. The collision of the sphaleron with a spectral wall. The
lines show positions z1, z2 of the composite kink and antikink in the
sphaleron. The colors denote cases with different amplitude of the
excited mode. Dashed lines are the positions of the spectral wall.

where

ηsh(x) ≈ sinh(x)

cosh2(x)
, (29)

is the usual shape mode of the φ4 kink and N± are normal-
ization constants. The initial velocity of the sphaleron is vin =
0.01. In Fig. 8 we present the dynamics of the sphaleron with
the η+ mode excited. From the perspective of the composite
anti-kink the corresponding spectral wall is located at xsw =
1.25. Indeed, at this distance from the origin the mode hits the
mass threshold. We clearly see in our numerics the appearance
of the spectral wall. At the critical value of the amplitude of
the mode the composite antikink forms a stationary state at
x = xsw.

The same pattern is observed for smaller s. However, for
s < 4 addition of the shape mode responsible for the spectral
wall should be compensated by an addition of unstable mode
to prevent the sphaleron to collapse [19].

Obviously, such a spectral wall acts as another destabiliz-
ing factor which contributes to the decay of the sphaleron.

VII. DECAY OF THE SEMI-BPS SPHALERON

By definition, the sphaleron is an unstable solution, here,
with two decay channels. The first is a trivial one and de-
scribes a decay into the true vacuum. The sphaleron splits into
kink and antikink which continually accelerate in opposite
directions. The second possibility is much more interesting. It
corresponds to the decay into the false vacuum and creation of
an oscillon. However, this oscillon is not a BPS-type object.
Furthermore, it is not immersed in the trivial vacuum but in
a rather complicated background provided by the impurity.
Hence, its patterns of interactions are much more involved
than in the usual nonimpurity model.

For simplicity, we analyze the decay of sphaleron when it is
located at the origin. Then, the problem maintains the reflec-
tion symmetry. However, one should be aware that decay of
the semi-BPS sphaleron depends on its position with respect
to the impurity.

FIG. 9. Decay of the sphaleron for s = 3 and α = −0.5.

One interesting scenario occurs if the impurity possesses
its own internal mode. Then, the sequence of events is the
following. First, the sphaleron decays into its oscillon which
oscillates in the background of the impurity. As a conse-
quence, the oscillon loses energy, reduces its amplitude and
increases its frequency. After quite a long time the oscillons
settle down at a mode of the impurity which finally slowly
decays via emission of radiation. So, we may conclude that
in this case the oscillon is trapped by the impurity and trans-
formed into a bound mode.

In Fig. 9 we present an example of such a behavior for
s = 3 and α = −0.5. In the first phase, for t < 1050, the large
oscillon gradually lowers its amplitude, see the upper panel.
As time grows, we also see a characteristic double oscillations
of the amplitude. Suddenly at t ≈ 1050 there is a rapid jump
both in the amplitude and frequency, see the upper and bottom
panel. The reason for that is the radiation burst effect. It arises
due to the fact that the frequency of oscillations is half of the
mass threshold (m = 2) and therefore the double harmonics
may freely propagate. The increase of radiation is clearly vis-
ible in the central panel, where we present the field measured
at x = 20. After this moment of the evolution the system tends
to a configuration being the impurity with a mode excited.
This is a very slow process which we see particularly well if a
damping is added to the field equation.

Several comments are in order. First, initially the sphaleron
reappears at the turning points of the oscillon oscillations. We
can also see that the sphaleron carries some excitations of its
internal mode, see upper panel and small wiggles in Fig. 9
when φ(0) is close to φ = 1.

Second, one can notice that radiation in the large oscillon
phase is much lower than in the phase where the internal mode
starts to participate in the decay of the oscillon.

Third, the existence of a mode of the impurity effectively
looks as appearance of an attractive force between the oscillon
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FIG. 10. Decay of the sphaleron and interaction of the emerg-
ing oscillon with the impurity: φ(x, t ) for s = 0.2. Upper: α =
0.0595—ejection of the oscillons; central: α = 0.0575—bouncing of
oscillons; lower: α = 0.05925—formation of a quasistationary state.

and impurity. In our example, this is indeed the case for a
negative α.

A drastically different scenario happens if the impurity
does not host any bound mode. The sphaleron again decays
into its oscillon which evolves in the background of the im-
purity. After a short time this oscillon is destabilized by the
impurity and splits into two oscillons which are ejected in
opposite directions, see Fig. 10 upper panel, where s = 0.2
and α = 0.0595. Hence, we observe a repulsive interaction
between the oscillon and impurity. In our example it occurs
for positive α.

However, a detailed analysis shows that the situation is
much more involved. The interaction between the ejected os-
cillons and the impurity possesses also an attractive channel.
An example of that evolution is presented Fig. 10 central
panel. We see that both ejected oscillons turn back and bounce
around the origin. Here s = 0.2 and α = 0.0575.

Interestingly, we discovered a limiting situation where
these oscillons form a long living quasistationary state. In-
deed, for a very long time their positions stay fixed at a certain
distance from the impurity. This is clearly visible in Fig. 10
lower panel, where s = 0.2 and α = 0.05925.

VIII. SEMI-BPS SPHALERON-IMPURITY COLLISIONS

As we already pointed out, once the sphaleron decays,
the system completely loses its semi-BPS property and the

resulting oscillon reveals a rather nontrivial pattern of inter-
action with the impurity. This is precisely observed if the
semi-BPS sphaleron is scattered with the impurity. The main
outcome of such processes is the creation of the oscillon
in the first collisions and its subsequent interaction with the
impurity.

In Fig. 11 we present an example of collisions of a qua-
sistable sphaleron, s = 2.5, with an attractive impurity, α =
−0.5. For smaller velocities, vin < v1 ≈ 0.051, the sphaleron
is always destabilized by the impurity and decays into an os-
cillon. Then the oscillon is trapped by this attractive impurity
exactly as described in the previous section, i.e., it excites a
bound mode of the impurity. However, if the initial velocity is
larger than v2 ≈ 0.182, then the sphaleron passes through the
impurity. This again destabilizes the sphaleron which even-
tually, at a certain distance from the impurity, decays into a
boosted oscillon

However, between these two cases there is a variety of dif-
ferent processes. We define the following qualitatively distinct
classes of behavior:

(1) Bounces of the oscillon. Sphaleron decays into oscillon
which is then attracted by the impurity. As a consequence,
the oscillon performs oscillations around the impurity [e.g.,
Figs. 11(a), 11(b) 11(g), 11(k), and 11(l)].

(2) Oscillon trapping or ejection. Such oscillations release
energy and after a few bounces we end up with trapping of
the oscillon eventually leading to an excited impurity [e.g.,
Figs. 11(a), 11(b) 11(f), 11(g), 11(k), 11(l), and 11(m)] or
ejecting the oscillon both in the forward [Figs. 11(h) and 11(j)]
and in the backward direction [Fig. 11(c)].

(3) Oscillon stationary state. The oscillon can also form
a stationary state where it stays at a constant distance from
the impurity [Fig. 11(i)]. This case resembles very much the
stationary state found in decay of a semi-BPS sphaleron in the
presence of repulsive impurity.

(4) Reappearance of sphaleron. Sphaleron collapses but
then it is created again [Figs. 11(c) and 11(e)]. After the
creation it can decay into the oscillon or into a pair of kink
and antikink which escape from each other [Fig. 11(d)].

By varying the initial velocity of the sphaleron we found an
evidence that the formation of the final state reveals a struc-
ture of a probably chaotic nature. Indeed, different scenarios
follow one after the other in a rather random way, see Fig. 12,
where we plot the field at the large time after collision. One
can easily see that the trapping of the oscillon by the impu-
rity dominates. Other possibilities like backward and forward
ejection of the oscillon as well as the kink-antikink creation,
are also clearly visible.

IX. SUMMARY

The main achievement of the present work is establishing
the existence of a type of BPS sphaleron-impurity solutions.
We call them semi-BPS sphalerons because of the fact that
they comprise two rather different features.

On the one hand, they resemble the usual BPS systems
known from the theory of topological solitons, which means
the existence of a family of energetically equivalent static
solutions which obey a lower order differential equation. This
results in the appearance of a moduli space with a coordinate
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FIG. 11. Examples of scenarios for the sphaleron impurity collisions for s = 2.5 and α = −0.5 for increasing initial velocity: From 0.051
to 0.192.

being a continuous parameter (modulus) parameterising the
solutions and in existence of a zero mode which is not related
with the trivial translation invariance of the theory. Specifi-
cally, in our setup, the sphaleron can be put at any distance
from the impurity and the total energy of the system remains
unchanged. This means that there is no static force between
sphaleron and impurity.

On the other hand, there is a fundamental difference
in comparison with BPS solitons. Namely, the semi-BPS
sphaleron does not saturate any topological energy bound and
therefore there is an unstable direction along which such a

FIG. 12. The spatial dependence of the field φ(x) at large time
for different initial velocity vin.

static solution can decay. In other words, there is a nega-
tive mode in the spectrum of small perturbations. This is, of
course, an expected property of a genuine sphaleron.

As pointed out by Manton [23] the semi-BPS property
means that the solutions obey the corresponding Bogomolny
equation on a double-cover of the complex plane of φ.

After proving the existence of semi-BPS sphaleron-
impurity solutions we investigated their dynamical properties.
The reason is obvious. As in BPS multisoliton cases, the
absence of a static force between localized objects which
participate in scatterings (here the sphaleron and impurity)
provides a simplified environment and allows for a deeper
insight into dynamical properties of sphalerons. Indeed, we
found that the semi-BPS sphaleron impurity system reveals
many properties known form the usual BPS multisoliton
systems.

For example, in the simplest dynamics, i.e., where only the
kinetic DoF is excited, the semi-BPS sphaleron follows the
geodesic motion on the pertinent moduli space, which means
that during such a time evolution the field passes through the
available BPS states.

Next, if one excites a positive bound mode, then the
sphaleron may be subject to the spectral wall phenomenon. As
always, the necessary condition is that such a mode touches
the mass threshold at certain value of the modulus, which
translates into a certain distance between the sphaleron and
impurity. Such a spectral wall seems to always destabilize
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sphalerons leading to their collapse, mainly to an oscillon.
This was clearly observed in the case where the sphaleron can
be treated as an unstable bound state of kink and antikink. It
is similar to the effect played by spectral walls in some super-
symmetric BPS-impurity models where they destroy bound
state of the bosonic and fermionic DoF [44].

We remark that there is a range of the model parameter,
where the sphaleron looks like an almost stable kink-antikink
molecule. Here it occurs for sufficiently large s. Hence, it is
natural to expect that collisions of such quasistable sphalerons
may find an interpretation as a four-kink scattering.

This standard BPS-soliton like dynamics is strongly modi-
fied once the unstable mode is excited. Then the field probes a
direction in the configuration space along which the sphaleron
can decay forming, e.g., an oscillon. Of course, due to the
saddle point nature of the sphaleron the unstable mode can
be excited by an arbitrarily small perturbation and therefore,
after sufficient amount of time, it will always be the main
factor of the evolution. Importantly, the oscillon is not a BPS
object and therefore interacts with the impurity in a rather
sophisticated manner. In this sense the semi-BPS sphaleron
is a less powerful concept than the usual BPS limit.

Nonetheless, our framework still allows for the study of
the sphaleron decay in a simplified, BPS-like situation, i.e.,
in the limit of the absence of the sphaleron-impurity force.
Simultaneously, the produced oscillon is immersed in a very
nontrivial environment which amounts to appearance of an
intriguing oscillon-impurity stationary state. Understanding
its origin, as well as its properties and importance, requires
further studies.

The current work can be in a natural way extended to
models where the background field is replaced by a dynam-
ical field. The resulting field theory will contain at least
two coupled scalar fields. Some of such models indeed host
a family of energetically equivalent unstable solutions. See
for instance the Montonen-Sarker-Trullinger-Bishop (MSTB)
model [45,46], where a one-parameter family of sphalerons
(in this case, nontopological solutions connecting and return-
ing to the same point in a two-dimensional internal space)
exists [28]. They could decay into one of the vacua, pos-
sibly giving rise to radiation emission and the presence of
oscillons, but they could also decay into two less energetic
kinks. It would be interesting to check how the dynamical
properties of sphalerons and oscillon found in our work look
in this model. Sphalerons can also be found in the Bazeia-
Nascimento-Ribeiro-Toledo (BNRT) model [47] for certain
values of the coupling constant. In this case, they are unstable
topological kinks that can decay into other less energetic kinks
[48]. From our perspective, the study of these processes is also
relevant. Further examples of theories with sphalerons can be
found along the line described in Ref. [49].

Interestingly, there is another type of BPS sphalerons in
higher dimensions. These again are energetically equivalent
unstable static solutions with moduli space parametrized by a
continuous parameters. Hence, they possess at least one zero
mode. On the contrary to the semi-BPS sphalerons considered
here they do not solve the original Bogomolny equations. The
nonlinear (2 + 1)-dimensional σ -models with CP n and F2

target space provides the most studied cases [50–52]. It would
be desired to understood a possible relation between these
sphalerons and semi-BPS ones. One should also remark that
due to the scale symmetry these sphalerons cannot support any
bound modes and therefore their dynamical properties can be
quite different.

A more general question is whether any sphaleron can be
understood as an unstable multisoliton state. Here it is indeed
the case. For large s we clearly appreciate a kink-antikink
inner structure. In fact, for all s considered here, the sphaleron
can be written as a superposition of a kink and antikink. In-
terestingly, such a picture reproduce the unstable and the zero
mode of the sphaleron (and possible also the shape modes).
Namely, the zero mode is related to a shift of the positions
of the constituent kink and antikink in the same direction,
z1,2 → z1,2 + b while the unstable mode corresponds to a sim-
ilar shift but in opposite direction, z1 → z1 + b, z2 → z2 − b.
It is clear that the second transformation changes the distance
between the constituents.

A related problem is how properties of sphalerons are
affected by external conditions. This includes, for example,
the appearance of external magnetic and electric fields or
other localized objects (solitons or sphalerons). As we saw, for
some impurities, the frequency of the negative mode comes
closer to 0, which may transform a rather unstable sphaleron
to a quasistable version. We note that impact of a nontrivial
background (e.g., external magnetic field) on properties of
sphalerons has a great physical importance [53].
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