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Self-similar evolution of wave turbulence in Gross-Pitaevskii system
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We study the universal nonstationary evolution of wave turbulence (WT) in Bose-Einstein condensates
(BECs). Their temporal evolution can exhibit different kinds of self-similar behavior corresponding to a
large-time asymptotic of the system or to a finite-time blowup. We identify self-similar regimes in BECs by
numerically simulating the forced and unforced Gross-Pitaevskii equation (GPE) and the associated wave kinetic
equation (WKE) for the direct and inverse cascades, respectively. In both the GPE and the WKE simulations for
the direct cascade, we observe the first-kind self-similarity that is fully determined by energy conservation. For
the inverse cascade evolution, we verify the existence of a self-similar evolution of the second kind describing
self-accelerating dynamics of the spectrum leading to blowup at the zero mode (condensate) at a finite time.
We believe that the universal self-similar spectra found in the present paper are as important and relevant
for understanding the BEC turbulence in past and future experiments as the commonly studied stationary

Kolmogorov-Zakharov (KZ) spectra.
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I. INTRODUCTION

A great number of physical wave systems exhibit states
with broadband spectra of excited mutually interacting modes.
Such states are called wave turbulence (WT) [1-3], and their
examples can be found in classical fluids [4-6], quantum and
optical media [7-9], and even in primordial universe [10].
Reference to turbulence in WT occurs because, like in the
case of classical hydrodynamics, the WT systems are typi-
cally characterized by self-similar cascades of the energy (or
another invariant) through scales. Associated with these cas-
cades, there exist stationary self-similar spectra, the so-called
Kolmogorov-Zakharov (KZ) spectra, that are analogous to the
famous Kolmogorov spectrum of hydrodynamic turbulence,
and that are expected in the forced-dissipated WT systems.
Search and validation of the KZ spectra, theoretically, numer-
ically, and experimentally, has dominated most of the works
on WT [4-6,8,9,11-14]. This interest is explained by the
universality of the KZ spectra, i.e., their insensitivity to fine
details of forcing and dissipation mechanisms (similar to the
universality of the classical Kolmogorov spectrum).

However, temporal evolution leading to the formation of
the KZ spectra, as well as the spectrum evolution in unforced
systems, can also be universal and exhibit self-similarity.
Moreover, such nonstationary solutions are often more rele-
vant in WT realized in laboratories and in natural situations.
Self-similar behavior is rather nontrivial and comes in dif-
ferent types corresponding to an infinite-time asymptotic of
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the system or to a finite-time blowup. Moreover, the same
wave system may simultaneously exhibit different kinds of
self-similarity in different scale ranges.

In the present paper, we report on a systematical study
of nonstationary solutions arising in the forced and unforced
Gross-Pitaevskii equation and the associated wave-kinetic
equation furnished by the WT theory. In each of the
considered settings, we keep our focus on identifying self-
similar evolution regimes. Namely, we consider the following
representative settings: forced-dissipated direct and inverse
cascades and unforced-undissipated (free-decaying) direct
and inverse cascades. In the forced-dissipated direct cas-
cade, the energy is injected at low and dissipated at large
wave numbers, and in the forced-dissipated inverse cas-
cade, the particles are injected at large and dissipated at
low wave numbers. In the unforced-undissipated systems,
the direct and inverse cascades arise during a conservative
(energy and particle preserving) evolution of spectra toward
the high- and low-frequency ranges, respectively. Note that
in the unforced-undissipated settings, the solution of the
wave-kinetic equation blows up in a finite time * marking
a nonequilibrium onset of the Bose-Einstein condensation
(BEC) into the zero-wave-number mode [15]. Respectively,
the WT description fails close to * in the low-frequency
range due to an accelerated nonlinear (and decelerated lin-
ear) dynamics, but the Gross-Pitaevskii evolution continues
beyond this time without a blowup. In the forced-dissipated
settings, the wave-kinetic blowup can be prevented by in-
troducing dissipation of the zero- and low-frequency modes.
In this case, the subsequent evolution leads to the formation
of the stationary KZ spectrum [14]. In this paper, we will
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aim at systematizing the previous and new findings about the
nonstationary evolution of the BEC WT and at presenting a
classification of the typical scenarios. Further, we will discuss
our results from the point of view of novel perspective designs
of the BEC turbulence experiments.

II. THEORETICAL BACKGROUND

A. Gross-Pitaevskii model

Gross-Pitaevskii equation (GPE) describes the evolution of
ultra-cold Bosonic gases with repelling interaction potential
[16]. For our study, it suffices to work with the dimensionless
GPE for the complex wave function ¥ (x, 7):

% — iV — |y DT (1. (1

We shall study numerically quasihomogeneous quasi-
isotropic turbulence of weakly interacting three-dimensional
BEC in a triply periodic cube of side L (and of the volume
V = L?). The GPE (1) conserves the total number of particles
and energy per unit volume,

N = l/ W (x, 1)|* dx, (2a)
Vv

| o \
sz/ VU DR + S0 [ dx @)
1%

respectively.

B. Wave turbulence theory

When the zero-frequency mode (uniform condensate)
is negligible, the WT theory for the GPE formulates an
asymptotic closure for the waveaction spectrum ng(?) =
nlk,t)= (2‘/7)3(|1/}k(t)|2), where 1ﬁk(t) is the Fourier trans-
form of ¥ (x, t), and the brackets denote averaging over the
initial wave statistics. The WT closure is derived under as-
sumptions of small nonlinearity and random initial phases
and amplitudes of waves [1,2]. It furnishes a wave-kinetic
equation (WKE) with four-wave interactions [7,17]. For an
isotropic spectrum, which depends only on the magnitude of
the wave vector k = |K|, it is given by

3 43
() = % / min(v/o, Jor, /o, J3)5(w);)

—1 —1 —1 -1
xnwn1n2n3(nw +n —ny, —ng )

X da)lda)gda)3, (3)

where w is the wave frequency determined by the dispersion
relation @ = k2, n,(t) = n(w, t) = nk(t) = nk (), w% =w+
w| — wy — w3, 6 is the Dirac § function. The integral in (3) is
taken over w;, w;, w3 > 0.

In this paper, we focus on the spherically integrated
wave-action spectrum 14 (k) = 4mk’n,,, which is the spectral
particle density depending on the wave vector radius k. The

WKE for nf*d = n™(k) = n"™4(k, t) reads
anfd min (k, ky, ko, k3)
= 27T —l’lk
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WKE conserves the total number of particles and the energy,
o0
N = / n" (k) dk, (5a)
0
o0
E = / k? n"4(k) dk, (5b)
0

which coincide with Eq. (2a) and with the first term in Eq. (2b)
(the second term is small in WT), respectively.

Most central in the WT studies have been the KZ spectra:
stationary solutions of the WKE, each realizing a constant
spectral flux of an invariant of the system. For the GPE equa-
tion, there are two such invariants, N and E and, respectively,
there are two KZ spectra. These spectra were proposed in
Ref. [7] and discussed in many papers since Refs. [9,11,18,19]
but a rigorous systematic derivation of them, including find-
ing the dimensionless pre-factors, was only done recently in
Ref. [14]. In that work we obtained and validated numerically,
using alongside the GPE and WKE simulations, the following
KZ spectra corresponding to the direct energy and the inverse
particle cascades—

direct :  n™(k) = 4w CyPy k™ In"1 (k /),

Cy~ 526 x 1072,
n™ (k) = 4nCi|Qo|" k113,

C, ~ 7.5774045 x 1072,

inverse :

N

where Py and Qy are the respective (constant) spectral fluxes
of energy and particles through the sphere of radius £ = |k|.
Note that the log-factor in spectrum (6) is due to the fact that
the pure power law n™4(k) ~ k! (n,, ~ w~%/?) resulting from
a dimensional argument corresponds to a marginally divergent
integral in the WKE. As a remedy for this situation, the
log-correction was suggested on phenomenological grounds
in Ref. [7] and proved rigorously in Ref. [14].

The direct and the inverse cascade spectra are different
from each other in the following sense. Assuming that the
inertial range tends to infinity in the direct cascade spectrum,
i.e., that this spectrum extends from the forcing wave number
to arbitrarily high k's, the energy integral (5b) is divergent at
the upper limit, k — oo. This corresponds to an infinite en-
ergy in physical space, and the respective KZ spectrum is said
to have an infinite capacity. However, for the inverse cascade
spectrum with an infinite (in the log k variable) inertial range
extending to k — 0 (hence logk — —o00), the N-integral in
Eq. (5a) is finite (convergent at k — 0). Such a spectrum is
said to have a finite capacity, and it corresponds to a finite
particle density in the physical space.

Finally, note that because of the § (wgi) term in the
WKE ), if nf‘d = const, then the integral exactly van-
ishes. This equilibrium (no-flux) spectrum corresponds to
thermodynamic energy equipartition and it is known as the
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Rayleigh—Jeans spectrum. It represents a special case of more
general thermodynamic equilibrium:

4 k*T

K2+ u’
where T and p are two (positive) Lagrange multipliers that
fix the total energy and mass. They can be interpreted as
temperature and chemical potential and play an important role
to understand the process of condensation [20-22]. Note that,
to make the energy and mass finite, one needs to impose a
UV-cutoff k.« in the system. We will come back to this point
later.

Rayleigh-Jeans: n™(k) = 3)

III. SELF-SIMILAR SOLUTIONS

In Zeldovich’s classification, the self-similar solutions can
be of two kinds. For the first kind of self-similarity, the self-
similar coefficients are fully determined by a conservation
law, e.g., energy—Ilike in the spherical shock wave resulting
from a point-like energy deposition in an ideal gas. For the
second kind of self-similarity, the self-similar coefficients can-
not be determined by a conservation law only because most
of the respective invariant remains in a volume that is not
self-similar—like in the problem of a spherical implosion of
a vacuum bubble in gas. Yet, there is also a third kind of self-
similarity in which the self-similar coefficients are fixed by a
previous evolution stage which is also self-similar [23,24].

In what follows we will see that all three kinds of self-
similarity are relevant to the evolving BEC WT. As a general
guideline, one should expect the first kind when the respective
KZ spectrum has an infinite capacity and the second kind of
self-similarity in the finite capacity case. Since in the BEC WT
case the direct and inverse cascades have an infinite and finite
capacity respectively, they exhibit the first and the second kind
self-similarities, respectively. This means, in particular, that
the inverse cascade front reaches zero frequency in finite time
t* setting a power law with an anomalous (different from KZ)
exponent. This is followed by a reflected-wave spectrum at
t > t* propagating the KZ exponent toward the larger fre-
quencies if dissipation is present at low frequencies. If there
is no low-frequency dissipation, then for large values of ¢
one gets the thermodynamic energy equipartition exponent
for GPE. In both cases, the reflected wave is described by a
self-similar solution of the third kind.

A. The first-kind self-similarity for the direct cascade

Assume that the self-similar solution of Eq. (4) has the
following form:

nk, 1) =t""f(n) with n=k/t". 9)
Substituting the above expression into WKE (4), we get
— (af () + bnf' ()
_ min(n, 01, 12, 13)
URIYPYIE
x 6%$sz1fzf3(”72 + ;—f - }—f - Z—f)dmdnzdns,

(10)

where f; = f(n), mi = ki/t” for i =1,2,3, f = f(i), and
3%7372 =38(n*+n? —n3 —n3). The time dependence in the
above equation must disappear, which implies a = 1/2. Thus,
the equation for f(n) becomes

af(n) +bnf'(n)
min(7n, 91, N2, N3)
— _op | T2 3) e p g
nnin2ns
2 2 2 2
N\ A A f R

Substituting the self-similar form (9) into the definition of
energy, we obtain

E=¢%" fo h n*f(n) dn. (12)

Consider a temporal evolution of energy obeying the law
E(t) o t*, with A = const > 0. Comparing it to Eq. (12), we
obtain the scaling exponent b = 1/6 + A/3. Therefore, self-
similar solution of the first kind is

"k, )e'? = fk/t”) with b= 1/6 + /3. (13)

To characterize the temporal propagation of the direct cascade
front, let us set a certain value f. such that f. < fi.x, Where
Jfmax 18 the maximum value of function f(n), find from the
equation f(n.r) = f. the value ns = const, and define the lo-
cation of spectral front of the direct cascade at a time moment
t as kep(2) such that ke (2)/t? = ne.

Far behind the moving front, for n < n., we expect a
power-law behavior, f(n) ~ n™" with x > 0. Substituting this
power law into (11), we see that in the limit n — 0 each term
of the left-hand side (LHS) is vanishingly small compared to
the right-hand side (RHS) for x > 0. Therefore, for x > 0 we
conclude that for n < 7.t the spectrum tends to the solution
of the equation RHS = 0, i.e., to a spectrum whose exponent
x is the same as one of the stationary solutions (but not the
prefactor!). The borderline case x = 0 is similar since it is the
energy equipartition case for which LHS = RHS = 0. Thus,
at n < net, for the forced case we have the direct cascade KZ
exponent (x = 1), whereas for the unforced case this should
be the thermodynamic energy equipartition (x = 0). However,
the unforced/undissipated case is tricky because the WKE
blows up in a finite time #*, whereas the self-similar solution is
usually expected at large times. Nonetheless, we will see that
the self-similar solution provides a reasonably good descrip-
tion of the long time evolution of the GPE spectrum (which,
in contrast with the solution of WKE, does not blow up).

B. The second-kind self-similarity for the inverse cascade

The inverse cascade has a finite capacity KZ spectrum, and
therefore it is expected to exhibit a second-kind self-similarity
in its dynamics. This self-similar regime is characterized by
the presence of a blowup time ¢* and it forms asymptotically
very close to this time. Note that the presence of forcing is
unessential for this regime due to its self-accelerating blowup
nature. Previously, the self-similar solutions of the second
kind of the WKE associated with the GPE model were studied
in Refs. [15,25-27], and its signatures were seen in the direct
numerical simulations of the forced/dissipated 3D GPE in
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Ref. [28], and in unforced simulations from Ref. [29], with
prior attempts made in Refs. [30,31]. In the present paper, we
will recover the previous results and complete them with more
detailed considerations of both forced and unforced systems,
as well as by considering the setups in which the inverse and
the direct cascades show up simultaneously.

For the second-type self-similarity, we assume the follow-
ing form of the spectrum:

n(k, 1) = g(&)r " withé = k/t™ andt =1* —t, (14)

where ¢* is the blowup time. Substituting Eq. (14) into Eq. (4)
and requiring that the resulting equation involves only the
similarity variable 1 and not 7, we get r = 1/2 and

/ — 2 5237
rg(§) +még(§) =2n FEEEs | S518:80
2 2 2 2
X (S— + I E—3>d€1d§2d$3,
8 81 82 83

5)

where g; = g(&), & =k;/t" for i=1,2,3, g= g(&), and
8@2 =82+ 512 — 522 — 532). It was shown numerically in
Refs. [15,27] and proven analytically in Ref. [26] that g(§)
g2 for £ < 1 which corresponds to the thermodynamic energy
equipartition spectrum. For & > 1, the spectrum approaches
a power law g(§) o< & = with exponent x* = 1/(2m), which
is anomalous, i.e., neither KZ nor thermodynamic. This ex-
ponent has been numerically explored in several papers by
simulating the WKE evolution, seeking for n,, ~ w™, where
x =14 x*/2. References [15,25] reported a value of x as
1.24 (x* = 0.48), while in Ref. [27], a value of x = 1.234
(x* =~ 0.47) was obtained. More recently, solving directly
the nonlinear eigenvalue problem associated with Eq. (15)
in Ref. [26], the most carefully determined candidate values
were found to be x = 1.22 and x = 1.24, corresponding to
x* = 0.44 and x* = 0.48, respectively.
Note that our self-similar solution of the second kind

"k, )T? = glk/t™) with m = 1/2x*)  (16)

implies that the spectra n™d(k,t) for various time moments
collapse into a single curve g(&) when the time is close to
t*. Substituting the established behavior g(&) o< £% as £ — 0,
which was proved in Ref. [26] (based on the nonlocality of
interaction of scales £ « 1 with scales & ~ 1), into Eq. (16),
we can deduce that the quantity

G(r) = ]1133) "k, 1)/ /2 (17)

must tend to a constant as ¢ is approaching ¢t* from below
(t — +0). We shall use this as one of the tests of self-
similarity in our numerics.

C. The third-kind self-similarity for the inverse cascade

As we explained above, the first- and the second-kind
self-similarities are different because in the former case the
stationary spectrum is formed right behind the propagating
front, whereas for the latter case an anomalous power-law
spectrum forms for + — t* (¢ < t*). The anomalous power
law is further replaced by a stationary spectrum—the process
that takes the form of a reflected wave propagating back from

the dissipation wave number to the forcing one. This new
type of self-similar behavior was first studied for the direct
cascade systems in Refs. [23,24], but it is natural to expect it
for all finite-capacity systems, in particular, for the BEC WT
inverse cascade considered in the present paper. This behavior
does not fit the Zeldovich’s first/second-kind classification
and, therefore, was named the third-kind self-similarity in
Refs. [23,24].

The third-kind self-similarity is realized for t — t* (f >
t*); it is characterized by the spectrum (14) in which now
T =1t —t" > 0. In the present paper, we will not study such
a behavior in detail because the numerical resolution of our
simulations is insufficient for making definitive conclusions.
However, we will comment on the signatures that are con-
sistent with the reflected wave scenario in the results of the
WKE numerics and on the absence of such signatures in the
GPE numerics.

D. Free decay: Blowup versus no-blowup initial data

As mentioned in Sec. III B, the second-kind self-similarity
is observed for the WKE in the inverse-cascade settings, both
with and without forcing. This behavior is a precursor to
the condensation at k = 0 which sets in at a finite time #*.
Actually, for unforced systems, this kind of evolution is ex-
pected only for sufficiently low-k initial data, as follows from
the standard Einstein’s condensation argument applied to the
classical waves [20]. This argument consists in a statement
that Bose-Einstein condensation occurs when no equilibrium
Rayleigh-Jeans (RJ) spectrum (8) n™d(k) = 47 k>T /(k*> + 1)
(with T, © = const) can be found containing the same amount
of N and FE as in the initial condition. (Note that it is necessary
to assume that the system is truncated at the UV-cutoff kpx to
make E and N finite.) Specifically, the minimal possible value
of E/N in the RJ spectrum occurs for u = 0, and this value
is equal to k2, /3. Of course, this argument implies that the
thermal equilibrium is an attracting state, i.e., that there is a
mixing mechanism leading to relaxation to this state either due
to a coupling to a thermal bath (not our case) or provided by
nonlinear wave interactions (our case). In the latter case, the
required mixing may be absent for certain special initial data
and the WKE-governed system goes, e.g., through a periodic
evolution [32].

The previous discussion implicitly assumes that energy and
total number of particles are conserved during the temporal
evolution, even in the presence of an UV-cutoff. At first sight,
it seems contradictory that a truncated system exhibiting a
direct cascade could conserve energy, as one might expect
naively that interacting wave modes will excite wave numbers
beyond kn,x, creating an energy leakage. However, by trun-
cating a system, one actually kills such interactions so that the
cascade can not pass through k.

The introduction of an UV-cutoff in a nonlinear partial
differential equation allows for a simple statistical mechanics
description of thermal states, as first realized by Lee and
Kraichnan for the truncated Euler equation [33,34]. Kraich-
nan introduced the concept of absolute equilibria in which
Fourier modes of the velocity field are in thermal equilib-
rium and obey Gibbs statistics, i.e., they have the distribution
x exp[—E/T], where E is the kinetic energy of the flow.
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The relaxation toward thermal equilibrium presents a rich
and complex dynamics which exhibits turbulent cascades
prior to complete thermalisation [35]. This process was later
extended to the cases of helical flows [36], the Burgers equa-
tion [37], magnetohydrodynamics [38], and in particular, to
the case of the truncated Gross-Pitaevskii equation [21,22].
Note that the RJ spectrum (8) is an absolute equilibrium
of the truncated GP system for small amplitude waves. In
the context of finite temperature BECs, the truncation of the
GP equation is justified by a semi-classical approximation
in which only particles with momenta such that fiw(kpax) <
kgT are taken into account (with 7 the temperature and kg
and 7 the Boltzmann constant and Planck constant). In the
context of weakly nonlinear optical waves propagating in a
multimode fiber, the frequency cutoff naturally arises from ex-
perimental conditions [39]. We introduce in the following the
truncated GP and properly define the truncated wave kinetic
equation.

1. Truncated Gross-Pitaevskii equation

The truncated GP equation is easily defined from the stan-
dard GP equation expressed in Fourier space. It results from a
Galerkin projection at the wave number &,y and reads

BN, . A
% = —ik Y — > 000,050 P20, (18)
123

where 6, = 1, if |K| < kpax and 6 = 0 otherwise. It can
be easily seen that this equation derives from the Hamilto-
nian H =3y a0 KIVKI® + 31034 0102030403 Ura sy
The truncated Hamiltonian preserves invariance with re-
spect to the time and phase shifts and, therefore, Eq. (18)
also conserves the total energy and the total number of
particles.

The truncation of the Gross-Pitaevskii model was first ex-
plicitly introduced by Davis et al. [40] to study the process of
condensation in Bose gases by performing direct numerical
simulations of the GP equation. Since then, the truncated
(or sometimes called projected) GP equation has become an
important model for finite temperature BECs. It has been
used for studying the interaction of vortices and particles with
thermal waves [41,42], as well as the quantum turbulence
at finite temperatures [43]. Note that RJ spectrum (8), and
the argument given for classical condensation of waves in
Ref. [20] is only qualitative in the case of infinite systems. In-
deed, close to the condensation transition, the system becomes
fully nonlinear at very low wave numbers and the WT theory
can not be applied there. The whole Hamiltonian (2b) should
be taken into account, which corresponds to the energy of
the well-known A — ¢* theory, describing second-order phase
transitions [21]. However, in finite (e.g., trapped) systems, the
lowest wave number is finite, and in principle, the system may
remain weakly nonlinear even when all the particles condense
at the lowest energy level.

2. Truncated wave kinetic equations

The truncated WKE immediately follows from Eq. (18)
and its Hamiltonian, as the truncation can be interpreted as

ks
k + kmax
AYENG
Kmax Z
L
k ----------- Ql ------------------------
. A
O k kmax k + kmax ki

FIG. 1. Domain of integration of the collision term of truncated
WKE.

a collisional matrix. It simply reads

d
on?
ot

min (k, ki, k2, k3)nrad rad _rad_ rad
k kikaks kT T T

=2ﬂ/9k919293

k2 k2 k2 k2
(@MW) == + == — == — = \dkidkydks,
X (w23)< niad + nizltd ngd n]r(::d 1GER2EER3
(19)

which also naturally conserves the truncated invariants. The
truncation acts on all wave numbers k, k», k3, and k| = k —
ky — k3, which reduces the integration domain to the area €2,
in Fig. 1. Note that performing a naive truncation on the
WKE, which could be for instance keeping the domains Ay,
Ay, and 2, leads to an energy leak through ky,.x. The spurious
consequence of such a choice is discussed in Sec. A.

More interesting, it is well known that the WKE admits
an H-theorem which states that the entropy S = [ log nxdk
grows monotonically in time [1]. In particular, the theorem
holds in the truncated case with the entropy truncated at k.
Moreover, note that the RJ spectra maximize the entropy at
fixed total energy and number of particles. Therefore, it is
natural to assume that in the absence of finite-time blowup,
the truncated WKE solutions will tend to the RJ solution if
temperature and chemical potential can be determined.

Having introduced the truncated WKE, we can formulate
the following proposition for the freely decaying WKE sys-
tems with a UV-cutoff k.. (i) For initial data such that
E/N > kfnax /3, the finite-time blowup at k = 0 is absent, and,
respectively, no self-similar evolution of the second kind is
observed. (ii) Assuming additionally that the initial data is
not pathological and there is a suitable mixing present in the
system (validity of the H-theorem), the spectrum asymptotes
to the RJ spectrum for # — o00. Conditions for suitable mixing
are to be determined. (iii) For initial data with E/N < k2_ /3,
the finite-time blowup will occur at k = 0 (provided a suitable
mixing condition) and, respectively, self-similar evolution of
the second kind is observed in the vicinity of the blowup time.

Note that the finite-time blowup for a specific initial con-
dition was rigorously proven in Ref. [32]. In their case, there
was no maximum wave number (formally, ky,x = 00), so the
blowup condition specified above in (iii) was satisfied.
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(b)

nrad(k’ t)t1/2

nrad(l€7 t)Tl/z
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FIG. 2. Numerical results obtained in WKE simulation (case 1) for free-decay case with k;, = 1.5: (a) spherically integrated wave-action
spectrum n"4(k, t) for the times ¢t = 10, 20, 30, 40, 50, 60, 70, 80, 88.5; (b) n™(k, t) compensated by ¢'/?> vs compensated wave number k/¢”,

and inset for the time evolution of the compensated wave front k. /t?; (c) n"¢(k, t) compensated by t

1/2 ys compensated wave number k /7",

and inset for G(7) for the time close to blowing up. Spectra in panels (b) and (c) are given for r = 80, 82, 84, 86, 88, 88.5.

For the forced systems, there will be a continuous supply
of particles, and we can conjecture that the WKE system will
always blow up in a finite time (in the absence of dissipation
at the low-k region) irrespective of the initial condition and
the forcing strength.

IV. NUMERICAL RESULTS

A. Numerical setup

To study the self-similar behavior of the different kinds,
we consider two types of setups: the unforced (free-decay)
and the forced systems. We further subdivide the forced se-
tups into the direct and the inverse cascades—with forcing at
low and at high wave numbers, respectively. Moreover, we
consider the inverse cascade in two cases exhibiting qualita-
tively different behaviors—with and without dissipation at the
smallest wave numbers. The latter case leads to condensation.

We numerically simulate GPE (1) and WKE (3). The
GPE is solved by using the standard massively parallel pseu-
dospectral code FROST [44] with a fourth-order exponential
Runge-Kutta temporal scheme (see Ref. [29]). We discretize
the L*-periodic box using Np3 collocation points. The WKE
is solved using the code developed in Refs. [14,26,29]. This
code uses a decomposition of the integration domain in the
RHS of Eq. (3), so that in each subdomain the integrand is a
highly smooth function. We simulate the WKE in the interval
® € [Wmin, ®max], and we set n, = n,, . for w < wmin, and
n, = 0 for @ > wmax. The second-order Runge-Kutta scheme
is employed to march the time for free-decay cases, and a new
approach inspired by Chebyshev interpolation and schemes
described in Ref. [45] is used for the time integration in the
forced cases. The WKE solvers employed in Refs. [14,29]
attained superior resolution and broader computing ranges
while demanding significantly fewer computing resources
than the GPE solver.

For GPE simulations, the spherically integrated wave-
action spectrum is computed as

ray 1 N
™k, 1) = B, DIk 0P, (20)

kel"k

where I'y is the spherical shell around |k| = k with thickness
Dy. In WKE simulations, n™4(k, 1) = 4w wn,(t).

In all direct-cascade simulations, the propagation of the
spectral front k.¢(¢) is measured by setting a small threshold
value ¢ and finding for different 7 the value ki such that

rad _
n(kes, t) = ¢.

B. Free-decay simulations for low E /N

For the free-decay setup, we will, first of all, consider cases
which (according to our conjecture in Sec. III D) satisfy the
finite-time blowup condition for WKE, E/N < k2. /3. We
start simulations of these cases with Gaussian-shaped spectra,
similar to the ones used in Ref. [29]:

2
n™(k, 0) = goexp <(k—2kY)
o
We present three free-decay simulations (case 1, case 3, and
case 4) with the parameters shown in Table I. Figure 2 is
obtained by performing WKE simulation using the parame-
ters of case 1 described in Table I. The initial spectrum was
centered at k; = 1.5. We took essential care of setting the
distribution of the k-grid points to guarantee high accuracy at
both small and large k’s. Figure 2(a) shows the dual cascade
of wave-action n"(k, ) for the values of time ¢ € [10, 88.5].
The front of n™d(k,t) propagating to the left develops a
thermal particle-equipartition scaling ~k?, as was also dis-
cussed in Refs. [26,29]. At r = 88.5—<close to the blowup
time t* &~ 89.5—the scaling ~k~%? is seen between the front

2L

TABLE I. Numerical parameters for the free-decay simulations.

Case Model Wmin Wmax kg 2o o
1 WKE 1073 10 1.5 1 0.2
2 WKE 102 86 55 1 2.5
Case Model L N, ks 8o o
3 GPE 8 720 1.5 1 0.2
4 GPE 8 512 22 1 2.5
5 GPE 8 512 35 2 1
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propagating to the left and the initial peak. For late preblowup
times ¢ € [80, 88.5], in Fig. 2(b) we plot self-similar solutions
of the first kind given by Eq. (13) with A =0, b = 1/6 (cor-
responding to the free-decay case), i.e., we plot n™(k, ¢ )t/
versus k/t'/%. Respectively, for the same period of time,
in Fig. 2(c) we show a self-similar solution of the second
kind given by Eq. (16) with x* = 0.52 and t* = 89.5 (i.e,,
n™(k, £)t'/? versus k/t1/1'04). Inset in Fig. 2(b) presents the
time evolution of the compensated spectral wave-action front
keg/t? in the direct cascade setting. The fact that k.¢/t” tends to
be a constant at late times is in almost perfect agreement with
the prediction of first-kind self-similarity with b = 1/6. How-
ever, Fig. 2(c) shows a perfect collapse of plots n™(k, ¢)r!/?
versus k/t™ onto the same curve in the inverse cascade set-
ting. Moreover, in the interval 2 < 7 < 7 we obtain almost
constant G(t) as predicted by Eq. (17) for small , see the
inset of Fig. 2(c). This dependence breaks down for very small
T because of the presence of the minimal frequency wp, and
a small uncertainty in finding #* in numerics.

It is remarkable that we can see self-similarities of both
the first and the second kinds in one single WKE simulation.
This is mostly because of the efficient numerical method that
allows adaptive k- (or w-)space discretization with great accu-
racy. However, the blowup phenomenon in WKE evolution
means that one cannot continue the WKE solution beyond
t = t*, whereas formally the self-similar solution of the first-
kind (13) is expected asymptotically as t — oo. Taking into
account that the direct cascade propagation in the free-decay
situation is quite slow (ks ~ ¢!/9), it is worth noting that one
can observe only the tendency of k. /t” to a constant, see the
inset of Fig. 2(b). Even though, it is surprising to see that the
self-similar behavior in Fig. 2(b) develops relatively early in
time.

Simulating GPE is more challenging than WKE, and
presently it is impossible to include a sufficiently wide range
of scales for observing self-similarities of both the first and
the second kind simultaneously in one numerical run. Thus,
we ran two different setups with the initial spectrum in the
low and high k’s to observe the first- and the second-kind
self-similarities in the direct and the inverse cascades, sep-
arately. To implement a direct cascade for the free-decay
case, we simulate GPE (case 3 in Table I) using the same
initial n(k, 0) as in case 1. However, the GPE discretiza-
tion is much coarser than the one used for WKE, so the
initial data is in the k’s where the discreteness is substantial
(with the maximum at the wave number equal to the six
wave number spacings 2w /L). For this precise reason the
inverse cascade evolution is suppressed from the beginning,
and the direct cascade dynamics can be viewed as post-¢*.
Note that we add friction Dy = 10 at k = 0 (see Sec. IVD
for the definition of Dy) to effectively prevent the condensa-
tion. It should be emphasized that Dy needs to be sufficiently
large, typically Do > 10% to guarantee the condensate rate
n™4(0, t)/N < 10~* across all relevant simulations. After a
small initial change (~0.1% for 0 <t < 150) the relative
deviations of the particle and energy densities N and H re-
main constant with accuracy ~0.01%, which means that the
choice A =0 in (13) is still suitable. We present the time
evolution of wave-action spectra and the self-similar functions
of first-kind obtained in this simulation in Figs. 3(a) and 3(b),

S (U
= 107! 4
3
=
1072 _
T T
10-3 500 1000
T T T T L |
101 100
k/tb

FIG. 3. Numerical results for free-decay GPE simulation
(case 3) with k; = 1.5. (a) spherically integrated wave-action spec-
trum n"4(k, ¢) for times ¢ = 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000; (b) n"(k, t) compensated by t'/? vs compensated wave
number k/t’ for times t = 850, 880, 910, 940, 970, 1000 and inset
for the time evolution of the compensated wavefront k;/z°.

respectively, and in the inset of the Fig. 3(b)—time evolu-
tion of the compensated spectral front for the direct cascade.
At late times, thermal-like equilibrium energy equipartition
scaling ~k° is observed at the intermediate k-range (between
the low-k condensate and the high-k spectral front) as pre-
dicted. Also as predicted by the first-kind self-similarity, we
observe the collapse of curves n™(k, t)t'/? versus k/t” for
different ¢’s, and we see an asymptotic tendency of k/t”
to a constant. It is noteworthy that the recent experiment
[46] achieved dual cascades with almost constant N and H,
reporting a value of b =~ 0.14. This finding closely aligns to
our prediction b = 1/6. Note that even though the GPE and
the WKE runs (cases 3 and 1, respectively) share the same
initial spectrum, the results obtained by these two simulations
deviate quickly because of totally different discretization in
k-space. The GPE simulation bypasses the pre-#* evolution,
whereas the WKE evolution ends at ¢*. In principle, one could
regularise the WKE for describing the post-#* evolution by
coupling it to an equation for the condensate mode k = 0, as
it is done in Refs. [15,25], but studying the resulting equa-
tion is beyond the scope of the present paper. It is interesting,
however, that the energy equipartition spectrum observed in
our GPE simulation was also claimed to be relevant to the
post-t* evolution of the regularized WKE-condensate sys-
tem in Refs. [15,25]. The second kind of self-similarity is
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FIG. 4. Numerical results for free-decay GPE simulation (case
4) with k; =22: (a) evolution of the spherically integrated
wave-action spectrum n™4(k,t); (b) the spectrum n™4(k,t) com-
pensated by t'/2 vs compensated wave number k/t" for t =
120, 130, 140, 150, 160, 170. Inset: G(t) for the time close to the
blowup.

also studied via GPE free-decay simulations with an initial
spectrum centered at relatively large wave number k; = 22
(which is yet low enough for the WKE blowup condition,
E/N < k2, /3); see case 4 in Table 1. Figure 4(a) presents the
late time evolution of n™4(k, ¢) for ¢ € [120, 293] (early time
behavior was discussed in Ref. [29]). One can see clearly the
second kind self-similarity for ¢ € [120, 170] with k-scaling
at low k’s and k~%-scaling at large k’s. The shape of n™¢(k, t)
starts to change after t = 170 showing rapid accumulation of
waves in the smallest k£ (condensation). We observe and qu-
asithermal (energy-equipartition) constant spectra at high k’s.
Similar behavior was reported in Ref. [28] for the GPE simu-
lations with forcing at large k’s. This confirms that the forcing
is not important for the self-similarity of the second kind
because the characteristic time associated with the forcing is
much greater than the characteristic nonlinear time near ¢*. We
estimate the dependencies of n(k, t)t'/? on k/t™ with x* =
0.5 by using Eq. (16) for each value of ¢t* in a finely girded
range of (170, 230]. This investigation focuses on the data
within the established self-similar regime. The value t* ~ 200
minimizes the least-square deviations of the data during the
intermediate self-similar phase (¢ € [120, 170]). Figure 4(b)
plots the self-similar functions n™4(k, t)t'/? versus k/t™ for
t € [120, 170]. A visible collapse of curves is observed except
for high k. We also find a relatively constant G(t) for 30 <

7 < 100 in the inset, which coincides with the self-similarity
fort € [120, 170]. Note that, unlike WKE, the GPE evolution
does not lead to a blowup, and the self-similarity of the second
kind is observed as an approximate intermediate asymptotic
only. This is natural because the WKE fails to be applicable
while approaching ¢* both because of the rapid nonlinearity
growth and the increased sharpness of the spectrum at low k’s
where the discreteness of the k-space is essential. This results
in the long-term deceleration of GPE dynamics compared to
WKE. For the GPE we should also note that the condensate
does not occur at the mode k = 0 only, like in WKE, but takes
a form of a sharp spectrum at low k’s. We suggest a scaling
of ~k=23 as a visual guide, obtained by fitting the data on a
limited number of grid points, but this scaling is probably not
universal.

C. Free-decay simulations for high E /N

Now, let us consider cases which (according to our conjec-
ture in Sec. III D) satisfy the no-blowup condition for WKE,
E/N > k2,,./3. We take initial conditions as case 2 in Table I
for WKE simulation, and as case 5 for GPE simulation, re-
spectively. The simulation results are presented in Fig. 5. The
time evolution of spectra n®(k, t) obtained by solving GPE
are given in panel (a) for ¢ € [0, 320], and the results obtained
by solving WKE are given in panel (b) for ¢ € [0, 2000]. For
GPE simulation, as predicted in Sec. Il D, we see neither a
tendency to low-k condensation nor any signatures inherent
to self-similar behavior of the second kind. The spectrum
quickly takes form n"™(k, t) = A(¢) k? in a widening k range,
with A(#) — const fort — oo, as shown in Fig. 5(c) [#, is de-
fined as the time such that A(z.) has 1% deviation from A(oc0)].
In other words, the spectrum asymptotes to the (stationary)
RJ spectrum with /T — oo which is a thermodynamic state
describing the particle equipartition. Note that the particle
equipartition is realized instead of any other spectrum in the
RJ family because it corresponds to the chosen initial con-
dition with E/N close to its maximum possible value k2.
Similarly, the truncated WKE evolution in Figs. 5(b) and
5(c) also exhibits the same behavior as the GPE with a clear
thermalization to the RJ spectrum.

The case with a naive truncation in which energy leaks
through the cutoff &y, is discussed in the Appendix. In short,
this leakage leads to a decreasing value of E /N, such that
even if initially it is larger than k2, /3, after some time this
condition is violated followed by a condensation-type blowup
in finite time.

D. Simulations with forcing

Unlike the free-decay case, all the simulations with forcing
start with a zero initial field. In GPE simulations, we add
the forcing term Fi(¢) and the dissipation term —Dg Yk (t) to
the Fourier transform of the RHS of GPE (1). In the GPE
simulation for the direct cascade (case 6 in Table II, we add
forcing by fixing n"4(k, t) = n; on a spherical shell in k-space
with 0.5 < k < k¢, whereas for the inverse cascade (cases 6
and 7 in Table II), for a narrow spherical shell ks — 1 = 124 <
k < ks + 1 = 126 we add forcing terms obeying the Brownian
motion d Fx(t) = fod Wy, where W is the Wiener process and
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FIG. 5. Numerical results with large E/N: (a) spectrum n™%(k,t) in GPE simulation (case 5) for times ¢ = 0, 40, 80, 120, ..., 320;
(b) spectrum n™4(k, t) in the WKE simulation (case 2) for times ¢ = 0, 250, 500, 750, ..., 2000; (c) values of A(t)/A(oo) for the prefactor

A(t) in the fit n™(k, t) = A(t) k> for both cases.

in what follows fj is a positive constant. Naturally, k¢ is taken
small for the direct cascade and large for the inverse one. The
dissipation term is of the form Dy = (k/kp )™ + (k/kg)?;
it acts at small and/or large scales. Moreover, the conden-
sate mode k = 0 is also dissipated with constant friction Dy
when necessary. The WKE is forced by adding to its RHS
a constant-in-time function f,, = ¢f ['(w), where I'(w) is the
Gaussian centered at w¢ and of width Aws. Dissipation is
introduced by adding the term —[(w/wp )™ + (w/wr)P1n, to
the RHS of the WKE. We perform two WKE simulations—
one for the direct cascade and another for the inverse one
(cases 9 and 10 in Table II, respectively). All the numerical
parameters are given in Table II.

1. Forcing at low k's: Direct cascade

To implement the direct cascade, we simulate the GPE and
the WKE with forcing terms centered at low wave numbers
and let the spectrum propagate to large wave numbers (we set
no dissipation at large k’s). Figures 6 and 7 present numerical
results of the GPE and the WKE simulations, respectively
(cases 6 and 9 in Table II). Observing the time evolution of the
wave-action spectrum in Fig. 7(a), one can see the formation
of the log-corrected KZ spectrum behind the front. Thanks
to the good scale separation, for this simulation we can also
see the quasisteady state behind the wave number where the
forcing is imposed. However, the inverse-cascade range is too
short and the KZ power law ~k~!/3 is not observed in this
case. In Fig. 6(a) for the GPE simulation we also see a curve
qualitatively consistent with the log-corrected KZ spectrum
which develops behind the front, but the agreement is poorer
than for the WKE simulation. The inset in Fig. 6(a) shows

the GPE energy H (t) which is increasing nearly linear for all
the times, whereas the inset in Fig. 7(a) shows an increase of
the WKE energy E(t) which is almost linear for # > 5. This
dependence E(t) ~ t implies that in the self-similar solution
of the first-kind (13) A = 1. Using the last equality that gives
b = 1/2, we plotted the self-similar solutions in Fig. 6(b) for
t € [100, 160] and in Fig. 7(b) for ¢t € [2, 17.3]. In these time
intervals, an evident visual collapse of plots can be observed
for both GPE and WKE simulations. The time windows, in
which we observe clear self-similar evolution, also agree with
time windows in which the compensated wavefront k¢ is
constant (see the insets). Note that in the GPE simulations, we
start to lose self-similarity around r = 180, because the front
touches the right boundary (maximum wave number).

It is worth mentioning that the numerical setup that we
used for the direct cascade, mimics the configuration in the
experiment by Navon ez al. [11], with a constant rate of energy
injection and almost steady total number of particles. In their
study, they reported b & 0.54 with a tolerance of 6% when
converted to our notations. This finding is remarkably close to
our theoretical prediction b = 1/2.

2. Forcing at high k's: Inverse cascade

We perform two GPE simulations with the same forcing
centered at high k’s and hyper-viscosity acting at even higher
k's located to the right from the forcing range to achieve the
inverse cascade (cases 7 and 8 in Table II). The only difference
is that for case 8 we put hypoviscosity at low k’s to absorb the
inverse cascade of particles and to get a steady state, whereas
in case 7 no dissipation at low k’s was imposed. Therefore,
the two simulations show almost the same behavior before the

TABLE II. Parameters of simulations of forced-dissipated GPE and WKE.

Case Model Cascade L N, ng 12 ke Dy kL o kr B

6 GPE direct 47 512 1.5 — 1 103 — — — —

7 GPE inverse 2 512 — 1074 125 — — — 130 6

8 GPE inverse 27 512 — 10~ 125 10° 1 0.5 130 6

Case Model Cascade Wmin Wmax cr Wy Awy wr o wR B k¢
WKE direct 1073 10 10 3 x 107 3 x 107 1074 4 — — 0.025

10 WKE inverse 0.1 10° 50 1252 500 10 4 10°/4.5 7 —
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FIG. 6. Numerical results for GPE simulation (case 6) with
forcing at low k's. (a) Values of the spectrum n™(k,t) for t =
20, 50, 80, 110, 140, 170, 200, 230, 260, and in the inset—time evo-
lution of energy density H(t); (b) n™(k, t) compensated by t'/? vs
compensated wave number k/t® for t = 80, 100, 120, 140, 160 and
in the inset—time evolution of the wave front k.; divided by #”.

left parts of the spectral fronts get into the region where the
dissipation of case 8 is imposed. Figure 8(a) presents the early
time evolution of the wave-action spectra for ¢ € [0.85, 1.3]
obtained for case 7. As in the free-decay simulations, we
see a particle equipartition scaling k2 in the left front and an
anomalous kK~ -scaling with x* & 0.5 behind the front. The
late time evolution of case 7 is plotted in Fig. 8(b), where we
see the k=2 scaling for small k’s and the energy equipartition
for large k’s, as it was reported in Ref. [28]. It is also similar
to the late-time evolution of freely decaying inverse cascade
plotted in Fig. 4(a). The final state appears to be quasisteady
with condensate ratio [n™%(0,¢)/N] oscillating around
10~3—a picture previously observed in Ref. [28]. Obviously,
for the final state to be steady the particle and energy inputs
and sinks in the high-k region must cancel each other.

Let us now consider the long-time evolution in case 8. We
expect that due to the presence of the dissipation at low k's the
system will eventually relax to the steady KZ spectrum cor-
responding to the inverse cascade of particles, ng‘d ~ k=13,
The route to this final steady KZ spectrum is interesting; it
can be seen in the sequence of spectra plotted in Fig. 8(c)
for different moments of the late evolution. Shortly after the
anomalous spectrum ~k™ &~ k=03 forms at t — t* ~ 1.5,
we see a spectrum overshoot at low k’s before it relaxes to
smaller values after the low-k dissipation takes effect. This

10~ +rrm————————————
10~ 1072 107

k/t

FIG. 7. Numerical results for WKE simulation (case 9) with
forcing at low k’s. (a) Values of the spectrum n™¢(k, t) for the times
t=2,4,6,8,10, 12, 14, 16, 17.3 and in the inset—time evolution of
energy density E; (b) n"(k, t) compensated by ¢!/? vs compensated
wave number k/t” for the times ¢t = 10, 12, 14, 16, 17.3 and the inset
for the time evolution of wave front k. divided by th.

is followed by an opposite overshoot characterized by the
spectrum depletion and formation of a slope shallower than
k~1/3. Only after that the spectral slope moves up toward and
stabilizes at —1/3. This oscillatory relaxation to the KZ steady
state is rather different from the reflected wave scenario (cor-
responding to the self-similarity of the third kind) described
at the end of Sec. III.

For the WKE, long-time inverse-cascade evolution exists
only if a low-k dissipation is present because otherwise the
spectrum blows up at t = ¢*. Numerical results for this case
(case 10 in Table II) are presented in Fig. 9 with spectra
shown in panel (a) and the spectral slopes (log-derivatives of
nfd)—in panel (b). Here, we see that the transition from the
slope of anomalous exponent —x* (& —0.5) to the KZ slope
—1/3 proceeds monotonously—faster at lower and slower at
higher k’s. This is consistent with the reflected wave sce-
nario described at the end of Sec. III. However, the range
of wave numbers achievable in numerics is insufficient for
making any conclusions about the realizability of third-kind
self-similarity.

V. SUMMARY AND DISCUSSION

In this paper, we studied evolving BEC wave turbulence
using numerical simulations of the GPE and the WKE in
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FIG. 8. Numerical results for GPE simulations with forcing at high k’s: (a) spectrum n™(k,t) (of case 7) for early times t =
0.85,0.95,1,1.05, 1.1, 1.15, 1.2, 1.25, 1.3; (b) long-time evolution of n™(k, 1) (of case 7) without dissipation at low k for times t =
1.4,1.6,1.7,1.8,2.4, 3; (c) long-time evolution of n™(k, ) (of case 8) with dissipation at low 's.

several different setups corresponding to free-decaying and
forced-dissipated cases for developing inverse, direct and dual
cascades. Our focus was on identifying self-similar evolution
regimes. In both the GPE and the WKE simulations, we
observe the first-kind self-similarity for the direct cascade.
In the free-decay simulations, the self-similar spectra tend to
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FIG. 9. Numerical results obtained by WKE simulation (case
10) with forcing at intermediate k's and dissipation at both
low and high k’s: (a) spectrum n™d(k,t) for times t = 0.0176,
0.0185,0.0190, 0.0192,0.0194, 0.0195, 0.0197, 0.0210, 0.0379;
(b) slope of In n™(k) for the same times as in panel (a).

stationary thermal energy equipartition states at large times,
t — o0o. The temperature of such final states is determined by
the total initial energy in the system. For the forced-dissipated
setup, the final steady state is the direct-cascade KZ spectrum
(which forms immediately behind the propagating front of the
self-similar spectrum.

For the inverse cascade evolution, we have verified the
existence of the self-similar regime of the second kind de-
scribing self-accelerating dynamics of the spectrum leading
to blowup at k = 0 at a finite time r = ¢*. Due to the fact that
close to ¢* the nonlinear dynamics is faster than the forcing
process, the self-similar evolution of the second kind is insen-
sitive to the presence or absence of forcing. Physically, this
process describes a nonequilibrium Bose-Einstein condensa-
tion or, to be more precise, precondensation—because at t =
t* the particle occupation of k = 0 is still zero (i.e., the integral
of total number of particles (5a) converges at k = 0 on the
spectrum k). For WKE, the blowup is exact, meaning that
no free-decay evolution can be considered for r > ¢* without
regularising the WKE model, e.g. via introducing an evolution
equation for the £ = 0 mode and coupling it to the equation for
modes with k£ > 0 as was done in Refs. [15,25]. We have not
attempted to consider such post-t* evolution with this kind of
regularization. Interestingly, a significant numerical resolution
available for the WKE simulations allowed us to implement a
dual cascade free-decay system where both the direct cascade
(first-kind self-similarity) and the inverse cascade (the second-
kind self-similarity) are observed simultaneously for times up
to ¢*. For GPE, the blowup behavior is only an approximate
intermediate asymptotic. Closer to #* the self-similar behavior
breaks down both due to the breakdown of the weak nonlin-
earity assumption and due to the discreteness of the k-space
corresponding to a finite retaining box. As a result, the GPE
evolution continues regularly past #*. Namely, in the absence
of low-k dissipation, it shows the formation of an energy
equipartition spectrum at high k’s and a sharp spectrum in
the low-k region—a condensate. We emphasize the fact that
in the case of the GPE system in a finite (periodic) box, the
condensate is spread over few lowest-k modes and not con-
centrated at k = 0 only as in the WKE case. In the presence
of low-k dissipation, in both the WKE and the GPE systems,
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the condensate is suppressed and the spectrum relaxes to the
KZ inverse cascade steady state. For the GPE, an oscillation is
observed in the transient period, whereas for the WKE system
(which is now regularized by the low-k dissipation and can
evolve for r > t*) we see signatures of the reflected wave sce-
nario characterized by the third-type self-similarity. However,
these signatures are quite indirect and more work is needed for
identifying the third-type self-similarity which, in our case,
still remains hypothetical. Besides numerical simulations for
a much wider range of k, which would presently be hard
to achieve, one could solve directly the integro-differential
equation for the self-similar shape in a way similar to the
one used for a three-wave kinetic equation for MHD waves
in Ref. [23]. This could be an interesting problem for future
study.

Finding universal dynamics in turbulent superfluid Bose
gases has gained significant interest in recent laboratory ex-
periments (see Refs. [11,46-48]). These experiments involve
the self-similar regimes discussed in the paper. In particu-
lar, the experiments detailed in Refs. [11,46] have reported
instances of the first kind of self-similarities for the direct cas-
cade. These cases encompass scenarios involving free-decay
with nearly constant energy and forced cases with linearly
increasing energy, respectively. Remarkably, the exponent
constants observed in these experiments closely align with
our predictions by Eq. (13) for both configurations. How-
ever, the experimental investigation of the inverse cascade
poses a more intricate challenge than the direct cascade. Re-
cent experiments conducted in Refs. [46—48] aimed to detect
self-similarity of the first kind. It is important to note that,
as clarified in the current paper, in the inverse cascade, the
second kind of self-similarity should be expected instead, and
therefore, the respective experiments should be revised and
refined.

Finally, special interest for future studies presents 2D se-
tups relevant to optical turbulence systems, see, e.g., Ref. [39].
Note that 2D systems are special and different from 3D ones
since neither true condensation nor pure KZ cascades are
possible for such systems. Also, since the 2D optical systems
are usually trapped by a carrier beam, the system may remain
weakly nonlinear even if a significant part of the total particles
accumulate in the ground energy state, as it was the case
in experiment of Ref. [39]. Evolving 2D BEC WT is also
very different from the 3D evolving turbulence, requiring a
separate theoretical investigation.
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APPENDIX: NAIVE TRUNCATION
OF THE WAVE KINETIC EQUATION

As discussed in Sec. IIID2, a proper truncation is
needed to conserve the invariants. In this Appendix, we
show the spurious consequences of the naive truncation.
Namely, we impose the cutoff wp,, in the collision term,
but keep the subdomains €2, A;, and A, sketched in
Fig. 1.

We repeat the simulation of case 2 in Table I using this
truncation scheme. Despite the facts that for such condi-
tions E /N ~ 3028 > k2, /3 ~ 2465 and the initial spectrum
does not touch wmax, we got blowup in a finite time, see
Fig. 10(a).

The reason for this effect can be extracted from Fig. 10(b).
The relation E/N starts to decrease rapidly at ¢t ~ 150,
and for r =300 we already have E/N <k2./3. Let
be the time when the equality E/N = k2 /3 is reached.
In Fig. 10(a) one can see that for t < ¢, the evolution of
spectrum slows down and RJ spectrum starts to develop,
but for ¢ > ¢, the evolution accelerates and spectrum goes
to blowup. The reason is that the condition E/N < k2, /3
is dynamically broken as a consequence of the energy
leak.

This spurious evolution is an effect of the naive UV-cutoff
only and, by using finer frequency and time discretizations,
we have verified that it is not caused by finite grid effects or

time stepping.
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