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Spiral wave chimeras in nonlocally coupled bicomponent oscillators
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Chimera states in nonidentical oscillators have received extensive attention in recent years. Previous studies
have demonstrated that chimera states can exist in a ring of nonlocally coupled bicomponent oscillators
even in the presence of strong parameter heterogeneity. In this study, we investigate spiral wave chimeras in
two-dimensional nonlocally coupled bicomponent oscillators where oscillators are randomly divided into two
groups, with identical oscillators in the same group. Using phase oscillators and FitzHugh-Nagumo oscillators
as examples, we numerically demonstrate that each group of oscillators supports its own spiral wave chimera
and two spiral wave chimeras coexist with each other. We find that there exist three heterogeneity regimes:
the synchronous regime at weak heterogeneity, the asynchronous regime at strong heterogeneity, and the
transition regime in between. In the synchronous regime, spiral wave chimeras supported by different groups
are synchronized with each other by sharing a same rotating frequency and a same incoherent core. In the
asynchronous regime, the two spiral wave chimeras rotate at different frequencies and their incoherent cores are
far away from each other. These phenomena are also observed in a nonrandom distribution of the two group
oscillators and the continuum limit of infinitely many phase oscillators. The transition from synchronous to
asynchronous spiral wave chimeras depends on the component oscillators. Specifically, it is a discontinuous
transition for phase oscillators but a continuous one for FitzHugh-Nagumo oscillators. We also find that, in
the asynchronous regime, increasing heterogeneity leads irregularly meandering spiral wave chimeras to rigidly
rotating ones.
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I. INTRODUCTION

Chimera state, a symmetry-breaking spatiotemporal pat-
tern, consists of spatially separated coherent and incoherent
behaviors. It was first discovered in nonlocally coupled iden-
tical phase oscillators by Kuramoto and Battogtokh in 2002
[1] and later named by Abrams and Strogatz in 2004 [2].
Chimera states have been widely studied in physics, chem-
istry, biology, and other fields [3–14]. They are not limited
to phase oscillators but can also be found in periodic and
chaotic maps [15], FitzHugh-Nagumo (FHN) oscillators [16],
Ginzburg-Landau oscillators [17–19], Hodgkin-Huxley mod-
els [20,21], Hindmarsh-Rose models [22,23], Van der Pol
oscillators [24], etc. Meanwhile, in reality, the phenomena
of chimera states have been successfully observed in optical
[25], chemical [26], and mechanical experiments [27]. Addi-
tionally, biological phenomena such as unihemispheric sleep
in marine mammals are potentially related to chimera states
[28].

Most of the research on chimera states has been focused on
one-dimensional systems. However, interesting chimera states
have also been discovered in two-dimensional planes [29],
torus surfaces [30,31], and three-dimensional spheres [32].
One of the most intriguing types of chimera states is the spiral
wave chimeras, where the phase singularity of the normal
spiral wave is replaced by an incoherent core. Spiral wave
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chimeras have been reported numerically in many theoretical
models such as phase oscillators [30,33,34], FHN oscillators
[35,36], and Rössler oscillators [37], and experimentally in
Belousov-Zhabotinsky solution [7,26].

With the increasing interest in chimera states research, non-
identical oscillator systems have become a focus of attention
due to their proximity to actual systems. Laing conducted
a study on a ring of nonidentical phase oscillators with
natural frequencies following a Lorentz distribution whose
width measures the frequency heterogeneity [38]. Theoreti-
cal analysis and numerical simulations revealed that strong
frequency heterogeneity (large width) may destroy chimera
states. However, Dai et al. reported that chimera states can
exist in a ring of nonlocally coupled bicomponent phase
oscillators regardless of the strength of frequency heterogene-
ity [39]. In their work, the natural frequency distribution was
modeled by a double-delta-function distribution, some oscil-
lators with natural frequency ω0 and others with −ω0. By
treating the two groups of oscillators separately, they found
that weak frequency heterogeneity supports two synchronous
chimera states while strong frequency heterogeneity supports
two asynchronous chimera states. Similar results were also
obtained by Zhang et al. in a ring of nonlocally coupled
bicomponent FHN oscillators [40].

Up to now, the studies of chimera dynamics in nonlocally
coupled bicomponent oscillators have been carried out only
in one-dimensional rings. It is of interest to explore whether
asynchronous spiral wave chimeras exist in two-dimensional
systems under strong heterogeneity and how the spiral wave
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chimera dynamics transform between synchronous and asyn-
chronous states. In addition, previous studies have shown that
two coexisting spiral waves are separated in space [41]. Their
wave arms encounter and collide during propagation. Two
spiral waves compete with each other through the interface
and the faster spiral wave always takes over the slower one
and finally entrains the whole space [42], whereas two spiral
waves coexisting at the same territory in space have not yet
been observed.

In this paper, we set up the phase oscillator model and
the FHN model, respectively, to study a two-dimensional
square lattice network of nonlocally coupled bicomponent
oscillators. We find that spiral wave chimeras in bicomponent
oscillators can coexist in the same territory in an entangled
way. The wave arms will pass through each other instead
of colliding when they encounter. We also find synchronous
spiral wave chimeras at weak heterogeneity and asynchronous
spiral wave chimeras at strong heterogeneity. Then, the tran-
sition from synchronous to asynchronous states is observed
when heterogeneity increases.

The rest of the paper is organized as follows. In Sec. II,
the two models are introduced in detail. In Sec. III, we present
the results of rich dynamics with different heterogeneity
and the transitions between them. Finally, a summary is pre-
sented in Sec. IV.

II. MODELS

A. Phase oscillator model

We consider a nonlocally coupled system of phase oscilla-
tors located on a square lattice of size N × N . The dynamical
equation of the phase oscillators is given by

θ̇i, j (t ) = ωi, j − A

NR

×
∑

(m,n)∈BR,i j

sin[θi, j (t ) − θm,n(t ) + α], (1)

where θi, j and ωi, j (1 � i, j � N) are the phase and the
natural frequency of the oscillator at position (i, j) on the
square lattice. α is the phase lag. Each oscillator is coupled
with the same coupling strength A to other oscillators in a
neighborhood given by

BR,i j = {(m, n) : max{i − R, 1} � m � min{i + R, N};
max{ j − R, 1} � n � min{ j + R, N}}, (2)

where R is the coupling range. The definition (2) of the neigh-
borhood suggests open boundary conditions [43] imposed on
the model (1). NR denotes the number of coupling neighbors
and is set to be NR = (2R + 1)2 − 1 for each oscillator. The
position-dependent complex order parameter is defined as
Zi, j = 1

NR

∑
(m,n)∈BR,i j

eiθm,n . The amplitude |Zi, j | ranges from 0
to 1 and a larger |Zi, j | indicates a higher degree of coherence
in the vicinity of the oscillator at position (i, j).

Here, we use a tunable parameter ω0 to adjust the het-
erogeneity of the natural frequencies of the bicomponent
oscillators. Every oscillator is randomly assigned the natural
frequency ω0 with the probability p and −ω0 with the prob-
ability 1 − p. For convenience, we call oscillators with the
natural frequency ω0 positive oscillators and those with −ω0

negative oscillators. In this double-delta-function frequency
distribution, the larger the ω0, the stronger the heterogeneity
of the bicomponent oscillators.

B. FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) model in the N × N square
lattice we consider is

εi, j u̇i, j = ui, j − 1

3
u3

i, j − vi, j + σ

NR

×
∑

(m,n)∈BR,i j

[buu(um,n − ui, j ) + buv (vm,n − vi, j )],

v̇i, j = ui, j + a + σ

NR

×
∑

(m,n)∈BR,i j

[bvu(um,n − ui, j ) + bvv (vm,n − vi, j )].

(3)

Here εi, j , ui, j , and vi, j (1 � i, j � N) are the time-scale sep-
aration parameter, activator variable, and inhibitor variable of
the oscillator located at the position (i, j), respectively. Each
oscillator couples to the other oscillators in the neighborhood
BR,i j with the same coupling strength σ , where BR,i j is given
by Eq. (2). The coupling matrix is[

buu buv

bvu bvv

]
=

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]
, (4)

where ϕ is the coupling phase [16]. The dynamics of an
isolated FHN oscillator depends on the parameter a, which
is a limit cycle for |a| < 1 and an equilibrium otherwise. In
this paper, we fix a = 0.5 and assume that the heterogeneity
between the bicomponent oscillators comes from εi, j . Every
oscillator is assigned ε1 with the probability p and ε2 with the
probability 1 − p. In the following, we will fix ε1 and then
increase ε2 to enhance heterogeneity in the FHN system.

III. RESULTS

We study spiral wave chimera dynamics in nonlocally
coupled bicomponent oscillators and focus on the effects
of heterogeneity on spiral dynamics. For this aim, we nu-
merically simulate Eqs. (1) and (3) using a fourth-order
Runge-Kutta algorithm with δt = 0.025. In the follow-
ing, we set the system size N = 101, the coupling range
R = 10, and p = 0.5. To generate a spiral wave, we pre-
pare the initial conditions θi, j = arctan[( j − j0)/(i − i0)] for
Eq. (1) and ui, j = 2 sin {arctan[( j − j0)/(i − i0)]}, vi, j =
2 cos {arctan[( j − j0)/(i − i0)]} for Eq. (3), with (i0, j0)
being the center of the square lattice [8].

A. Phase oscillators

We first consider nonlocally coupled bicomponent phase
oscillators. In the following, we set A = 1 and α = 0.15π .
The heterogeneity ω0 is the controlling parameter. For ω0=0,
the model reduces to monocomponent phase oscillators where
a single spiral wave chimera can be observed. Once the
heterogeneity is switched on (ω0 �= 0), positive and nega-
tive oscillators distribute randomly in space. Considering that
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FIG. 1. Different types of dynamical behaviors in nonlocally coupled bicomponent phase oscillators, two synchronous spiral wave chimeras
at ω0 = 0.1 in (a), two target waves at ω0 = 0.9 in (b), a spiral wave chimera of positive oscillators and a target wave of negative oscillators
at ω0 = 1.3 in (c), and two asynchronous spiral wave chimeras at ω0 = 50 in (d). The top panels (a1)–(d1) show the snapshots for positive
oscillators with θ+ > 1.5π (black) and negative oscillators with θ− > 1.5π (red), where the blue arrows indicate the directions of wave
propagation. The bottom panels (a2)–(d2) show |Z| (amplitude of position-dependent complex order parameter). The amplitude drops to zero
at the centers of incoherent cores, corresponding to the randomized phases. N = 101, R = 10, p = 0.5, A = 1, and α = 0.15π . Animations
corresponding to panels (a1)–(d1) are included in the Supplemental Material (Movies 1–4) [44].

the spiral wave chimera in a monocomponent system with
positive oscillators has a different rotation frequency from
that in a system with negative oscillators, whether spiral
wave chimeras can be maintained in bicomponent oscillators
becomes an intriguing question. Moreover, if spiral wave
chimeras still exist in the presence of heterogeneity, we
may further wonder how spiral wave dynamics respond to
heterogeneity.

First, spiral wave chimeras do exist in the presence of
heterogeneity. Interestingly, the two spiral wave chimeras
supported by positive and negative oscillators coexist in the
same territory in an entangled way. Especially at weak hetero-
geneity, the two spiral wave chimeras are synchronized with
each other by sharing a same rotating frequency and a same
incoherent core. To see it, we take ω0 = 0.1 as an example
and present a snapshot of the phase distribution in space in
Fig. 1(a1). To simultaneously visualize the two chimera spiral
waves, we binarize the phase of oscillators with a threshold
of 1.5π , i.e., oscillators with θi, j ∈ [0, 1.5π ] are not shown
in snapshots. To distinguish the two groups of oscillators, we
mark positive oscillators (ωi, j = ω0) in black and negative
oscillators (ωi, j = −ω0) in red. We use θ+ and θ− to represent
the phase of the positive and negative oscillators, respectively.
As shown in Fig. 1(a1) (and Movie 1 in the Supplemental
Material [44]), each group of oscillators supports its own
spiral wave chimera and the regions of θ+ > 1.5π and θ− >

1.5π in the two spiral chimeras almost coincide. The chimera
nature of these two spiral waves, characterized by incoherent
spiral core, is evidenced in Fig. 1(a2), where the amplitude
of the position-dependent complex order parameter, |Zi j |, is
presented as a heat map. As shown, the spiral region is
divided into the coherent wave arm region and the incoherent
core region. In the wave arm region, |Zi j | stays close to 1,
suggesting the coherent dynamics of oscillators, while in the
core region |Zi j | stays close to zero, suggesting the incoherent
dynamics of oscillators. Especially, the distribution of |Zi j | in

the core region looks like a circular one, which suggests that
the two spiral wave chimeras are rigidly rotating ones that
share a same incoherent core.

On the other hand, spiral wave chimeras in bicomponent
oscillators also exist at strong heterogeneity. Different from
weak heterogeneity, the spiral wave chimeras supported by
positive and negative oscillators become desynchronized with
each other. They do not share the same rotating frequency and
the same incoherent core anymore. Figures 1(d1) and 1(d2)
show the snapshot of the phases and the amplitudes of the
position-dependent complex order parameters at ω0 = 50 (see
Movie 4 in the Supplemental Material [44]). Clearly, both
positive and negative oscillators support their own spiral wave
chimeras which coexist in the same space in an entangled
way. Different from the case with weak heterogeneity, the
incoherent cores of the two spiral wave chimeras are distant
from each other and, notably, the two spiral chimeras have
opposite chirality, with the spiral wave of positive oscillators
rotating clockwise and that of negative oscillators rotating
counterclockwise. More importantly, by observing the evolu-
tion of the two spiral wave chimeras, we find that they rotate
at different frequencies, indicating that the coexisting spiral
wave chimeras at strong heterogeneity are asynchronous ones.

Now it is interesting to investigate the transition between
the synchronous and the asynchronous spiral wave chimeras.
As ω0 increases from 0.1 to 50, three distinct dynamical
regimes are identified: the synchronous regime at weak het-
erogeneity where two spiral wave chimeras are synchronized,
the asynchronous regime at strong heterogeneity where the
two spiral wave chimeras are asynchronous, and the transition
regime roughly in the range of ω0 ∈ [0.4, 1.3]. In the transi-
tion regime, spiral wave chimeras supported by positive and
negative oscillators may yield to target waves. Figure 1(b1)
(and Movie 2 in the Supplemental Material [44]) shows an
inward propagating target wave of positive oscillators and
an outward propagating target wave of negative oscillators at
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FIG. 2. Mean phase velocities 〈θ̇〉 of coherent oscillators of the
two groups and monocomponent oscillators are plotted against the
heterogeneity parameter ω0 with 〈θ̇〉c,+ represented by black squares,
〈θ̇〉c,− represented by red circles, 〈θ̇〉c,ωi, j=ω0 represented by green
hollow triangles, and 〈θ̇〉c,ωi, j=−ω0 represented by blue solid trian-
gles. Two black dashed lines divide three regimes—the synchronous
regime (SR), the transition regime (TR), and the asynchronous
regime (AR). The inset shows an enlarged view of 〈θ̇〉c,+ and 〈θ̇〉c,−
in the dashed box region. N = 101, R = 10, p = 0.5, A = 1, and
α = 0.15π .

ω0 = 0.9, where no incoherent area exists [see Fig. 1(b2)]. At
ω0 = 1.3, Figs. 1(c1) and 1(c2) show a spiral wave chimera
of positive oscillators together with a target wave of negative
oscillators (see Movie 3 in the Supplemental Material [44]). It
is worth mentioning that, in our simulations, the combination
of spiral wave chimera of negative oscillators and target wave
of positive oscillators is never found.

Though the existence of the transition regime interrupts
the direct transition from synchronous to asynchronous spiral
wave chimeras, we can still investigate the transition between
the dynamical behaviors supported by positive and negative
oscillators in the sense of synchronization. For this aim, we
monitor the mean phase velocities of coherent oscillators
in the two groups, denoted by 〈θ̇〉c,±. Here ± represents
positive and negative oscillators and 〈·〉 represents the time
average over a long time interval. Since coherent oscilla-
tors in the same group have the same mean phase velocity
which is always lower than those of incoherent ones, we
acquire 〈θ̇〉c,± by searching for the lowest 〈θ̇〉i j in the two
groups [39,40]. Figure 2 shows the results of 〈θ̇〉c,± ver-
sus the heterogeneity ω0. As shown in the inset of Fig. 2,
the synchronization transition is a discontinuous one where
there exists a finite gap between 〈θ̇〉c,± at the synchronization
transition. On the other hand, Fig. 2 suggests that the tran-
sition between the asynchronous and the transition regimes
is a continuous one with respect to mean phase velocity.
For comparison, we also present the mean phase velocity of
the spiral wave chimera in monocomponent oscillators with
only positive ones 〈θ̇〉c,ωi, j=ω0 or negative ones 〈θ̇〉c,ωi, j=−ω0 .
Clearly, the interaction between positive and negative
oscillators slows down the spiral wave chimera of posi-
tive oscillators and speeds up that of negative oscillators in
the synchronous regime. Actually, the difference between

FIG. 3. Minimum proportion Pmin of the oscillators in the over-
lapping area with θ+ > 1.5π and θ− > 1.5π to all oscillators with
θ± > 1.5π is plotted against ω0. The black squares, red circles,
and blue triangles indicate the results in the synchronous regime
(SR), the transition regime (TR), and the asynchronous regime (AR),
respectively. The top inset shows the average phase difference 〈
θ〉
between positive and negative oscillators with θ+ > 1.5π and θ− >

1.5π versus ω0. The bottom inset shows the snapshots of the phase
θi, j at ω0 = 0.2 and ω0 = 0.3. N = 101, R = 10, p = 0.5, A = 1, and
α = 0.15π .

the mean phase velocities of the monocomponent systems
with positive and negative oscillators acts as a bifurcation
parameter during the synchronization transition, which is
similar to the synchronization transition between two coupled
nonidentical oscillators.

Then, we investigate the impact of heterogeneity on the
synchronous spiral wave chimeras. The bottom inset in Fig. 3
shows the snapshots of the synchronous spiral wave chimeras
at ω0 = 0.2 and ω0 = 0.3. Together with Fig. 1(a1), we find
that the overlap between the regions of θ+ > 1.5π and θ− >

1.5π of the two spiral wave chimeras reduces with the in-
crease of ω0. This suggests that the size of the overlapping
region may be treated as a measure on the effective inter-
action strength between two spiral wave chimeras or, more
generally, the interaction strength between the dynamical
behaviors of positive and negative oscillators. To be precise,
we consider the proportion P of the oscillators within the
overlapping region with θ+ > 1.5π and θ− > 1.5π (for either
spiral waves or target waves) to all oscillators with θ± > 1.5π .
Typically, P fluctuates with time and, for convenience, we
treat the minimum value Pmin in the time series of P as such
a measure. We present Pmin against ω0 in Fig. 3. As shown,
Pmin monotonically drops to a low value with the increase
of ω0 in the synchronous regime. In other words, increasing
ω0 decreases the effective interaction strength monotonically.
Beyond the synchronization transition, the effective interac-
tion strength becomes so weak that it cannot compensate for
the large mismatch of the mean phase velocities of mono-
component systems of positive and negative oscillators, and
then desynchronization occurs. Figure 3 also shows that, in
the asynchronous regime and most of the transition regime,
the effective interaction strength stays at zero. In addition, we
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FIG. 4. Trajectories of the incoherent cores of spiral wave chimeras of positive oscillators (black) and negative oscillators (red) at ω0 = 2
(a), ω0 = 5 (b), and ω0 = 10 (c). The top panels (a1)–(c1) show the amplitude distribution of position-dependent complex order parameter |Z|
in two-dimensional space. The bottom panels (a2)–(c2) show the position of incoherent cores of positive oscillators (black lines) and negative
oscillators (red lines) versus time. xc and yc denote the horizontal and vertical coordinates of incoherent cores. N = 101, R = 10, p = 0.5,
A = 1, and α = 0.15π .

monitor the average phase difference 〈
θ〉 between positive
and negative oscillators with θ+ > 1.5π and θ− > 1.5π and
its dependence on ω0 is presented in the top inset of Fig. 3.
When ω0 � 0.5, 〈
θ〉 monotonically increases, correspond-
ing to a decreasing degree of synchronization between the
two synchronized spiral wave chimeras, which is consistent
with the results of Pmin. When ω0 > 0.5, the two groups of
oscillators become asynchronous, which leads their phases
to be irrelevant. Consequently, 〈
θ〉 between the two groups
decreases with the increase of ω0.

So far, our results point out that heterogeneity has adverse
effects on the synchronous spiral wave chimeras. However,
stronger heterogeneity enhances the stability of asynchronous
spiral wave chimeras in bicomponent systems. Increasing
heterogeneity leads asynchronous spiral wave chimeras from
irregularly meandering to rigidly rotating ones. To illustrate it,
we track the core trajectories of the two asynchronous spiral
wave chimeras. Here, we determine the positions of the two
incoherent cores according to the positions of the minimum
complex order parameter amplitudes |Zi j | in each group. At
ω0 = 2, the incoherent core of positive oscillators presented
in Fig. 4(a1) seems to perform an irregular motion, while the
incoherent core of negative oscillators performs a periodic
motion, which indicates a periodic meandering spiral wave
chimera of negative oscillators. It is further confirmed by the
time series of their coordinates in Fig. 4(a2). At ω0 = 5, the
irregular motions of the incoherent cores are suppressed. As
shown in Figs. 4(b1) and 4(b2), the location of the incoher-
ent core of positive oscillators is almost unchanged after a
transient of meandering, which indicates a rigidly rotating
spiral wave chimera, while the incoherent core of negative
oscillators still performs a periodic motion. Further increas-

ing heterogeneity to ω0 = 10, Figs. 4(c1) and 4(c2) show
that periodical meandering spiral wave chimera of negative
oscillators also yields to a rigidly rotating one. The transition
from irregularly meandering spiral wave chimeras to rigidly
rotating ones is consistent with the behavior of the effective
interaction strength in Fig. 3. To be mentioned, at sufficiently
large ω0, though starting with the almost same location, the
two rigidly rotating spiral wave chimeras get to drift away
from each other and the distance between their incoherent
cores settles down to around 0.5N .

Actually, spiral wave chimera dynamics in bicomponent
phase oscillators can be better illustrated by studying a special
case in which, instead of random distribution, positive (nega-
tive) oscillators sit on the sites (i, j) with even (odd) i + j.
With this setup, any two neighboring phase oscillators have
different natural frequencies. We divide phase oscillators into
four subsets: the subset consisting of oscillators with location
(2i − 1, 2 j − 1) [i, j = 1, 2, . . . , (N + 1)/2], the subset with
(2i − 1, 2 j), the subset with (2i, 2 j − 1), and the subset with
(2i, 2 j). In Fig. 5, we present snapshots of θi, j of these four
subsets at three different ω0. Each subset displays a clear
pattern and the incoherent cores of spiral waves can be well
visualized. Similar to random distribution of positive and
negative oscillators, there also exist three dynamic regimes:
the synchronous regime at weak heterogeneity (the top panels
in Fig. 5), the transition regime at intermediate heterogeneity
(the middle panels in Fig. 5), and the asynchronous regime
at strong heterogeneity (the bottom panels in Fig. 5). In-
terestingly, the bottom panels in Fig. 5 show that the two
asynchronous spiral wave chimeras at ω0 = 50 share a same
incoherent core, which is a little different from the results in
Fig. 1(d).
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FIG. 5. Top, middle, and bottom panels show the snapshots of the phase θi, j of four different subsets at ω0 = 0.1, ω0 = 0.6, and ω0 = 50.
Panels (a1)–(a3) for the subset in which oscillators locate at positions with (2i − 1, 2 j − 1). (b1)–(b3) The subset with (2i − 1, 2 j). (c1)–(c3)
The subset with (2i, 2 j − 1). (d1)–(d3) The subset with (2i, 2 j). N = 101, R = 10, p = 0.5, A = 1, and α = 0.15π . Animations are shown in
the Supplemental Material (Movies 5–7) [44].

In the continuum limit case, i.e., when N → ∞, the spiral
wave chimeras in Eq. (1) can be analyzed using the Ott-
Antonsen (OA) ansatz [45]. The square domain is set to
be (x, y) ∈ [0, 2π ] × [0, 2π ]. We introduce the probability
density function f±(x, y, θ, t ) as the fraction of positive and
negative oscillators with phases between θ and θ + dθ at time
t and position (x, y), respectively. The two functions satisfy
the continuity equations

∂ f±
∂t

+ ∂ ( f±v±)

∂θ
= 0, (5)

where

v± = θ̇± = ±ω0 − A

2i

[
Z∗

±ei(θ+α) − Z±e−i(θ+α)
]
. (6)

Z± are the spatially dependent complex order parameter of
positive and negative oscillators, which are formulated as

Z±(x, y, t ) =
∫ 2π

0

∫ 2π

0
G(x − x′, y − y′)

∫ 2π

0
eiθ f±dθ dx′dy′,

(7)
with

G(x − x′, y − y′) =
⎧⎨
⎩

1
(4πr)2 , |x − x′| � 2πr,

|y − y′| � 2πr,
0, otherwise,

(8)

where r = R/(N − 1) is the relative coupling range. Using
OA ansatz, we write the probability density function as

f±(x, y, θ, t ) = 1

2π

{
1 +

∞∑
n=1

[a±(x, y, t )neinθ + c.c.]

}
, (9)

where c.c. is the complex conjugate of the previous term. By
substituting Eqs. (6) and (9) into Eqs. (5) and (7), we obtain

∂a±(x, y, t )

∂t
= −i(±ω0)a±(x, y, t ) + A

2
[Z±(x, y, t )∗eiα

− Z±(x, y, t )e−iαa±(x, y, t )2],

Z±(x, y, t ) = 1

(4πr)2

∫ x+2πr

x−2πr

∫ y+2πr

y−2πr
a∗

±(x′, y′, t )dx′dy′.

(10)

To demonstrate the spiral chimera dynamics in the syn-
chronous, transition, and asynchronous regimes, we numer-
ically simulate Eq. (10). As shown by the snapshots of
the arguments arg(a±), arg(a+), and arg(a−) for several ω0

in Fig. 6, the dynamics of two synchronous spiral wave
chimeras, a spiral wave chimera and a target wave, two tar-
get waves, and two asynchronous spiral wave chimeras, are
observed, which are qualitatively in agreement with the results
in Fig. 1. In addition, to observe the corresponding evolutions,
we provide animations in the Supplemental Material (Movies
8–11) [44].

B. FitzHugh-Nagumo oscillators

Next, we consider nonlocally coupled bicomponent FHN
oscillators. Similar to phase oscillators, there exist three
dynamical regimes—the synchronous regime at weak hetero-
geneity, the asynchronous regime at strong heterogeneity, and
the transition regime in between. Different from phase oscilla-
tors, more complicated spatial patterns may appear due to the
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FIG. 6. Top, middle, and bottom panels show the snapshots of the arg(a±), arg(a+), and arg(a−) at ω0 = 0.1 (a), ω0 = 1 (b), ω0 = 1.5
(c), and ω0 = 5 (d). r = 0.1, p = 0.5, A = 1, and α = 0.15π . Note that, in the middle and bottom panels, the values of arg(a+) for negative
oscillators and arg(a−) for positive oscillators are replaced by zero. Animations are shown in the Supplemental Material (Movies 8–11) [44].

rich spatial patterns in nonlocally coupled monocomponent
FHN oscillators [35]. More importantly, the transition from
synchronous to asynchronous dynamical behaviors also looks
like a continuous one in the sense of synchronization. To illus-
trate these, we set a = 0.5, σ = 0.1, ϕ = 1.2, and ε1 = 0.04.
ε2 is used as a controlling parameter for heterogeneity and
varies in the range from 0.04 to 0.5.

In Fig. 7, the snapshots at different ε2 are presented where
the variable u is binarized with the threshold of 1, i.e.,
oscillators with ui, j � 1 are not shown in snapshots. In the
synchronous regime, the spiral wave chimera in ε1 group
is synchronized with the one in ε2 group. For example,
Fig. 7(a) shows synchronous counterclockwise inward prop-
agating double-spiral wave chimeras at ε2 = 0.0405, while
Fig. 7(b) shows synchronous clockwise inward propagat-
ing single-spiral wave chimeras. In the transition regime,
inward propagating target waves at ε2 = 0.055 are pre-
sented in Fig. 7(c). In the asynchronous regime, complicated
dynamics are observed. For example, a clockwise inward
propagating single-spiral wave in ε2 group and a complex pat-
tern in ε1 group consisting of several spiral wave chimeras at
ε2 = 0.07 in Fig. 7(d), two asynchronous spiral wave chimera
pairs (double-spiral waves with wave arms rotating in opposite
directions) at ε2 = 0.1 in Fig. 7(e), and a counterclockwise
inward propagating double-spiral wave in ε1 group and a com-
plex pattern in ε2 group composed of a spiral wave chimera,
a target wave, and a traveling wave at ε2 = 0.5 in Fig. 7(f).
As these dynamics are easier to understand from animations,

we refer to the videos in the Supplemental Material (Movies
12–17) [44].

The transition from synchronous to asynchronous dynam-
ics in the bicomponent FHN model can be investigated by
monitoring the mean phase velocity �c of coherent oscillators
in ε1 and ε2 groups calculated as �c = 2πMc/
T , where Mc

represents the number of periods of each coherent oscilla-
tor during a sufficiently long time interval 
T . Figure 8(a)
plots �c against ε2. As shown, the coherent oscillators in
ε1 and ε2 groups share the same mean phase velocity in the
synchronous regime, while the mean phase velocities of the
coherent oscillators in ε1 and ε2 groups get large discrep-
ancy in the asynchronous regime. For comparison, we also
present the mean phase velocity of the spiral wave chimera
in monocomponent oscillators with εi, j = ε2. Different from
phase oscillators, the inset of Fig. 8(a) shows that the synchro-
nization transition is a continuous one where the discrepancy
of the mean phase velocities between the two groups increases
gradually from zero with the increase of ε2. Furthermore,
we consider the impact of heterogeneity on the synchronous
spiral wave chimeras. The proportion of oscillators in the
overlapping region of uε1 > 1 and uε2 > 1 is monitored and
the minimum of P, Pmin, in the evolution is used to measure
the effective interaction strength between ε1 and ε2 groups.
As shown in Fig. 8(b), the overlapping area between ε1 and
ε2 groups decreases quickly with the increase of ε2 in the syn-
chronous regime and Pmin remains zero in the asynchronous
regime, which is similar to those for phase oscillators.
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FIG. 7. Different types of dynamical behaviors in nonlocally coupled bicomponent FHN oscillators at different heterogeneities. The
snapshots of the activator variable u at ε2 = 0.0405 (a), ε2 = 0.05 (b), ε2 = 0.055 (c), ε2 = 0.07 (d), ε2 = 0.1 (e), and ε2 = 0.5 (f). Panels
(a1)–(f1) show the snapshots for ε1 group oscillators with uε1 > 1 (red) and (a2)–(f2) show the snapshots for ε2 group oscillators with uε2 > 1
(black). Blue arrows indicate the directions of wave propagation. N = 101, R = 10, p = 0.5, a = 0.5, σ = 0.1, and ϕ = 1.2. Animations
corresponding to panels (a)–(f) are included in the Supplemental Material (Movies 12–17) [44].

FIG. 8. (a) Mean phase velocities of coherent oscillators in ε1 group �c,ε1 (red circles), ε2 group �c,ε2 (black squares), and monocomponent
oscillators �c,εi, j=ε2 (blue triangles) are plotted against the heterogeneity parameter ε2. Two black dashed lines divide three regimes—the
synchronous regime (SR), the transition regime (TR), and the asynchronous regime (AR). The inset shows an enlarged view of �c,ε1 and �c,ε2

in the dashed box region. (b) The minimum proportion Pmin of the oscillators in the overlapping area with uε1 > 1 and uε2 > 1 to all oscillators
is plotted against ε2. The black squares, red circles, and blue triangles indicate the results in the synchronous regime, the transition regime, and
the asynchronous regime, respectively. N = 101, R = 10, p = 0.5, a = 0.5, σ = 0.1, and ϕ = 1.2.
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FIG. 9. Top, middle, and bottom panels show the snapshots of the ui, j of four different subsets at ε2 = 0.0405, ε2 = 0.05, and ε2 = 0.1.
Panels (a1)–(a3) for the subset in which oscillators locate at positions with (2i − 1, 2 j − 1). (b1)–(b3) The subset with (2i − 1, 2 j). (c1)–(c3)
The subset with (2i, 2 j − 1). (d1)–(d3) The subset with (2i, 2 j). N = 101, R = 10, p = 0.5, a = 0.5, σ = 0.1, and ϕ = 1.2. Animations are
shown in the Supplemental Material (Movies 18–20) [44].

A nonrandom distribution of the two groups is also studied
for FHN oscillators, in which oscillators sitting on the sites
(i, j) with even (odd) i + j are assigned with ε2 (ε1). As
shown in Fig. 9, the snapshots of ui, j of four subsets of FHN
oscillators at three different ε2 demonstrate the dynamics of
the synchronous regime, the transition regime, and the asyn-
chronous regime, respectively.

IV. CONCLUSIONS

In conclusion, we have considered nonlocally coupled
bicomponent oscillators in a square lattice with open bound-
aries and investigated the effects of heterogeneity on spiral
wave chimeras. The phase oscillators and the FHN oscillators
are used as examples since they are two paradigmatic mod-
els in nonlinear dynamics. The natural frequency of phase
oscillators and the time-scale separation parameter of FHN
oscillators are chosen as the heterogeneity parameters, respec-
tively. We find that each group of oscillators supports its own

spiral wave chimera and two spiral wave chimeras coexist
with each other for both models. There exist three dynamic
regimes: the synchronous regime at weak heterogeneity where
spiral wave chimeras of the two groups are synchronized with
each other, the transition regime at intermediate heterogeneity
where spiral wave chimera may yield to target waves, and
the asynchronous regime at strong heterogeneity where spi-
ral wave chimeras of the two groups are asynchronous. The
existence of these three dynamic regimes is also confirmed
by the simulating results of a nonrandom distribution of the
two group oscillators and the theoretical analysis based on
the OA ansatz in the infinite number of phase oscillators. The
synchronization transition from synchronous to asynchronous
spiral wave chimeras has been investigated. We find that the
transition is a discontinuous one for phase oscillators and a
continuous one for the FHN oscillators. We also find that
increasing heterogeneity leads to the transition from an irregu-
larly meandering spiral wave chimera to a rigidly rotating one
for the phase oscillators.
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