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During recent decades active particles have attracted an incipient attention as they have been observed
in a broad class of scenarios, ranging from bacterial suspension in living systems to artificial swimmers
in nonequilibirum systems. The main feature of these particles is that they are able to gain kinetic energy
from the environment, which is widely modeled by a stochastic process due to both (Gaussian) white and
Ornstein-Uhlenbeck noises. In the present work, we study the nonlinear dynamics of the forced, time-delayed
Duffing oscillator subject to these noises, paying special attention to their impact upon the maximum oscillations
amplitude and characteristic frequency of the steady state for different values of the time delay and the driving
force. Overall, our results indicate that the role of the time delay is substantially modified with respect to the
situation without noise. For instance, we show that the oscillations amplitude grows with increasing noise
strength when the time delay acts as a damping term in absence of noise, whereas the trajectories eventually
become aperiodic when the oscillations are sustained by the time delay. In short, the interplay among the noises,
forcing, and time delay gives rise to a rich dynamics: a regular and periodic motion is destroyed or restored owing
to the competition between the noise and the driving force depending on time delay values, whereas an erratic
motion insensitive to the driving force emerges when the time delay makes the motion aperiodic. Interestingly,
we also show that, for a sufficient noise strength and forcing amplitude, an approximately periodic interwell
motion is promoted by means of stochastic resonance.
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I. INTRODUCTION

During recent decades active matter have attracted consid-
erable attention in a broad set of scientific disciplines, ranging
from statistical physics to biology and chemical physics [1,2].
Basically, active matter consists of particles enabled to move
autonomously by harnessing energy from the environment
(or within the system) and converting it into directed motion
or useful work [3], such as swarming bacteria cells [4,5] or
synthetic self-propelled colloids. These systems have been
intensively investigated in the context of nonequilibrium sta-
tistical physics such as nonequilibrium fluctuations [6] or
many-body Langevin dynamics [7], among others.

Active systems can display remarkable phenomena such
as collective behaviors, motility-induced phase separation, or
equilibrium-like features [8–10] (e.g., they fulfill a general-
ized equipartition relation under appropriate conditions [11])
despite that they are prevented from being at equilibrium with
the environment (as the particle motion does not satisfy a
fluctuation-dissipation relation owing to the intrinsic nonequi-
librium character of activity). A prominent example of an
active system is the so-called active Ornstein-Uhlenbeck (OU)
particle [6,12–14], that is characterized by an exponentially
correlated fluctuating force whose dynamics is described by
an OU process, and is widely referred to as active or colored
noise [15,16]. The latter has been used to model transport
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properties of active colloids [14] as well as collective cell dy-
namics [17], and has found numerous applications in different
scientific fields beyond active systems [15,16]. Interestingly,
it has been shown that active OU particles satisfy detailed bal-
ance in the presence of potentials with zero third derivatives
[8,18].

Despite the preceding theoretical and experimental pro-
gresses, nonlinear effects in active systems remains largely
unexplored: most of the recent results are restricted to linear
or quadratic potentials [2,3,19,20], inertial effects under a
harmonic potential [14], or transport properties in harmonic
chains coupled to a reservoir composed of active OU [21]
or run-and-tumble particles (coined as active reservoirs) [22].
It is expected that the introduction of nonlinearity can open
new avenues of investigation [7]: for instance, it has been
recently analyzed the nonlinear rheology of active baths by
experimental means [5], as well as the escape rate of an anhar-
monic active particle [23]. Moreover, it is well known that in
realistic setups the forces and interactions involve some time
lag (e.g., the time delay has been manifested as a sensorial
delay in biological living systems [24]) that can be important
in chaos control, vibrational resonance [25,26] as well as
delay-induced resonance [27,28]. Although strong similarities
have been recently identified between the dynamics of a parti-
cle subject to a repulsive delayed feedback and active motion
[19], the interplay between a time delay and an active noise
has not yet been addressed to the best of our knowledge.

In this paper, we aim to contribute to fill this gap and ex-
plore the role of the time delay in active nonlinear particles. In
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FIG. 1. Panels (a) and (b) depict the maximum peak-to-peak amplitude, and the maximum and minimum values of the spatial displacement
as a function of the time delay for the noise-free scenario (i.e., Dwn = Dou = 0), respectively. The blue star points represent the maximum value
of x(t ), whereas the red circle points correspond to its minimum values. The discussed region are indicated and separated by vertical straight
lines. Similarly, panels (c) and (d) illustrate the average maximum peak-to-peak amplitude, and the average maximum and minimum values
of the spatial displacement as a function of the time delay in presence of noise with Dwn = Dou = 0.001. Notice that the latter were obtained
after taking the average over an ensemble composed of Nsim = 200 trajectories. We have chosen the values of the noises as follows Cwn = 1,
τou = 1, Cou = 2/τou, and ξ∞

ou = 0; and the rest of parameters: μ = 0, α = 1, β = 0.1, γ = −0.3, F = 0, and initial conditions x0 = y0 = 1.

particular, we study the impact of the active OU as well
as white noises in the stationary dynamics of a forced,
time-delayed Duffing oscillator; and provide an extensive nu-
merical analysis of the maximum peak-to-peak oscillations
amplitude response and the characteristic frequency of the
oscillator. We find that the time-delayed nonlinear dynamics is
similarly influenced by both noises, i.e., taken separately there
is no significant distinction between the active and white noise
effects in either the amplitude or the frequency. However,
when the two noises are combined with an external forcing
the effect is more complicated and worth to be analyzed. For
instance, in contrast to the situation in absence of noise, we
show that the limit cycle returned by certain values of the
time delay gets destroyed in presence of both noises as the
forcing amplitude grows. Conversely, the noise can effectively
combine with the driving force to give rise to a regular and pe-
riodic dynamics despite the role played by certain time delay
values that make it acts as an effective damping term. Al-
though our main purpose is to provide a fundamental analysis
of the impact of perturbative noise effects upon the time-
delayed dynamics, we also pay attention to the intense noise
scenario. Interestingly, we show that, for a sufficient forc-
ing amplitude, the oscillator may describe an approximately
periodic interwell motion due to a synchronization between
the noise action and the periodic forcing. This resembles the
well-known stochastic resonance phenomenon previously ex-
hibited by bistable systems subject to the white noise [29–32].

II. MODEL AND METHODS

The model under consideration consists of the one-
dimensional dynamics of the forced, time-delayed Duffing
oscillator subjected to both Gaussian white and OU noises
[1]. The stochastic equation that governs the underdamped
dynamics for its spatial coordinate x(t ) reads

d2x(t )

dt2
+ μ

dx(t )

dt
+ ∂Uτ (x, t )

∂x

= F cos(�t ) +
√

2Dwnξwn(t ) +
√

2Douξou(t ), (1)

where Dwn, Dou, μ, and F denote the strength of the
white noise, the OU noise (also called colored noise), the
friction coefficient, and the amplitude of the unbiased time-
periodic force, respectively. Whereas � is the frequency of
the time-periodic force and Uτ is the time-delayed double-well
potential [26], i.e.,

Uτ (x, t ) = β
x4(t )

4
− α

2
x2(t ) + γ

2
x2(t − τ ), (2)

where the last term on the right-hand side represents the time-
delayed feedback of strength γ and time delay τ , whilst α

and β denote the linear and nonlinear coupling coefficients.
For sake of clarity, we shall consider a constant historical time
delay function [27] which cancels for t < τ , i.e., x(t − τ ) = 0
when t < τ . Besides the origin x∗

0 = 0, the double-well poten-
tial associated to the time-delayed Duffing oscillator has two
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FIG. 2. Maximum oscillations peak-to-peak amplitude as a func-
tion of the time delay for different values of the noise parameters:
Panels (a) and (b) depict the scenario with zero (i.e., ξ∞

ou = 0) and
nonzero time-asymptotic mean noise, respectively, for fixed values
τou = 1 and Cou = 2; and the panel (c) illustrates the maximum
oscillations amplitude for different values of the colored-noise re-
laxation time τou for vanishing time-asymptotic mean noise. We
have fixed μ = 0, α = 1, β = 0.1, γ = −0.3, and initial conditions
x0 = y0 = 1.

other equilibrium points located at the bottom of the potential
wells [25]

x∗
1,2 = ±

√
α − γ

β
, (3)

when α, β > 0 (otherwise Uτ may become a single well).
These are separated by a potential barrier with the height
determined by 	U = (α − γ )2/(4β ). In Refs. [27,28] a lin-
ear stability analysis was performed taking into account the

time-delayed term [by setting x(t ) = x(t − τ ) = x∗] and ig-
noring the driving force around the points x∗

0 , x∗
1 , and x∗

2 .
This analysis reveals that their stability is substantially influ-
enced by the values of the time delay τ and its strength γ

(see Sec. II A for further details). Here, we shall focus the
attention on certain set of parameters for which x∗

0 remains
unstable, whilst the stability of x∗

1,2 may change with τ . For
instance, this scenario has been employed to investigate both
the stochastic [32] and the vibrational resonances [25–27] (in
the absence of noise and without time delay). The overdamped
dynamics of an active particle subject to white and OU noises
has been addressed in Ref. [33].

In Eq. (1), the stochastic zero-mean δ-correlated Gaussian
noise source ξwn, with Dwn strength, represents the environ-
mental fluctuations in the framework of active particles that is
usually assumed in a thermal equilibrium state [13]. Different
from the latter, ξou plays the role of the active self-propulsion
[4,6,11,13]. This models a Gaussian-distributed random force
exhibiting exponentially decaying memory effects character-
ized by a well-defined noise correlation time τou [1,3,9,14],
and endowed with a time-asymptotic nonzero mean ξ∞

ou .
Collecting these properties, these random variables are com-
pletely characterized by their mean values and covariance
functions (that is, cov{ξ (t )ξ (t ′)} = 〈(ξ (t ) − 〈ξ (t )〉)(ξ (t ′) −
〈ξ (t ′)〉)〉) when 0 < t ′ < t [34], i.e.,

〈ξwn(t )〉wn = 0, cov{ξwn(t )ξwn(t ′)}wn = Cwnδ(t − t ′),
(4)

〈ξou(t )〉ou = ξ 0
oue

−t
τou + ξ∞

ou

(
1 − e

−t
τou

)
,

cov{ξou(t )ξou(t ′)}ou = Couτou

2
e− (t−t ′ )

τou
(
1 − e− 2t ′

τou
)
, (5)

with δ being the Dirac-δ function, ξ 0
ou stands for the initial

mean value of the colored noise, whereas Cwn and Cou are
the amplitude of the white noise and the strength of the self-
propulsion, respectively. In the limit of vanishing memory
effects τou → 0, ξou reduces to a Gaussian white noise.

Over timescales that are larger than both the characteristic
timescale of the periodic force, the system is expected to
reach a steady state driven by both noise fluctuations together
with the time delay potential feedback. By paying attention
to the correlations functions in Eqs. (4) and (5), one may
see that the white and colored noises have opposite effects
along the oscillator trajectory: while the former represents a
random disturbance washing out any memory effect, the later
introduces noisy correlations enduring a time given by τou.
Precisely, this memory effect describes the persistent motion
exhibited by either passive tracer particles in an active bath
[11,35] or self-propelled particles [14]. For instance, though
it is not considered here, if the environment is in a thermal-
equilibrium state at certain temperature T , the oscillator
would be expected to eventually reach a thermal equilibrium
state since ξwn would represent the standard thermal noise sat-
isfying the fluctuation-dissipation theorem (i.e., Cwn = kBT μ

[3] with kB being the Boltzmann constant). However the os-
cillator is prevented from such equilibrium due to the (active)
self-propulsion force modeled by ξou [13]. In other words, the
physical effect is that the system itself is either generating
the noise internally or it is subject to the noise as an external
perturbation.
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FIG. 3. Maximum map for three noisy scenarios and fixed values of the time delay belonging to each aforementioned region. Notice that
panels in the same row have identical τ : specifically, τ = 1, τ = 2.5, τ = 3, and τ = 4 in descending order; whereas panels in the same
column correspond to identical noisy scenario: Dwn = 0.001 and Dou = 0, Dwn = 0 and Dou = 0.001, and Dwn = Dou = 0.001 from the left to
the right. The black dots correspond to the largest displacement xmax of each oscillation with vanishing noise, while each colored dot represents
xmax for a given unravelling of noise. We have considered an ensemble composed of Nsim = 200 trajectories, and we have chosen the values
of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0; and the rest of parameters: μ = 0, α = 1, β = 0.1, γ = −0.3, and initial
conditions x0 = y0 = 1.

Before further proceeding it is convenient to briefly de-
scribe the numerical simulation procedure. Concretely, we
numerically solve the stochastic delay differential Eq. (1) for a

sufficiently large time T∞ � 100 2π
�

(which ensures the system
has reached the stationary state) by using a method named
S-ROCK described in Ref. [36] and implemented in Matlab.
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FIG. 4. (Upper row) Parameter set plot of the average maximum oscillations amplitude as a function of the white and colored noise strength.
(Lower row) Parameter set plot of the average characteristic frequency versus the white and colored noise strength. Each column represents
a fixed value of the driving force amplitude: (a), (d) F = 0, (b), (e) F = 0.01, and (c), (f) F = 0.1. We have chosen the values of the noises
as follows: Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0; and the rest of parameters: μ = 0, α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial
conditions x0 = y0 = 1.

This consists on a direct numerical integration of the equa-
tions of motion based on a Runge–Kutta-Chebyshev scheme
of order four considering a fixed value of time grid dt = 10−3,
which outperforms the previously employed Euler-Maruyama
algorithms in Refs. [37,38]. The white noise satisfying the
standard Gaussian distribution are produced by the Box–
Muller algorithm, whereas the colored noise is generated
by means of the Gillespie algorithm [34] (which essentially
consists of an algebraic manipulation and transformation on
the white Gaussian random numbers). Notice that the angu-
lar brackets 〈•〉wn and 〈•〉ou indicate the average over these
Gaussian probability distributions associated to the white and
colored noises. In practice, this average is performed over
an ensemble composed of a sufficiently large number Nsim

of trajectories with different noise realizations such that we
recover Eqs. (4) and (5), but with identical initial conditions.
Since Eq. (1) has to be solved for the aforementioned long
asymptotic time, this procedure can be computationally time
consuming. For our simulation purposes, Nsim = 100 turns to
be sufficient to get reliable outcomes for the maximum peak-
to-peak oscillations amplitude and characteristic frequency.
More specifically, we have assessed the convergence of the
algorithm for increasing Nsim, the results are reported in the
figures found in Appendix A (see Fig. 13): basically, it is
found that the algorithm is convergent and the numerical
results hardly depend on the time step and the number of
trajectories when Nsim � 100. From now on, we set ξ 0

ou = 0

as we are interested in the time asymptotic dynamics, and we
shall use dimensionless quantities.

Preliminary results

In this section, we summarize the main results concerning
the dynamics of the free-noise system: the forced, time-
delayed Duffing oscillator with vanishing noise. Remind that
this study was extensively performed in Refs. [27,28]. As
anticipated above, it was found that the (linear) stability of
the equilibrium points x∗

0 , x∗
1 , and x∗

2 significantly depend of
τ and γ (when F = 0). In particular, the curve for which x∗

0
loses stability was computed for τ > 0 in the overdamped
case: this corresponds to a Hopf and pitchfork bifurcation for
γ < −1 and γ = −1 [27], respectively. The stability analysis
was extended to the underdamped case (studied here) for x∗

1,2
by taking into account the dissipative effects in Ref. [28]. It
turns out that the bottom of both potential wells also become
unstable beyond certain values of the time delay. For our
present purposes we have focused on the parameter set in
which the system exhibits a rich nonlinear dynamics: in par-
ticular, we shall fix μ = 0, α = −1, β = 0.1, and γ = −0.3.
For this choice, x∗

0 remains unstable, whereas x∗
1,2 ≈ ±3.6 are

stable for τ < 1.76, which resembles the well-studied bistable
situation in absence of time delay [25,26].

Additionally, it was shown in Refs. [27,28] that we can
distinguish four regions in terms of the time-delay dynamics
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FIG. 5. (Upper panels) Average time series of the position as a function of the white and colored noise strength. (Lower panels) Average
phase space portraits of the stochastic dynamics as a function of the white and colored noise strength. Each column represents a fixed value of
the driving force amplitude: (a), (d) F = 0, (b), (e) F = 0.01, and (c), (f) F = 0.1. We have fixed the strength of the white and colored noise as
Dwn = 0.004 and Dou = 0.004; and the values of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0. Similarly, we have chosen
μ = 0, α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

of the maximum amplitude for vanishing dissipative effects
(i.e., μ = 0). These regions are indicated in Fig. 1(a) which
depicts the maximum peak-to-peak oscillation amplitude as
a function of τ (in the free-noise system). A quick glance
reveals that the oscillator eventually decays to one of the equi-
librium points x∗

1,2 (as the maximum oscillations amplitude
goes to 0) in region I [i.e., τ ∈ (0, 1.76)], whereas its value is
nonzero in regions II, III, and IV that indicates an oscillatory
dynamics sustained by the time delay. In particular, it was
found that the time-delayed Duffing oscillator in region III
exhibits aperiodic interwell oscillations [27,28]. This can be
manifested by means of the maximum xmax and minimum
xmin value of the spatial displacement in each oscillation:
while periodic oscillations return single well-defined values
of xmax and xmin, aperiodic oscillations give rise to an irregular
distribution of points. It is important to realize that xmax and
xmin represent half of the previous peak-to-peak amplitude, to
avoid confusion we shall refer to them as either maximum or
minimum amplitudes. Figure 1(b) depicts xmax and xmin as a
function of τ , notice that the values of both magnitudes exhibit
an irregular distribution when τ is in region III (i.e., τ ∈
[2.68, 3.6]). This feature is consistent with the fact that the
time-delayed Duffing oscillator chaotically transits from one
well to the other [27,28], we shall employ the Poincaré map
composed of the maximum amplitudes (that is the phase space
section for which 0 < x and ẋ ≈ 0 holds), see Figs. 3(g)–3(i),
to better visualize such aperiodic dynamics. This situation
contrasts with region IV where the oscillator describes inter-

well periodic oscillations that results in a limit cycle in phase
space spanning both wells. The latter can be observed from
Fig. 1(b) for τ > 3.6: the maximum and minimum amplitudes
take on regular values around x∗

1 and x∗
2 , respectively. Finally,

a periodic oscillatory dynamics confined in a single well arises
in region II [notice that the curve of maximum and minimum
amplitudes in Fig. 1(b) splits into two values around x∗

1 for
τ ∈ [1.76, 2.68)]. Interesting enough, it has been shown that
the time-delayed Duffing oscillator can also describe a peri-
odic interwell motion in region II by applying a driving force
with identical frequency, which is refereed to as delay-induced
resonance [27,28]. Regarding the dissipative effects, it turns
out that the above dynamics can be substantially degraded
or eventually wiped out, for instance, a sufficiently large
damping eventually suppresses the oscillations sustained by
the time delay in region IV [28]. Since we are mainly inter-
ested in studying the impact of the noise upon the dynamics
induced by the time delay (e.g., the interwell oscillations), it
is convenient to restrict ourselves to the scenario of vanishing
dissipation.

To gain some preliminary intuition about the noise effects
upon the time-delayed dynamics, here we also depict the
peak-to-peak amplitude, as well as the maximum and min-
imum values of the spatial displacement, for a small noise
strength Dou = Dwn = 0.001 in Figs. 1(c) and 1(d). Specifi-
cally, the latter displays the mean values of these quantities
after averaging over the trajectory ensemble as a function
of the time delay. A direct comparison with the free-noise
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FIG. 6. Parameter set plot of the average maximum oscillations amplitude (upper row) and the average characteristic frequency (lower row)
as functions of the strength of the white and colored noises for given values of the driving force amplitude: (a), (d) F = 0, (b), (e) F = 0.01,
(c), (f) F = 0.1. We have chosen the values of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0; and the rest of parameters:
μ = 0, α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

scenario reveals that the time-delayed dynamics is robust
to sufficient weak noise effects, except in region III where
the oscillation amplitudes apparently cancel (notice that in
Figs. 1(c) and 1(d) the peak-to-peak amplitude as well as
the maximum and minimum amplitudes seem to decay to
zero for τ ∈ [2.68, 3.6]). We anticipate that this feature is a
consequence of the statistic rather than some drastic change in
the underlying aperiodic dynamics (for further details, see the
discussion in Sec. III B 3). Our main concern is to study the
interplay between both perturbative noises and the time delay
in absence and presence of a driving force, this task is exten-
sively carried out in the following section. In particular, a main
finding is that an approximately periodic interwell motion
arises in region II via stochastic resonance (see Sec. III B 2 for
further details). In other words, the time-delayed oscillator is
no longer confined in a single well and can transit forward and
backward from one well to the another driven by the combined
action of the noise and the periodic force.

III. NUMERICAL RESULTS

As anticipated above, in this section we perform an ex-
tensive numerical analysis of the ensemble average of the
maximum peak-to-peak oscillations amplitude response and
the characteristic frequency of the oscillator. The former is
numerically calculated by subtracting the minimum of the
times series to the maximum for each unravelling of the
noisy trajectory, and then finding the mean value over all

the ensemble composed of noisy Nsim = 100 trajectories. The
characteristic frequency is computed by using the Fourier
transform of the stationary times series for each noise tra-
jectory, by means of the Fast Fourier Transform algorithm
implemented in Matlab and based on a library called FFTW.
After doing this, we similarly compute the average over the
aforementioned ensemble of noisy trajectories.

A. Driving force F = 0

To get a useful intuition about the impact of the noisy
dynamics, we start studying the maximum peak-to-peak oscil-
lations amplitude as a function of τ for different values of the
time-asymptotic noise mean ξ∞

ou , the colored noise memory
time τou, and the colored noise diffusive amplitude Cou. To
make a fair comparison between the white and colored noises,
we have fixed Cwn = Couτou/2 such that the variance of both
noises is identical [see the autocorrelation function in Eqs. (4)
and (5)].

Figures 2(a)–2(c) illustrate the average values of the max-
imum peak-to-peak oscillations amplitude as a function of
the time delay for several choices of the colored-noise pa-
rameters, which are indicated in the header of the plots. We
shall analyze the situation for small strength Dou, Dwn of both
noises in comparison to the height of the potential barrier,
i.e., Dou, Dwn 
 	U . In all figures, it can be seen that the
oscillations amplitude is barely modified for a sufficiently
weak noise strength (recall that the background solid black
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FIG. 7. (Upper panels) Average time series of the position as a function of the white and colored noise strength. (Lower panels) Average
phase space representation as a function of the white and colored noise strength. Each column represents a fixed value of the driving force
amplitude: (a), (d) F = 0, (b), (e) F = 0.01, and (c), (f) F = 0.1. We have fixed the strength of the white and colored noise as Dwn = 0.0005
and Dou = 0.0005; and the values of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0. Additionally, we have chosen μ = 0,
α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

line corresponds to the situation in absence of both noises),
except in region III where it substantially decays as a direct
consequence of the ensemble average, as anticipated in the
previous section. The fact that the maximum peak-to-peak
amplitude cancels in region III can be intuitively understood
by realizing that, on the one hand, the oscillator is expected
to transit between both wells as occurs for zero noise values
and, on the other hand, we have chosen noises such that they
have no prevalence for neither of these wells (notice that
〈ξwn(t )〉 = 0 and 〈ξou(t )〉 = 0 when t → ∞), such that there
is an effective cancellation in the average among the trajec-
tories of the ensemble. This point will be further discussed
in Sec. III B 3 when we study the time series of the spatial
coordinate in the region III. In particular, one may also see
in Fig. 2(a) that the impact of both noises is similar for a
given identical strength: that is, the blue (which just takes
account colored noise effects) and red (which corresponds
to white noise) lines as well as red and pink lines largely
coincides in all regions. Additionally, Fig. 2(a) reveals that
the maximum oscillations amplitude in the scenarios II and
IV is almost equally degraded by both noises for an identical
noise strength. Indeed, we shall show in Sec. III B 2 that the
maximum oscillations amplitude decreases equally fast for
increasing values of either the white or colored noise.

From Fig. 2(b), one may appreciate that a colored noise
endowed with a nonzero mean has an asymmetric effect in
absence of the white noise. This feature is particularly man-

ifested in region IV: While the oscillations amplitude takes
larger values for ξ∞

ou = 5 [see the blue dashed line in Fig. 2(b)]
in comparison with the zero-mean situation [see the green star
line in Fig. 2(a)], it is substantially degraded when ξ∞

ou = −5
[see the red dot-dashed line in Fig. 2(b)]. This result is against
one could expect as the oscillator describes a limit cycle con-
taining both wells. This asymmetric feature is substantially
suppressed by the white noise, as one could appreciate from
the pink star-dashed and green star lines in regions II and IV.

Figure 2(c) reveals that the OU-noise relaxation time τou

does not play a significant role in the time-asymptotic max-
imum oscillations amplitude either in presence or absence of
the white noise: notice that the blue dashed and red dot-dashed
lines completely coincide for all regions. Basically, there ap-
pears just small discrepancies in the region IV.

Additionally, we assess the chaotic feature of the noisy
dynamics by computing the maximum maps in the three
noisy scenarios: (i) Dwn �= 0 and Dou = 0, (ii) Dwn = 0 and
Dou �= 0, and (iii) Dwn �= 0 and Dou �= 0. These are illustrated
in Figs. 3(a)–3(l) for a particular instance of τ embedded
in each aforementioned regions (i.e., τ = 1, 2.5, 3, 4). These
plots consists of depicting the values of xmax in the phase space
for each realization of noise: basically, they can be understood
as the points of the Poincaré section for which 0 < x and
v = ẋ ≈ 0 holds. More specifically, we require that the veloc-
ity in the maximum amplitude satisfies |vxmax | < 10−3 because
we are not able to compute the strict Poincaré section due to
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FIG. 8. Panel (a) depicts the time series of the spatial coordinate for a given realization of the white noise with Dwn = 0.01 (i.e., Dou = 0).
The forward and backward jumps over the potential barrier 	U is indicated by the black arrows, and TR represent the time interval between two
consecutive hoppings. Panels (b), (c), and (d) illustrate the residence-time distribution as a normalized histogram for the three noisy scenarios:
(b) Dwn = 0.01 and Dou = 0, (c) Dwn = 0 and Dou = 0.01, and (d) Dwn = Dou = 0.01. Notice that the latter were obtained for an ensemble
composed of Nsim = 500 trajectories and sufficient large times T∞ = 500T�. We have fixed Cwn = 1, τou = 1, Cou = 2/τou and ξ∞

ou = 0; and
the rest of parameters μ = 0, α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

numerical limitations. The latter would correspond to the set
of points all lying in the X axis, instead we observe that points
stack on vertical bands. To make a direct comparison with
the free-noise results summarized in Sec. II A, we also plot
the maximum amplitude returned by the noiseless situation,
which are represented by the black dots.

By paying attention to the maximum maps one may
roughly distinguish two behaviours: that is, (i) the colored
points are either slightly scattered around the free-noise
black points, or (ii) they are broadly spread throughout the
phase space. The former situation are clearly displayed by
Figs. 3(d)–3(f) and 3(j)–3(l), where the vast majority of points
are completely embedded in a narrow (vertical) band located
near the equilibrium point x∗

1 . These results corresponding to
the regions II and IV are consistent with Fig. 1(d). A similar
situation is obtained for the region I, though the colored points
are not centered around the noiseless result (recall that x(t ) =
0 when t → ∞ for τ = 1) since the noise is responsible for
sustaining a oscillatory dynamics (see Sec. III B 1 for further
details). Accordingly, these results can be intuitively attributed
to the fact that the nonlinear dynamics must be regular: the
maximum amplitude remains slightly disturbed despite the
oscillator trajectory is randomly changed by the noise at each
time step (notice that the band width is small compared to
the situation for τ = 3). By contrast the maximum amplitude
in region III diffuses along the X axis occupying a wider
band of phase space, from xmax = 0 to xmax ≈ 0.9 as well as

from xmax ≈ 3.6 to xmax ≈ 5.2. This can be traced back to
the fact that the underlying dynamics is chaotic, such that a
small random perturbation (recall that Dwn, Dou 
 	U ) may
produce a significant variation of the maximum amplitude.
Furthermore, notice that this feature is appreciated in the
three noisy scenarios, that is the impact of both white and
colored noise upon the maximum amplitude is similar for
a given identical strength, which coincides with the results
observed in Figs. 2. In other words, Figs. 3(g)–3(i) confirm
that the chaotic dynamics intrinsic to the region III, previously
reported in Refs. [27,28], also manifests in presence of either
the white or colored noise.

Special attention deserves the results for τ = 2 in the worst
noisy scenario, see Fig. 3(f). Interestingly, at a closer inspec-
tion, one may observe that xmax takes values near the origin as
well, this is an indication of incoherent interwell transitions
(as it similarly occurs for τ = 3). Concretely, these points cor-
respond to trajectories that immediately recross the potential
barrier once the oscillator has jumped to the potential well
located at x∗

2 (and which eventually get back to the potential
well placed in x∗

1). As previously commented, we shall show
in Sec. III B 2 that the noise also induces an aperiodic forward
and backward hopping between potential wells in region II,
that eventually turns into an approximately periodic interwell
motion via stochastic resonance by applying a driving force.
Finally, we should discuss the orange points located around
x∗

1 ≈ 3.6 for the instance of region IV. Although it is not
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FIG. 9. Parameter set plot of the average maximum oscillations amplitude (upper row) and the average characteristic frequency (lower row)
as functions of the strength of the white and colored noises for given values of the driving force amplitude: (a), (d) F = 0, (b), (e) F = 0.01,
(c), (f) F = 0.1. We have chosen the values of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0; and the rest of parameters:
μ = 0, α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

shown here, we find that such points correspond to a single tra-
jectory which gets trapped within the well located at x∗

1 . This
is also a manifestation that the time-delayed dynamics may be
substantially modified for sufficiently large values of noise.

B. Driving force F �= 0

Having gained some understanding of the noise influence
upon the maximum peak-to-peak oscillations amplitude, we
now turn the attention to the scenario in presence of a driving
force. To provide a comprehensive analysis of the impact
of noises upon the time-delayed Duffing oscillator, we now
present a numerical study of both the maximum peak-to-peak
oscillations amplitude of the time series and the characteristic
frequency in the aforementioned different scenarios of the
oscillator dynamics when it is subjected to an external driving
force.

1. τ = 1

We begin with τ = 1, which in absence of noise, corre-
sponds to the scenario where the system is driven to one of
the fixed points and the trajectories are decaying oscillations.
The latter is because the time delay plays the role of a damping
term in the sense that it diminishes the oscillations caused by
the second derivative [27].

Figures 4(a)–4(c) illustrate the maximum peak-to-peak
oscillations amplitude and Figs. 4(d)–4(f) depict the charac-
teristic frequency as functions of the strength of the white
and colored noises for three values of the driving force: for

strong driving (F = 0.1), for middle driving (F = 0.01) and
in absence of driving (F = 0). It can be seen from the upper
panels that the oscillations amplitude gets larger values by
increasing the strength of both noises independently by the
driving force. This can be intuitively understood by recalling
that noises constantly inject energy to the oscillator which in
turn produce an increment of the oscillations amplitude. In
other words, it arises a competition between the time delay
and noise effects in the region I: while the former acts as
a damping mechanism, the presence of the latter to some
extent sustains the oscillatory dynamics with the growth of the
noise strength. Upon further inspection, one may also realize
that both noises are equally responsible for such increase. As
somehow expected, the driving force also contribute to the
increment of the oscillations amplitude, which can be clearly
seen in Figs. 5(a)–5(c). The latter depicts the average position
and phase space for a particular value of both noises. One
may further appreciate that the oscillator movement in the
phase space still manifests an underlying regular aperiodic
dynamics though it becomes erratic owing to noise effects.
Nonetheless, this noisy feature is significantly diminished as
the driving force strength increases. Interestingly, Fig. 5(c)
reveals that a sort of noisy limit cycle eventually emerges due
to the competition between noise and forcing effects: that is,
a sufficient large driving force eventually restores the regular
and periodic motion on average. One could be tentative to re-
fer to Fig. 5(f) as attractor, however this represents an average
value of the noisy trajectory rather than the set of states (in the
phase space) of the real trajectory for a particular unraveling
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FIG. 10. (Upper panels) Average time series of the position as a function of the white and colored noise strength. (Lower panels) Average
phase space representation as a function of the white and colored noise strength. Each column represents a fixed value of the driving force
amplitude: (a), (d) F = 0, (b), (e) F = 0.01, and (c), (f) F = 0.1. We have fixed the strength of the white and colored noise as Dwn = 0.0005
and Dou = 0.0005; and the values of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0. Similarly, we have chosen μ = 0,
α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

of the noise. Additionally, the particle path circles randomly
around this limiting average trajectory in the asymptotic time,
which implies that it is not closed in contrast to ordinary limit
cycles.

Regarding the characteristic frequency, Figs. 4(d)–4(f) also
reveal that this ultimately converges to the driving force
frequency � = 1.571 as the force amplitude increases (recall
that, in absence of noise, the dynamics becomes periodic
due to the driving force). The latter is unveiled by the red
crosses in Figs. 5(d)–5(f), which depicts the average position
for given values of the strength of the driving force and noises.
More specifically, the red crosses represents time periodic
points with period T� = 2π

�
, and thus, the fact that they are

horizontally aligned in Fig. 5(f) manifests that the oscillator
characteristic frequency coincides with �. One may thus con-
clude that the driving force substantially suppresses the noise
effects.

2. τ = 2.5

Now we turn the attention to the second region, which is
characterized for sustaining an oscillatory dynamics that is
confined in one of the wells.

Figure 6 depicts the average oscillations amplitude (upper
row) as well as the average characteristic frequency (lower
row) when we set the time delay τ = 2.5. Unlike the previ-
ous case, the oscillations amplitude now decays as the noise
strength grows, which was anticipated by Fig. 2(a). Remark-

ably, this degrading effect pronounces for larger values of
the driving force: notice that the yellow region (representing
the highest amplitude) in Figs. 6(a)–6(c) shrinks simultane-
ously for increasing strength of either white or colored noises.
Further, from Figs. 6(d)–6(f), one can appreciate that the char-
acteristic frequency decreases as a consequence of the noisy
dynamics. Nonetheless, the driving force tends to sustain the
periodic dynamics endowed with certain frequency close to
forcing � since the yellow domain spreads abroad the param-
eter noise space.

By paying attention to the average time series (upper pan-
els) and the phase space dynamics (lower panels) depicted in
Fig. 7, one may appreciate that the combination of the driving
force together with the noise effects give rise to an incipient
irregular dynamics enable to destroy the typical limit cycle in
region II [27]: we observe from the phase portraits depicted
by Figs. 7(e) and 7(f) that the edge of the limit cycle gets
wider as the dynamics becomes erratic owing to the noise
effects, that are significantly powered after switching on the
driving force. This result is also reflected in the characteristic
frequency above, which is eventually destroyed by increasing
the strength of either the white or the colored noise. Hence,
the noise combined with the driving force leads to ultimately
destroy the limit cycle in the region II. Interestingly, examin-
ing closely Fig. 7(c), this also provides useful insight about
the spatial coordinate dynamics when subject to a sufficiently
strong driving force: this clearly resemblances an aperiodic
dynamics with varying amplitude.
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FIG. 11. Parameter set plot of the average maximum oscillations amplitude (upper row) and the average characteristic frequency (lower
row) as functions of the strength of the white and colored noises for given values of the driving force amplitude: (a), (d) F = 0, (b), (e)
F = 0.01, (c), (f) F = 0.1. We have chosen the values of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0; and the rest of
parameters: μ = 0, α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

Differently from the other regions, we also found here
that for sufficiently large noise strength (e.g., Dou, Dwn >

0.002	U ), we observe that the noise makes possible for the
oscillator to pass over the potential barrier even in absence of
driving force, which is better illustrated by Fig. 8(a). Unlike
previous figures, the latter depicts the time series of x(t ) for
a given realization of the white noise (i.e., it just displays the
values returned by a single instance of the ensemble trajectory
rather than its average). Clearly, one may appreciate that the
oscillator initially transits from the potential well located be-
low x∗

2 ≈ −3.6 to the other one, and gets back after certain
time denoted by TR (which is refereed to as the residence
time [30]). This represents an entire interwell transition (i.e., a
forward and backward hopping between both potential wells),
and it can repeat a number NH of times for a given unraveling
of the noise in any of the three noisy scenarios previously
discussed. As somehow expected, we find that the latter in-
creases with the strength of the driving force, this is illustrated
in Figs. 14(d)–14(f) in Appendix B. Here, we show the NH

in function of the ratio between the forcing amplitude and the
potential barrier. Furthermore, we find that NH also depends of
the noise correlation time τou: notice that, by paying attention
to Figs. 14(e) and 14(f), such growth significantly diminishes
as τou gets too small or large compared with τ . Additionally,
we also study the percentage of noisy trajectories NT (within
the ensemble) that manifests at least a single complete tran-
sition, which is depicted in Figs. 14(a)–14(c) as a function
of F . This quantity displays a similar behavior to NH , for
instance, NT substantially grows in presence of both ξwn and

ξou for comparatively small values of the noise strength, which
means that the probability to observe an oscillatory interwell
motion rises with the driving force. In other words, this fea-
ture suggests that the time interval between the forward and
backward hoppings, that is TR, may get synchronized with the
periodic forcing time T� by means of stochastic resonance
[30]. To delve into this question we have also computed the
residence-time distribution, denoted by N (TR), in the three
noisy scenarios and for values of the forcing amplitude F =
0, 0.1, 1. This is displayed in Figs. 8(b)–8(d) as a normalized
histogram with finite size bins.

We observe that a sharp peak around twice the forcing
period arises as the forcing amplitude takes on values suffi-
ciently large compared to the potential barrier (i.e., F = 1 ≈
0.24	U ), which can be viewed as a fingerprint of synchro-
nization, i.e., the preferred residence-time is apparently TR ≈
2T�. By contrast, we can further appreciate that the residence-
time distribution is significantly wide for sufficiently small or
vanishing driving force. This can be intuitively understood by
realizing that most of the noise-induced transitions must be in-
coherent (i.e., they are erratic interwell transitions) so that any
value of TR has approximately equal likelihood. Let us recall
that N (TR) has been previously employed to characterize the
stochastic resonance in (non-time-delayed) bistable systems
in presence of the white noise [29,31]. In particular, it is
well-known that the condition of synchronization in those sys-
tems corresponds to TR = T�/2 (and odd multiples) [30]. This
result can be traced back to the fact that the potential is most
extremely tilted to the right or the left at times (n − 1

2 )T�,
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FIG. 12. (Upper panels) Average time series of the position as a function of the white and colored noise strength. (Lower panels) Average
phase space representation as a function of the white and colored noise strength. Each column represents a fixed value of the driving force
amplitude: (a), (d) F = 0, (b), (e) F = 0.01, and (c), (f) F = 0.1. We have fixed the strength of the white and colored noise as Dwn = 0.004
and Dou = 0.004; and the values of the noises as follows Cwn = 1, τou = 1, Cou = 2/τou and ξ∞

ou = 0. Additionally, we have chosen μ = 0,
α = 1, β = 0.1, γ = −0.3, � = 1.571 and initial conditions x0 = y0 = 1.

which in turn promotes the interwell transition. Compared
with our problem, it is difficult to figure out a simple picture
due to the many timescales that involves our problem (e.g., the
time delay τ , the noise correlation time τou, etc). Nonetheless,
one may, at least, expect that the synchronization condition
may change with respect to the nondelayed situation as a
consequence of the additional timescale indirectly introduced
by τ in the potential (2).

3. τ = 3

In this section, we examine the situation in which the
oscillator can transit from one fixed point to the other and
the dynamics is chaotic [27]. Here, the time delay makes
the oscillator jump between the potential wells describing
aperiodic trajectories.

As was anticipated in Sec. III A, Figs. 9(a)–9(c) show that
the average maximum oscillations amplitude decays to zero
for arbitrary nonzero values of the noise strength in either the
presence or absence of the driving force. To understand this
result is convenient to pay attention to the ensemble average
of the time series and the phase space dynamics illustrated in
Fig. 10. Although it is not shown here, a single unraveling
of the noisy dynamics reveals that the oscillator describes an
aperiodic interwell motion (i.e., it truly transits between both
wells). Nonetheless, Figs. 10(a)–10(c) show that the oscillator
is apparently restricted to move around the origin, which

certainly leads to a misunderstanding. This is rooted on the
fact that the white and colored noises do not discern between
both wells (recall that 〈ξwn(t )〉 = 0 and 〈ξou(t )〉 = 0 when
t → ∞) such that the vast majority of the noisy trajectories
compensate each other after doing the ensemble average: that
is, the oscillator turns to be symmetrically located with respect
to the origin most of the time for any two unravellings of
the noise. In other words, certain spatial displacement −x(t )
and x(t ) have the same chance for a given t in the trajec-
tory ensemble. This misleading feature is also reflected in
the phase space by Figs. 10(d)–10(f), which shows that the
ensemble average dynamics takes places around the origin
rather than embedding both potential wells. In short, though
Figs. 9(a)–9(c) resemble an oscillation death of the dynamics,
this is just due to the fact that there is no prevalence for any of
the potential wells due to our choice of the noise parameters.
An observation should be made here: this feature could be
observed in the amplitude plots Figs. 6(a)–6(c) for the in-
stance in region II as well, where the stochastic resonance is
the responsible for the interwell transitions, so that one could
expect that the average of the peak-to-peak amplitude would
decrease for a enough large noise strength.

Notice that the maximum peak-to-peak oscillations am-
plitude for zero noise values and driving force is consistent
with previous works [27] (i.e., it is equal to the double of
the length between potential wells), though it is difficult to
appreciate at first sight from Fig. 9(a). In conclusion, the noise

064205-13



VALIDO, COCCOLO, AND SANJUÁN PHYSICAL REVIEW E 108, 064205 (2023)

FIG. 13. Test of convergence of the maximum peak-to-peak oscillations amplitude in terms of the number Nsim of the trajectory ensemble
for fixed values of the noise strength in each scenario: Panels (a), (b), (c), and (d) correspond to τ = 1, τ = 2.5, τ = 3, and τ = 4; respectively.
We have fixed the values of the noises as follows Dwn = Dou = 0.004, Cwn = 1, τou = 1, Cou = 2/τou, and ξ∞

ou = 0. Similarly, we have chosen
μ = 0, α = 1, β = 0.1, γ = −0.3, F = 0 and initial conditions x0 = y0 = 1.

effects make the averaging dynamics completely irregular for
τ = 3 such that the oscillations get scattered along the para-
meter set.

4. τ = 4

Finally, we study the case in which the oscillator is no
longer confined to either of the wells and its trajectory cor-
responds in a limit cycle in the phase space that contains both
wells.

From Figs. 11(a)–11(c), one can observe that the maxi-
mum oscillations amplitude of such oscillatory dynamics is
significantly diminished by a growing strength of the white
and colored noises as anticipated in Sec. III A. Although this
situation seems to resemble the one of region II, a suffi-
ciently strong forcing is now able to reestablish the maximum
peak-to-peak oscillations amplitude: in contrast to Fig. 6(c),
focusing on Fig. 11(c), the yellow region spreads over all the
parameter set when F = 0.1. This feature is also reflected by
the time series of the spatial coordinate, see Figs. 12(a)–12(c),
where it can be observed that the amplitude of the oscillatory
dynamics eventually grows with the driving force ampli-
tude. While the maximum oscillations amplitude is rather
vulnerable to the noise effects, the characteristic frequency
proves to be fairly resilient against them. This is clear from
Figs. 11(d)–11(f), which manifests that the characteristic fre-
quency remains unchanged despite the increment of the noise
strength. In particular, the characteristic frequency converges
to � as indicated by the red crosses plotted in the times series
of the spatial coordinate (see Figs. 12(d)–12(f). As similarly

occurred in region I [see Fig. 4(c)], the nonlinear oscillator is
ultimately tuned to the frequency � of the driving force.

More interestingly, by paying attention to the phase space
dynamics depicted in Figs. 12(d)–12(f), we find out that the
shape and the amplitude of the limit cycle in the present
scenario (with τ = 4) are affected by noise independently of
the forcing amplitude (i.e., its border just gets wider). This is
also in contrast with the case with τ = 2, where a growing
driving force contributes to eventually destroy the limit cycle.

IV. OUTLOOK AND CONCLUSION

We have extensively analyzed the maximum peak-to-peak
oscillations amplitude and the characteristic frequency in the
stationary state for a time-delayed Duffing oscillator affected
by both white and active OU noises. In the first part, by
assuming a zero driving force, we show that both noises
have a similar degrading effect upon the maximum peak-to-
peak oscillations amplitude independently of the time delay
and for a given identical strength. We also observe that the
OU-noise relaxation time does not play an important role in
the time-asymptotic maximum oscillations amplitude either
in presence or absence of the white noise. Then, we have
switched on the driving force and find an intricate interplay
among noise, forcing and time delay. In fact, we show that the
influence of both noises upon the dynamics changes from one
region to the other: for instance, the combination of noise and
driving force in region II eventually destroys the characteristic
limit cycle; whilst a regular and periodic dynamics emerges in
region I by increasing values of the external forcing. Similarly,
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FIG. 14. (Upper panels) Percentage of trajectories manifesting entire interwell transitions (at least, a single forward-backward hopping) as
a function of the forcing amplitude in the three noisy scenarios: (a) Dwn = 0.001 and Dou = 0, (b) Dwn = 0 and Dou = 0.001, and (c) Dwn =
Dou = 0.001. (Lower panels) Number of complete transitions as a function of the forcing amplitude in the three noisy scenarios: (d) Dwn =
0.001 and Dou = 0, (e) Dwn = 0 and Dou = 0.001, and (f) Dwn = Dou = 0.001. We have fixed the strength of the white and colored noise as
indicated in the title of the plots; Cwn = 1, Cou = 2/τou, and ξ∞

ou = 0; and the rest of parameters μ = 0, α = 1, β = 0.1, γ = −0.3, � = 1.571
and initial conditions x0 = y0 = 1.

a sufficiently strong driving force is able to restore a deformed
limit cycle in region IV, as well as the characteristic frequency
turns to be rather resilient against noise effects. Interestingly,
we find that, for sufficiently large values of the noise and
the forcing amplitude, an approximately periodic interwell
motion arises in region II by means of stochastic resonance:
specifically, the interwell timescale and the forcing period get
synchronized to promote an interwell transition in the three
noisy scenarios studied here.

Active particles have proved to be useful in the description
of a great diversity of phenomena appearing in biological and
physical systems where time delay effects can be present. Our
study apparently suggests that the impact of the active noise
in the time-delayed nonlinear dynamics does not substantially
distinguishes from that owing to the white noise. Nonetheless,
it would be necessary to further investigate in this line to
unveil the role of the active motion in the phenomena beside
time-delayed nonlinear dynamics. In particular, it is appealing
to study how other phenomena besides stochastic resonance
are influenced by the time delay in the presence of active
noise.
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APPENDIX A: CONVERGENCE TEST
FOR THE TRAJECTORY NUMBER

In this Appendix, we provide several figures that as-
sess the validity of our approximation about the number of
trajectories introduced in Sec. II: that is Nsim = 100. In par-
ticular, Figs. 13(a)–13(d) depict the maximum peak-to-peak
oscillations amplitude as a function of the trajectory num-
ber composing the ensemble average in the different regions
studied above. One may observe that the value of the maxi-
mum oscillations amplitude barely changes beyond the point
Nsim = 100 in all the scenarios analyzed: more specifically,
it fluctuates around certain asymptotic number with a small
oscillations amplitude. We also notice that these figures have
been obtained for the largest values of the noise strength
studied in the present paper, so we may expect that such fluc-
tuations would be diminished for lower values of the noise.
Although it is not shown here, we have obtained similar results
for different choices of the colored noise parameters. Since the
calculation of the ensemble average becomes computationally
time consuming as Nsim increases, the number of ensemble
trajectories Nsim = 100 returns a reasonably accurate estima-
tion of the maximum peak-to-peak oscillations amplitude for
our present purposes.
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APPENDIX B: NT AND NH IN REGION II

Focusing on the instance in region II (i.e., τ = 2.5), we
show the results about the percentage of trajectories within
the ensemble that exhibit, at least, a forward-backward tran-
sition between both potential wells [see Figs. 14(a)–14(c)],
as well as the number of complete transitions as a function
of the forcing amplitude [see Figs. 14(d)–14(f)]. These plots

were computed for an ensemble composed of Nsim = 500
trajectories. Interestingly, we observe that the white noise
induces entire interwell transitions in any ensemble trajec-
tory for Dwn = 0.01, while sufficiently large or small noise
correlation times τou diminish the number of complete transi-
tions. Additionally, we have found that such interwell motion
may get synchronized with the periodic force, as discussed in
Sec. III B 2.
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