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Microresonators are micron-scale optical systems that confine light using total internal reflection. These opti-
cal systems have gained interest in the past two decades due to their compact sizes, unprecedented measurement
capabilities, and widespread applications. The increasingly high finesse (or Q factor) of such resonators means
that nonlinear effects are unavoidable even for low power, making them attractive for nonlinear applications,
including optical comb generation and second harmonic generation. In addition, light in these nonlinear res-
onators may exhibit chaotic behavior across wide parameter regions. Hence, it is necessary to understand how,
where, and what types of such chaotic dynamics occur before they can be used in practical devices. We study
here the underlying mathematical model that describes the interactions between the complex-valued electrical
fields of two optical beams in a single-mode resonator with symmetric pumping. Recently, it was shown that this
model exhibits a wide range of fascinating behaviors, including bistability, symmetry breaking, chaos, and self-
switching oscillations. We employ here a dynamical system approach to perform a comprehensive theoretical
study that allows us to identify, delimit, and explain the parameter regions where different behaviors can be
observed. Specifically, we present a two-parameter bifurcation diagram that shows how (global) bifurcations
organize the observable dynamics. Prominent features are curves of Shilnikov homoclinic bifurcations, which
act as gluing bifurcations of pairs of periodic orbits or chaotic attractors, and a Belyakov transition point (where
the stability of the homoclinic orbit changes). In this way, we identify and map out distinctive transitions between
different kinds of chaotic self-switching behavior in this optical device.
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I. INTRODUCTION

Optical resonators are becoming increasingly important
due to their nonlinear properties and potentially small sizes.
While much work has been done on the propagation of
light pulses in such cavities (motivated by the work of Leo
et al. [1] on temporal cavity solitons), we focus here on the
dynamics of cavities where only a single longitudinal mode
is excited. An optical resonator generally confines and stores
light at specific frequencies, i.e., at the cavity’s modes. As
resonators become smaller, the mode separation in frequency
increases until only a single mode lies within the frequency
range of interest, and they can be treated as quasi-single-
moded with dispersive effects becoming negligible. However,
in general, two degenerate modes always exist, corresponding
to either light counter-propagating in opposite directions [2]
in the resonator or co-propagating but with orthogonal po-
larizations [3]. In either case, coupling between these two
modes is practically unavoidable. Recently, Del’Haye et al.
have performed extensive experimental and theoretical stud-
ies of the counter-propagating case [4–6] and have shown
that the system exhibits a wide range of interesting behavior,
including symmetry breaking, chaos, and self-switching oscil-
lations, all resulting from the competition between self- and
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cross-modulation effects [2] due to the Kerr nonlinearity [7].
In their experiment, Del’Haye et al. used a whispering-gallery
mode microrod resonator of diameter 2.7 mm and input power
10 mW; nevertheless, they were highly confident that this
experiment can be reproduced successfully with a state-of-
the-art silicon nitride resonator of diameter 50μm and input
power 50μW [4]. Figure 1(a) illustrates the principle of their
experiments: two constant pump beams of equal powers are
coupled into a single-mode ring resonator in opposite direc-
tions, and the output intensities are observed as a function of
time.

For the experiments that we are concerned with, dis-
persive effects are negligible and so the envelopes of the
counter-propagating fields evolve relatively slowly compared
to the round-trip time of the cavity. Hence, the propaga-
tion of light in such resonators is modeled analytically by
driven-dissipative wave equations with a linear loss and a Kerr
nonlinearity given by [2,5,10]

dU1

dt
= −[1 + i(α|U1|2 + β|U2|2 − �)]U1 + f ,

dU2

dt
= −[1 + i(α|U2|2 + β|U1|2 − �)]U2 + f . (1)

Here, U1 and U2 are the slowly varying complex envelopes of
the two electric fields, α and β are the self- and cross-phase
modulation parameters [7], f is the amplitude of the pump
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FIG. 1. Schematics of different configurations of system (1).
(a) Dielectric microring resonator: two identical beams are driven
in opposite directions inside the resonator [2,4]. (b) Long fiber ring
resonator: the two orthogonally polarized modes propagate in the
same direction inside the resonator [8,9].

field inside the cavity, and � is the detuning between the
frequency of the pump and the cavity mode. In system (1), U1,
U2, and f have been normalized so that the Kerr nonlinearity
is 1 while the time is measured in units of decay time, meaning
that the loss coefficient is −1. Note that exchanging U1 and U2

leaves system (1) invariant.
Notably, system (1) simultaneously describes the propaga-

tion in a ring resonator of two orthogonally polarised light
fields with differing group velocities in the reference frame
moving at their average speed. This configuration has been
studied experimentally by Coen et al. [8]; see Fig. 1(b). The
only difference in terms of the underlying model between their
work and that of Del’Haye et al. [4–6] lies in the different
values for the self- and cross-phase modulation parameters in
Eq. (1).

The steady states of system (1) were first studied theoret-
ically by Kaplan and Meystre [2] in the context of nonlinear
effects in Sagnac interferometers. In addition to optical bista-
bility, they showed that this system might exhibit spontaneous
symmetry breaking (where U1 �= U2 in the steady states) and
constructed a simplified phase diagram showing where this
occurs. In 2017, Del’Haye et al. [4] experimentally observed
both optical bistability and symmetry breaking in the con-
text of two counter-propagating waves in a dielectric ring
resonator [4]. They subsequently extended the mathematical
analysis of the steady states [5,11] and showed, both numer-
ically and experimentally, the existence of periodic solutions
that undergo a period-doubling route to chaos. In particular,
they observed experimentally that the system could exhibit
chaotic attractors with self-switching oscillations [6]. In do-
ing so, they considerably improved and extended the phase
diagram of Kaplan and Meystre to include self-switching and
chaotic regimes while still leaving some regions unexplored.

In this paper, we provide a detailed theoretical analysis
of the mechanisms leading to the formation of chaotic dy-
namics and different types of self-switching oscillations in a
Kerr ring microresonator as modeled by equations (1). More
specifically, we take a dynamical systems approach to study
the overall bifurcation structure and associated organizing
centers of system (1) over a relevant range of the pump
power and the detuning. This allows us to identify, delimit,
and explain the different dynamical behaviors—from simple
to more complex—that this system exhibits. We start our

analysis where previous works [4,5,8,11] left off. Specifi-
cally, we focus on the organization of periodic orbits and
their bifurcations in the two-dimensional parameter plane of
intensity and detuning of the input field. To achieve this, we
use numerical continuation techniques [12] implemented in
AUTO-07p [13] to complement our mathematical analysis.
In doing so, we find that the relevant parameter region is
organized by a Belyakov transition point [14], which leads to
different types of nearby Shilnikov bifurcations [15,16] with
different symmetry properties due to the Z2-equivariance of
system (1). As we show, each of them is associated with a tran-
sition of a pair of periodic solutions and/or chaotic attractors
via a symmetry-increasing gluing bifurcation that results in
characteristic switching behavior. By continuing the different
Shilnikov bifurcations in the parameter plane, we construct,
for the first time to our knowledge, a bifurcation diagram
representing the unfolding of the Z2-equivariant Belyakov
transition. Since this type of codimension-two bifurcation is
expected to occur in a wide class of nonlinear systems, these
results should also be relevant to researchers in other fields.

The paper is organized as follows. In Sec. II, we discuss
the symmetry properties of the system. Section III A then
considers the bifurcations of the steady states; here, we derive
the expressions for the emergence of optical bistability, sym-
metry breaking, and optical bistability of asymmetric steady
states in the parameter plane. In Sec. III B, we study local
and global bifurcations of both the steady states and periodic
orbits and show how they are organized. In Sec. V, we analyze
the dynamics near the Z2-equivariant Belyakov transition and
clarify the relevance of the associated Shilnikov bifurcations.
Conclusions and an outlook are presented in Sec. VI.

II. RESCALING AND SYMMETRY

We rescale system (1) with the transformation E1,2 =√
αU1,2 to introduce the ratio B = β/α of cross-phase and

self-phase modulation as a single parameter; moreover, it is
convenient for comparison with previous work [2,4–6,11] to
consider the rescaled input light intensity F = f 2/α as the
main parameter in conjunction with the detuning �. This
yields the equivalent system

dE1

dt
= −[1 + i(|E1|2 + B|E2|2 − �)]E1 +

√
F ,

dE2

dt
= −[1 + i(|E2|2 + B|E1|2 − �)]E2 +

√
F , (2)

for the rescaled electric fields E1 and E2. It is important to note
that the value of B depends on various factors, including the
specific properties of the optical medium and the characteris-
tics of the interacting fields. Hence, B is typically determined
experimentally or calculated based on the specific conditions
of the optical setup and the properties of the optical material
being used [8,11]. In the experiment of Del’Haye et al. with
counter-propagating fields, B = 2.0 [2,4], while in the exper-
iment of Coen et al. with two co-propagating polarization
modes, B = 1.57 [8].

Mathematically, the two differential equations (2) for the
complex-valued variables E1 and E2 define a dynamical sys-
tem in the form of a vector field on a four-dimensional
(real-valued) phase space; see also Appendix A. Indeed, this
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system is our central object of interest, and we study it with
advanced tools from dynamical systems, especially bifurca-
tion theory and associated numerical methods. Before turning
to the bifurcation analysis of system (2), we first discuss some
of its important properties. First, since E1 and E2 are complex
variables, the phase space is of dimension four. In particular,
system (2) can be written, in Cartesian form, as a vector
field either for (X1, X2,Y1,Y2) with E1,2 = X1,2 + iY1,2 or, in
polar form, for (r1, r2, φ1, φ2) with E1,2 = r1,2eiφ1,2 . Note that
P1,2 = X 2

1,2 + Y 2
1,2 = r2

1,2 is the intensity of the electric field
E1,2. Second, system (2) is Z2-equivariant, that is, it remains
unchanged under the transformation of exchanging the two
electric fields

η : (E1, E2) �→ (E2, E1).

Hence, a solution of system (2) is either mapped to itself (as
a set) by η, in which case we refer to it as a symmetric solu-
tion, or it is an asymmetric solution; importantly, asymmetric
solutions come in pairs that are each other’s images under
the symmetry transformation η. An important object is the
fixed-point subspace of an equivariant systems [17–19], which
for system (2) is

Fixη := {(E1, E2) ∈ C × C| E1 = E2}.
The fixed-point subspace Fixη is two-dimensional, invariant
under the flow, and consists of all solutions that are fixed
pointwise under η. Trajectories in Fixη are symmetric and
characterized by having the same intensities P1(t ) = P2(t ) for
all time. The dynamics of system (2) in Fixη reduces to the
single equation

dE

dt
= −[1 + i(B + 1)|E |2 − i�]E +

√
F , (3)

where E = E1 = E2. Note that any steady state of system (2)
that is symmetric must lie in Fixη; otherwise it is asymmetric.
To determine the stability of steady states, we use the Jacobian
matrices J of system (2) and JS of system (3) in their Cartesian
form, as given in Appendix A.

For a symmetric periodic solution � with (minimal) period
T there are actually two possibilities of how η maps it as a
set:

(1) � is a fixed-point periodic solution if � ⊂ Fixη, which
means that all points �(t ) are invariant under η; this case does
not actually occur in system (2) (see Appendix A);

(2) otherwise, � is an S-invariant periodic solution; in this
case, ∅ �= � ∩ Fixη �= � and �(t ) is mapped to itself by η only
in combination with a shift in the time t .

We remark that periodic orbits are global objects that,
in general, need to be found numerically; we use the con-
tinuation package AUTO-07p [13] to find periodic orbits,
determine their stability, and detect and continue their (global)
bifurcations.

III. STEADY-STATE BIFURCATIONS

Previous works [4,5,8] have shown that system (2) exhibits
spontaneous symmetry breaking and bistability of symmetric
and asymmetric steady states. We now analytically derive
the curves of local bifurcations underlying these phenomena.
Unlike in previous work [5,11], our formulas for the loci of

the transition to bistability and of symmetry breaking are pre-
sented here in terms of all parameters, including the ratio B of
cross- and self-phase modulation and the phase φ. Moreover,
we also provide an expression for the locus of the boundary of
the region with multiple stable asymmetric steady states. The
resulting bifurcation diagram is discussed in Sec. III B and the
reader may wish to look ahead to Fig. 2(a), which shows the
different steady-state bifurcation curves in the (F,�) plane.

A. Optical bistability: Saddle-node bifurcations of
symmetric steady states

Optical bistability is a fundamental concept in optics,
where an optical system exhibits two stable states for the same
values of the parameters [20]. For systems with optical Kerr
nonlinearity, this phenomenon is underpinned by two succes-
sive saddle-node bifurcations involving two different stable
solutions of the system. We first consider the existence of two
stable steady states in the fixed-point subspace Fixη; that is,
we first focus on the bistability of symmetric steady states. To
find the locus of saddle-node bifurcations in Fixη, we perform
the analysis in polar coordinates, with E1 = E2 = reiφ . Then
system (3) takes the form

dr

dt
=

√
F cos φ − r,

dφ

dt
= −

√
F sin φ

r
− (B + 1)r2 + �. (4)

It follows directly from system (4) that any symmetric steady
state satisfies r = √

F cos φ. A necessary condition for a
saddle-node bifurcation to occur is that the Jacobian matrix
JS of system (4), evaluated at a steady state, has a zero eigen-
value, which means det(JS ) = 0. In polar coordinates

det(JS ) = 1 + tan2 φ − (B + 1)F sin 2φ, (5)

where the condition r = √
F cos φ for a symmetric steady

states has been used.

1. Parameterization of the saddle-node bifurcation S

Solving for the zeros of system (4) and Eq. (5) yields the
parametrization of the input power FS and the detuning �S ,

S : (FS (φ),�S (φ)) =
(

1 + tan2 φ

(B + 1) sin 2φ
,

1 + 2 sin2 φ

sin 2φ

)
,

(6)
with φ ∈ (0, π/2). Equation (6) defines the locus of the
saddle-node bifurcations S of steady states in Fixη, which
delimits the region of optical bistability of symmetric states
in the (F,�) plane. The locus S has a minimum at φ = π/6,
at which point there is a cusp bifurcation in the (F,�) plane
at

CPS :
(

FCPS

(π

6

)
,�CPS

(π

6

))
=

(
8

3
√

3(B + 1)
,
√

3

)
. (7)

Hence, a necessary condition for bistability is that F > FCPS

and � > �CPS . We note that �S is independent of B implying
that there is a minimum detuning needed to observe bistability
that is independent of the relative strengths of the self- and
cross-phase modulation terms.
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FIG. 2. (a) Two-parameter bifurcation diagram of system (2) in the (F,�) plane for B = 2.0. Shown are the curves: S (light blue) and SA

(blue) of saddle-node bifurcation of the symmetric and asymmetric steady states, respectively, and of pitchfork P (purple), Hopf H (green),
and period-doubling PD (dark green) bifurcations. Regions of different dynamical behaviors are highlighted in color. (b–e) one-parameter
bifurcation diagrams of system (2) in � for fixed values of F as shown, with symmetric (blue) and asymmetric steady states (dark and light
purple). Branches of periodic orbits (green) are represented here by the sum of the squared maxima of their real and imaginary parts, i.e.,
P1,2 = max(X1,2)2 + max(Y1,2)2. Stable and unstable solutions are represented by solid and dashed curves, respectively, and bifurcation points
are shown as circles of the same colors as the corresponding curves in panel (a).

B. Spontaneous symmetry breaking: Pitchfork bifurcation
of symmetric steady states

Spontaneous symmetry breaking for steady states of sys-
tem (2) was first predicted by Kaplan and Meystre [2]. Above
a certain threshold of the input power and/or detuning, the
symmetric states lose their stability in favor of two asymmet-
ric states through a pitchfork bifurcation P. The newly created
asymmetric steady states emerge transversely to the subspace
Fixη.

We can determine the boundaries of the symmetry-
breaking region by considering the full Jacobian J (see

Appendix A) of system (2) at the symmetric steady
states [19,21]. The condition for P is that one of the eigen-
values of the J becomes zero, that is, det(J ) = 0. In polar
coordinates, the determinant of J evaluated at any symmetric
state takes the form

det(J ) = det(JS )(1 + tan2 φ + (B − 1)F sin 2φ). (8)

The first factor, det(JS ), contains the information on the bista-
bility region as discussed in Sec. III A. The second factor gives
us insight into other bifurcations whose center manifold [22]
is not contained in Fixη. One readily sees from the second
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factor of det(J) that higher bifurcation degeneracies occur
when

(1) B = 0: the two factors of det(J ) are equal, and the
system only exhibits symmetric steady states. In this case,
system (1) models the dynamics of two uncoupled electric
fields.

(2) B = 1: the second factor is strictly positive, which
implies that it does not generate bifurcations.

In these two cases, the only local bifurcations of symmetric
steady states in system (2) are the saddle-node bifurcations we
studied in Sec. III A.

1. Parameterization of the pitchfork bifurcation P

When B > 0 and B �= 1, system (2) exhibits pitchfork
bifurcations for suitable values of the parameters. In this
case, the necessary condition arises from the second factor of
det(J ), that is,

1 + tan2 φ + (B − 1)F sin 2φ = 0. (9)

By solving for the zeros Eqs. (4) and (9), we obtain the
locus of the pitchfork bifurcations delimiting the region of
symmetry breaking as

P : (FP(φ),�P(φ)) =
(

1 + tan2 φ

(1 − B) sin 2φ
,

B+1
1−B + 2 sin2 φ

sin 2φ

)
.

(10)
The fact that FP must be positive forces the domain of φ to
be φ ∈ (0, π/2), when 0 < B < 1, and φ ∈ (−π/2, 0), when
B > 1.

Notice that

lim
B→1±

FP = +∞, φ �= 0, ±π/2.

In other words, the pitchfork bifurcation appears under any
small perturbation of B from this limiting case, B = 1.

The values FP and �P reach their respective minima for
different values of the phase at

φSB = π

6
and φ∗

SB = arctan

(√
B + 1

3 − B

)
,

respectively. These values define the minimum thresholds for
symmetry breaking when sweeping the cavity with either the
input power or detuning; more precisely,

(1) The minimum input power necessary to achieve sym-
metry breaking is

FP(φSB) = 8

3
√

3(B − 1)
.

For the particular case B = 2, the threshold of symmetry
breaking is FSB = 8

3
√

3
, as demonstrated in Ref. [5].

(2) However, a necessary condition on the detuning for
symmetry breaking to occur is that the detuning must be larger
than

�P(φ∗
SB) =

√
(1 + B)(3 − B)

B − 1
.

Notice that this condition only holds when B < 3. As B → 3,
the minimum detuning for symmetry breaking �P(φ∗

SB) tends
to zero. Thus, when B > 3, spontaneous symmetry breaking

can be observed for any negative detuning for suitable pump
power.

C. Optical bistability: Saddle-node bifurcations of
asymmetric steady states

To study the dynamics of asymmetric steady states of
system (2), we investigate the corresponding bifurcation con-
ditions analytically. Steady states of system (2) obey the two
Lorentzian equations (see Appendix B)

F = P1 + (P1 + BP2 − �)2P1, (11a)

F = P2 + (P2 + BP1 − �)2P2, (11b)

where P1,2 = |E1,2|2 are the output intensities. Rearranging
Eqs. (11) shows that the output intensities P1,2, are solutions
of the equations:

0 = (P1 − P2)[(P1 + P2 − �)2 + 1 − (B − 1)2P1P2], (12a)

F = [(B + 1)(P1 + P2) − 2�][(P1 + P2 − �)2 + 1]

B − 1
. (12b)

Since we are only interested in asymmetric steady states,
the first factor of Eq. (12a), which determines the condition
for symmetric steady states P1 = P2, can be ignored. With
the transformation S = P1 + P2, the system of coupled equa-
tions (12) can be reduced to

F (B − 1) = [(B + 1)S − 2�][(S − �)2 + 1]. (13)

Notice that the right-hand side of Eq. (13) is a third-order
polynomial in S, whose zeros depend on � and B. Therefore,
one can determine two threshold values, S− and S+, which
delimit a region with three possible real solutions of S. This
region is well-known in optics as a hysteresis cycle of systems
with cubic nonlinearity [20]. One determines the threshold
values S± by solving for the zeros of the partial derivative
∂F/∂S to obtain

S± = 2(B + 2)� ±
√

(B − 1)2�2 − 3(B + 1)2

3(B + 1)
. (14)

Hence, for � >
√

3(B + 1)/(B − 1) and B �= 1, two asym-
metric steady states of P1,2 collide at S− and S+. By replacing
S± in Eq. (13), we obtain the locus

SA : FSA (�) = 2(B − 1)

27(B + 1)2
{[(B − 1)2�2 + 9(B + 1)2]�

± [�2 − 3(B + 1)2/(B − 1)2]3/2}, (15)

of saddle-node bifurcation of asymmetric steady states in the
(F,�) plane.

From Eq. (15), the threshold value of the bistability region
of asymmetric steady states in the (F,�) plane is determined;
it is given by the cusp bifurcation of the asymmetric steady
states

CPA : (FCPA ,�CPA ) =
(

8

3
√

3
(B + 1),

B + 1

B − 1

√
3

)
. (16)

As we show in the following section, the region enclosed
by the saddle-node bifurcation of asymmetric steady states
overlaps with other regions; this creates regions of consider-
able multistability in the (F,�) plane.
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IV. BIFURCATION DIAGRAM OF STEADY STATES
AND PERIODIC SOLUTIONS

We now use the information from the previous section in
conjunction with numerical continuation to find local and
global bifurcations of steady states and periodic orbits with
the software package AUTO-07p [13]. To compare our results
with previous studies [4,5,11], we keep the ratio between the
cross- and self-phase modulations constant at B = 2.

Figure 2 shows the bifurcation diagram of local bifurca-
tions of steady states and periodic orbits of system (2) in the
(F,�) plane [Fig. 2(a)], as well as one-parameter bifurcation
diagrams [Figs. 2(b)–2(e)] in the detuning � for fixed values
of the pump power F . In Figs. 2(b)–2(e), stable and unstable
symmetric solutions are represented by solid and dashed blue
curves, respectively. We note that all the unstable steady states
of system (2) are saddle-foci. Asymmetric steady states are
shown in purple, and the green curves represent the maximum
values of periodic solutions. Notice that each bifurcation dia-
gram in Figs. 2(b)–2(e) illustrates a vertical cut of the (F,�)
plane in Fig. 2(a), as indicated by the dashed lines.

A. Two-parameter bifurcation diagram

Figure 2(a) shows the (F,�) plane of system (2) with
regions of simple dynamics in different colors, bounded by
different bifurcation curves. In the white region, the sys-
tem exhibits a single symmetric steady state with P1 = P2.
The bistability and symmetry-breaking regimes of symmetric
steady states are shown in light blue and purple, respectively,
and the region of bistability of asymmetric steady states is
shown in blue. Note that these regions are bounded by the
bifurcation curves S, P and SA, respectively, as derived in
Sec. III A. Notice also the cusp bifurcation points CPS and
CPA, which represent the thresholds of the bistability regimes
of symmetric and asymmetric steady states, respectively, as
obtained in Eqs. (7) and (16).

In addition to these local bifurcations derived analytically,
we numerically find that the asymmetric steady states exhibit
Hopf bifurcations H, leading to a region with periodic orbits.
The curve H in Fig. 2(a) marks the onset of oscillations,
and it bounds the green region. Inside this region, we find
that periodic orbits emerging from H exhibit further bifur-
cations, including cascades of period-doubling bifurcations.
Figure 2(a) already shows the loci PD of the first two period-
doubling bifurcations. Different bifurcations that occur in the
region delimited by the curve H are introduced and discussed
in more detail in Sec. IV C. We note that it is also possible
to obtain the analytical expression for the Hopf bifurcation
by using the bialternate product of the Jacobian matrix with
twice the identity matrix [22]. For system (2), this approach
yields a very intricate and lengthy expression that does not
offer further insights, which is why we equivalently compute
the curve H with numerical continutation.

B. One-parameter bifurcation diagrams

Notice that all the regions with different dynamics in
Fig. 2(a) overlap to form regions of different types of mul-
tistability. To understand the relevance of these different
regions, we show, in Figs. 2(b)–2(e), for several values of F ,

one-parameter bifurcation diagrams of P1,2 as a function of �.
The values of F have been carefully chosen to showcase the
gradual increase in complexity of the dynamics of the output
intensities P1,2 with increments of F .

For F = 1.0 as in Fig. 2(b), system (2) undergoes two
saddle-node bifurcations S. Notice that there is only one
branch because the system is in the symmetric regime with
P1 = P2. The two bifurcations S lead to a �-range where two
stables symmetric steady states (with different output intensi-
ties) and a saddle symmetric steady state exist simultaneously;
see Fig. 2(b). More specifically, the three-dimensional stable
manifold of this saddle steady state, which is the set of all
points in phase space that converge toward this state in for-
ward time, separates the basins of attraction of these steady
states. Initial conditions on one side of this manifold converge
to the stable steady state with a high output intensity while,
on the other side, they converge to the stable steady state
with a low output. This phenomenon, well-known as optical
bistability, was observed experimentally [4]. The region where
these two stable symmetric steady states coexist is delimited
by the curve S and shaded in light blue in Fig. 2(a).

For F = 2.0 as in Fig. 2(c), the symmetric steady state with
the high output intensity becomes unstable at a supercritical
pitchfork bifurcation P. Hence, two stable (and asymmetric)
steady states with P1 �= P2 are created and represented by two
branches. This phenomenon is the well-known spontaneous
symmetry breaking [4,8,23]. Eventually, as � increases, the
higher symmetric steady state regains its stability at a second
supercritical pitchfork bifurcation P, where the two asymmet-
ric steady states disappear. The region of symmetry-broken
steady states is delimited by the curve P in the (F , �) plane
in Fig. 2(a).

Notice that the two regions delimited by the curves S and P
overlap in Fig. 2(a); hence, there is a range of multistability in
Fig. 2(c) where the lower symmetric steady state and the two
asymmetric steady states exist and are stable simultaneously.
As a result, when scanning system (2) for F = 2.0, from large
to small values of �, the output intensities P1 and P2 both
switch from the lower symmetric steady state to one of the
two different asymmetric steady states. By carefully choosing
the initial condition, one determines in numerical simulations
whether P1 or P2 switches to the asymmetric steady states
with the higher output intensity. However, in an experiment,
the dominant asymmetric state is often determined by small
asymmetries of the system [8].

For F = 3.0 as in Fig. 2(d), the one-parameter bifurcation
diagram reveals that each asymmetric steady state undergoes a
pair of supercritical Hopf bifurcations H. After the first Hopf
bifurcation H, a pair of stable and asymmetric periodic orbits
emerges. As � increases, this pair of periodic orbits disap-
pears at the second Hopf bifurcation H. In Fig. 2(a), there is an
area where the bistability regime of symmetric states overlaps
with the green region of periodic orbits bounded by the curve
H of Hopf bifurcation. In Fig. 2(d), this area corresponds
to a parameter range of multistability, where stable periodic
orbits coexist with the stable and symmetric steady state of
low output intensity.

For F = 6.0 as in Fig. 2(e), each of the asymmetric steady
states undergoes two saddle-node bifurcations, leading to a
hysteresis loop delimited by the points SA. In this �-range,
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system (2) exhibits two pairs of stable and asymmetric steady
states that coexist. Hence, the system becomes multistable
past the point SA for increasing �, with coexistent symmetric
and asymmetric steady states and periodic solutions past H.
Moreover, the pair of periodic orbits that emerge at the first
point H in Fig. 2(e) undergo multiple sequences of period-
doubling PD and saddle-node SP bifurcations, and the branch
of periodic orbits ends at a pair of Shilnikov homoclinic
bifurcations [15,16] denoted HOMp. The same happens for
decreasing � with the branches of periodic orbits emerging
at the second pair of Hopf bifurcations. Interestingly, we find
a region between the points HOMp in Fig. 2(e), where the
low symmetric steady state coexists with chaotic attractors
of different symmetry properties. This agrees with the one-
parameter bifurcation diagram presented in Ref. [[6], Fig. 2],
where chaotic and complex dynamics have been observed
in numerical simulations. In the remainder of the paper, we
consider in detail the emergence of these chaotic attractors
and their symmetry properties.

C. Bifurcations of periodic orbits: Period-doubling route
to chaos

Figure 3 shows the bifurcations of periodic orbits past
the first Hopf bifurcation H, for F = 6.0 and varying
�, with phase portraits in the (P1, P2) plane showing a
period-doubling route to chaos. Notice that Fig. 3(a) is an
enlargement of one of the branches of periodic orbits shown
in Fig. 2(e). The pair of periodic orbits that emerges at H
becomes unstable at the first period-doubling bifurcation PD,
where a pair of stable periodic orbits with twice the period
is created. As � is increased, the system goes through a
first cascade of period-doubling bifurcations PD. Numeri-
cal integration shows that this cascade of period-doubling
bifurcations PD leads to the formation of a pair of chaotic at-
tractors. Figure 3(b1) depicts the phase portrait of the original
pair of periodic orbits that emerge at the first Hopf bifurcation
point H, as indicated by the dashed line in Fig. 3(a). The
blue and orange dots represent the symmetric and asymmetric
steady states p, and a± created at the pitchfork bifurcation P.
Due to the Z2 equivariance of system (2), the two periodic
orbits near a+ and a− are related by mirror symmetry through
the diagonal P1 = P2 of the (P1, P2) plane of Fig. 3(b). Fig-
ure 3(b2) shows an enlargement of the periodic orbits near
the steady state a+. Past the first period-doubling bifurcation
PD, we observe in Fig. 3(c) a pair of periodic orbits with two
loops as indicated by the dashed line in Fig. 3(a). As � is
increased further, the periodic orbits bifurcate infinitely many
more times at period-doubling bifurcations PD and a pair of
chaotic attractors emerge, as shown in Fig. 3(d) and indicated
in Fig. 3(a). After the point (F,�) = (6.0, 6.5), the system
goes through a reverse period-doubling cascade for increasing
�, where the number of loops of the stable pair of periodic
orbits is halved at each point PD. Hence, the original pair
of periodic orbits recovers its stability at about � = 6.7; see
Fig. 3(a).

Above � = 6.8, as in Fig. 3(a), the original pair of periodic
orbits undergoes two saddle-node bifurcations SP, leading to
a �-range with two coexisting pairs of stable periodic orbits.
Moreover, one of the pairs of periodic orbits undergoes a

FIG. 3. (a) One-parameter bifurcation diagram (of a pair) of
asymmetric periodic orbits in � for F = 6.0. (b–d) Associated pairs
of attractors in the (P1, P2) plane for � = 6.25, � = 6.4 and � =
6.5, respectively. Symmetric (blue) and asymmetric (orange) equi-
libria are indicated as points, and framed regions of panels (b1–d1)
are enlarged in panels (b2–d2).

second cascade of period-doubling bifurcations; hence, the
points SP delimit a range of multistability with coexistent
periodic and chaotic attractors. Subsequently, the system un-
dergoes further period-doublings until the branch of periodic
orbits ends at the Shilnikov bifurcation point HOMp, as shown
in Fig. 3(a).

Figure 4 shows chaotic attractors, a pair of Shilnikov bifur-
cations, and associated temporal traces for different values of
� along the bifurcation diagram shown in Fig. 3(a). In addi-
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FIG. 4. (a1–c1) Pairs of asymmetric chaotic attractors and (a2–
c2) their associated temporal traces for F = 6.0 and � = 6.5, � =
6.9, � = 7.075, respectively. (d1) Pair of Shilnikov homoclinic or-
bits and (d2) corresponding temporal profiles for F = 6.0 and � =
7.08. Also shown in panels (a1–c1) is W u

+ (p).

tion, we also show the positive branch of the one-dimensional
unstable manifold W u

+(p) of the saddle symmetric steady state
p, which is the set of all points in phase space that con-
verges to p in backward time. Based on the results obtained
in Ref. [6], the oscillation period of each temporal trace in
Fig. 4(a2)–4(d2) is on the order of a tenth of a microsecond,
for a microresonator of diameter 1.9 mm and a cavity half-
linewidth of 1MHz.

The pair of chaotic attractors of Fig. 4(a1) is the one shown
in Fig. 3(d). We note that W u

+(p) accumulates on the top-left
chaotic attractor. Due to the Z2 symmetry, the negative branch
of the unstable manifold W u

−(p) of p (not shown here) accu-

FIG. 5. Pair of Shilnikov homoclinic orbits (dark and light red
curves) of the symmetric saddle steady state p at F = 6.0 and � =
7.08, shown in projection: (a) onto (X1, X2,Y1) space, and (b) onto
(X1, X2,Y2) space.

mulates on the bottom-right chaotic attractor. As expected,
the corresponding temporal traces of P1 and P2 of the pair
of chaotic attractors in Fig. 4(a2) show no repeating cycle.
Notice that the attractors shown in Fig. 4(a) are characterized
by the dominance of one mode. Moreover, the amplitudes of
oscillation of the output intensities P1 and P2 are out of phase.
We refer to this type of dynamics as nonswitching chaotic
behavior [19]. Past the second period-doubling cascade as
indicated by the dashed line � = 6.9 in Fig. 3(a), we observe
in Fig. 4(b1) two larger chaotic attractors. Their temporal
traces in Fig. 4(b2) show more complex oscillations with
epochs where the amplitudes of the output intensities P1 and
P2 are about equal. This is explained by the fact that the two
attractors overlap near p in the projection onto the (P1, P2)
plane of Fig. 4(b1). However, they are still well separated in
the full four-dimensional phase space by the stable manifold
of p, since W u

+(p) still accumulates only on the top-left chaotic
attractor. As � is increased to � = 7.075, as in Fig. 4(c1), the
chaotic attractors change shape and show more overlap in the
(P1, P2) plane, yet still remain separated in phase space; this is
reflected in the temporal traces in Fig. 4(c2), which shows that
the two attractors are very close to p and, hence, the subspace
Fixη.

Indeed, just before the point HOMp in Fig. 3(a), we find
that, after its first loop around the chaotic attractor, the unsta-
ble manifold W u

+(p) makes several oscillations very close to
p. At the point HOMp, the unstable manifold W u(p) connects
back to p to create a pair of isolated homoclinic orbits of
Shilnikov type. Figure 4(d1) shows the Shilnikov homoclinic
orbits in the (P1, P2) plane, as computed with a numerical
implementation of Lin’s method [24]. The temporal profiles
of HOMp in Fig. 4(d2) depict two pulsed solutions, each
localized in different regions of the phase space. To appre-
ciate the dynamics at the point HOMp, Fig. 5 shows this
pair of homoclinic orbits in two different projections. Here,
it is apparent that each branch of W u(p) makes an excur-
sion around a+ and a−, respectively, and then converges in
a spiral motion back towards p. This spiralling motion is
characteristic of a Shilnikov bifurcation, and it translates to
small oscillations near p in the temporal profiles of HOMp;
see Fig 4(d2). Examination of the eigenvalue of p at the
point HOMp shows that this saddle is strongly repelling. As
we will discuss later in Sec. V, this situation give rise to a
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FIG. 6. (a) Two-parameter bifurcation diagram of system (2) in the (F,�) plane, showing additionally the curve HOMp (dark-blue) of
Shilnikov bifurcation of the symmetric steady state p with the Belyakov point BV, as well as selected curves (gray) of secondary Shilnikov
bifurcations to p. (b1), (b2) Enlargements of regions near HOMp either side of the point BV, with dots indicating the locations of the phase
portraits in Figs. 8 and 10.

chaotic Shilnikov bifurcation, which in turn leads to chaotic
dynamics [15,16]. More precisely, the homoclinic orbit at the
point HOMp [in Fig. 3(a)] is repelling, and nearby trajectories
accumulate on the chaotic attractor shown in the background
of Fig. 4(d1). Thus, we expect the system to exhibit a plethora
of exotic behavior near the point HOMp, including sequences
of saddle-node and period-doubling bifurcations.

D. Global bifurcations

We now focus on describing the organization of some key
global bifurcations in the (F,�) plane. Figure 6 presents the
two-parameter bifurcation diagram of system (2) with addi-
tional curves of global bifurcations. The locus of the Shilnikov
bifurcation from Fig. 2(e) can be continued as a curve in the
(F,�) plane. Figure 6(a) shows the resulting curve HOMp;
it enters the shown region from the top, then has a minimum
with respect to F and leaves to the right. Numerical contin-
uation reveals a Belyakov transition point BV [25,26] on the
curve HOMp; this point is a codimension-two homoclinic bi-
furcation, where the homoclinic orbit changes from attracting
to repelling. As we will discuss below in Sec. V, there exist
infinitely many more curves of homoclinic bifurcations near
the curve HOMp, of which some are shown in Fig. 6(a); see
also the enlargements in Figs. 6(b1) and 6(b2). Our results
are consistent with the unfolding of the point BV as described
theoretically by Belyakov [25], but we find additional curves
of homoclinic bifurcations on account of the Z2-equivariance

of system (2). In this way, we clarify the relevance of the
point BV and these homoclinic bifurcations for the switching
dynamics of periodic and chaotic solutions.

V. DYNAMICS NEAR THE BELYAKOV TRANSITION

As we have seen in Sec. III B, the bifurcation of the asym-
metric steady states can lead to the formation of a unique pair
of stable periodic orbits [Fig. 2(d)], or to a �-range where
more than one pair of periodic orbits and chaotic attractors
exist simultaneously [Fig. 2(e)]. In this section, we find that
the bifurcation responsible for the emergence or disappear-
ance of chaotic dynamics is the Belyakov transition [25,26],
which occurs at the point BV.

A. Transition from simple to chaotic dynamics

Near the curve HOMp, the dynamics are strongly depen-
dent on the eigenvalue configuration of p; more specifically,
they depend on the relative strengths between the repelling
and attracting eigendirections of p, also known as the saddle
value. As p has three stable and one unstable eigenvalues, this
leads to two generic configurations, one where the saddle p
is more strongly attracting than repelling; this configuration
is referred to as “simple.” In the opposite case, where the
saddle p is more strongly repelling than attracting, the con-
figuration is referred to as “chaotic.” The codimension-two
Belyakov transition BV represents the moment where the
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FIG. 7. Illustration of different configurations of the leading
eigenvalues of the symmetric steady states p along the curve HOMp.
Shown here are the real unstable eigenvalue λu, and the two stable
complex conjugates eigenvalues λs and λs.

Shilnikov bifurcation HOMp transitions from a simple to a
chaotic Shilnikov bifurcation.

The steady-state p has three leading eigenvalues and one
subleading eigenvalue. The three leading eigenvalues are: an
unstable real eigenvalue λp and two stable complex-conjugate
eigenvalues λs and λs. The subleading eigenvalue λss is stable
and real. The saddle value σ of p is

σ = Re(λs) + λu.

The eigenvectors associated with the complex eigenvalues λs

and λs span Fixη; that is, these two eigenvalues govern the
dynamics on this two-dimensional symmetry subspace. As
the trace of the Jacobian of system (2) is −2 when restricted
to Fixη, and −4 in the full system (see Appendix A), the
eigenvalues of p satisfy

Re(λs) = −1, and λu + λss = −2.

This implies that as F and � vary, only the real eigenvalues λu

and λss, and the imaginary part of λs and λs, change. Hence,
the sign of the saddle value σ = −1 + λu, strictly depends
on the eigenvalue λu, with the transition BV occurring when
λu = 1.

The different configurations of leading eigenvalues of p
along the curve HOMp are shown in Fig. 7. On the upper part
of the curve HOMp we have 0 < λu < 1 [Fig. 7(a)], hence, the
saddle value σ is negative. This leads to a simple Shilnikov
bifurcation with a unique (pair of) stable periodic orbit(s) for
nearby parameter values. At the point BV, λu = 1 [Fig. 7(b)],
the system exhibits the Belyakov transition. Past the point BV
for increasing F , we have λu > 1 as in Fig. 7(c), and the
saddle value σ is positive. Hence, the Shilnikov bifurcation
is chaotic [15,16] and there are infinitely many periodic orbits
at nearby parameter values. In the case of system (2), these
periodic orbits bifurcate through period-doubling cascades to
create different chaotic attractors, as was shown in Figs. 4
and 6.

B. Dynamics near the simple Shilnikov bifurcation

To understand the relevance of the simple Shilnikov bi-
furcation HOMp for the periodic orbits, we consider a slice
of constant F through the two-parameter bifurcation diagram
to the left of the point BV and close to the curve HOMp.
Figure 6(b1) shows an enlargement of the (F,�) plane close

FIG. 8. (a1–d1) Pairs of periodic and chaotic attractors, and (a2–
d2) their associated temporal traces for F = 4.0 and � = 6.797,
� = 6.800, � = 6.810, � = 6.889, respectively. Also shown in
panels (a1–d1) is the positive branch W +

u (p) (red curves) of the
unstable manifold of p.

to the curve HOMp, with a dashed line of fixed pump power
at F = 4.0. Figure 8 shows the phase portraits and temporal
traces of the output intensities P1 and P2 at the points labeled
7(a) to 7(d) in Fig. 6(b1).

Figure 8(a1) shows (a pair of) stable periodic orbits very
close to the curve HOMp. Here, after each loop of oscillations
at the top-left of the (P1, P2) plane, the positive branch of the
unstable manifold W u

+(p) comes very close the steady state p,
and likewise for the negative branch of the unstable manifold
W u

−(p) (not shown here). Hence, the pair of periodic orbits are
nearly homoclinic. This means that each oscillation spends a
long time near p, leading to two persistent temporal trains of
pulse-like solutions of large periods [Fig. 8(a2)]. We note that
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the two attractors shown in Fig. 8(a1) are well separated by
the (three-dimensional) stable manifold of p in the full four-
dimensional phase space.

Further away from the curve HOMp, we observe that the
positive branch of the unstable manifold W u

+(p) crosses the
symmetry subspace Fixη to accumulate on an S-invariant pe-
riodic orbit [Fig. 8(b1)] that “connects” the two regions of
the phase space previously separated. Notice that this periodic
orbit is close in shape to the union of the two periodic orbits in
Fig. 8(a1). Therefore, the simple Shilnikov bifurcation HOMp

acts as a gluing bifurcation [27] that connects the two periodic
orbits separated by the stable manifold of p. Figure 8(b2)
shows the temporal traces of P1 and P2 of the attractor in
Fig. 8(b1), which display regular switching between the two
regions of the phase space containing the steady states a+ and
a−, respectively.

As � is increased, and we move further from the homo-
clinic bifurcation curve, the period of oscillation decreases.
Moreover, the symmetric periodic orbit created at HOMp

undergoes a pitchfork bifurcation of periodic orbits, where
two asymmetric, stable periodic orbits are created; hence, the
pitchfork bifurcation acts as a symmetry-breaking bifurcation
of periodic orbits. The pair of asymmetric periodic orbits is
shown in Fig. 8(c1), but it is difficult to distinguish them.
This is because they exist very close to the symmetry-breaking
bifurcation in the parameter space. The insets of Figs. 8(b1)
and 8(c1) show enlargements near the symmetric steady state
p to clarify the difference and to distinguish the two asym-
metric periodic orbits. Their temporal traces in Fig. 8(c2)
show that the output intensities of P1 and P2 still exhibit
regular switching behavior. Moreover, we note that each of
the output intensities P1 and P2 oscillates with a slightly larger
amplitude in the regions containing a+ and a−, respectively.
As � is increased further, the two periodic orbits undergo
a period-doubling cascade; this fact also confirms that the
system went through a symmetry-breaking bifurcation of pe-
riodic orbits [28,29]. This period-doubling cascade leads to
the formation of two asymmetric chaotic attractors, as in
Fig. 8(d1). Their temporal traces are shown in Fig. 8(d2), and
they still show regular switching; the maxima of the respective
output intensity, however, are actually irregular (due to chaos
on a small scale that is not resolved on the scale of the shown
time trace).

C. Infinitely many bifurcations near the
chaotic Shilnikov bifurcation

Loosely speaking, the general theory of homoclinic bi-
furcations predicts the existence of countably many families
of homoclinic orbits near the chaotic Shilnikov bifurca-
tion [15,25]. Therefore, we expect an accumulation of
infinitely many Shilnikov bifurcations for nearby parameter
values. To investigate the dynamics of different families of
homoclinic bifurcations, we use a numerical implementation
of Lin’s method [24] to identify them and to find their curves
of existence in the (F,�) plane.

We consider here homoclinic orbits for which the unstable
manifold W u

+(p) makes m loops around a+ and n loops around
a− before returning to p. For notational convenience, we now
refer to the associated bifurcation curves with reference to

m and n. For example, the homoclinic orbit along HOMp

will be referred to as a (1,0)-homoclinic orbit, and this is
now denoted by HOM1,0

p . As we will see, there are multiple
curves corresponding to the same pair (m, n). The panels of
Fig. 9 show different sets of computed curves of homoclinic
bifurcations, associated phase portraits, and temporal profiles
near the codimension-two point BV. For better visualization,
we map the (F,�) plane to the (F̃ , �̃) plane, by rotation over
the angle −π/7 around the point BV.

1. Nonswitching homoclinic bifurcations

We refer to homoclinic orbits with n = 0 as nonswitching
homoclinic orbits. System (2) exhibits many nonswitching
(2,0)-Shilnikov bifurcations HOM2,0

p , whose loci can be con-
tinued as curves in the (F,�) plane. Figure 9(a) shows three
such curves of the infinitely many that exist near HOM1,0

p ;
each curve HOM2,0

p enters the shown region from the right,
then has a fold of homoclinic bifurcation with respect to F̃
and turns back to the right. As predicted by the published un-
folding [25], the two branches of these homoclinic bifurcation
curves are closer together as HOM1,0

p is approached. More-
over, the fold points of the curves HOM2,0

p accumulate on
the codimension-two point BV. Figure 9(e1) shows the phase
portraits (of a pair) of the nonswitching (2,0)-homoclinic bi-
furcations at the point (e) indicated in Fig. 9(a). Notice that
each homoclinic orbit makes two loops and then connects
to the steady state p in the symmetry subspace Fixη. The
temporal profiles in Fig. 9(e2) show pulsed solutions with two
peaks corresponding to the number of loops.

Figure 9(b) shows the curves of nonswitching (3,0)-
homoclinic bifurcations HOM3,0

p together with the curves
HOM2,0

p in the background. We observe that the curves
HOM3,0

p are located in between the curves HOM2,0
p as pre-

dicted by the theoretical unfolding [14,25]. We show in
Fig. 9(f1) the phase portraits of a pair of nonswitching (3,0)-
homoclinic orbits at the point (f) in Fig. 9(b). Since the point
(f) is very close to the curve HOM1,0

p , one can hardly distin-
guish the three loops of each homoclinic orbit. However, the
temporal profiles in Fig. 9(f2) clearly show pulsed solutions
with three prominent peaks.

2. Switching homoclinic bifurcations

Previous studies [25,26] of the codimension-two point
BV concern systems without Z2-symmetry. In this case, it
is expected that the curves of homoclinic bifurcations in
the unfolding should accumulate on one side of the pri-
mary homoclinic curve HOM1,0

p . This is indeed the case
for the bifurcation curves of the nonswitching homoclinic
orbits. However, due to Z2-equivariance, we find infinitely
many curves accumulating onto the primary homoclinic curve
HOMp also from the other side. In particular, these bi-
furcations generate homoclinic orbits [27,30] that alternate
between the two regions of the phase space separated by the
stable manifold of p, that is, homoclinic orbits with both
m and n nonzero. Therefore, we refer to these homoclinic
bifurcations as switching homoclinic bifurcations.

Figure 9(c) shows curves of (1,1)-homoclinic bifurcations
HOM1,1

p together with the curves of nonswitching homo-
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FIG. 9. Unfolding of (a, b) nonswitching and (c, d) switching Shilnikov homoclinic orbits of system (2), near BV. Shown are the curves of
(2,0)-homoclinic HOM2,0

p (brown), (1,1)-homoclinic HOM1,1
p (blue), (3,0)-homoclinic HOM3,0

p (green), and (2,1)-homoclinic HOM2,1
p (purple)

bifurcations. (e1–h1) Pair of Shilnikov (m, n)-homoclinic orbits and (e2–h2) corresponding temporal profiles for F = 6.25 and � = 7.1779,
� = 7.0792, � = 7.0921, and � = 7.1106, respectively.

clinic bifurcations in the background. Notice that the curves
HOM1,1

p are located above the curve HOM1,0
p . They also

accumulate on this primary curve of homoclinic bifurca-
tion, and their organization is very similar to the curves
of nonswitching (2,0)-homoclinic bifurcations. However, in
the phase space [Fig. 9(g1)], each of the switching (1,1)-
homoclinic orbits has one loop around each of the asymmetric
steady states a+ and a−, and then connects back to the
steady state p in the symmetry subspace Fixη. In the tempo-
ral profiles [Fig. 9(g2)], these loops translate to large jumps
in the amplitude of the output intensities P1 and P2 from

the region containing a+ to the region with a−, and vice
versa.

Additionally, we show in Fig. 9(d) the curves of switching
(2,1)-homoclinic bifurcations HOM2,1

p , again together with
the curves presented in Figs. 9(a)–9(c). We notice that the
curves HOM2,1

p are located between the curves HOM1,1
p ,

and are organized as the curves HOM3,0
p . Figures 9(h1) and

9(h2) show the phase portraits and temporal profiles of (2,1)-
homoclinic orbits at the point (h) indicated in Fig. 9(d). Notice
that each homoclinic orbit makes three oscillations around the
steady states a+ and a−.
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D. Dynamics near BV: Infinitely many homoclinic curves and
periodic solutions

Switching homoclinic bifurcations in Z2-equivariant dy-
namical systems have been extensively studied both theoreti-
cally [27,30] and numerically [19,31] for the case of systems
with chaotic Shilnikov bifurcations. However, the unfolding
of homoclinic bifurcations near a Z2-equivariant Belyakov
transition has yet to be studied to the best of our knowl-
edge. The bifurcation diagram in Fig. 9(a)–9(d) presents a
partial numerical unfolding of homoclinic bifurcations near a
Z2-equivariant codimension-two Belyakov homoclinic bifur-
cation.

We note that each homoclinic orbit involved in the unfold-
ing of the codimension-two point BV has a negative saddle
value. Hence, they are organizing centers of further families
of subsidiary homoclinic bifurcation curves. Therefore, the
complete picture of the homoclinic curves near the point BV
is even more complicated. Moreover, each homoclinic orbit in
the unfolding of the point BV is associated with a family of
stable or unstable periodic solutions. Indeed, a point on each
homoclinic bifurcation curve is associated with a branch of
periodic orbits when one parameter is varied, as in Fig. 3(a).
We observe and conjecture that infinitely many saddle peri-
odic and chaotic attractors exist near the point BV.

E. Dynamics near the chaotic Shilnikov bifurcation HOM1,0
p

We now turn our attention to the relevance of the Shilnikov
bifurcation HOM1,0

p for the dynamics of the output intensities
P1 and P2 to the right of the point BV. Below the curve
HOM1,0

p , the two branches of the unstable manifold W u
+(p)

and W u
−(p) accumulate, respectively, on two different chaotic

attractors [Fig. 4(c1)] located in the region of the phase space
containing the asymmetric steady states a+ and a−, as dis-
cussed in Sec. IV C. However, above the curve HOM1,0

p , we
find that each branch of the unstable manifold W u(p) visits
both regions of the space containing the asymmetric steady
states a+ and a−, respectively.

Figure 10 shows phase portraits and temporal traces of the
output intensities P1 and P2, and the positive branch of the
unstable manifold W u

+(p) above the curve HOM1,0
p , for fixed F

and the two values of � indicated in Fig. 6(b2). For � = 7.21
as in Fig. 10(a1), the positive branch of the unstable manifold
W u

+(p) makes a first loop around a+, then a second one around
a−, before oscillating irregularly. More precisely, after its first
two loops, W u

+(p) oscillates for a considerable time in the
region containing a−, before switching to the region contain-
ing a+, where it also performs many oscillations. Over longer
timescales, we observe that W u

+(p) transitions irregularly be-
tween these two regions. Hence, we observe the formation of
a large symmetric chaotic attractor that switches between the
two regions of the phase space containing the steady states
a+ and a−. Figure 10(a2) shows the temporal traces of P2

and P1 associated with the chaotic attractor in Fig. 10(a2). As
expected, the amplitudes of the output intensities of P2 and
P1 exhibit a chaotic intermittent switching between the two
asymmetric steady states a+ and a−. As we will see later, this
transition from nonswitching to switching chaotic behavior
can also be found near other wild Shilnikov bifurcations. This

FIG. 10. (a1–b1) Pairs of switching chaotic attractors and (a2–
b2) their associated temporal traces for F = 6.26 and � = 7.21,
� = 7.229, respectively. Also shown in panels (a1–b1) is the positive
branch W +

u (p) of the unstable manifold of p.

process is referred to in the literature as symmetry increasing
of chaotic attractors [32,33].

For � = 7.22 as in Fig. 10(b1), we observe the forma-
tion of two large asymmetric chaotic attractors. However,
the temporal profiles [Fig. 10(b2)] associated with these at-
tractors show regular switching between both regions of the
phase space containing a+ and a−, respectively. We now
observe two attractors showing that the system underwent a
symmetry-breaking bifurcation. Indeed, as the detuning is in-
creased from � = 7.21, the system first displays a symmetric
pair of periodic orbits [similar to Fig. 8(b)] that undergoes a
pitchfork bifurcation where two asymmetric periodic orbits
are created. This pitchfork bifurcation can be continued as a
curve in the (F,�) plane and connects back to the previous
pitchfork bifurcation mentioned in Sec. V B, for the case
where the curve HOM1,0

p is associated with simple dynam-
ics. After the pitchfork bifurcation, the newly created pair of
asymmetric periodic orbits undergoes infinitely many global
bifurcations, leading to the formation of a pair of chaotic
attractors with more regular switching as in Fig. 10(b1). We
note that the chaotic attractors in Fig. 10(b) emerge from
a cascade of period-doubling bifurcations of periodic orbits
associated with one of the (1,1)-homoclinic curve in Fig. 9(c).
Interestingly, their temporal traces have a similar switching
pattern. This is further evidence that homoclinic bifurca-
tions organize the different switching patterns observed in
system (2).

F. Dynamics near the homoclinic bifurcations HOMm,0
p

It is now clear that the homoclinic bifurcations of the locus
HOM1,0

p play a key role in the formation of different dynamics
in system (2). Hence, we are now intrigued by the relevance
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FIG. 11. (a1–c1) Phase portraits and (a2–c2) associated tempo-
ral traces for F = 6.200 and � = 7.085, � = 7.095, � = 7.150,
respectively. Also shown in panels (a1–b1) is the positive branch
W +

u (p) of the unstable manifold of p.

of each curve in HOMm,0
p . Figure 11 shows the phase portraits

and temporal traces of P1 and P2 for fixed F , and different
values of � near the lower curve HOM3,0

p in Fig. 9(b), as
indicated by the inset. For � = 7.085 as in Fig. 11(a1), we
observe that each branch of the unstable manifold of p ac-
cumulates on two different nonswitching chaotic attractors,
which overlap near p in this projection. Their temporal traces
in Fig. 11(a2) show that the mode P2 is always dominant,
but there are epochs of time where both amplitudes are about
equal. By looking carefully, we also note that the oscillations
of P1 and P2 show a hint of period-three dynamics. This is
explained by the fact that the pair of chaotic attractors shown
in Fig. 11(a) is obtained from a period-doubling cascade of a
pair of nonswitching periodic orbits with three loops.

For � = 7.100 as in Fig. 11(b1), the positive branch
W +

u (p) of the unstable manifold of p accumulates on a large
and symmetric chaotic attractor that switches between the two
regions of the phase space containing the steady states a+
and a−. Notice that this chaotic attractor is close in shape
to the union of the two chaotic attractors in Fig. 11(a1).
Figure 11(b2) shows the temporal traces of the attractors
in Fig. 11(b1); as expected, P1 and P2 display intermittent
switching behaviors between the two regions. Notice that P2

has three oscillations in the region of the phase space con-
taining a+, before switching to the region containing a−, and
likewise for P1. This is characteristic of the Shilnikov bifur-
cation HOM3,0

p , as is evidenced by the period-three nature of
the dynamics. Therefore, the Shilnikov bifurcation HOM3,0

p
also involves symmetry increasing of chaotic attractors. Our
results show that this phenomenon in system (2) involves
crossing infinitely many homoclinic bifurcation curves that
accumulate on a central curve chaotic Shilnikov bifurcation;
namely, HOM1,0

p , in Fig. 10, and HOM3,0
p , in Fig. 11. We spec-

ulate that this transition is rather complicated and involves
tangency bifurcations between global invariant manifolds of p
and those of different saddle periodic orbits—akin to similar
transitions studied in Ref. [19].

As � increases, the system undergoes many global bifur-
cations, and we observe the formation of a large symmetric
periodic orbit about � = 7.150; see Fig. 11(c1). This indeed
confirms that the two chaotic attractors that merged at the
Shilnikov bifurcation HOM3,0

p , are obtained through period-
doubling cascades of a pair of nonswitching periodic orbits
with three loops. The corresponding temporal traces of P1

and P2 in Fig. 11(c2) display intermittent oscillations with
periodic switching between the two regions of the phase space
containing a+ and a−, every three cycles.

In general, we observe that each homoclinic bifurcation
HOMm,0

p of system (2), represents the moment where two
nonswitching chaotic attractors merge to form a switching
chaotic attractor or a periodic orbit with regular switching
every m cycles. Additionally, Fig. 11 shows that each curve
of homoclinic bifurcation HOMm,0

p enclosed a region of the
(F,�) plane, where one can find infinitely many switching
homoclinic bifurcations HOMm,n

p , as was illustrated with the
curve HOM1,0

p .

VI. DISCUSSION AND CONCLUSIONS

We have investigated the interaction of two optical fields in
a single-mode ring resonator, emphasizing regular and chaotic
self-switching oscillations, as described by the Z2-equivariant
vector field (2). We first derived analytical expressions for
all steady-state bifurcations in terms of all three system pa-
rameters: intensity F and detuning � of the pulses, and the
ratio B of their cross- versus self-phase modulation. These
results agree with and extend the expressions for bistabil-
ity and spontaneous symmetry breaking of symmetric steady
states in previous studies [5,11], and they allow us to plot the
associated bifurcation curves in the (F,�) plane for any value
of B directly.

We then studied bifurcations of nonswitching periodic or-
bits that emerge from Hopf bifurcations and found that they
may undergo a period-doubling cascade to create nonswitch-
ing chaotic attractors. Both of these objects, which come
in pairs, can then undergo Shilnikov bifurcations of saddle
symmetric steady states p to regular or chaotic self-switching
dynamics. More specifically, on the curve HOMp of the main
Shilnikov bifurcation, we found a Belyakov point BV, where
the saddle quantity of p is zero. The point BV is an organizing
center for infinitely many Shilnikov bifurcation curves nearby.
Our computed unfolding in the (F,�) plane near this point

064204-14



BIFURCATION ANALYSIS OF COMPLEX SWITCHING … PHYSICAL REVIEW E 108, 064204 (2023)

BV is in agreement with the known bifurcation theory [14,26]
for the generic case but reveals an even richer bifurcation
diagram with additional sets of Shilnikov bifurcations due to
the Z2 equivariance. While the presence of these additional
global bifurcations is consistent with well-established expec-
tations for systems with symmetry [17,22], their existence
is nevertheless an additional features in the unfolding of the
point BV in system (2).

Transition through each of these Shilnikov bifurcations
increases the symmetry of the attractor, from either two pe-
riodic solutions to a single periodic solution, or from two
chaotic attractors to a single chaotic attractor. In particular,
these bifurcations mark the transition from nonswitching dy-
namics, with the (average) power concentrated in one of the
two electric fields, to self-switching, which features regular or
irregular switching between one or the other field having the
higher power. To be more specific, the main transition to inter-
mittent switching [6] is organized by the Belyakov transition
point BV on the curve HOMp. We observed that the ensu-
ing large chaotic attractor undergoes infinitely many global
bifurcations, resulting in the emergence of stable switching
periodic orbits of large periods corresponding to different
switching patterns. Due to additional weak physical effects
(such as other types of nonlinear interactions between pulses
and the medium in the resonator) that are unaccounted for by
the model equations, quite sensitive features of the bifurcation
diagram, such as the exact locations of chaotic Shilnikov
bifurcations, cannot be expected to be observable directly in
an experiment. Furthemore, the exact Z2 equivariance of the
system will be lost in the presence of small asymmetries in
the resonator, such as different input powers or detunings. As
a consequence, the nature of some bifurcations might change:
e.g., the pitchfork bifurcation might split into a saddle-node
and transcritical bifurcation, and other bifurcations curve may
split up into two curves that are really close to each other.
Nevertheless, important properties of associated solutions,
including those of periodic orbits and different chaotic at-
tractors, will still survive. For example, while their exact
symmetry will be lost, the two separate chaotic attractors
in Fig. 4(b1) will persist under small perturbations. From a
practical perspective, this means that it should be possible
to observe experimentally qualitative changes in switching
dynamics we identified, especially near the point BV, where
different types of switching behaviors exist over quite large
parameter ranges. Indeed, in Ref. [6] the authors observed
experimentally that the system can exhibit near-periodic and
chaotic intermittent switching behaviors for specific param-
eter values. Moreover, in regions of the (F,�) plane where
p is more attracting than repelling, we expect the pulse-liked
periodic nonswitching and switching oscillations to be within
experimental reach, provided the system is symmetrically bal-
anced. Our overall bifurcation diagram in the (F,�) plane,
hence, provides a road map that may help guide experimental
studies to find such exotic behavior in this optical system.

Our findings suggest a number of research questions that
will be addressed in future work. First, it will be interesting
to focus on the sensitivity of chaotic switching oscillations
by mapping out further their regions of existence as well
as regions of stability. Second, preliminary results show that
system (2) exhibits more exotic dynamical behaviors orga-

nized by a codimension-two point concerning the existence
of a heteroclinic cycle, which will be reported elsewhere. As
for the Belyakov point studied here, these results agree with
theoretical work for the generic case [34,35], but we also find
additional global bifurcations because of Z2-equivariance.
Finally, it will also be interesting to study the influence of dis-
persion effects on the dynamics of two interacting fields in the
cases of bidirectional and uniderectional pumping, also with
a dynamical system approach. Indeed, the results obtained for
steady states solutions presented in this paper remain valid and
form the basis for such a further investigation. The time evo-
lution of the counter- and co-propagating fields, however, are
then modeled by two different set of equations [7,10]. Some
recent studies [9,36–38] have already taken a step in this di-
rection, showing that these two systems exhibit different types
of robust localized solutions, depending on the dispersion
regime. Therefore, a detailed theoretical analysis of the mech-
anism leading to their formation, and of associated organizing
centers would be very helpful to guide future experimental
studies.
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APPENDIX A: JACOBIANS IN CARTESIAN
COORDINATES

System (2) can be written as the four-dimensional real
vector field

dX1

dt
=

√
F − X1 + (

X 2
1 + Y 2

1 + BX 2
2 + BY 2

2 − �
)
Y1,

dX2

dt
=

√
F − X2 + (

X 2
2 + Y 2

2 + BX 2
1 + BY 2

1 − �
)
Y2,

dY1

dt
= −Y1 − (

X 2
1 + Y 2

1 + BX 2
2 + BY 2

2 − �
)
X1,

dY2

dt
= −Y2 − (

X 2
2 + Y 2

2 + BX 2
1 + BY 2

1 − �
)
X2, (A1)

where E1,2 = X1,2 + iY1,2. Its Jacobian is

J =

⎛
⎜⎜⎝

2X1Y1 − 1 C1 2BX2Y1 2BY2Y1

D1 −2X1Y1 − 1 −2BX2X1 −2BY2X1

2BX1Y2 2BY1Y2 2X2Y2 − 1 C2

−2BX1X2 −2BY1X2 D2 −2Y2X2 − 1

⎞
⎟⎟⎠,

(A2)

where C1,2(X1,2,Y1,2) = 3Y 2
1,2 + X 2

1,2 + BX 2
2,1 + BY 2

2,1 − �

and D1,2 = −3X 2
1,2 − Y 2

1,2 − BX 2
2,1 − BY 2

2,1 + �.
From the expression of J , we obtain that the divergence of

system (A1) is always equal to −4.
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In the fixed-point subspace Fixη we have X = X1 = X2 and
Y = Y1 = Y2, and the reduced system (3) becomes

dX

dt
=

√
F − X + [(B + 1)X 2 + (B + 1)Y 2 − �]Y,

dY

dt
= −Y − [(B + 1)X 2 + (B + 1)Y 2 − �]X, (A3)

with Jacobian

JS =
(

−1 + 2(B + 1)XY (B+ 1)(X 2+ 3Y 2) − �

−(B + 1)(3X 2 + Y 2) + � −1− 2(B+ 1)XY

)
.

(A4)

The eigenvalues of JS are

λs = −1 ± i
√

a,

with

a = �2 + 4�(B + 1)(X 2 + Y 2)

+ 3(B + 1)2(X 4 + Y 4 + 2X 2Y 2).

In particular, the trace of JS is −2; hence, the divergence of
system (A3) is always negative. Therefore, there cannot be
periodic solutions in the two-dimensional invariant subspace
Fixη, which means that any symmetric periodic orbits of sys-
tem (2) are S-symmetric.

APPENDIX B: STABILITY ANALYSIS OF ASYMMETRIC
STEADY STATES

The steady states of system (2) can be obtained by solving
√

F = [1 − i(|E1|2 + B|E2|2 − �)]E1,
√

F = [1 − i(|E2|2 + B|E1|2 − �)]E2. (B1)

By multiplying each equation of the coupled system (B1) with
its complex conjugate, we obtain

F = P1 + (P1 + BP2 − �)2P1, (B2a)

F = P2 + (P2 + BP1 − �)2P2, (B2b)

where P1,2 = |E1,2|2. Adding Eqs. (B2a) and (B2b) gives

F = [(B + 1)(P1 + P2) − 2�][(P1 + P2 − �)2 + 1]

B − 1
, (B3)

which yields Eq. (13) with the transformation S = P1 + P2.
By equating Eqs. (B2a) and (B2b), one obtains

0 = (P1 − P2)[(P1 + P2 − �)2 + 1 − (B − 1)2P1P2]. (B4)

Given that we are interested in asymmetric solutions, we con-
sider P1 �= P2 and rewrite Eq. (B4) as

0 = (S − �)2 + 1 − (B − 1)2P1P2. (B5)

Note that, by solving Eqs. (13) and (B5) simultaneously, one
can obtain explicit (but lengthy) expressions for the output
powers P1 and P2 of the asymmetric steady states.
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