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Intracellular protein patterns are described by (nearly) mass-conserving reaction–diffusion systems. While
these patterns initially form out of a homogeneous steady state due to the well-understood Turing instability,
no general theory exists for the dynamics of fully nonlinear patterns. We develop a unifying theory for non-
linear wavelength-selection dynamics in (nearly) mass-conserving two-component reaction–diffusion systems
independent of the specific mathematical model chosen. Previous work has shown that these systems support
an extremely broad band of stable wavelengths, but the mechanism by which a specific wavelength is selected
has remained unclear. We show that an interrupted coarsening process selects the wavelength at the threshold to
stability. Based on the physical intuition that coarsening is driven by competition for mass and interrupted by
weak source terms that break strict mass conservation, we develop a singular perturbation theory for the stability
of stationary patterns. The resulting closed-form analytical expressions enable us to quantitatively predict the
coarsening dynamics and the final pattern wavelength. We find excellent agreement with numerical results
throughout the diffusion- and reaction-limited regimes of the dynamics, including the crossover region. Further,
we show how, in these limits, the two-component reaction–diffusion systems map to generalized Cahn–Hilliard
and conserved Allen–Cahn dynamics, therefore providing a link to these two fundamental scalar field theories.
The systematic understanding of the length-scale dynamics of fully nonlinear patterns in two-component systems
provided here builds the basis to reveal the mechanisms underlying wavelength selection in multicomponent
systems with potentially several conservation laws.
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I. INTRODUCTION

Across many nonequilibrium systems, small constituents
self-organize into macroscopic patterns on much larger length
scales. One of the most intriguing aspects of such patterns far
from equilibrium is the emergence of intrinsic length scales
independent of the system size or other spatial cues but en-
tirely determined by the local interaction of the constituents.
Examples include chemical systems far from equilibrium
[1–4], especially intracellular protein patterns [5–8], collec-
tive states in active matter [9–16], and phase separation
of chemically active species [17–19] or species undergoing
population dynamics [20–22]. In contrast, phase-separation
processes approaching thermodynamic equilibrium usually
develop toward full separation via a continuous growth of
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the average domain size, a process termed “coarsening.”
The coarsening process can be interrupted, and a wave-
length selected in close-to-equilibrium processes if the system
allows for long-range interactions [23–25]. Recently, the
mechanisms underlying length-scale selection were explained
for nonequilibrium extensions of classical phase separation,
advancing the understanding of active phase separation im-
portant for intracellular condensates and active matter systems
[12,18,19,21].

Reaction–diffusion systems are governed by (chemical)
reactions that induce transitions between particle states with
different diffusivities, instead of physical interactions that
induce the demixing of phases. Originally, Alan Turing
proposed such systems to explain the patterning during mor-
phogenesis, i.e., the development of organisms [1]. By now,
reaction–diffusion systems are found to describe diverse bi-
ological processes, for example, intracellular protein pattern
formation [7,8,26–28] or signaling via trigger waves [29]. In
the intracellular context, the timescale of protein production
and degradation is long compared to the timescale of pattern
formation, and the total number of proteins can be assumed to
be (approximately) constant. The proteins just switch between
different states, for example, a membrane-bound and a cytoso-
lic state. These dynamics are captured by mass-conserving
reaction–diffusion (McRD) systems which describe the con-
centrations of the different protein states [5,7,30–38]; for

2470-0045/2023/108(6)/064202(52) 064202-1 Published by the American Physical Society

https://orcid.org/0000-0001-9612-0741
https://orcid.org/0000-0002-6108-9278
https://orcid.org/0000-0001-8792-3358
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.064202&domain=pdf&date_stamp=2023-12-08
https://doi.org/10.1103/PhysRevE.108.064202
https://creativecommons.org/licenses/by/4.0/


WEYER, BRAUNS, AND FREY PHYSICAL REVIEW E 108, 064202 (2023)

an introduction to the theory of McRD systems, see the lecture
notes Ref. [39]. Importantly, McRD systems do not conserve
each individual component but the total number density of
each protein summing over the concentrations of its confor-
mational states. McRD systems also describe, for example,
granular media [40], precipitation patterns [41], and braided
polymers [42].

Two-component reaction–diffusion (2cRD) systems lack-
ing mass conservation generally exhibit patterns with an
intrinsic length scale [2–4,43,44]. In contrast, the fully non-
linear patterns in two-component mass-conserving reaction–
diffusion (2cMcRD) systems have been observed to undergo
coarsening until completion, that is, the pattern length scale
grows until the system size is reached [30,36,45,46]. This dis-
tinct behavior of two-component reaction–diffusion systems
without and with mass conservation calls for a detailed anal-
ysis of the length-scale dynamics in nearly mass-conserving
2cRD systems. We started to investigate this question in
Ref. [46] by proposing that wavelength selection in 2cRD
systems can be understood as an interruption of the coarsening
process due to (weak) source terms that break strict mass
conservation. Together with the splitting of pattern domains
at larger wavelengths, this gives rise to a broad range of sta-
ble wavelengths. Here, we systematically analyze under what
conditions this reasoning applies in general 2cMcRD systems
and how the final pattern wavelength is selected dynamically.

The coarsening process observed in mass-conserving
2cRD systems is reminiscent of the typical dynamics found
in phase-ordering and phase-separation kinetics. In these sys-
tems, which are close to thermal equilibrium, the dynamics
is governed by gradient flows in a free energy landscape
toward the minimum of the respective free energy functional.
The free-energy cost due to interfaces between the different
phases leads to dynamics that continuously minimizes the
surface area of the interfaces (Model A/B dynamics [47])
[48]. Thus, small domains with a high surface-to-bulk ratio
collapse in favor of larger domains, and the characteristic
pattern length scale grows uninterruptedly until the fully
phase-ordered or phase-separated state is reached [49–53].
Intriguingly, the uninterrupted coarsening in (inherently far-
from-equilibrium) 2cMcRD systems exhibits regimes where
the coarsening resembles either Cahn–Hilliard dynamics
(bulk-diffusion-controlled phase separation [54]) [46,55] or
conserved Allen–Cahn dynamics (interface-controlled ki-
netics [50,53,56]) [57–59], two classical models of phase
separation. Moreover, stationary states of 2cMcRD systems
can be analyzed similarly to a Maxwell construction [38], and
close to the supercritical onset of pattern formation 2cMcRD
systems reduce to an amplitude equation which agrees with
the Cahn–Hilliard equation [60]. While some 2cMcRD sys-
tems with a specific mathematical form of the reaction term
allow for an abstract mapping onto a gradient flow for an ef-
fective free-energy functional [61,62], a general and unifying
understanding of the similarities between reaction–diffusion
and phase-separation dynamics is lacking.

Similarly, the changed phenomenology giving rise to wave-
length selection in the presence of source terms is reminiscent
of interrupted coarsening observed if nonequilibrium exten-
sions are included in classical phase-separation dynamics. In
binary phase separation, for example, the coarsening process

can be arrested if chemical reactions are introduced that con-
vert particles from one of the phase-separating species into the
other [17]. This mechanism has been of increasing interest
in recent years to describe intracellular condensates [18,63].
Moreover, in the fields of active matter and nonreciprocal
systems, wavelength selection in nonequilibrium settings is
of increasing interest and interrupted coarsening has been
frequently studied as well [12,21,64–66]. It would therefore
be telling to find out whether common principles underlie
coarsening and wavelength selection in these systems taking
the form of active phase separation and 2cRD models.

Several approaches have been developed to analyze the
length-scale dynamics in systems of (active) phase separa-
tion and reaction–diffusion systems. Close to a supercritical
onset of pattern formation, the amplitude equation formal-
ism provides a powerful tool to study the pattern properties
and dynamics, including the question of wavelength selec-
tion [4,24,43]. As this approach critically depends on a small
pattern amplitude, it is not applicable to fully developed pat-
terns of large amplitude. If the patterns only evolve on length
scales much larger than the typical pattern wavelength, then
an approach based on phase equations, which are conceptu-
ally closely related to amplitude equations, can be applied to
obtain the long-time dynamics in the highly nonlinear regime
[67–69]. In both the amplitude and phase equation approach,
conservation laws play a critical role and must be accounted
for explicitly [43,70].

(Nearly) mass-conserving two-component reaction–
diffusion systems as well as thermodynamic systems
exhibiting phase separation generally show a subcritical
onset of pattern formation such that the regime of
(spontaneous) lateral instability (termed as spinodal regime
in the language of phase separation) is surrounded by a
multistable regime which shows stimulus-induced pattern
formation (nucleation-and-growth regime) [24,38]. In these
reaction–diffusion systems, the coarsening process proceeds
by mass redistribution, which is fastest on the shortest
distances, that is, between neighboring pattern domains [46].
The dominant dynamic process thus acts on the length scale of
the patterns. As a result, amplitude and phase equations cannot
capture the dynamics of the highly nonlinear patterns in
nearly mass-conserving reaction–diffusion systems. The
same holds for systems describing (close-to-equilibrium)
phase separation if the dynamics is not analyzed close to
the critical point. Therefore, different methods have been
developed and have been first used to describe the long-time
dynamics of close-to-equilibrium phase separation. In the
mathematical literature, slow-manifold theory is applied
to phase-separating systems [71–75]. Moreover, Lifshitz,
Slyozov, and Wagner [49,50] developed their classical
theory of Ostwald ripening (LSW theory), building on
the physical properties of single (quasi)stationary droplets
[quasi-steady-state (QSS) approximation]. The resulting
theory describes the particle exchange between droplets
of different sizes of an immiscible minority phase sparsely
distributed in the majority phase. LSW theory was extended to
analyze wavelength selection in systems introducing chemical
reactions between the species undergoing phase separation
[18,21,63]. In contrast, this physical reasoning has not been
employed to describe reaction–diffusion dynamics. Instead,
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in 2cRD systems singular perturbation theory [57] was
adopted to analyze wavelength selection [44,58,59,76,77].
Also, numerical bifurcation analysis was applied to discuss
the wavelength of stable stationary patterns when tuning
parameters [66,78]. In Ref. [46], we have employed a
QSS approximation inspired by LSW theory in (nearly)
mass-conserving reaction–diffusion systems, gaining an
in-depth understanding of the coarsening dynamics and
the stabilization of finite pattern wavelengths in these
systems. However, a systematic justification for the QSS
approximation in reaction–diffusion systems is still missing.
Providing such a justification in terms of singular perturbation
theory supported by physical arguments is the central goal of
the present work.

Our theoretical analysis in Ref. [46] has shown that
the length-scale dynamics in reaction–diffusion systems can
be understood—analogous to active phase separation—as a
coarsening process which is arrested by counteracting pro-
cesses above a particular length scale. Coarsening is explained
on the basis of a mass-competition instability between neigh-
boring pattern domains (the droplets in LSW theory) and
wavelength selection by suppression of this instability. Here,
we complement the physical reasoning by a singular pertur-
bation analysis for (weakly) mass-conserving 2cRD systems,
which provides explicit expressions for the growth rates
of the different processes involved in the mass-competition
instability. Previous works have focused on specific math-
ematical forms of the reaction term [44,77,79,80] and the
reaction-limited regime [58,59]. Our results are indepen-
dent of the specific mathematical form of the reaction terms
as they build on geometric reasoning in phase space [38].
Moreover, our results apply in both diffusion- and reaction-
limited regimes, including the crossover between them. These
mathematical results are explained by a detailed analysis
of how mass is exchanged between pattern domains, re-
vealing a systematic link of the reaction–diffusion dynamics
to diffusion-limited (bulk-diffusion-controlled) and reaction-
limited (interface-controlled) phase-separation kinetics. We
then derive the wavelength dynamics of patterns in large sys-
tems from the rate expressions for the competition between
neighboring peaks. This dynamics reveals that the threshold
of interrupted coarsening selects the final pattern wavelength.
Taken together, our results underline that wavelength selection
in both the reaction–diffusion and phase-separating systems
is driven by the mass exchange between domains and the
mass exchange with a reservoir described by the source terms.
Consequently, we expect that the analysis provides the basis
to analyze wavelength-selection dynamics in multicomponent
reaction–diffusion and active matter systems governed by one,
or possibly multiple, (approximate) conservation laws.

The remainder of this paper is organized as follows. We
first describe in Sec. II the phenomenology of the pattern
dynamics we set out to explain, that is, the phenomenology
of coarsening and its arrest. In Sec. III, we then focus on the
approximate conservation law governing 2cRD system with
weak source terms. We also introduce two standard mod-
els exhibiting phase separation—(generalized) Cahn–Hilliard
(CH) and conserved Allen–Cahn (cAC) models—which ac-
count for mass conservation by either a local or a global
constraint. These classical systems also serve to compare the

reaction–diffusion with (active) phase-separation dynamics.
Section IV discusses the stability properties of the homoge-
neous steady state which highlights the connections found
between these three models in their initial pattern-forming
instabilities. Afterward, we construct the stationary patterns
of all three systems in a unifying picture (Sec. V). On the
basis of this classification of stationary patterns, we then
focus in Sec. VI on strictly mass-conserving systems. The
mass-competition instability is described, which underlies the
self-amplifying mass transport between neighboring pattern
domains, and which causes the growth of larger droplets at
the expense of smaller droplets. This instability is the elemen-
tary motive underlying the uninterrupted coarsening process
observed in the mass-conserving systems, and we use the
derived growth rate of the instability in Sec. VII to obtain a
scaling law for the time evolution of the coarsening process.
This completes the description of uninterrupted coarsening in
mass-conserving systems, and we turn in Sec. VIII to discuss
the influence of weak source terms that break the strict con-
servation law. From the growth rate of the mass-competition
instability under the influence of weak source terms, we ex-
plain in this section the central criterion for the wavelength
selected by interrupted coarsening. In particular, we discuss
how the suppression of the mass-competition instability by
weak source terms above a threshold pattern wavelength de-
termines the wavelength-selection dynamics. After explaining
the underlying processes, the comparison with several exam-
ples analyzed numerically verifies the found relations. The
discussion of our findings and future applications are found
in Sec. IX.

Throughout this work, the main text focuses on the dis-
cussion of the results from the singular perturbation analysis,
i.e., their implications and physical interpretations while the
formal mathematical derivations are deferred to the appen-
dices. Moreover, we restrict the analysis to one-dimensional
systems to avoid mathematical complications resulting from
the system’s geometry that would hamper the analysis of
the underlying mechanisms. Additional effects appearing in
higher dimensions are mentioned in the discussion.

II. PHENOMENOLOGY OF THE COARSENING
PROCESS AND ITS ARREST

Let us start with an overview of the typical phenomenology
of (nearly mass-conserving) 2cRD systems before getting into
their detailed mathematical analysis. Consider the general
reaction–diffusion dynamics of two species u and v. We de-
compose the governing equations into a mass-conserving core
system and source terms of strength ε (cf. Refs. [46,81,82]),

∂t u(x, t ) = Du ∇2u + f (u, v) + εs1(u, v), (1a)

∂tv(x, t ) = Dv ∇2v − f (u, v) + εs2(u, v), (1b)

defined on a D-dimensional spatial domain � with no-flux
boundary conditions for both u and v. Although we here intro-
duce the general system, our analysis in the following chapters
focuses on the one-dimensional case D = 1. For specificity,
we choose the relative diffusion constant as d := Du/Dv < 1.

Thus, u(x, t ) describes the density of a slowly diffus-
ing species, which we will interpret in the context of
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FIG. 1. The phenomenology of coarsening. (a) The kymograph shows the density profile ρ (grayscale, black corresponds to large densities)
for the simulation of the second model of Ref. [30], a peak-forming 2cMcRD system defined by f = ρ2η − ρ, where ρ = u + v is the total
density and η = v + du is the mass-redistribution potential (see Sec. III A). The parameters are Du = 1, Dv = 10 and ρ̄ = 10. (b) A single
peak participating in the coarsening process [(red dashed line in panel (a); colored (dark to light gray) profiles in panel (b) correspond to the
times indicated in panel (a)] is well described by the stationary peak profile (black dashed, analytical form was derived in Ref. [30]). (c), (e)
A mesa-forming model shows much slower coarsening [cubic model f = (η − ρ3 + ρ )/(1 − d ); see Sec. VIII D 1 and Appendix H 1]. At low
average total density ρ̄ [panel (c)], coarsening proceeds mainly via competition [blue (dark gray) arrows] while coalescence [red (light gray)
arrows] dominates at large average density [panel (e)]. The parameters are Du = 1, Dv = 10 and ρ̄ as indicated. (d) Again, the single interface
profiles are well approximated by the stationary profile. All simulations employ a system length L = 1000 and periodic boundary conditions.

intracellular pattern formation as proteins attached onto a
cell membrane. In contrast, v(x, t ) describes the density of
the fast-diffusing species, which may be a different confor-
mational state of the proteins that has detached from the
membrane and undergoes fast diffusion in the cytosol of the
cell (Dv � Du for intracellular pattern formation). The reac-
tion term f (u, v) accounts for the mass-conserving conversion
between these two species, that is, between the two conforma-
tional states. In this intracellular context, f is typically given
as attachment-detachment kinetics f (u, v) = a(u)v − b(u)u,
where the attachment rate a(u) and detachment rate b(u) de-
pend on the membrane concentration u. These terms model,
for instance, nonlinear recruitment and enzyme-driven detach-
ment [34,39,83].

As the chemical reactions represented by f (u, v) corre-
spond to conversions between the two protein states, they
locally conserve the total density ρ(x, t ) = u + v of proteins
at each point x in the domain �. Consequently, in the case
of mass conservation (ε = 0), the density ρ(x, t ) changes
only due to the redistribution of proteins within the system.
We stress that—different from conserving systems of Cahn–
Hilliard type—mass conservation in the 2cMcRD system
[Eq. (1) with ε = 0] only holds for the total density ρ(x, t )
while the dynamics of the single protein states u and v is not
conserving. In contrast, s1 and s2 are source terms that break
strict mass conservation of the total density ρ; their strength is
given by the dimensionless parameter ε. These source terms,
for instance, account for the production or degradation of
proteins, and they change the total number of proteins.

A. Long-time dynamics of 2cMcRD systems

We study two-component mass-conserving reaction–
diffusion (2cMcRD) systems for their ability to form spatially
heterogeneous protein concentration patterns. Such patterns
form if homogeneous steady states (HSS) with uniform pro-
tein concentrations within the whole domain exhibit a lateral
instability. This instability drives the exponential growth of
small fluctuations in the protein concentration fields around

the homogeneous steady state. In 2cMcRD systems, this pro-
cess results in the formation of peak or mesa patterns (Fig. 1).
Both types of patterns subsequently undergo a coarsening pro-
cess, but typically on a much larger timescale, during which
smaller peaks or mesas vanish while larger domains grow.

Figure 1(a) exemplifies this dynamics for peak-forming
patterns. Small perturbations around the HSS grow expo-
nentially and rapidly form a series of density peaks. This
is followed by a slow coarsening process which continues
until just one peak is left. During the coarsening process,
the dynamics of each individual peak is well described
by a (quasi)stationary profile that slowly evolves over time
[Fig. 1(b)]. The elementary motif of the coarsening process
is the competition for mass between peaks: We observe that
between two peaks of almost equal size, mass is redistributed
from the smaller peak toward the larger peak. This process
destabilizes the symmetric state of equally sized peaks and
leads to the collapse of the smaller peak. Because diffusive
mass redistribution from one to the other peak is slower
over longer length scales, the competition is strongest be-
tween neighboring peaks. We call this elementary instability
between neighboring peaks the mass-competition instability
[46].

Similar dynamics as for peak patterns occurs in mesa-
forming systems [Figs. 1(c) and 1(d)]. However, the coars-
ening process is much slower, and at high average protein
densities, it is dominated by the coalescence, i.e., relative
motion, of mesas rather than their competition for mass
[examples marked by red (light gray) arrows in Fig. 1(e)].
Competition for mass, in contrast, is (mainly) observed in
peak-forming systems as well as at lower densities in mesa-
forming systems [blue (dark gray) arrows in Fig. 1(e)]. At
coalescence events, the mesa number decreases not because
a mesa loses all its mass and vanishes but because mesas shift
their positions and merge. The interaction of fronts resulting
in coarsening dynamics has been analyzed in diverse mesa-
forming systems [51,71–75,84]. We will use a linear stability
analysis of periodic patterns to discuss the mass-competition
instability and the resulting dynamics in 2cMcRD systems.

064202-4



COARSENING AND WAVELENGTH SELECTION FAR … PHYSICAL REVIEW E 108, 064202 (2023)

FIG. 2. The coarsening scenarios. (a) The competition scenario
is illustrated for mesa (top) and peak (bottom) patterns: One of the
two mesas/peaks is growing, and the other is shrinking [indicated by
(red) arrows] due to competition for mass. (c) Coarsening can also
proceed by coalescence of mesas (top) or peaks (bottom): Neighbor-
ing high-density domains move toward each other until they merge.
This coalescence scenario can also be understood as competition
for mass between low-density regions (“troughs”) of the mesa/peak
patterns.

As in the case of competition for mass between the
mesas/peaks, the coalescence process is also based on an
instability of the periodic patterns: A high-density mesa which
is, say, closer to its left neighbor than to its right neighbor
moves even farther to the left until it merges with its left
neighbor. Figure 2 compares the different coarsening sce-
narios where coarsening is driven by competition for mass
[panel (a)] and coalescence [panel (b)], respectively. This
comparison illustrates that the dynamics in the coalescence
scenario is actually driven by (inverted) mass competition of
the low-density domains, that is, competition for (negative)
mass between the “troughs” of the pattern. For example, if a
peak moves toward a neighboring peak [Fig. 2(b), bottom],
then the trough on one side grows and the trough on the other
side collapses similarly as the larger high-density mesa grows
while the smaller one collapses during the mesa-competition
process [Fig. 2(a), top]. Consequently, both competition and
coalescence are driven by destabilizing mass redistribution
between pattern domains, i.e., a mass-competition instability
between domains of high or low density.

In the next sections, we analyze mass competition in an iso-
lated compartment containing only two “half” peaks or mesas,
that is, one period of the stationary pattern (gray vertical lines
in Fig. 2). This corresponds to the elementary motif of nearest-
neighbor competition and it allows us to isolate each of the
two coarsening scenarios by placing the no-flux boundaries of
the compartment such that they reflect the symmetry of the
respective perturbation mode of the pattern [cf. (red) arrows
in Fig. 2].

Below, we will use linear stability analysis to describe the
evolution of small perturbations from the periodic patterns.1

1Note that the linear stability analysis is performed for the dy-
namics linearized around fully nonlinear periodic patterns. This is
different from the typical Turing analysis where the dynamics is
linearized around the HSS.

Mass competition and coalescence then correspond to distinct
unstable eigenmodes of the linearized dynamics close to the
periodic patterns. In this linear regime, deviations from the
periodic pattern grow exponentially ∼ eσ t in time, where σ is
the growth rate of the corresponding eigenmode. The sign of σ

determines whether the associated coarsening mode is stable
(σ < 0) or unstable (σ > 0), i.e., whether the perturbations
decay or grow.2 We will learn from this analysis why 2cMcRD
systems always exhibit uninterrupted coarsening. Moreover,
the magnitudes of the growth rates σ for the different coars-
ening scenarios illustrated in Fig. 2 will explain that (almost)
no coalescence events occur for peak patterns because peak
competition is much faster than peak coalescence. Moreover,
for mesa patterns, the magnitude of both growth rates for
mesa competition and mesa coalescence will turn out to be
strongly reduced compared to the rate of peak competition,
revealing why the coarsening process is much slower for mesa
than for peak patterns. In addition, we will show that the
relative strength of mesa competition and mesa coalescence
depends on the average density ρ̄, explaining why the coars-
ening process for mesa patterns is dominated by competition
at low average densities ρ̄ and coalescence at high average
densities [cf. Figs. 1(c) and 1(e)]. To describe the coarsening
dynamics in a large system containing many peaks or mesas
(cf. Fig. 1), we use the growth rate σ to determine the temporal
law of the coarsening dynamics, i.e., the time evolution of the
average peak (mesa) separation or of the peak (mesa) number
(see Ref. [46] and Sec. VII).

B. Weak source terms interrupt coarsening

As we have just demonstrated phenomenologically, strictly
mass-conserving two-component reaction–diffusion systems
exhibit uninterrupted coarsening: The pattern length scale
grows until it reaches the system size, and no intrinsic length
scale is selected. In contrast, classical non-mass-conserving
2cRD systems, including production and degradation terms,
result in patterns with a fixed length scale [3,4,44]. To bridge
the phenomenological gap between mass-conserving 2cRD
systems and those without mass conservation, we analyze
systems with weak source terms. Such weak coupling to a
reservoir is also a first step to generalize the analysis toward
reaction–diffusion systems with more than two components,
which are important as models of pattern formation in com-
plex biochemical reaction networks [5–7,85].

Figure 3(a) shows the time evolution of a mesa-forming
model with weak source terms. Initially, the mesa pattern
develops out of perturbations around the homogeneous steady
state. These mesas then undergo coarsening [blue (second
from the left) and red (left-most) arrow in Fig. 3(a)], which
halts after some time. After that, no more mesas (and troughs)
collapse, and the remaining mesas rearrange themselves into
a periodic pattern. During this rearrangement, smaller mesas
grow, and larger mesas shrink so that their masses bal-
ance out [green (two right-most) arrows in Fig. 3(a)]. These

2In general, σ is complex, and the sign of the real part of the
growth rate �[σ ] determines the stability. For the competition and
coalescence modes, it will turn out that σ is real.
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FIG. 3. Weak source terms interrupt the coarsening process by
suppression of the mass-competition instability at large wavelengths.
(a) The kymograph obtained from numerical simulations shows mesa
patterns (grayscale, −1 to 1) that collapse and coalesce for an in-
termediate period of time [blue (dark gray) and red (light gray)
arrow]. At later times t � 106, the domains merely rearrange into
the final periodic stationary state [green (two right-most) arrows].
As an example, the cubic model f = (η − ρ3 + ρ )/(1 − d ) (ρ and
η defined as in the caption of Fig. 1) was simulated with the
source terms (s1, s2) = (0, −ρ ) on a domain of length L = 20 000
(see Sec. VIII D 1 and Appendix H 1). The parameters are Du = 1,
Dv = 10 and ε = 10−6. (b) A given source strength ε is strong
enough to stabilize patterns at length scales � > �stop(ε) (top edge
of the shaded region, blue line). Patterns with a shorter characteristic
length undergo coarsening [(blue-) shaded region].

observations suggest that the mass-competition instability
must be suppressed by the weak source terms, and the mass
competition between two neighboring peak/mesas no longer
results in the collapse of the smaller peak/mesa. Rather, the
mass-competition process is reversed and stabilizes the sym-
metrical configuration of two equally sized domains.

The slowdown of the coarsening process as it progresses
(see Fig. 1) indicates that the mass-competition instability
weakens as the typical distance � between peaks/mesas in-
creases. Moreover, we will show below that source terms of
strength ε [cf. Eqs. (1)] lead to stabilizing effects ∼ε. Thus,
a critical pattern length scale �stop(ε) exists where the source
terms are sufficiently strong to suppress the mass-competition
instability [see Fig. 3(b)]. For � < �stop(ε) the growth rate
σ ε(�) of at least one coarsening mode under the influence
of weak source terms stays positive, giving rise to a mass-
competition instability, and driving coarsening. For patterns
of larger length scale � > �stop(ε) the growth rates for all
coarsening scenarios will fulfill σ ε < 0 which signifies that
deviations from the symmetric pattern of equally sized peaks
or mesas are not amplified any longer but relax back to-
ward the symmetric state. Below, we determine this threshold
�stop(ε) where σ ε = 0.

III. MODELS

In the last section, we introduced the general form of
(nearly) mass-conserving two-component reaction–diffusion
dynamics. Here, we will rewrite this dynamics to make the
role of mass conservation explicit. Then, we discuss the
Cahn–Hilliard and conserved Allen–Cahn models for phase
separation and recast these models into a form that under-
lines their structural similarity to mathematical descriptions
of reaction–diffusion dynamics. Importantly, by pointing out

how the three models are akin at a mathematical level, we
are not claiming that these models describe the same physical
processes, but rather we are trying to explain in what sense the
phenomena they exhibit are related.

A. Two-component reaction–diffusion system

We consider the general 2cRD dynamics Eqs. (1). If the
source terms are switched off by setting ε = 0, then the
system locally conserves the total density ρ(x, t ) = u + v of
proteins. Including the source terms one has in a well-mixed
reaction compartment

∂tρ(t ) = εstot (u, v), (2)

with the total source term stot := s1 + s2.
In contrast, in a spatially extended system the total density

ρ(x, t ) additionally changes by redistribution of proteins, and
its time evolution is governed by the (modified) continuity
equation [add up Eqs. (1), and, for ease of notation denote
stot (u(ρ, η), v(ρ, η)) by stot (ρ, η)]

∂tρ = Dv∇2η + εstot (ρ, η). (3)

Here we defined η(x, t ) := v(x, t ) + d u(x, t ), termed the
mass-redistribution potential [30,38,42,45]. In the absence
of source terms (ε = 0) the spatially averaged density
ρ̄ = 1/|�| ∫

�
dx ρ is conserved. Thus, the mass-conserving

chemical reactions entail that the total protein density ρ fol-
lows a locally conserved dynamics given by a continuity
equation, akin to the Cahn–Hilliard equation and gradient
dynamics of scalar field theories for conserved order parame-
ters (“Model B”) [24,47,54]. The mass-redistribution potential
here plays a similar role as the chemical potential in the
Cahn–Hilliard equation.

Unlike the chemical potential in thermal equilibrium sys-
tems, however, the mass redistribution potential is not given
by the gradient of a free energy functional but follows its own
time evolution [using Eqs. (1) and the definition η = v + du],

∂tη = (Dv+Du)∇2η − Du∇2ρ − f̃ (ρ, η) + ε(ds1+s2), (4)

with f̃ (ρ, η) := (1 − d ) f (u(ρ, η), v(ρ, η)). While the conti-
nuity equation, Eq. (3), describes the redistribution of the total
density and its production or degradation, Eq. (4) describes the
local reactions between u and v that adjust their ratio given
a prescribed total-density profile ρ. These reactions induce
the relaxation of the mass-redistribution potential η = v + du
toward the reactive equilibrium f̃ (η∗, ρ) = 0.3 Here, the null-
cline η∗(ρ) gives the family of reactive equilibria for different
total densities ρ. If the density profile is not uniform, then the
densities u and v show gradients that lead to particle diffusion.
The (differential) diffusion of u and v is accounted for by the
gradient terms in Eq. (4).

B. Generalized Cahn–Hilliard equation

The classical Cahn–Hilliard (CH) equation [54] describes
the equilibrium dynamics of an incompressible binary mix-
ture of two types of particles A and B which undergo phase

3Consequences of bistability of the reaction kinetics are discussed
in Ref. [38].
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separation due to a stronger affinity between particles of the
same type than between particles of distinct types. The ther-
modynamics of such phase-separating systems are determined
by the free-energy functional [24,54]

F[φ] =
∫

dx

[
κ

2
(∇φ)2 + g(φ)

]
, (5)

where the scalar field φ(x) corresponds to the local composi-
tion of the binary mixture and is linearly related to the density
of the A particles. The square-gradient term in F[φ] accounts
for the free energy costs of gradients in the composition. We
denote the local free-energy density by g(φ) to avoid confu-
sion with the term f (u, v) describing chemical reactions in the
2cRD model. This free-energy density g(φ) can be obtained
from symmetry arguments [24,86] or, alternatively, derived,
for example, from a lattice model [87–89]. Below the critical
point at sufficiently low temperatures, the free-energy density
is a double-well potential that models both entropic effects
and the effectively repulsive interactions between particles
of different types. For symmetric binary mixtures, one often
takes the simple quartic form g(φ) = − r

2φ2 + u
4φ4 as ob-

tained from a Ginzburg-Landau expansion close to the critical
point at r = 0 and φ = 0. This simple form also captures the
qualitative shape of the free-energy density further away from
the onset of phase separation.

To describe the dynamics of phase separation, we need an
evolution equation associated with the free-energy functional
F[φ]. Since the total number of A and the total number of
B particles are each conserved, the local composition φ(x, t )
must obey a continuity equation ∂tφ(x, t ) = −∇J (x, t ), and
for the system to relax into thermal equilibrium, the parti-
cle current J (x, t ) must be proportional to the gradient of a
corresponding chemical potential μ(x, t ) [24,90,91]. These
general concepts of nonequilibrium thermodynamics lead to
the following equations4:

∂tφ(x, t ) = ∇[�(φ)∇μ], (6a)

μ(x, t ) = δF[φ]

δφ
= −κ∇2φ + ∂φg(φ), (6b)

where �(φ) denotes the mobility, i.e., an Onsager coefficient
that may depend on the composition φ. These equations cor-
respond to Model B in the classification scheme of Hohenberg
and Halperin [47]. Beyond phase separation, equations of this
form are also used to describe, for example, the dynamics of
fluid thin films [92].

The classical CH equation follows for constant mobility
�(φ) = � and the quartic free-energy density g(φ). It reads

∂tφ = �∇2μ, (7a)

μ = −κ∇2φ + φ3 − φ, (7b)

where we eliminated the parameters in the free-energy density
by rescaling. This equation yields phase separation into A-
and B-rich domains with φ± ≈ ±1 which undergo coarsening
and grow until the fully phase-separated state is reached [52].

4We consider only the deterministic dynamics here. Effects of noise
during the pattern-formation process (phase-separation process) are
discussed shortly in the discussion Sec. IX.

As an extension of the equilibrium phase-separation dy-
namics, reactions R(φ) between the particles involved in the
phase separation have been considered [17,18,21]. The result-
ing model couples Model A (reactions) and Model B (phase
separation) dynamics,

∂tφ = ∇[�(φ)∇μ] + R(φ), (8)

with the chemical potential μ again given by Eq. (6b). For
example, a linear reaction that allows for conversion between
A and B particles yields R(φ) = k(φ0 − φ) where k is the
reaction rate, and φ0 denotes the chemical equilibrium com-
position balancing the forward and backward reactions. It was
shown that such reactive dynamics may lead to an interruption
of the coarsening process found in pure Model B dynam-
ics and thus a selection of a finite domain size [17]. This
motivates the study of such models to understand the size
control of intracellular condensates which are thought to com-
partmentalize biochemical reactions in living cells [18]. This
system also captures models for active matter considering
birth and death [20] and the Oono–Shiwa equation [93]. Over-
all, Eq. (8) defines a paradigmatic nonequilibrium field theory
if the free energies for the Model A and Model B dynamics
are chosen independently [21]. Allowing for the interaction
with different diffusing species through the reaction term, a
related model was considered to analyze phase separation in
cell membranes coupled to protein-pattern formation [94].

To work out the similarities with the 2cRD system, we
rewrite the generalized CH equation, Eq. (8), in the form

∂tρ = ∇[Dv (ρ)∇η] + εstot (ρ, η), (9a)

0 = −Du∇2ρ − [η − η∗(ρ)]. (9b)

To underline the close similarities, we are using the same
nomenclature as for the reaction–diffusion system [Eqs. (3)
and (4)]: φ ↔ ρ, μ ↔ η, �(φ) ↔ Dv (ρ), R(φ) ↔ εstot (ρ, η),
κ ↔ Du, and ∂φg(φ) ↔ η∗(ρ).

Comparing the 2cRD dynamics, Eqs. (3) and (4), with the
rewritten CH equation including chemical reactions, Eqs. (9),
one notices the following similarities and differences. First,
in the 2cRD system, ρ describes the total molecule density
which may change only due to redistribution of molecules
within the system (current −Dv∇η) or production and degra-
dation via εstot [cf. Eq. (3)]. Similarly, φ in the generalized
CH equation is a measure for the local fraction of A particles,
and the local amount of A particles can also only change by
redistribution of A particles [and ensuing redistribution of B
particles due to the incompressibility constraint; driven by the
current −(�∇μ)] or by conversion of particles between A
and B type [described by R(φ)]. Therefore, ρ and φ follow
analogous dynamics with the mass-redistribution potential η

corresponding to the chemical potential μ and the total source
term εstot taking the place of the conversion reactions R(φ).
The timescale of redistribution is set by the, possibly density-
dependent, mobility � in the extended CH system. In the
2cRD system, it is set by Dv , the larger of the two diffusion
coefficients, which is typically density-independent.

Rearranging the defining equation for the chemical po-
tential, Eq. (6b), into Eq. (9b) suggests that the value
of the chemical potential for the CH equation is fixed
by the steady-state balance of a diffusion [Du∇2ρ] and a
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reaction term. One can choose f̃ = η − η∗(ρ) as reaction
term in the 2cRD system [Eq. (4); for the classical CH
equation we have η − η∗(ρ) = η + rρ − uρ3]. Then, Eq. (9b)
corresponds to the (quasi)stationary equation for Eq. (4),
that is, the equation following from ∂tη = 0, up to the addi-
tional diffusion term ∼∇2η. The continuity equation, Eq. (3),
shows that the strength of the diffusion term agrees with the
strength of mass transport. Consequently, the diffusion term
is negligible if mass transport is slow in comparison to the
local reactions. This indicates that a connection between the
reaction–diffusion and CH dynamics can be found under this
condition. Moreover, the identification f̃ = η − η∗(ρ) shows
that the steady-state mass-redistribution potential of the ho-
mogeneous (well-mixed) 2cMcRD system determined by the
reactive equilibria f̃ = 0 corresponds to the chemical poten-
tial μ = ∂φg = η∗ of a uniform composition.

Finally, this comparison shows that the rigidity κ plays the
role of an effective diffusion constant, a correspondence well
known for nonconserved dynamics where the Allen–Cahn
system (Model A) is compared to the Schlögl reaction–
diffusion model [24,95]. In phase separation, the rigidity
κ determines the width of the interface between the two
separated phases. Similarly, the diffusion constant Du deter-
mines the width of the transition region between high- and
low-density domains in the (nearly) mass-conserving 2cRD
system [38].

C. Conserved Allen–Cahn equation

If the redistribution of material between different droplets
is fast during a phase-separation process, then the dynam-
ics can be limited by the growth of individual droplets and
not by the redistribution of matter between the different
phase-separating domains [50]. Examples are sublimation–
deposition processes where diffusion through the gaseous
phase is orders of magnitude faster than the growth of
individual domains [56]. Model B, describing only the mass-
redistribution dynamics, cannot account for this process.
Instead, the growth of individual domains has to be described.

Because one again describes phase separation, the model
is based on the same square-gradient free energy functional
Eq. (5) as Model B. However, the time evolution is different.
The growth and shrinking of single domains proceeds to min-
imize the free-energy functional F[φ]. During this process,
the domains are coupled to a global pool which represents
the fast-diffusing phase (the gaseous phase). Thereby, mass
conservation is enforced as a global conservation law. Conse-
quently, the conserved Allen–Cahn (cAC) dynamics is derived
using relaxational Model A dynamics restricted to the mass-
conserving (MC) submanifold in phase space [53,56],

∂tφ(x, t ) = −
[
�(φ)

δF[φ]

δφ

]
MC

= −
[
�(φ)

δF[φ]

δφ
− 1

|�|
∫

�

dx �(φ)
δF[φ]

δφ

]

= �(φ)(κ∇2φ − ∂φg) + 1

|�|
∫

�

dx �(φ)∂φg, (10)

again implemented on a system domain � with no-flux bound-
ary conditions for φ. In the second line, the global mass

conservation constraint is written out explicitly as a Lagrange-
multiplier term. Originally, the model was introduced in
Ref. [53] to describe phase separation dominated by viscous
effects. The cAC model also finds application in granular
media [96] and the simulation of incompressible two-fluid
flow [97,98].

We are interested in the cAC system because in the 2cRD
system, the cytosolic density v(x, t ) = v(t ) is spatially con-
stant in the limit of fast cytosolic diffusion Dv → ∞. The
species v then effectively acts as a global pool that ensures
instantaneous redistribution of molecules over the whole do-
main (like the gaseous phase in a sublimation/deposition
process). For reaction–diffusion systems this limit is called the
shadow limit [57]. In the limit Dv → ∞, the time evolution
of the global pool v(t ) = η(t ) (because d → 0) follows from
integration of Eq. (4) (ε = 0) over the whole domain � with
no-flux or periodic boundary conditions and yields

∂tv = ∂tη = − 1

|�|
∫

�

dx ( f̃ − εs2). (11)

Inserting the continuity equation, Eq. (3), into Eq. (4), and
identifying fcAC = f̃ − εs2, we find the time evolution of the
density profile as

∂tρ = Du∇2ρ + fcAC(ρ, η) − 1

|�|
∫

�

dx fcAC(ρ, η)

+ εstot (ρ, η), (12)

which has the standard form of the cAC equation, Eq. (10),
with an additional source term εstot and the density η in
the global pool as an additional “parameter.” If the 2cRD
system is mass-conserving, then the source term drops out.
If, additionally, one sets f̃ = η − η∗(ρ) (as for the extended
CH dynamics), then the dependence on η drops out and the
shadow limit of the 2cMcRD system, Eq. (12), agrees exactly
with the cAC model, Eq. (10).

IV. INSTABILITY OF THE HOMOGENEOUS
STEADY STATE

To start the comparison of the 2cRD dynamics with the
CH and cAC dynamics, we begin with the analysis of the ho-
mogeneous steady states (HSS) and their stability properties.
The instability of the homogeneous steady state against spatial
modulations describes the onset of pattern formation due to
the growth of small fluctuations around the uniform density
distribution.5 We begin our analysis with mass-conserving
2cRD systems, compare these with the CH and cAC systems,
and then discuss the implications of broken mass conserva-
tion.

The homogeneous steady states (ρHSS, ηHSS) of the 2cM-
cRD system depend on the average density ρ̄ = ρHSS as a
control parameter because the total mass in the system is

5Outside the regime of lateral instability, a multistable regime
allows for pattern formation through a finite perturbation of a sta-
ble homogeneous steady state in (nearly) mass-conserving 2cRD
systems [38] (nucleation-and-growth regime in phase-separation dy-
namics [24]).
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not determined by the system dynamics but fixed by the
initial condition. With the nullcline η∗(ρ) defined as the
set of reactive equilibria f̃ (ρ, η∗(ρ)) = 0, the homogeneous
steady state at average total density ρ̄ can be written as
[ρ̄, η∗(ρ̄)] [see Eqs. (3) and (4) with ε = 0]. By the iden-
tification ∂φg ↔ η∗(ρ) introduced above [cf. Eqs. (9)], the
same expression describes the homogeneous steady states in
the mass-conserving CH and cAC systems [see Eqs. (9) and
(12)]. We assume that these homogeneous steady states are
linearly stable against homogeneous perturbations, i.e., we
demand that ∂η f̃ (ρHSS, ηHSS) > 0 [cf. Eqs. (4), (9), and (11)].
Otherwise, already the dynamics of the well-mixed system
would leave the considered, unstable steady state under an
infinitesimal perturbation, and the system would evolve into
a different stable steady state.

Performing a linear stability analysis of Eqs. (3) and (4)
in terms of Fourier modes for small perturbations around the
homogeneous steady state (ρHSS, ηHSS) yields the dispersion
relation σHSS(q) that determines the growth rates for each
mode with wave number q (see Appendix A). One finds that
2cMcRD models show a lateral instability if and only if [38]

∂ρη
∗(ρ)|ρ=ρHSS

< 0. (13)

Then the dispersion relation shows a band of unstable modes
0 < q < qmax with growth rates σHSS(q) > 0 and a fastest-
growing mode qc (Fig. 4).

The condition Eq. (13) can be heuristically understood as
follows: If it is satisfied, then the mass-redistribution potential
η is lowered in regions of higher total density ρ. As gradients
in η drive mass redistribution, the decrease of η in regions of
high total density ρ leads to additional mass transport toward
these regions, thus amplifying the initial perturbation. The
same condition holds for the (mass-conserving) CH model.
For these thermal-equilibrium systems, the “nullcline” η∗(φ)
is the derivative ∂φg(φ) of the free-energy density g such
that the above criterion agrees with the well-known curvature
criterion ∂2

φg < 0 which defines the spinodal regime [89].
For the cAC model, the dispersion relation agrees with the

one obtained for the standard Allen–Cahn model for all modes
with wave numbers q > 0 because the (linearized) integral
terms in Eqs. (11) and (12) vanish for modes with a finite wave
number:

σHSS(q) = −Duq2 + ∂ρ f̃ (ρHSS, ηHSS). (14)

Since the diffusion term is negative, a lateral instabil-
ity (σHSS > 0) can only be induced by the reaction term,
and the instability condition reads ∂ρ f̃ (ρHSS, ηHSS) > 0.
With ∂ρη

∗ = −∂ρ f̃ /∂η f̃ , which follows from the definition
f̃ = 0 of the nullcline, and the stability of the homo-
geneous steady state against homogeneous perturbations
[∂η f̃ (ρHSS, ηHSS) > 0] we recover the same instability crite-
rion Eq. (13) also for the cAC system.

Further analysis shows that not only do the instabil-
ity criteria agree, but that the mass-conserving CH and
cAC models also approximate the dispersion relation of the
2cMcRD system for small and large wave numbers, respec-
tively (see Fig. 4). We refer to these limits as the diffusion-
and reaction-limited regimes of the reaction–diffusion dynam-
ics (cf. Refs. [38,46]). The two regimes arise because the

FIG. 4. Dispersion relations obtained from a linear stability
analysis of the homogeneous steady state (HSS). (a) The disper-
sion relations σHSS(q) as a function of wave number q for the
mass-conserving 2cMcRD (ε = 0), CH and cAC models show a
band of linearly unstable modes (σHSS > 0 for 0 < q < qmax). The
2cMcRD model has two eigenvalue branches of which only the
unstable branch is shown (see Appendix A). For small wave num-
bers q, the dispersion relation for the 2cMcRD dynamics is well
approximated by the dispersion relation of the CH equation, while
in the regime of large wave numbers, the dispersion relation of the
cAC model is found to be a good approximation. For the 2cM-
cRD system, the fastest-growing mode qc is indicated in the graph.
(b) Weak source terms (ε �= 0) stabilize the homogeneous mode
[σHSS(q = 0) < 0] in the 2cRD, the CH and the cAC model. As a
result, in the 2cRD and CH models only modes with wave numbers
larger than qmin ∼ √

ε/Dv are unstable.

2cMcRD dynamics given by Eqs. (3) and (4) (ε = 0) contains
two distinct processes. At low wave numbers q, the wave-
length of the Fourier modes is large and mass is transported
over long distances during the dynamics. Over these large dis-
tances, mass transport by gradients in the mass-redistribution
potential—the process described by the CH model—is the
rate-limiting process and determines the growth rate. In con-
trast, at large wave numbers, mass transport proceeds on short
distances and is fast compared to the local reaction dynamics
that drives the conversion between the individual species u and
v. Thus, for large q, the dynamics can be approximated by the
shadow limit Dv → ∞ where mass redistribution becomes in-
stantaneous, keeping only the dynamics of the local reactions
between u and v. This corresponds to the cAC model. The
mathematical analysis of the dispersion relations is provided
in Appendix A (see also Ref. [38]).

In 2cRD models with finite source terms (ε > 0), the
homogeneous steady states (HSS) have to fulfill the two con-
ditions: 0 = f̃ + ε(s2 + ds1) and 0 = stot where the second
condition replaces the mass constraint of mass-conserving
systems. The first condition entails that the HSS under the
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influence of weak source terms 0 < ε  1 is, at the lowest
order in the source strength ε (exact for the CH model), given
by the HSS of the mass-conserving system [ρHSS, η

∗(ρHSS)].
The second condition arises since in the absence of mass con-
servation the total density ρHSS is not determined by the initial
condition. Instead, the total density evolves until production
and degradation balance at steady state (stot = 0).

In the dispersion relation of the 2cRD and CH models,
small but finite source terms (ε > 0) shift the disper-
sion relation at long wavelength 2π/q down such that
σHSS(q = 0) < 0 and modes with wave numbers q < qmin

are stabilized [see Fig. 4(b) and Appendix A]. Due to the
quadratic form of the dispersion relation at small q, one
obtains λmin = 2π/qmin ∼ ε−1/2 [see Fig. 4(c)], independent
of the specific form of the reaction term f̃ . In contrast, the
scaling relationship between ε and the wavelength selected
by interrupted coarsening of fully developed patterns depends
on the specific reaction term (see Sec. VIII B). Due to the
singular form of the dispersion relation of the cAC system,
weak source terms only shift the growth rate for homoge-
neous perturbations (q = 0) to negative values but do not
introduce a band of stable modes at small, finite wave numbers
(see Fig. 4).

In summary, we have shown that the linear instabilities in
the homogeneous steady state of the 2cRD, CH, and cAC
models are closely related. We identified a diffusion- and a
reaction-limited regime in which the dynamics of the 2cRD
model is well approximated by corresponding CH or cAC
models, respectively. Later, we will also identify parallels
between the instability of the homogeneous steady state that
drives pattern formation and the mass-competition instability
that drives coarsening, and the two different regimes will
re-emerge. In the following section, we first construct the
stationary patterns in the 2cRD system to get an overview of
the nonlinear patterns formed.

V. STATIONARY PATTERNS

Our focus in this section is a conceptual understanding
of the final stationary patterns employing a geometric con-
struction in phase space based on local equilibria theory [38].
These stationary density profiles will play an important role
in the analysis of the coarsening process. There, they serve
as QSS to locally approximate the pattern profile during the
dynamics at asymptotically long times (see Sec. II A). Such
an approach is commonly used in phase-separating systems
where the shape of the interface profile between the two
phases can be approximated as stationary [24,48,52]. A more
detailed discussion and analysis of the stationary states, which
will later also be used for the mathematical analysis of the
mass-competition process, is summarized in Appendix B for
mass-conserving systems and in Appendix F for systems in-
cluding weak source terms.

The stationary patterns [ρε
stat (x), ηε

stat (x)] of the 2cRD sys-
tem satisfy the equations [stationarity of Eqs. (3) and (4)]

0 = Dv∂
2
x ηε

stat + εsε
tot, (15a)

0 = Du∂
2
x ρε

stat + f̃
(
ρε

stat, η
ε
stat

) + ε
(
sε

1 + dsε
2

)
, (15b)

where the superscript ()ε indicates that we consider the
system in the presence of source terms. These stationary equa-
tions have different types of solutions. First, they are satisfied
by the homogeneous steady state discussed in the previous
section. Second, they allow for spatially periodic stationary
patterns, which we analyze further below because we are
interested in the stability properties of patterns consisting
of many equally sized peaks or mesas (see Sec. II). Third,
asymmetric stationary patterns can be constructed as well. We
do not consider these asymmetric states further because they
are unstable [99,100].

The periodic stationary patterns can be constructed from
elementary stationary patterns which comprise half a period
of the periodic pattern. Because the system is parity symmet-
ric, the spatial profiles of the left and right interfaces of peaks
or mesas are mirror images of each other (cf. Fig. 2). Thus,
the elementary stationary pattern for the periodic pattern with
wavelength � is the monotonic solution to Eqs. (15) on a
domain with no-flux boundary conditions for ρ and η and
length �/2 [see Figs. 5(b) and 5(f)].6

For the generalized CH model, the stationary states
are determined by the stationarity of the field equations,
Eqs. (9). Thus, they satisfy Eqs. (15) with f̃ = η − η∗(ρ) and
s1 = −ds2. The first identity shows that the deviation of the
chemical potential μ ≡ η from its associated fixed point value
η∗(ρ) for a uniform density profile plays the role of a reaction
term. The choice s1 = −ds2 is required to cancel the source
terms in Eq. (15b) that do not appear for the generalized CH
model [Eqs. (9)]. Similarly, the limit Dv → ∞ of the station-
ary equations, Eqs. (15), also determines the stationary states
of the cAC model, that is, the shadow limit of the 2cMcRD
system, Eqs. (11) and (12). Therefore, we now focus on the
2cRD system only.

The comparison shows that the uniformity of the mass-
redistribution potential in steady state for 2cMcRD systems
corresponds to the condition of equal chemical potential in
coexisting phases at thermal equilibrium. The condition of
equal pressure will be obtained in a generalized form below by
showing that the stationary patterns of 2cMcRD systems ful-
fill a geometric condition similar to a Maxwell construction.
Importantly, for 2cMcRD systems the geometric construction
corresponds to a balance of reactive fluxes instead of follow-
ing from a common tangent construction for an underlying
free-energy potential [24,38].

A. Mass-conserving case

In the mass-conserving case, the average total density ρ̄ of
the final stationary pattern is set by the initial conditions which
fix the total amount of molecules in the system. How does
ρ̄ enter in the stationarity equations Eqs. (15) of the mass-
conserving system (ε = 0)?

6Next to a stable elementary pattern, an unstable elementary pattern
exists in the multistable regime in which both the homogeneous
steady state and an elementary stationary pattern are stable [38]. We
do not consider those unstable patterns here.
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FIG. 5. Phase-space construction of the elementary stationary mesa and peak patterns. (a) An N-shaped nullcline η∗(ρ ) (NC; black)
intersects the flux-balance subspace η = ηstat (M ) [FBS; orange (light gray)] three times, corresponding to the low-density plateau ρ−, the
inflection point at density ρinfl, and the high-density plateau ρ+ [(blue) dots]. The representation of the stationary pattern in phase space [blue
(dark gray) line] falls onto the FBS and (approximately) connects the three FBS-NC inflection points. The position of the FBS is determined
by total turnover balance represented approximately by a balance of the (red-) shaded areas. (b) In real space, the elementary stationary
pattern for an N-shaped nullcline has the form of a half-mesa. An interface of width �int connects the upper and lower plateaus with lengths
L±. The interface position is determined by the mesa mass M [compare the dark (dark gray) and pale blue (light gray) profiles]. (c), (d) In
more detail, on an infinite domain, the stationary profile [ρ∞

stat (x), η∞
stat] approaches the plateau densities ρ± exponentially [green (thin) line].

Therefore, on a finite domain, the pattern maximum ρstat (�/2) and minimum ρstat (0) deviate from the plateau densities by δρ±. This changes
the areas representing total turnover balance, shifting ηstat (M ) relative to η∞

stat . ηstat (M ) approaches η∞
stat exponentially as the plateau lengths L±

increase (pale blue and red (pale gray) construction). The same shown here for the high-density plateau applies to the low-density plateau.
(e) Λ-shaped NC η∗(ρ ) (black) intersects the FBS η = ηstat (M ) [orange (light gray)] only twice. The FBS-NC intersection points correspond
to the low-density plateau ρ− and the pattern inflection point ρinfl [(blue) dots]. Again, the position of the FBS is determined by total turnover
balance [represented by the (red-) shaded areas]. An increase in the pattern mass increases the pattern amplitude ρstat (�/2), and the FBS shifts
downwards (pale blue and red (pale gray) construction). (f) Systems with Λ-shaped nullclines sustain peak-shaped patterns [blue (dark gray)].
The “half-peak” width is denoted by �int . The peak amplitude grows with the peak mass M [pale blue (light gray) profile]. (g) The stationary
mass-redistribution potential ηstat is a decreasing function of the peak mass M.

We denote the stationary patterns of the mass-conserving
system by [ρstat (x), ηstat]. Balanced mass redistribution, i.e.,
the continuity equation, Eq. (15a), ensures that ηstat is spatially
constant and enters only as a parameter in the profile equa-
tion, Eq. (15b). For each value of ηstat we can calculate the
pattern profile and the average total density ρ̄ using Eq. (15b).
This establishes the relation ρ̄(ηstat ). Reciprocally, the average
density ρ̄ fixes the value of the stationary mass-redistribution
potential ηstat (ρ̄).7

For a fixed average density ρ̄ (or, equivalently, fixed ηstat)
we are now interested in the stationary pattern profile ρstat (x).
For this, we consider the (ρ, η)-phase space [see Figs. 5(a)
and 5(e)]. In phase space, the stationary pattern [ρstat (x), ηstat]
is represented by a curve parameterized by the spatial posi-

7For the family of stable elementary stationary patterns, the relation
ρ̄(ηstat ) is bijective and may therefore be inverted (see Supplemental
Material of Ref. [46]).

tion x. As noted, the mass-redistribution potential ηstat must
be constant because all redistribution processes have to bal-
ance. Thus, a curve corresponding to a stationary pattern
[ρstat (x), ηstat] must be restricted to a horizontal subspace,
the flux-balance subspace (FBS) η = ηstat [38]. Now consider
the nullcline (NC) η∗(ρ) of chemical equilibria f̃ = 0. The
corresponding curve in phase space represents the homoge-
neous steady states of the system, and the parts of a pattern
which are plateaus, i.e., approximately flat in real space, must
lie on (close to) this nullcline. Thus, FBS-NC intersection
points determine the densities of the pattern plateaus [38].
The profile equation, Eq. (15b), shows that the inflection
point (∂2

x ρ|infl = 0) also corresponds to a FBS-NC intersec-
tion point. For the plateaus to be stable, the corresponding
homogeneous steady state has to be linearly stable, i.e., in
geometrical terms the nullcline slope needs to be positive
(see Sec. IV). In contrast, the inflection point corresponds to
a FBS-NC intersection point with a negative nullcline slope
[38].
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Depending on the shape of the nullcline we distinguish
two qualitatively different pattern types (see Fig. 5).8 If the
nullcline is N-shaped, then three FBS-NC intersection points
exist [see Fig. 5(a)]. The resulting pattern is mesa-shaped with
a low- and a high-density plateau connected by an interface
[see Fig. 5(b)]. The densities ρ+ and ρ− of the upper and lower
plateaus are given by the outer FBS-NC intersection points,
the inflection point density ρinfl by the middle FBS-NC inter-
section point. The average density ρ̄ sets the position of the
interface, i.e., the lengths L± of the upper and lower plateaus
[see Fig. 5(b)]. To make the mesa size explicit, we define the
(surplus) mesa mass M with respect to the background density
ρ− as

M = 2
∫ �

2

0
dx [ρstat (x) − ρ−]. (16)

To analyze the coarsening process, we will exploit that the
mesa mass M can be used instead of the average density ρ̄ to
parametrize the stationary patterns of different total masses.

In contrast, if the nullcline is Λ-shaped, then only two
FBS-NC intersection points exist which correspond to a low-
density plateau ρ− and the inflection point ρinfl [see Fig. 5(e)].
For this setting, the pattern does not saturate in a high-density
mesa but attains a peak-shaped profile [see Fig. 5(f)]. We
define the peak mass M in the same way as for mesa patterns.
While for mesa patterns only the width depends on the average
density ρ̄, it determines both the peak height and width for
peak patterns. Again, the peak mass M can be used instead
of the average density ρ̄ to parametrize the different station-
ary peak profiles (see Supplemental Material of Ref. [46]).
Finally, we note that one also observes peak patterns in sys-
tems with highly asymmetric N-shaped nullclines if the mass
M is low and the maximal pattern density does not saturate in
the high-density plateau given by the third FBS-NC intersec-
tion point ρ+.

In the context of intracellular pattern formation, one ob-
serves membrane-bound protein patterns that exhibit narrow
interfaces [101,102] or strongly localized high-density clus-
ters (concentration peaks) [85]. Sharp interfaces can form in
the concentration profiles of membrane-associated proteins
because protein diffusion on the membrane is very slow. The
diffusion constant for membrane-associated proteins, corre-
sponding to Du in the 2cRD system, is about two to three
orders of magnitude slower than diffusion in the cytosol
[36,103]. Specifically, in the 2cMcRD system, the interface
or “half-peak” width �int [see Figs. 5(b) and 5(f)] is set by
the diffusion length �diff := √

Du/r, where the reaction rate r
describes the reactive timescale at the interface [38] [see also
Eq. (B3)]. Thus, slow diffusion allows for steep gradients in
the protein density. Motivated by this characteristic feature of
membrane-bound protein patterns, we will consider peak and

8We consider only systems for which ρ stays bounded from below
as is the case for example if ρ describes a concentration.

mesa patterns in the limit9

�int

�
 1. (17)

This will allow one to make a sharp-interface approximation
and apply asymptotic theory to quantitatively describe the
profiles and dynamics of fully nonlinear patterns (cf., for
example, Refs. [71,77,104]).

Recall that the stationary mass-redistribution potential ηstat,
that is, the position of the FBS is fixed by the average den-
sity ρ̄. We have also introduced the peak- or mesa-mass M,
which can alternatively be used as a parameter of the stable
elementary patterns (see Supplemental Material of Ref. [46]).
The key to understanding the coarsening process will be how
the stationary mass-redistribution potential ηstat depends on
the domain mass M. Therefore, let us work out the relation
ηstat (M ).

Integration of the profile equation, Eq. (15b), yields under
consideration of the no-flux boundary conditions

0 =
∫ �

2

0
dx f̃ (ρstat, ηstat ). (18)

In the (biologically relevant) limit Dv � Du this condition
for the value ηstat is easy to interpret since we have η ≈ v:
Molecules detach from (attach onto) the membrane and in-
crease (decrease) the cytosolic density v ≈ η until attachment
and detachment balance, that is, the total reactive turnover
vanishes.

To evaluate this balance condition in phase space, we can
multiply the profile equation, Eq. (15b), by ∂xρstat before
integrating and find the modified condition [38]

0 =
∫ ρstat ( �

2 )

ρstat (0)
dρ f̃ (ρ, ηstat ). (19)

This total turnover balance is qualitatively represented by an
(approximate) balance of the areas enclosed between NC and
FBS [(red-) shaded areas in Figs. 5(a) and 5(e)], similarly to a
Maxwell construction (see Ref. [38] and Appendix B). Total
turnover balance agrees exactly with the area equality, i.e., the
Maxwell construction, if the reaction term has the simple form
f̃ ∼ η − η∗(ρ) as in the CH system.

Total turnover balance Eq. (19) determines the relation
ηstat (M ): For mesa patterns in the sharp-interface limit, a
change of the mesa mass M changes the lengths L± of the
upper and lower plateaus [see Fig. 5(b)]. Now, linearization
of the profile equation, Eq. (15b), around the plateau densities
ρ± shows that the pattern profile approaches these plateau
densities exponentially [see Fig. 5(d)]. Since ηstat depends
on the maximal and minimal pattern densities ρstat (�/2) and
ρstat (0), ηstat changes exponentially with increasing length of
the upper or lower plateau (see Fig. 5(c); detailed analysis in

9This is called the singular limit in the mathematical study of
reaction–diffusion systems because gradients at the interface become
infinitely steep.
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Appendix B and Supplemental Material of Ref. [46]):

∂L±ηstat ∝ ∓ exp

(
−2L±

�±

)
, (20)

where �± describes the length scale of the exponential ap-
proach of the upper or lower plateau density. Because a
change δM ≈ (ρ+ − ρ−)δL in the mesa mass is proportional
to a length change δL of the plateaus, ηstat also changes only
exponentially slowly with the mesa mass M.

For peak patterns the peak amplitude increases with the
peak mass M [see Fig. 5(f)]. Thus, the stationary mass-
redistribution potential ηstat has to decrease to balance the total
turnover (see Figs. 5(e) and 5(g) and Ref. [46]), and we obtain

ηstat (M ) ∼ M−α, (21)

if the reaction term f̃ [and thus the nullcline η∗(ρ)] is of
power-law form at large densities ρ (see the scaling analysis
in Appendix B 3 a).

B. The effect of weak source terms

The profile of the stationary pattern [ρε
stat (x), ηε

stat (x)] under
the influence of weak source terms (0 < ε  1) shows only
small deviations (of order ∼ε) from the stationary profile
[ρstat (x), ηstat] of the mass-conserving system (ε = 0).

Importantly, as for the homogeneous steady state, the av-
erage total density ρ̄ is no longer a control parameter of
the system with source terms as it is not set by the initial
condition. Instead, the average density evolves as [integrate
Eq. (3)]

∂t ρ̄ = ε
2

�

∫ �
2

0
dx stot (ρ(x), η(x)). (22)

Thus, the average density ρ̄, that is, the “size” of the stationary
peak or mesa adapts until the overall production and degrada-
tion of molecules in the system are balanced. The mass of the
stationary pattern is thus fixed by the source balance condition
∂t ρ̄ = 0.

In summary, we have shown that (nearly) mass-conserving
2cRD systems form peak or mesa patterns. The type of pattern
is determined by the shape of the nullcline η∗(ρ). In the
mass-conserving system, the stationary mass-redistribution
potential is constant and its value depends on the domain
mass M. It decreases exponentially slowly with mass for mesa
patterns, and (typically) like a power law for peak patterns. In
both cases, we have ∂Mηstat < 0. Weak source terms fix the
peak or mesa mass because the stationary pattern size has to
balance the overall production and degradation in the system.

VI. GROWTH RATE OF THE MASS-COMPETITION
INSTABILITY

Having classified the possible patterns, we now study the
growth rate σ of the mass-competition instability in 2cMcRD
systems in terms of the interaction of two neighboring ele-
mentary patterns, each approximated by a quasi-steady-state
density profile. This instability underlies the coarsening dy-
namics (see Sec. II). Detailed, systematic derivations of the
results presented in the following section can be found in
Appendix E.

A. Assumptions and approximations

To determine the growth rates, we build on two assump-
tions. First, we employ the sharp-interface approximation
(�int  �) which is justified for well-separated peaks and
interfaces (see Sec. V). It allows the use of singular perturba-
tion theory to determine growth rates of perturbations around
stationary patterns in the fully nonlinear regime. Second, we
assume that mass competition is slow compared to the re-
laxation of single peaks and mesas toward their stationary
profile. With this separation of timescales, we account for the
observation that—during the coarsening process—the pattern
profiles of single peaks or mesas are well approximated by the
stationary profiles (fast “regional” relaxation) [see Figs. 1(b)
and 1(d)]. Thus, we use a QSS approximation for the density
profile of single peaks and interfaces but not for the value
of η in the peak or interface region (as used in Ref. [46]).
As a result of the QSS approximation, mass competition is
described in terms of a few collective variables: peak masses
and positions or interface positions.

Quantitatively the timescale separation between local re-
laxation and mass redistribution can be analyzed using
singular perturbation theory. Specifically, in Appendix D,
we derive the relaxation rates of the relaxation modes of
the elementary pattern that redistribute mass from the peak
or interface region to the plateau regions.10 These growth
rates describe how fast a single peak or mesa relaxes toward
its steady state profile if mass is added (or removed) from
its plateaus. If this plateau relaxation is fast compared to
mass redistribution between different peaks or mesa interfaces
(cf. Fig. 2), then we can assume that both the pattern
plateaus and the peak or mesa mass M are fully relaxed
during the competition process (timescale separation, see also
Appendix E). The detailed analysis shows that local relaxation
is fast compared to the mass-competition process if the fol-
lowing condition is satisfied:

1

�∂ηstat ρ±
� |∂Mηstat|, (23)

where ρ± denotes the densities in the high- and low-
density plateau. Heuristically this condition can be under-
stood as a consequence of the fact that the strength of
changes in the mass-redistribution potential η determines
how fast mass redistribution proceeds. Consider adding a
small amount of mass δM in a plateau [left-hand side of
Eq. (23)] or a peak/mesa [right-hand side of Eq. (23)].
Within the sharp-interface approximation, additional mass
in the plateaus (of length ≈ �) leads to the change
δηstat ≈ ∂ρ±η∗ δM/� of the (stationary) mass-redistribution
potential. Using the implicit function theorem this can be

10Other relaxation modes exist that locally deform the peak or inter-
face profile. These modes are not accessible via singular perturbation
methods where one assumes the peak or interface as infinitely sharp.
Within the sharp-interface approximation, however, we expect these
modes to relax rapidly because mass redistribution within the narrow
interface or peak regions will be fast. Also, we find numerically that
those modes are relaxed during the coarsening process [see Figs. 1(b)
and 1(d)].
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written as δηstat ≈ δM/(�∂ηstat ρ±). Similarly, additional mass
in a domain induces a change δηstat ≈ (∂Mηstat ) δM. Thus,
the condition Eq. (23) ensures that the η gradients induced
by redistribution of mass into the pattern plateaus are large
compared to the gradients arising during mass competition
between neighboring domains.

Importantly, the properties of stationary patterns in 2cM-
cRD systems ensure that the condition Eq. (23) is generically
fulfilled for sufficiently large peaks and mesas because
∂Mηstat is strongly suppressed at large peak and mesa masses
M = �(ρ̄ − ρ−) [see Eqs. (20) and (21)].

Conveniently, the condition Eq. (23) not only allows us to
neglect the time evolution of the pattern plateaus and assume
these as fully relaxed to a (quasi-)steady state, but we can
also neglect the total mass stored in the background plateau
ρ− during the mass-competition process. Specifically, the to-
tal mass of an elementary pattern changes with the peak or
mesa mass M, that is, with the stationary mass-redistribution
potential ηstat by [see Eq. (16)]

∂ηstat

∫ �
2

0
dx ρstat = ∂ηstat (�ρ− + M ) ≈ ∂ηstat M, (24)

where the last estimate follows by inverting the above con-
dition Eq. (23). Therefore, redistribution of mass into the
background plateau ρ− does not play a significant role in the
mass-competition dynamics if condition Eq. (23) is fulfilled.
The same simplification arises in LSW theory for coarsening
in phase-separating systems [49].

B. Instability growth rates for competition
between two peaks/mesas

Applying the approximations discussed in the previous
section, we now explain the processes that underlie the mass-
competition instability. We find that the mass-competition
process is composed of three substeps: Particle release at
one peak or mesa, diffusive mass transport through the cy-
tosol, and particle incorporation into the other domain. The
timescale of mass competition is shown to be the sum of the
timescale of reactive conversion (release and incorporation)
and mass transport. Depending on which of the two contri-
butions is rate-limiting, we find, alike to the instability of the
HSS (see Sec. IV), a diffusion- and a reaction-limited regime
which correspond to CH and cAC dynamics, respectively.

1. Mass-competition process

For all coarsening scenarios (see Fig. 2), mass compe-
tition follows the same principles. In essence, a gradient
δη(x) induced in the mass-redistribution potential between
the two competing domains drives the mass-competition in-
stability: A mass increase in one peak/mesa reduces the
mass-redistribution potential there [cf. Eqs. (20) and (21)],
and the resulting gradient leads to mass redistribution that
enhances the initial perturbation [46]. For concreteness, we
discuss the competition between peaks (see Fig. 6). The math-
ematical analysis of the eigenmode corresponding to peak
competition [see Fig. 6(b)] is given in Appendix E.

To understand the competition process in detail, we focus
on the (biologically relevant) limit Du  Dv . In this lim-

FIG. 6. The mass-competition instability of two half peaks.
(a) The stationary pattern [ρstat (x), ηstat] to analyze peak competi-
tion is symmetric and composed of two equally sized half peaks
of mass M/2 each [cf. Fig. 2(a) bottom]. (b) The antisymmetric
mass-competition eigenmode [blue (dark gray), orange (light gray)]
destabilizes this symmetric stationary state. The density profile δρ

[blue (dark gray)] is localized to the peak regions. In these re-
gions, it is well approximated by the “mass mode” ∂Mρstat (x) (black
dashed). In the sharp interface limit, the mass-redistribution potential
δη [orange (light gray), strongly magnified] is approximately lin-
ear (red dashed). The linear stability analysis is exemplified in this
figure for the peak-forming model f̃ = η − 10ρ/(1 + ρ2) with pa-
rameters Du = 1, Dv = 10, ρ̄ = 4, and � = 200 (see Appendix H 3).

iting case, the pattern mainly forms in the slow-diffusing
(membrane-bound) species u while, in comparison, the den-
sity profile in the species v is smoothed out by fast diffusion.
At the same time, redistribution of mass between the peaks
mainly proceeds through the fast-diffusing species v; note
that ∂xη ≈ ∂xv in the plateau between the peaks. As a con-
sequence of these different roles of u and v in the dynamics,
redistribution of mass from smaller into larger peaks, i.e., the
mass competition process driving coarsening, must involve
three subsequent steps illustrated in Fig. 7: First, particles
at the smaller peak detach from the membrane into the cy-
tosol (“particle release,” left part of Fig. 7). Second, these
additional cytosolic particles create a gradient δv(x) ≈ δη(x)
in the fast-diffusing species which causes net diffusion of
particles toward the other, larger peak (top middle of Fig. 7).
In a third step, chemical reactions revert the particles back into
the slow state u, thus letting the larger peak grow (“particle
incorporation,” the opposite of the release process at the first
peak; right part of Fig. 7). In the next paragraphs, we explain
why particles are released from the smaller and incorporated
into the larger peak. This leads to the criterion for coarsening
given in Eq. (4) in Ref. [46].

Consider the weakly perturbed initial configuration where,
starting from a symmetric configuration of equal masses, a
small amount of mass δM/2 is redistributed from the left
to the right half peak. This creates a mass imbalance δM
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FIG. 7. The three steps of mass competition between two peaks
(similarly for mesas) in the limit Dv � Du. In this limit, particles
accumulate into sharp peaks on the membrane while the cytosolic
concentration is nearly uniform at each peak due to the much faster
cytosolic diffusion. Therefore, most of the peak mass M accumulates
in the membrane species u, and one has ρ ≈ u. Moreover, it holds
η = v + du ≈ v. During mass competition, chemical reactions con-
vert particles from the slow into the fast species at the smaller peak,
where the half-peak mass is reduced by −δM/2 [particle release;
red (dark gray) arrow]. The resulting change in the cytosolic density
yields a gradient that transports these particles toward the other peak
[orange (light gray) arrow] where they are reactively re-converted
to the slow species and increase the peak mass of the larger peak
[particle incorporation; red (bold, dark gray) arrow]. The rate of
release and incorporation is given by σR while the rate of mass
transport between the peaks is given by σD.

between the two half peaks (see Fig. 7).11 This mass im-
balance implies that reactive turnover balance, Eq. (18), can
no longer be fulfilled for the same cytosolic densities at
the two peaks. At the smaller peak, the stationary cytosolic
concentration v ≈ ηstat (M − δM ) increases compared to the
uniform concentration v ≈ ηstat (M ) of the symmetric steady
state [∂Mηstat < 0, see Eqs. (20) and (21)]. Thus, the local
relaxation of the smaller peak toward the shifted stationary
state corresponding to its reduced peak mass drives the de-
tachment of particles from the membrane to increase the local
cytosolic density toward v ≈ ηstat (M − δM ) > ηstat (M ). The
same but reverse process occurs at the larger peak: Particles
attach onto the membrane and deplete the cytosolic density to-
ward v ≈ ηstat (M + δM ) < ηstat (M ). The resulting cytosolic
gradient couples both processes by diffusive transport of the
released particles from the smaller toward the larger peak, in-
ducing the positive feedback that drives the mass-competition
instability. Taken together, the characteristic timescale 1/σ of
the mass-competition instability is given by the sum of the
timescales of reactive conversion 1/σR at the peaks (particle

11Note that the peak mass M as defined in Eq. (16) decreases/
increases by ±δM at the left/right peak because we analyze only half
peaks.

release/incorporation) and diffusive redistribution 1/σD be-
tween the peaks. Next, we determine the rates σR and σD.

In the limit Dv → ∞, diffusive transport in the cytosol
becomes instantaneous and the only dynamic processes are
the release and incorporation processes (1/σD → 0). The dy-
namics of release and incorporation follows from integration
of Eq. (1a) (ε = 0) over, say, the left half peak [−�/2, 0].
One can use that the gradients of the u profile in the plateau
are small and that the peak mainly forms on the membrane
such that −∂tδM/2 ≈ ∂t

∫ 0
−�/2 dx u. The factor 1/2 accounts

for the fact that we consider only a half-peak. It follows that
[cf. reactive turnover balance, Eq. (18), and Fig. 7]

∂t
−δM

2
≈
∫ 0

− �
2

dx f̃ (ρ(x), ηstat (M )). (25)

The value of the mass-redistribution potential stays constant
at its unperturbed value ηstat (M ) of the symmetric steady
state because the cytosolic density is uniform in the limit of
instantaneous redistribution and any inflow of particles at the
smaller peak must be balanced by an outflow of particles at
the larger peak (antisymmetry of the eigenmode associated
with mass competition, see Fig. 6). The reactive turnover in-
tegral (right-hand side) can be evaluated approximately using
that the plateau regions of the pattern rapidly relax toward
reactive equilibrium f̃ ≈ 0 (see Secs. V and VI A). Thus,
the integral is dominated by contributions from the peak,
and one can approximate the integral by the product of half
the peak width �int and the (linearized) average net reactive
flux f̄peak (δM ) = 〈 f̃η[ηstat (M ) − ηstat (M−δM )]〉int, introduc-
ing the shorthand notation f̃η = ∂η f̃ . Taken together, this
yields

∂t
−δM

2
≈ �int〈 f̃η〉int[ηstat (M ) − ηstat (M−δM )]

= �int〈 f̃η〉int ∂Mηstat δM, (26)

where the second line applies for the linear regime where δM
is small. This gives the following estimate for the rate σR of
the release and incorporation processes

σR ≈ −2�int〈 f̃η〉int∂Mηstat. (27)

The mathematical analysis given in Appendix E yields explicit
expressions for the “half-peak” width or interface width �int as
well as the average conversion rate 〈 f̃η〉int [see Eqs. (E6) and
(E7)]. The resulting expression for σR is exact in the sense of
a singular-perturbation analysis.

If the diffusive transport between the peaks is not instan-
taneous, then its rate σD is determined by the strength of the
gradient δη(x) resulting from the shifts in the cytosolic density
at the peaks. In the limit of fast reactive conversion 1/σR → 0,
the only dynamic process is the diffusive mass transport be-
tween the peaks, and the cytosolic density at the peaks directly
relaxes toward its equilibrium values ηstat (M ± δM ) (QSS
approximation). Thus, the mass transport between the peaks
is approximately given by (integrate the continuity equation,
Eq. (3) (ε = 0), over the domain half [−�/2, 0])

∂t
−δM

2
≈ Dv

ηstat (M+δM ) − ηstat (M−δM )

�

≈ 2Dv

�
(∂Mηstat )δM, (28)
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where the second approximation again holds in the linear
regime for small mass differences δM. The rate σD of diffusive
mass transport between the peaks can then be read off as

σD ≈ −4Dv

�
∂Mηstat. (29)

Taken together, the above analysis explains that mass com-
petition proceeds in three subsequent steps. Its characteristic
timescale is the sum of the characteristic timescales of the
“reactive-conversion steps,” 1/σR, (particle release and in-
corporation) and diffusive mass transport, 1/σD, between the
competing domains.

2. Rates of the coarsening modes

Indeed, the singular-perturbation analysis given in Ap-
pendix E shows that the growth rate σ of the mass-competition
instability in peak and mesa patterns has the structure

1

σ
= 1

σD
+ 1

σR
. (30)

Please note that the mathematical derivation of this relation-
ship and the following expressions for each individual rate
does not use the assumption Du  Dv we have used above
to simplify the interpretation (see Appendix E).

For peak competition (cf. Fig. 2), the singular perturbation
analysis yields the rates expected from the above heuristic
arguments (see Appendix E)

σD = −4Dv

�
∂Mηstat, (31a)

σR = −2�int〈 f̃η〉int

1 + d
∂Mηstat. (31b)

For the two scenarios of mesa competition and coalescence,
we obtain (see Appendix E)

σ±
D = − 4Dv

ξ∓�
∂±

Mηstat, (32a)

σ±
R = −2�int〈 f̃η〉int

1 + d
∂±

Mηstat, (32b)

where ξ± = 2L±/� are the relative plateau widths. The su-
perscript + indicates the mode driven by competition of the
high-density plateaus [mesa competition; Fig. 2(a)], while −
indicates the mode driven by competition of the low-density
plateaus [mesa coalescence; Fig. 2(b)]. We introduced the no-
tation ∂±

Mηstat = ± 1
2(ρ+−ρ− )∂L±ηstat which describes the change

δηstat of the stationary mass-redistribution potential only due
to the change in length δL± = ±δM/(ρ+ − ρ−) of the high-
density (low-density) plateau, respectively. The rates for mesa
competition and coalescence depend on the distinct, modified
derivatives ∂±

Mηstat since for the competition (coalescence)
mode only the high-density (low-density) plateaus change in
length, respectively (see Fig. 2). The other plateau in each
scenario merely shifts as a whole and does not change in
length during the mass-competition process. Because peak
coalescence also depends on the length change of the lower

plateaus, it is analogous to the case of mesa coalescence and
is described by the same rate σ−

R,D.12

3. Condition for uninterrupted coarsening

In the above heuristic discussion of the mass-competition
process, we have argued that the mass-competition instability
is driven by the decrease of the stationary mass-redistribution
potential ηstat (M ) as a function of the domain mass M. In-
deed, both rates σD and σR are proportional to the derivative
∂Mηstat. Thus, the singular perturbation analysis recovers the
condition that uninterrupted coarsening occurs if ∂Mηstat < 0
holds for all stationary peaks that are stable as isolated
elementary patterns. Similarly, mesa patterns undergo unin-
terrupted coarsening if ∂+

Mηstat < 0 or ∂−
Mηstat < 0 if fulfilled

for all stable stationary mesas. Then, these stable stationary
domains are all destabilized by mass exchange with neighbor-
ing domains: The growth rate σ is always positive and any
mass difference δM between two domains grows exponen-
tially by ∂tδM = σδM, i.e., one has δM ∼ eσ t . This stability
condition was previously derived mathematically [30,45]. In
Ref. [46] it is shown that the criterion ∂Mηstat < 0 (and
∂±

Mηstat < 0) is generically fulfilled in strictly mass-conserving
two-component reaction–diffusion systems, implying that
these systems always exhibit uninterrupted coarsening [see
also Eqs. (20) and (21) Sec. V]. In mass-conserving systems
with more than two components, it is possible for ∂Mηstat

to become positive, resulting in interrupted coarsening. For
example, interrupted coarsening is observed for specific three-
component mass-conserving systems where the total density
of the three components is conserved [6,80,85,105]. For two-
component systems, the coarsening processes can be brought
to a halt by introducing weak production and degradation
terms that break mass conservation. This latter scenario may
serve as a prototype for the analysis of interrupted coarsening
in more-component models and will be presented in Sec. VIII
below.

4. Diffusion- and reaction-limited coarsening

The growth rate of the mass-competition instability ex-
hibits two distinct limits, depending on whether the diffusive
mass transport or the reactive conversion step is rate-limiting.
In the first case we find σ → σD while in the second case
we have σ → σR. Therefore, we term σD the diffusion-limited
and σR the reaction-limited growth rate (cf. Ref. [46]). We
have actually applied these two limiting cases in the above
heuristic discussion to determine the two growth rates σD,R.
From the explicit expression for the growth rates σ , σD, and
σR, Eqs. (30)–(32), one infers that the crossover between these
regimes is located at

Dv

�
∼ �int〈 f̃η〉int, (33)

12For peak coalescence, the rate expressions σ−
D,R only hold

qualitatively because the gradient δη(x) between the competing (low-
density) domains lies within the peak and not within a plateau.
Therefore, it cannot simply be approximated by a linear gradient
within the sharp-interface limit (cf. Appendix E and Fig. 16).
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i.e., where the timescale of diffusive redistribution between
the peaks/mesas, 1/σD, is comparable to the timescale of
reactive conversion at the peak or mesa interface, 1/σR.

5. Diffusion-limited regime

In the diffusion-limited regime σ → σD one recovers the
result Eq. (3) from Ref. [46].13 There, the mass-redistribution
potential η at each peak (or mesa) was approximated to be in
a quasi-steady state (QSS), i.e., η|peaks ≈ ηstat (M ∓ δM ). This
assumption holds in the diffusion-limited regime considered
here because the reactive conversion at the peaks and the ensu-
ing relaxation of η toward its QSS are fast. In this regime, the
growth rate of the mass-competition instability is determined
solely by the amplitude of the gradients in η that are induced
by a mass difference between the peaks/mesas. During coars-
ening, this regime will always be reached at late times because
the peak or interface separation increases further and further,
and mass redistribution becomes slower over larger distances.
Hence, the asymptotic long-time behavior of the coarsening
process only depends on σD.

The diffusion-limited regime manifests itself in the gener-
alized CH equation, in which the mass-redistribution potential
η does not have a time evolution of its own, but instantly
adapts to the density profile ρ [see Eq. (9b)]. Consequently,
the only dynamic process is mass redistribution, and σD gives
the total growth rate of the mass competition instability in the
generalized CH equation. The derivation of the growth rate
σ = σD of the mass-competition instability in the generalized
CH equation proceeds analogously to Appendix E.

6. Reaction-limited regime

If, in contrast, diffusive mass redistribution between do-
mains is fast compared to the local reactive conversion, then
we have σ → σR. Due to fast mass redistribution through the
cytosol, the species v acts as a global pool for mass exchange
and the coarsening rate is set by the release of mass into the
pool by the shrinking peak/mesa and the intake of mass from
the pool by the growing peak/mesa.

The reaction-limited regime is reached in the shadow limit
Dv → ∞ such that σR is the growth rate expression found
in cAC systems. In contrast to CH equations, which describe
the dynamics based solely on mass redistribution, cAC sys-
tems describe only the reactive dynamics of peak growth and
shrinking (“interface-controlled kinetics”).

VII. SCALING ANALYSIS OF THE
COARSENING DYNAMICS

Having calculated the growth rate σ of the mass-
competition instability, we now apply a scaling argument
[46,51,106] to argue how the coarsening law, i.e., the time
evolution of the average wavelength 〈�〉(t ) of the pattern on
a large domain, can be obtained from σ . For specificity, we
again focus on peak patterns [cf. Fig. 1(a)].

13The expressions differ by a factor of 2 because here we consider
the competition of two half peaks or half mesas.

An extended pattern consisting of many peaks can, in
principle, show both peak competition and peak coalescence.
Also, mass can be exchanged not only between nearest neigh-
bor peaks but also between peaks that are further apart. Out
of these coarsening scenarios the fastest competition (or coa-
lescence) process will lead to the fastest collapse of domains
and thus drive the coarsening process. For peak patterns, we
can focus on the mass-competition instability between two
neighboring peaks.14 The coalescence mode can be neglected
because its rate σ ∼ ∂−

Mηstat is exponentially suppressed with
the plateau length. The change ∂Mηstat of the stationary mass-
redistribution potential induced by the height change of the
peaks—which induces mass transport in the peak-competition
scenario—falls off much more slowly [cf. Eq. (21), in agree-
ment with the observed phenomenology [cf. Fig. 1(a)].

To find the time evolution of the average peak separation
〈�〉(t ), we need to determine how fast the total number of
peaks N (t ) changes. For this, we first determine the character-
istic collapse timescale tcol for the smaller of two neighboring
peaks with masses M1 and M2. Let us denote the aver-
age mass by M̄ = (M1 + M2)/2 and the mass difference by
2 δM = M1 − M2 (assuming δM > 0). The symmetric state
M1 = M2 is a stationary state, and we approximate the time
evolution of the mass difference δM by the linear linearized
growth law for small mass differences. Thus, we have

∂tδM ≈ σ (M̄,�)δM, (34)

where the growth rate σ of the mass-competition instability
depends on the average mass M̄ and the spatial separation � of
the peaks [see Eqs. (31)]. One can then estimate the collapse
timescale tcol as the time until all the mass is transferred from
the smaller to the larger peak, i.e., 0 ≈ M̄ − δM eσ (M̄,�) tcol .
This yields

tcol ≈ log(M̄/δM )

σ (M̄,�)
. (35)

Thus, the collapse timescale depends on on the relative size
of the initial mass difference δM/M̄ and the rate σ of mass-
competition. On a large domain showing many simultaneous
collapse events, the magnitude of the mass differences δM
of the different, competing pairs of peaks can be estimated
by the standard deviation of the peak-size distribution. Within
the scaling hypothesis common to coarsening [49,50,52], the
shape of the peak-size distribution is invariant under the
coarsening dynamics and only scales with the average peak
mass. Under this scaling hypothesis, one can thus assume
that log(M̄/δM ) is constant on average during the coarsening
process. Moreover, the scaling hypothesis suggests that the
initial mass M̄ and the peak separation �, which enter the rate
of mass competition σ as arguments, scale with the average
peak mass 〈M〉 and average peak separation 〈�〉, respectively.
Consequently, the average rate of a peak collapse is propor-
tional to the rate of mass competition ∼σ (μ〈M〉(t ), ν〈�〉(t ))

14Mass competition is faster over shorter distances. Moreover, in
the shadow limit (cAC system) mass exchange is instantaneously
mediated via a “global pool.” Thus, the competition rate is (approx-
imately) independent of the spatial arrangement of the peaks. Refer
to Appendix E for a detailed discussion.
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during the coarsening process, where μ and ν are scaling
amplitudes.

Using that the average collapse rate per peak is determined
by σ , the total number of peaks N (t ) in a large system of many
peaks evolves as

∂t N ∼ −σ (μ〈M〉(t ), ν〈�〉(t )) N. (36)

We are still missing the connection between the total peak
number N (t ), the average peak mass 〈M〉(t ), and the average
peak separation 〈�〉(t ) to write this evolution equation in
a closed form. This relationship is given by the mass-
conservation constraint: The total mass in the system has
to be distributed between the peaks and the background
plateau ρ− from which the peaks rise. This gives the scaling
〈M〉 ≈ (ρ̄ − ρ−)〈�〉 ∼ N−1. For simplicity, we set ρ− ≈ 0.15

With this mass-conservation constraint, we arrive at the closed
evolution equation for the typical pattern length scale 〈�〉(t ),

∂t 〈�〉 ∼ σ (μρ̄〈�〉, ν〈�〉) 〈�〉. (37)

This relation shows that the functional form of the growth rate
σ of the mass-competition instability completely determines
the coarsening law.

Finally, one can reduce the relationship between σ and the
length-scale evolution 〈�〉(t ) given in Eq. (37) to an algebraic
relation if the collapse rate σ decreases sufficiently strongly
as the peaks grow during the coarsening process [cf. Eqs. (20)
and (21)]. If the decrease in the collapse rate is sufficiently
strong, then the growth of the average length scale is limited
by the duration of the last collapse events. Then, the time t
which is necessary to increase the average peak separation to
〈�〉(t ), scales with the duration of the peak collapses at size
〈M〉(t ) ≈ (ρ̄ − ρ−)〈�〉(t ), and one finds the coarsening law
by inversion of the scaling relation

t ∼ σ (μρ̄〈�〉(t ), ν〈�〉(t ))−1. (38)

This asymptotic scaling can be verified explicitly by integra-
tion of the dynamic equation, Eq. (37), for power-law (peak
patterns) or exponential suppression (mesa patterns) of σ with
〈�〉.

In summary, we employed a scaling argument [46,51,106]
to show that the elementary motive of coarsening—mass
competition between neighboring domains with rate σ—
determines the macroscopic evolution of the average pattern
length scale 〈�〉(t ). In particular, for a one-dimensional sys-
tem, the scaling analysis results in power-law coarsening for
peaks and logarithmically slow coarsening in mesa-forming
systems, independent of whether these are CH, cAC or 2cM-
cRD systems. The scaling relation is tested numerically in
Ref. [46]. This comparison also shows that the crossover from
peak to mesa patterns in systems with highly asymmetric
N-shaped nullclines is faithfully predicted [46].

15At late times during coarsening, we can neglect any changes
of the mass in the low-density plateau from which the peaks rise
(see Sec. VI A).

VIII. MASS COMPETITION IN THE PRESENCE
OF SOURCE TERMS

Building on the understanding of coarsening in 2cMcRD
systems, in Ref. [46] a simple criterion was found to de-
termine the length scale �stop(ε) of interrupted coarsening
in 2cRD systems with source terms of strength 0 < ε  1.
Because the mass-competition instability is weak, and coars-
ening slow for large peak or mesa masses, one expects that
only weak source terms are necessary to suppress the in-
stability and interrupt the coarsening process (cf. Sec. II A).
To give a basis of interrupted coarsening in 2cRD systems
beyond the QSS approximation used in Ref. [46], we discuss
in this section the full growth rate of the mass-competition
instability under the influence of weak source terms. The
detailed mathematical analysis using singular perturbation
theory can be found in Appendix G. We restrict ourselves here
to stating the expressions thus obtained and focus on heuristic
considerations that explain their mathematical structure. We
then discuss when the simple criterion for coarsening arrest
based on the QSS approximation for the mass-redistribution
potential η in the peak or interface regions applies.

A. Growth rate and stability threshold

To derive the growth rate, we employ the same assumptions
as in the mass-conserving case, i.e., we use the sharp-interface
approximation and assume that mass competition is slow
compared to the local relaxation of elementary stationary
patterns (see Sec. VI A). We analyze the contribution from
the weak source terms perturbatively to first order in the
source strength ε. To analyze the regime in which the mass-
competition instability competes with the stabilizing effect of
the source terms, one chooses ε such that the stabilization rate
εσS (to be specified below) is of the same order as the mass-
competition rate σ . For peak patterns, one has to additionally
assume that the profile of the stationary mass-redistribution
potential is approximately constant at the peak (for details
see Appendices F and G). While in the mass-conserving
case ηstat is strictly constant, this is no longer the case un-
der the influence of weak source terms [see Eq. (15a) and
Appendix F]. Importantly, this assumption does not imply that
the mass-redistribution potential ηε

stat is uniform on the scale
of the wavelength �, i.e., that diffusion on the scale of the
wavelength is fast compared to the reactive timescales. That
is, we do not assume a well-mixed cytosolic reservoir (shadow
limit).

The growth rate of the mass-competition instability under
the influence of weak source terms for peak and mesa patterns
then has the form (see Appendix G)

σ ε ≈ σR

σD + σR

[
σ ε

D − εσS

]
. (39)

For mesa patterns, σD and σR have to be replaced by σ±
D

and σ±
R that describe mesa competition or mesa coalescence,

respectively [cf. Eqs. (32)]. The rate σ ε consists of two con-
tributions: The first is a generalization of the growth rate σ

found in mass-conserving systems [note that Eq. (30) implies
σ = σDσR/(σD + σR)], while the second, negative term is
genuinely new and reflects a stabilization process due to the
added source terms. The influence of the stabilizing process is
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quantified by the “stabilization rate” σS. For mesa competition
(superscript +) and mesa coalescence (superscript −), it is
given by

σ±
S = |s±

tot|
�ρ

, (40)

where s±
tot = stot (ρ±, η∞

stat ) and �ρ = ρ+ − ρ−. For peak pat-
terns, we find the stabilization rate as

σS = |〈∂ρstot〉int|. (41)

The rate σ ε
D constitutes a generalization of the diffusion-

limited mass-competition rate σD [cf. Eqs. (31a) and (32a)],

σ ε
D = −4Dv

�
∂M

(
ηstat + ε δηε

stat

)
, (42)

and implicitly depends on the source strength ε. The addi-
tional term ε δηε

stat accounts for the shift of the stationary
mass-redistribution potential at the stationary peak or in-
terface due to the weak source terms. It is given by (see
Appendix F)

δηε
stat = −〈s1 + d s2〉int

〈 f̃η〉int
. (43)

Notably, for mesa patterns, the shift in the stationary
mass-redistribution potential is independent of the mass M,
(∂±

Mδηε
stat = 0) because the shift, Eq. (43), only depends on

the interface profile, which does not change with the mesa
M within the sharp-interface approximation (the interface is
only shifted, see Sec. V). In other words, δηε

stat does not
contribute to gradients in η between mesas with different
masses. This implies that the contribution to the growth rate
σ ε that stems from mass competition [first term in Eq. (39)]
is unchanged compared to the mass-conserving case for mesa
patterns (σ ε

D = σ±
D ).

1. Diffusion- and reaction-limited regimes

As in the mass-conserving case, we distinguish a diffusion-
and a reaction-limited regime for the growth rate σ ε. In the
diffusion-limited regime [Dv  ��int〈 f̃η〉int, see Eq. (33)], the
growth rate σ ε simplifies to (we reason in Appendix G why σ ε

D
may be replaced by σD)

σ ε ≈ σD − εσS, (44)

where one again substitutes σD = σ±
D in the case of mesa com-

petition and mesa coalescence, respectively. In this limiting
regime, the rates of mass transport and source production or
degradation simply add up because single domains and the
value of the mass-redistribution potential at the domains can
be approximated by a QSS. The mass of the quasistation-
ary domains then slowly changes by mass transport between
these and the production or degradation of particles within the
domains.

In contrast, in the reaction-limited regime (Dv �
��int〈 f̃η〉int), the shift ε δηε

stat becomes relevant and one has
to distinguish between peak and mesa patterns (a scaling
argument is given at the end of Appendix G). The growth rate

σ ε for mesa patterns takes the form

σ ε ≈ σ±
R − ε

σ±
R

σ±
D

σS. (45)

This corresponds to the result in the diffusion-limited regime
but scaled by the ratio of the reaction- and diffusion-limited
rates of mass competition. The scaling of the magnitude of
the rate accounts for the reactive limitation of the rate for the
mass change of single domains while the shift ε δηε

stat does
not contribute for mesa patterns (∂Mδηε

stat ≈ 0). At first order
in ε, these growth rates for mesa patterns in the reaction-
limited regime agree with the growth rates derived by McKay
and Kolokolnikov [59] when evaluating their expressions for
nearest-neighbor competition.16

For peak patterns in the reaction-limited regime, we find
instead

σ ε ≈ σR − 2�int〈 f̃η〉int ε ∂Mδηε
stat − ε

σR

σD
σS, (46)

where the middle term is due to the shift of the stationary
mass-redistribution potential at the peak. The last term is
negligible in comparison to the second if the source terms
fulfill s1 � s2 [see Eq. (43)]. We will explain the structure
of the growth rates in the following section and also discuss
what causes the shift ε δηε

stat. Before, the stability threshold is
analyzed.

2. Stability threshold

For a sufficiently large source strength or large wave-
length, σ ε may become negative as the stabilization rate εσS

increases or the rate of destabilizing mass transport σ ε
D de-

creases, respectively. A negative growth rate σ ε indicates that
the mass-competition instability is suppressed, and a mass
difference δM between the domains decreases exponentially
in time, δM ∼ eσ εt . Because the coarsening process increases
the pattern wavelength � due to the collapse or coalescence
of peaks or mesas, it is expected to interrupt at the stability
threshold σ ε(�, ε) = 0. This behavior of patterns with several
peaks or mesas is analyzed in Sec. VIII C. Using Eqs. (39) and
(40), the criterion σ ε(�, ε) = 0 yields for mesa patterns the
critical source strength

εstop(�) = σ±
D (�)

|s±
ρ |/�ρ

. (47)

For peak patterns, the stability threshold follows from
Eqs. (39), (42), and (41) as

εstop(�) = σD(�)

−〈∂ρsρ〉int + 4Dv

�
∂Mδηε

stat

, (48)

where the dependence on � appears implicitly in the various
terms. The critical wavelength �stop(ε) is found by inverting
the above relations. In general, it is not possible to perform
this inversion analytically.

16For comparison, we identify their reaction terms f and g with
our terms f + εs1 and − f + εs2, the diffusion constants ε2 =
Du, D = Dv , and set τ = 1. Then one obtains g± = εs±

tot and α± =
−�ρ ∂±

Mηstat[1 + O(ε)].
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The growth rate Eq. (44) in the diffusion-limited regime
as well as the threshold of interrupted coarsening for mesa
patterns, Eq. (47), recover the expressions found based on the
QSS approximation in Ref. [46]. However, the mathematical
structure of the general growth rate Eq. (39) is quite intriguing
and demands further analysis.

B. Mathematical structure of the growth rates

In the following, we will analyze how the different terms of
the growth rate σ ε arise [Eq. (39)]. We will find that the rate
σS accounts for net production and degradation at the peaks
or mesas. We then show that the source terms determine,
together with mass transport in the cytosol, whether a peak
or mesa accumulates or loses mass. The rate σR of reactive
conversion (particle release and incorporation) will be shown
to only affect how fast the accumulated mass can be incorpo-
rated into a peak or mesa (or how fast mass is released from
the peak/mesa). Thus, the rate σR only affects the magnitude
of the growth rate σ ε, and enters σ ε only as a prefactor. To
begin, we first consider the effect of the source terms alone
and explain the stabilization rate −εσS.

1. Stabilization rate due to weak source terms

The relaxation rate −εσS describes the direct stabilizing
effect of the source terms. In the case of two competing
half-mesas (cf. Fig. 2, mesa competition/coalescence and also
peak coalescence), a shift in the interface positions (the peak)
by δ� due to mass transfer from one mesa to the other only
changes the length of the outer plateaus, i.e., the high-density
plateaus for mesa competition and the low-density plateaus
for mesa/peak coalescence. For specificity, we now analyze
mesa competition. In the high-density plateaus, the source
terms lead to net degradation, i.e., stot (ρ+, ηstat ) = s+

tot < 0.17

Thus, an increase of mass δM = �ρ δ� in one (half-)mesa
there leads to additional degradation εs+

totδ� = ∂source
t δM < 0,

and to additional production −∂source
t δM > 0 in the other

(half-)mesa. Consequently, production and degradation to-
gether result in a relaxation of the initial perturbation and drive
the interfaces back to their symmetric rest position with the
rate −εσS = −ε|s+

tot|/�ρ (respectively, −εσS = −ε|s−
tot|/�ρ

for mesa/peak coalescence). Analogously, in the case of peak
competition, additional mass δM increases the peak size and
leads to increased degradation

∂source
t δM ≈ ε

∫ �
2

0
dx stot (ρstat + 2δM∂Mρstat, ηstat

+ 2δM∂Mηstat ). (49)

Using that ∂Mηstat becomes negligible for sufficiently large
peaks [cf. Eqs. (20), (21) and Appendix F] one arrives at the

17As shown in Appendix F, single (half-)mesas are stable only
if stot (ρ+, ηstat ) < 0 < stot (ρ−, ηstat ). Similarly, in peak patterns, sta-
bility mandates that degradation increases for larger peaks, i.e.,
〈∂ρstot〉int < 0.

simplified mass evolution

∂source
t δM ≈ 2δMε

∫ �
2

0
dx (∂ρstot ) 2∂Mρstat

= ε〈∂ρstot〉intδM, (50)

where the last equality follows from the definition of the
interface average 〈·〉int [see Eq. (E6)]. Because 〈∂ρstot〉int < 0
is mandated by the stability of a single peak (see Appendix D),
particle production and degradation at the peaks stabilize the
symmetric peak configuration. The stabilization rate is read
off as −εσS = ε〈∂ρstot〉int < 0. With this we have found ex-
pressions for the stabilization rate. While the mass of a single
peak (mesa) is arbitrary in the mass-conserving system, a
fixed mass is selected by the source terms (see Sec. V B).
For this domain mass to be stable, production and degradation
have to degrade mass if the domain mass is larger than the
mass of the stationary peak, while the source terms have to
produce mass if the domain mass lies below its stationary
value. The same process stabilizes the symmetric stationary
state of two domains: The masses of both peaks (mesas)
are driven back toward their stationary value. With this un-
derstanding of the stabilizing source effect, we discuss the
effect of the relaxation rate −εσS on the mass-competition
instability.

2. Competition between mass transport and the source terms

The presence of a mass-competition instability is deter-
mined by the sign of the growth rate σ ε, Eq. (39). Hence, the
stability properties of a given pattern are dictated by the com-
petition between the stabilizing production and degradation
processes (described by −εσS) and the (modified) diffusion-
limited rate of mass exchange σ ε

D. Reaction limitation of the
mass exchange between the domains only enters through an
overall factor [the prefactor in Eq. (39)]. It is remarkable that
σR does not enter explicitly in the stability threshold σ ε = 0
although the strength of the destabilizing mass-exchange pro-
cess depends on both σD and σR [cf. Eq. (30)].

To resolve this puzzling finding, we employ the freedom
we have in defining the reaction terms. Given a 2cRD sys-
tem, one has some freedom in distributing the reaction terms
between the conversion term f̃ and the source terms s1,2

[cf. Eq. (1a)]. If one defines

f̃ ′ = f̃ + ε(s1 + ds2), (51)

then the source terms exactly cancel in the stationary profile
equation, Eq. (15b), and the shift δηε

stat induced by the remain-
ing source terms vanishes [see Eq. (43) and Appendix F].
At the same time, the 2cRD system, Eqs. (1), becomes for
Dv � Du

∂t u ≈ Du∂
2
x u + f ′, (52a)

∂tv ≈ Dv∂
2
x v − f ′ + εstot, (52b)

with f̃ ′ = (1 − d ) f ′ ≈ f ′. The redefinition underlines that the
shift δηε

stat results from source terms in the membrane species
u, i.e, from the additional reactive conversion from the v into
the u species, which is necessary in steady state to balance
degradation in the u species at the peak by replenishment with
particles from the plateau region where production prevails
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FIG. 8. The effect of source terms on the mass-competition insta-
bility in the limit Dv � Du. The source terms lead to an interaction of
the mass-conserving 2cRD system with an implied reservoir [green
(top) rectangle]. The source terms (with rate εσS) together with
the mass exchange between the two peaks (rate σ ε

D) determine the
evolution of the cytosolic pool at each peak [orange (light gray) and
green (top-most) arrows; total mass Mc/2 of the cytosolic pool at
right half-peak]. The changed cytosolic density then induces peak
growth or shrinking by reactive conversion of particles between the
u and v species [ρ ≈ u; blue (dark gray) profile and red (bold, dark
gray) arrows].

[cf. the reaction-limited growth rate σR, Eq. (27), and see
Appendix F]. Equations (52) shows that source terms in the
slowly diffusing species u can also be considered as source
terms in the fast-diffusing species if we account for a change
of the mass-conserving chemical conversion reactions f̃ , i.e.,
if we account for a deformation of the nullcline η∗(ρ) →
η∗′(ρ) and the ensuing deformation of the stationary pattern
(cf. Sec. V).

We now use this argument to analyze the mass change of
two competing peaks in the limit Dv � Du (see Fig. 8). The
same approach as used below also works for mesa compe-
tition and for mesa/peak coalescence. With all source terms
moved to the cytosol (and neglecting slow membrane diffu-
sion), the mass in a peak region changes only through the
cytosol, by diffusive transport and production/degradation. As
in the mass-conserving case, mass is transported from the
cytosolic pool at the smaller toward the larger peak with rate
σ ε

D [orange (light gray, diagonal) arrow in Fig. 8]. The rate
σ ε

D accounts, to first order in ε, for the changed stationary
mass-redistribution potential due to the modified reaction term
f̃ ′ [see Appendix F, Eq. (F8)]. The mass transport is counter-
acted by the source terms that deplete the cytosol at the larger
peak and increase the pool at the smaller peak, described by
the stabilization rate −εσS [green (top-most) arrows in Fig. 8].
Hence, the sign of the total rate σ ε

D − εσS determines whether
the larger peak accumulates additional mass in its cytosolic
pool (positive sign), or loses mass (negative sign). In addition,
we have already found in the mass-conserving case that an

increase in the cytosolic pool at a peak of mass M above
its stationary density v ≈ ηstat (M ) also induces growth of the
density peak formed on the membrane [red (dark gray) arrows
in Fig. 8]. Together, this explains why the sign of the rate
σ ε

D − εσS alone decides between self-enhancing peak growth
or stabilizing shrinking of the larger peak, solving the puzzle
that the reaction-limited rate σR only affects the magnitude of
the growth rate σ ε. In the following, we explain the prefactor
σR/(σD + σR) by showing that the timescale 1/σ ε is com-
posed of the timescale for the change of the cytosolic pool
1/(σ ε

D − εσS) and a timescale describing reactive conversion
at the peak, that is, the incorporation and release processes at
the peaks. This is fully analogous to the reasoning behind 1/σ

in the mass-conserving case, that is, Eq. (30).

3. Effect of local reactive conversion

In the mass-conserving system, the rate of reactive con-
version is given by σR (see Sec. VI B). We now determine
this rate under the influence of weak source terms. To this
end, assume that the cytosolic pool is depleted or enlarged
by mass transport or source terms as discussed in the previous
paragraph. Then, the reactive conversion rate, which describes
how fast particles are exchanged between the cytosolic pool
at a peak and the density peak formed on the membrane,
can be determined by analyzing the time evolution of the
cytosolic mass. For specificity consider the cytosolic mass
Mc/2 at the right peak in Fig. 8, which changes via three
processes: mass transfer between the peaks, net production or
degradation, and the reactive-conversion flux into or from the
membrane species u [see Fig. 8; orange, green, and red (bold)
arrows]. Mass transport is, as used in Eq. (28), determined
by the cytosolic gradient between the peaks that is induced
by the change in the cytosolic density δv ≈ −δη (at the right
peak; see Fig. 8). This gives ∂

transport
t Mc/2 ≈ 2Dvδη/�. Fur-

thermore, the production or degradation process is described
by ∂source

t Mc/2 ≈ −εσSδM/2 where δM denotes the mass dif-
ference between the left and right peak [see Eq. (50)]. Finally,
mass release from the density peak on the membrane or incor-
poration into this peak is driven by the deviation �v ≈ �ηε

of the cytosolic density v ≈ ηε
stat (M ) − δη from its station-

ary value vstat ≈ ηε
stat (M + δM ) ≈ ηε

stat (M ) + δM∂Mηε
stat (at

the right peak). It is thus described by ∂conversion
t Mc/2 ≈

(δM∂Mηε
stat + δη)�int〈 f̃η〉int [see Eq. (26)]. Taken together, one

has18

∂t
Mc

2
≈ 2Dv

�
δη − εσS

δM

2

+ (
δM∂Mηε

stat + δη
)
�int〈 f̃η〉int. (53)

Because the peaks mainly form on the membrane, the
change in the cytosolic mass is negligible, and we set

18One can use the interface width �int and average conversion rate
〈 f̃η〉int of the corresponding mass-conserving system (setting ε = 0)
because the change of the stationary peak profile due to weak source
terms only yields higher order corrections to these quantities. The
term ε∂Mδηε

stat is not negligible because ∂Mηstat ∼ ∂Mε δηε
stat by as-

sumption (see Appendix E).
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FIG. 9. Weak source terms suppress the mass-competition instability at large wavelengths and thereby interrupt the coarsening process
(compare with conceptual Fig. 3). (a) Patterns grow initially out of the homogeneous steady state with the length scale � = 2π/qc [green
(approximately horizontal) line] set by the fastest-growing mode qc in the dispersion relation. A source strength ε is sufficiently strong to
stabilize patterns with a length scale � > �stop(ε) [blue line (top edge of the shaded region)]. (b) The kymograph obtained from the numerical
simulations (snippet from a larger domain) shows the formation of mesa patterns (grayscale, −1 to 1) of which some subsequently collapse
such that the average domain size increases. At later times [red (vertical) line], no further collapses occur and domains merely rearrange into
the periodic stationary state. (c) The histogram P(�, t ) of the wavelengths of the single elementary patterns on the domain [(red) density plot;
averaged over seven independent runs starting from different random initial fluctuations around the HSS] clearly shows that coarsening stops
and the average length scale 〈�〉 (black) becomes constant when the smallest domains cross the stability threshold �stop [blue (dark gray) line]
approximately at the red (vertical) line. The histogram is normalized by

∫ ∞
0 d� P(�, t ) = 2N (t ) where 2N (t ) is the number of elementary

patterns (single mesa interfaces or half peaks) contained in the full pattern. The cubic model f̃ = η − ρ3 + ρ (see Appendix H 1) with source
terms (s1, s2) = (0, p − ρ ) was simulated on a domain of length L = 20 000 with periodic boundary conditions using Comsol Multiphysics
[107]. The parameters are Du = 1, Dv = 10, p = 0, and ε = 10−6.

∂t Mc ≈ 0. It then follows from Eq. (53)

�ηε ≈ −σ ε
D − εσS

σD

σD

σD + σR
(∂Mηstat )δM. (54)

Consequently, the offset �ηε = −(δM∂Mηε
stat + δη) is

scaled compared to the corresponding offset �η =
−(δM∂Mηstat + δη) in the mass-conserving system (setting
ε = 0) by �ηε = σ ε

D−εσS

σD
�η. Because reactive conversion

is driven by the offset �ηε and changes the peak mass
by ∂tδM/2 ≈ �int〈 f̃η〉int�ηε [see Eq. (26)], the reactive
conversion rate is changed as well by

σR → σ ε
D − εσS

σD
σR. (55)

Combining this finding with the rate of mass in- or outflow
1/(σ ε

D − εσS) into or from the peak region, the total growth
rate of mass competition under the influence of weak source
terms follows as [cf. Eq. (30)]

1

σ ε
= 1

σ ε
D − εσS

+ 1

σR
σ ε

D−εσS

σD

, (56)

which agrees with Eq. (39). This calculation shows that the
reactive limitation indeed only gives rise to the prefactor
σR/(σD + σR) in the rate σ ε. The stability properties, that is,
the sign of σ ε is determined by those processes alone which
change the total mass in one peak region. The timescale of
reactive conversion only limits how fast the positive or nega-
tive feedback in the mass change of the cytosolic pools at the
peaks can be translated into actual peak growth and shrinking.
It does not affect whether additional mass is accumulating
at the smaller or larger peak, i.e., whether mass competition
will result in stabilization or destabilization of the symmetric
steady state.

C. Suppression of the mass-competition instability
determines interrupted coarsening

Let us now analyze how the suppression of the mass-
competition instability at the threshold σ ε = 0 translates into
the interruption of the coarsening process in a large system
containing many peaks or mesas. To this end, we now revisit
the introductory example of interrupted coarsening shown in
Fig. 3.

A more detailed view on the simulation is given in
Fig. 9. First, because the mass-competition instability of
mesa-forming 2cMcRD systems is exponentially weak as
a function of the pattern wavelength, i.e., the interface or
peak separation, an exponentially small (as a function of the
wavelength) source term is sufficient to interrupt coarsening
at some pattern wavelength �stop [see Eqs. (20), (47) and
Fig. 9(a)]. As in a large system containing many peaks or
mesas the coarsening process can proceed by competition and
coalescence, the wavelength �stop corresponds to the thresh-
old σ ε = 0 for the most unstable coarsening scenario.

In numerical simulations of large systems containing many
peaks [see Fig. 9(b)], the behavior of the characteristic pattern
length scale(s) is best read off from the distribution P(�, t )
of wavelengths � for the single elementary patterns, each
of which comprises half a period of the full pattern [see
Fig. 9(c)]. Initially, the pattern develops at the length scale
2π/qc set by the fastest growing mode qc in the dispersion
relation (see Sec. IV). Then the average pattern length scale
〈�〉(t ) grows due to the mass-competition instability. As soon
as the lower edge of the distribution P(�, t ) passes the thresh-
old �stop of interrupted coarsening, the mass-competition
instability becomes stabilized for all pattern domains. Thus,
coarsening stops and the average length scale as well as the
total number of mesas become constant. At later times, the in-
terfaces slowly rearrange toward the periodic stationary state
which leads to a narrowing of the length-scale distribution
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P(�, t ). This rearrangement is driven by the (now stabilized)
coarsening scenarios that lead to an equalization of the masses
in the different mesas and troughs.

In conclusion, the suppression of the mass-competition in-
stability indeed arrests the coarsening process. The threshold
�stop determines the wavelength selected. Depending on the
width of the length-scale distribution P(�, t ), the threshold
�stop directly gives a rough estimate of the final wavelength.
Especially in higher spatial dimensions, we expect that the
distribution becomes narrower as each pattern domain inter-
acts with more different neighbors. The threshold �stop then
becomes a better estimate for the selected length scale. It is
an interesting open question whether the domain-size distri-
butions determined for coarsening processes [49,50,108] can
be used to translate the threshold size �stop into the average
length scale selected by interrupted coarsening.

D. Comparison to numerical examples

At last, we test the derived analytic expressions for the
growth rate as well as the stability threshold and com-
pare these with the numerical linear stability analysis for
different example systems. The numerical linear stabil-
ity analysis of two competing half-peaks or mesas was
performed by spatially discretizing the system using a finite-
differences approach implemented in Mathematica v12.2
(code is available under https://github.com/henrikweyer/
2cRD-wavelength-selection).

To examine the results of the analytic treatment, we
compare the numerically obtained leading eigenvalue of the
linearized 2cRD dynamics, Eqs. (1), with the analytic ex-
pression Eq. (39) for the growth rate σ ε in (Dv, ε)-parameter
space. Tuning the diffusion constant Dv drives the transition
between the diffusion- and reaction-limited regimes of the
growth rate, and increasing the source strength ε leads through
the stability threshold εstop(�).

To facilitate the overview of the different phenomena, we
consider only linear source terms. However, the growth rate
σ ε given in Eq. (39) also applies to nonlinear source terms.
Other effects apart from interrupted coarsening may occur for
nonlinear source terms as, for example, oscillations driven by
a cycle of overall production and degradation [21,82]. These
effects are excluded in our analysis because we assume that
single peaks or mesas are stable. Starting from these stable
domains, we are interested in domain destabilization due to
the interaction of several domains which then changes the
characteristic pattern length scale.

1. Cubic model

The cubic model is constructed to closely resemble classi-
cal models of phase separation. The reaction term is defined
by (cf. Ref. [59] and Appendix H 1)

f̃ (ρ, η) = η − ρ3 + ρ. (57)

Thus, the nullcline reproduces the cubic nonlinearity used
in the classical Cahn–Hilliard and Allen–Cahn equations
(cf. Sec. V).

Figure 10 shows the numerical and analytic results for the
mesa-competition scenario in the cubic model [see Fig. 2(a),
top]. The source terms are chosen as (s1, s2) = (0, p − ρ)

FIG. 10. Stability threshold εstop and growth rate σ ε in the mesa-
forming cubic model f̃ (ρ, η) = η − ρ3 + ρ with a linear source term
s = p − ρ in the fast- (a), (c), (e) and slowly diffusing (b), (d), (f)
species. (a), (b) We compare the numerically determined stability
regions for two half mesas (mesa competition) with the threshold
of interrupted coarsening, Eq. (47) [blue (lower diagonal) line]. The
improved approximation obtained by shifting the source terms into
the v species [cf. Eq. (51)] is shown in panel (b) as well [red (curved)
line]. The insets show the stationary profile ρstat (x) on the domain
[−�/2, �/2] whose stability is analyzed. Numerical results are
shown where an elementary stationary pattern of length �/2 exists.
The regime of mesa splitting [orange dots, (gray dots in the top-left
corner)] can be estimated by the criterion put forward in Ref. [46]
[see Eq. (H6); purple (top-most, diagonal) line]. In the grey-shaded
parameter region, the homogeneous steady state is linearly stable
against arbitrarily large-wavelength perturbations. (c)–(f) The value
of the numerically determined leading eigenvalue (circles) is com-
pared with the growth rate approximation, Eq. (39) [blue (dark gray)
line]. The transition from the diffusion- [orange (light gray) line;
Eq. (44)] into the reaction-limited [green (concave) line; Eq. (45)]
regime occurs as the diffusion constant Dv increases. The parameters
of the model are chosen as � = 30, Du = 1, and p = −0.2.

[Figs. 10(a), 10(c), and 10(e)] and (s1, s2) = (p − ρ, 0)
[Figs. 10(b), 10(d), and 10(f)]. In both cases, this yields
σS = (1 − p)/2. Moreover, the functional form of the inter-
face pattern on the infinite line is known for this cubic model
such that the growth rate σ ε can be determined analytically
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(see Appendix H 1). This yields a stability threshold εstop

linear in Dv because the stationary pattern [ρstat (x), ηstat] is
independent of Dv , and the only dependence on Dv is the
explicit linear dependence of σ+

D [see Eq. (32a)]. The thresh-
old reproduces the zero crossing of the leading eigenvalue
determined in the numerical stability analysis very well [blue
(dark gray) line in Figs. 10(a) and 10(b)].

Analyzing the effect of a strong source term (large ε) in the
slowly diffusing species u on mass competition, we observe
that the numerically determined stability threshold deviates
from the analytic result. We attribute the breakdown of the
analytical approach to the fact that in the presence of strong
sources, the stationary state becomes strongly deformed and
can no longer be approximated by the stationary pattern of the
mass-conserving system [see the top right corner in Fig. 10(b)
and the inset]. The deviations are less pronounced when
the source term is added in the fast-diffusing species [see
Fig. 10(a)]. Intuitively this is due to the fast diffusive mixing
which averages out the effect of cytosolic source terms. This
effect can even be explicitly read off from Eqs. (15), which
determines the stationary pattern. There, the source term s2

only enters with strength ε/Dv , implying that the approxi-
mation of the stationary pattern [ρε

stat (x), ηε
stat (x)] of the full

system by the solution [ρstat (x), ηstat] of the mass-conserving
system remains accurate even at large source strengths ε if Dv

is sufficiently large.
This observation can be used to verify that the deviations in

Fig. 10(b) result from the deformation of the stationary profile
by shifting the source term s1 into the v species via the re-
placement f̃ → f̃ ′ = η + εp − ρ3 + (1 − ε)ρ [cf. Eq. (51)].
By this, the profile equation, Eq. (15b), is free of any direct
dependence on the source terms. These only enter through
Eq. (15a) for ηε

stat and again only contribute with strength
∼ε/Dv . Because the modified source term f̃ ′ is again a cubic
polynomial in the density ρ, again the interface profile can be
determined analytically. However, due to the implicit depen-
dence of f̃ ′ on the source strength ε, the condition Eq. (47) has
to be solved numerically for εstop. This modified approxima-
tion describes the stability threshold of the leading eigenvalue
to high accuracy even at very large source strengths [red
(curved) line in Fig. 10(b)].

Beyond the threshold εstop, the analytic expression Eq. (39)
also predicts the magnitude of the growth rate σ ε of the mass-
competition process. The behavior of the growth rates away
from the stability threshold is analyzed in Figs. 10(c)–10(f).
The full growth rate σ ε [blue (dark gray) lines] clearly shows
a crossover between the diffusion- and the reaction-limited
regime. For small values of Dv , the growth rate is described
by the diffusion-limited expression, Eq. (44) [orange (light
gray) lines]. For large values of Dv , the growth rate follows
the reaction-limited expression, Eq. (45) [green (left-most)
lines]. The deviations between the analytically and the nu-
merically determined growth rate at small values of Dv can
be attributed to the sharp-interface approximation: As Dv is
decreased, the gradient in η between the interfaces becomes
steeper [see Fig. 16 and Eq. (E10)], and it is less well justified
to approximate η as linear (cf. Fig. 6). Overall, the behavior
of the growth rates is described excellently by Eq. (39).

2. Brusselator model

A classical 2cRD system to study pattern formation is
the Brusselator model [109], a two-species chemical system
originally introduced as the well-mixed system. Accounting
for the diffusion of both species, its dynamic equations read

∂t u = Du∇2u + u2v − u + εp − εu, (58a)

∂tv = Dv∇2v − (u2v − u), (58b)

where εp is a production term and ε a degradation
rate. We analyze this 2cRD system in the limit of
weak source terms by defining the mass-conserving “core”
system f (u, v) = u2v − u and adding the source terms
(s1, s2) = (0, p − u) [Figs. 11(a), 11(c), and 11(e)] or
(s1, s2) = (p − u, 0) [Figs. 11(b), 11(d), and 11(f)].19

In ρ, η coordinates the reaction term,

f̃ (ρ, η) = 1

1 − d

(
ρ − η

1 − d

)2[
η −

(
(1 − d )2

ρ − η
+ dρ

)]
, (59)

depends on the relative diffusivity d = Du/Dv . In particular,
the nullcline is N-shaped and becomes strongly asymmetric
for d  1 because the (lower stable branch of the) nullcline
approaches η∗(ρ) ≈ 1

ρ
+ dρ for large densities ρ � 1 and

small relative diffusivity d  1. Consequently, the density
ρ+ of the high-density plateau of stationary patterns shifts to
higher values as the relative diffusivity is increased. If the
mass of an elementary stationary pattern is kept constant,
then the half-mesa will become narrower and narrower as
ρ+ increases until the mesa pattern transitions into a peak
pattern when the half-mesa width becomes of the order of
the interface width �int. The same occurs in the system with
weakly broken mass conservation if the production term p is
kept constant [inset in Fig. 11(a)] because this approximately
fixes the total peak/mesa mass (see Sec. V B). This change
in the stationary profile results in a different behavior of
the threshold σ ε = 0 which we analyze now. In particular,
in the peak-shaped regime, the shift of the stationary mass-
redistribution potential ηstat → ηε

stat may become relevant
[cf. (42)].

If the source terms act in the fast-diffusing species
v [see Fig. 11(a)], then the shift ε δηε

stop in the station-
ary mass-redistribution potential is approximately zero for
Dv � Du = 1 [see Eq. (43)]. At lower values of Dv , the
pattern is of mesa shape in which case the shift ε δηε

stop does
not affect mass competition (see Sec. VIII A). Thus, in the
analyzed scenario of mesa/peak competition the threshold

19The Hopf bifurcation of the local reaction kinetics is avoided
for a sufficiently low source strength ε and p > 1. For p < 1 the
homogeneous steady state lies on the unstable branch of the nullcline
(the Brusselator core shows local bistability of the reaction kinetics).
For the construction of the final (large-amplitude) stationary patterns
in the nearly mass-conserving regime and the slow, long-time dy-
namics close to the stationary states, the position of the homogeneous
steady state and the bistability of the reaction kinetics is irrelevant
(cf. discussion of bistability in Ref. [38]).
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FIG. 11. Stability threshold εstop and growth rate σ ε in the Brus-
selator model f (u, v) = u2v − u with a linear source term s = p − u
in the fast- (a), (c), (e) and slowly diffusing (b), (d), (f) species
(coloring as in the previous figure). In panels (a), (b), the numer-
ically determined stability regions for two half mesas or peaks
(mesa/peak competition) are compared with the threshold of inter-
rupted coarsening [see Eq. (H8)]. A transition from mesa to peak
patterns occurs with increasing diffusion constant Dv [inset in panel
(a)]. Analytic approximations for the threshold εstop are found in
the mesa-forming (black dash-dotted line) and the peak-forming
(black dashed line) regimes (see Appendix H 2). (c)–(f) The value
of the leading eigenvalue determined by numerical linear stability
analysis (circles) is compared with the growth rate approximation,
Eq. (39) [see Eq. (H8); blue (dark gray)]. Here, the shown ex-
pression in the reaction-limited regime [green (left-most) line] does
not include the effect of the shifted stationary mass-redistribution
potential [Eq. (45)]. In panel (d), this additional effect is visible as
an increase in the full growth rate [blue (dark gray) line] at large Dv .
The parameters of the model are � = 40, Du = 1 and p = 2.

εstop is determined by εstop = σ+
D /σS [see Eq. (47)]. This ex-

pression can be calculated by numerically determining ∂+
Mηstat

and σS throughout the crossover from mesa to peak patterns
[blue (dark gray) line]. In Appendix H 2 the details of the
analysis of the transition from mesa to peak patterns are

discussed. Moreover, in the limit of mesa and peak patterns,
that is, Dv → 1 and Dv → ∞, analytic approximations for the
stability threshold σ ε = 0 can be derived [black dashed and
dash-dotted lines in Figs. 11(a) and 11(b); see Appendix H 2].
In both limits as well as in the crossover region the stability
threshold describes the zero crossing of the numerically deter-
mined leading eigenvalue very well [see Fig. 11(a)].

In comparison to the threshold observed for cytosolic
source terms, source terms in the slow-diffusing (membrane)
species u in the reaction-limited regime of large Dv lead to an
increase of the stability threshold εcrit [see Fig. 11(b)]. This
increase is due to the shift ε δηε

stat of the stationary mass-
redistribution potential which fulfills ∂Mηε

stat < 0 and becomes
relevant in the regime Dv � Du for source terms in the slow-
diffusing species [see Eq. (43)]. In particular, patterns are
unstable for any source strength ε if Dv � 104. Also for source
terms in the slowly diffusing species u the stability threshold
is well described. As for the cubic model, deviations in the
stability threshold occur at large ε, which is consistent with
our derivation that assumes a small source strength.

In both cases with source terms in the v or u species, also
the growth rates [see Figs. 11(c)–11(f)] away from threshold
are well described by the numerically calculated, full expres-
sion for σ ε [blue (dark gray) line; see Appendix H 2]. The
diffusion-limited regime at low values of Dv is accurately
captured by Eq. (44) [orange (light gray) line]. We also show
the expression derived in the reaction limit for mesa patterns
[see Eq. (45); green (left-most) line]. Thus, the additional
effect of the shift ε δηε

stat is not included here. Consequently,
the increase in the growth rate in the reaction-limited regime
induced by this shift is seen by comparison of the blue (dark
gray) and green (left-most) lines in Fig. 11(d). This already
indicates that the shift of the stationary mass-redistribution
potential ε δηε

stat is indeed relevant in the reaction-limited
regime. This becomes clearer in the third example analyzed
below.

Comparing the growth rate predictions with the numeri-
cally determined values, we find that the growth rates are well
approximated. Deviations arise in the reaction limit, which are
explained by the large [order O(1)] reaction-limited growth
rate of the peak patterns. Such fast mass competition violates
the assumption that the competition process is slow compared
to the relaxation rates of the single peaks. The slowest relax-
ation modes can be numerically determined to be of order
O(1) as well. In fact, the approximation is accurate in a
surprisingly large parameter range.

3. Prototypical model for peaks patterns

So far we have analyzed the cubic model as a simple
example of a mesa-forming system and the Brusselator model
as a system showing a transition from mesa to peak patterns.
As a final example, let us analyze a model that is prototyp-
ical for peak-forming systems. Such a model is obtained by
constructing a reaction term with a Λ-shaped nullcline. For
simplicity, we choose a conceptual model with the reaction
term

f̃ (ρ, η) = η − a
ρ

1 + ρ2
, (60)
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which has the Λ-shaped nullcline η∗(ρ) = aρ/(1 + ρ2) with
parameter a. Because f̃ is independent of the diffusion con-
stants, the corresponding 2cMcRD system yields stationary
patterns that are also independent of the diffusion constants
[see Eqs. (15)].

We are particularly interested in how the shift of the sta-
tionary mass redistribution potential ηstat → ηε

stat affects the
mass-competition rate σ ε, since the shift is only relevant for
peak patterns [see Sec. VIII A]. To examine the significance of
the shift for source terms in the u or v species [cf. Eq. (46)],
we again compare the source terms (s1, s2) = (0, p − ρ)
[Figs. 12(a), 12(c), 12(e), and 12(g)] with the reverse as-
signment (s1, s2) = (p − ρ, 0) [Figs. 12(b), 12(d), 12(f), and
12(h)]. For the case that the source terms affect the membrane
species u, simulation results in the shadow limit are provided,
which show the effect of the source terms in the limiting cAC
system [results for “Dv → ∞” in Figs. 12(b), 12(d), 12(f), and
12(h)].

Because the stationary profile for the chosen source term
f̃ is not known analytically, we have determined ∂Mηstat and
the various other terms in σ ε as well as the stability threshold
εstop numerically [see Eqs. (39) and (48)]. For the stability
threshold εstop we find a linear scaling εstop ∝ Dv with the
larger diffusion constant Dv in the diffusion-limited regime
and, for the case where the source terms only affect the
v species, also in the reaction-limited regime Dv � 1 [see
Fig. 12(a) and orange (light gray, straight) line in Fig. 12(b)].
In these cases the threshold is independent of the shift ε δηε

stat
[cf. Eqs. (43) and (44)]. In addition, the stationary patterns of
the mass-conserving model, Eq. (60), are independent of Dv .
Therefore, as for the cubic model, we find a linear threshold
here.

If the source terms are introduced in the slow-diffusing
species u [see Fig. 12(b)], then the shift ε δηε

stat becomes
relevant in the reaction-limited regime and affects the sta-
bility threshold εstop. Opposite to the Brusselator model in
Sec. VIII D 2, here we find an increase ε ∂Mδηε

stat > 0 of the
shift in the stationary mass-redistribution potential for larger
peaks. The reason is that the reaction rate f̃η = ∂η f̃ is constant
here while it increases strongly with increasing peak size in
the Brusselator model [ f̃η ∼ ρ2, see Eq. (59)], and the shift
δηε

stat becomes smaller with increasing conversion rate f̃η [see
Eq. (43)]. The increase in the stationary mass-redistribution
potential caused by the increase ε ∂Mδηε

stat > 0 counteracts
the mass-competition instability driven by the decrease of
the stationary mass-redistribution potential for larger peaks.
Consequently, the threshold εstop of interrupted coarsening is
strongly decreased in the reaction-limited regime compared to
the diffusion-limited bound [compare the blue (dark gray) and
orange (light gray) lines in Fig. 12(b)].

Although the full expression for the stability threshold
εstop, Eq. (48), qualitatively captures that the stability thresh-
old is decreased, this formula does not quantitatively describe
the zero crossing of the numerically determined leading eigen-
value. Again, the deviations from the zero crossing of the
leading eigenvalue are caused by the deformation of the sta-
tionary peak profile by the source terms in the slow-diffusing
species u [see inset in Fig. 12(b)]. Because of strong degrada-
tion at large densities ρ, the peak amplitude is reduced and a

FIG. 12. Stability threshold εstop and growth rate σ ε in the
peak-forming model f̃ (ρ, η) = η − aρ/(1 + ρ2) with source term
s = p − ρ in the v (a), (c), (e), (g) and u (b), (d), (f), (h) species
(coloring as in the previous figures). The stationary pattern transi-
tions from a peak to a mesa shape with increasing source strength ε

for source terms in the slowly diffusing species u [inset in panel (b)].
The red (light gray, curved) line denotes the threshold εcrit derived
by shifting all source terms into the fast species v [cf. Eq. (51)]. The
purple (top-most, diagonal) line depicts the threshold of plateau split-
ting given in Ref. [46] [see Eq. (H9)]. Moreover, in panels (b), (d),
(f), (h) results for the cAC (shadow) limit are included (Dv → ∞).
(d) In the cAC (shadow) limit at high source strength ε, the growth
rate is well described by the modified approximation with all source
terms acting in the v species. The parameters are � = 200, Du = 1,
a = 10, and p = 20.
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transition toward a mesa-shaped pattern occurs as the source
strength ε is increased. Again, we can shift the source term
s1 into the v species by the modification f̃ → f̃ ′ = f̃ + εs1

to account for this deformation caused by source terms in the
slowly diffusing species u. The resulting modified nullcline
is N-shaped, explaining the transition from peak to mesa pat-
terns. The implicit dependence of f̃ ′ on the source strength ε

requires that the stationary pattern be calculated numerically
for each source strength ε. Based on these stationary profiles
the stability threshold εstop can be recalculated. Since the
modification f̃ → f̃ ′ ensures that the shift δηε

stat vanishes (see
Sec. VIII B), the threshold is determined by εstopσS = σD [cf.
Eq. (48)], where all terms are evaluated using the modified
reaction term f̃ ′. This threshold is highly accurate throughout
the whole tested parameter regime [red (light gray, curved)
line in Fig. 12(b)].

For mesa-forming systems, it has been shown mathemati-
cally that in the shadow limit the mass-competition instability
always destabilizes the patterns and that coarsening is always
uninterrupted [58,59]. Due to the transition from peak to mesa
patterns at large source strengths ε, we find the same here
[see Fig. 12(b)]. It is an interesting question for future work
whether a transition to mesa patterns generally occurs near
the threshold to interrupted coarsening for large cytosolic
diffusion constants Dv , such that it is indeed impossible to
observe interrupted coarsening in the shadow limit also for
peak-forming systems.

Let us now turn to the magnitude of the growth rate σ ε.
Above, we argued that the increase of the shift δηε

stat with
peak mass reduces the strength of destabilizing mass transport
between peaks and thus decreases the stability threshold εstop.
Hence, the magnitude of the growth rate σ ε must also be
reduced by the shift. Let us, therefore, analyze the growth
rate away from the stability threshold. First, one notes that
the growth rates themselves are well described by the full
expression σ ε as long as the source strength ε is sufficiently
small [see Figs. 12(c)–12(h)]. The diffusion-limited expres-
sion, Eq. (44), approximates the growth rate at low values of
Dv , the reaction-limited expression [Eq. (46), again without
considering the shift ε δηε

stat by setting ∂Mδηε
stat = 0] describes

the growth rate at large values of Dv . When the source terms
affect the slow species u, the comparison of the full growth
rate σ ε with the reaction-limited growth rate σR(1 − εσS/σD)
determined without the shift δηε

stat [set δηε
stat = 0 in Eq. (46)]

shows the decrease of the growth rate due to the behavior of
the shift ε δηε

stat [see Fig. 12(f)]. Also in the cAC limit [see
Fig. 12(d)], the growth rate is well described by the reaction
limit of σ ε, i.e., Eq. (46) at sufficiently small values of the
source strength ε. The modified approximation obtained by
replacing f̃ with f̃ ′ describes the growth rate also well at large
values of the source strength ε.

Thus, the overall behavior of the growth rates is well cap-
tured by σ ε, Eq. (39). Note at last that large deviations in
the growth rate appear close to the regime of plateau split-
ting because the stationary profile is strongly deformed. The
threshold for plateau splitting can be estimated analytically by
the criterion derived in Ref. [46] [purple (top-most, diagonal)
lines in Figs. 12(a) and 12(b)]. Therefore, one can predict in
which regime the approximation will fail.

In summary, the analysis of the above three exemplary
models shows that the expression Eq. (39) for the growth
rate σ ε offers insights into a wide variety of phenomena. It
explains the suppression of the mass-competition instability at
large source strengths ε and the different effects source terms,
which affect either the slow or the fast diffusing species, have
on the stability threshold. Importantly, we have shown that
the stability threshold is well approximated by the simple
condition εstopσS = σD if all source terms are chosen to affect
only the cytosolic species [cf. Eqs. (47), (48), and (43)]. This
is the criterion which was obtained in Ref. [46] based on a
QSS approximation for the mass-redistribution potential at
individual pattern domains.

IX. DISCUSSION

Motivated by complex biochemical protein systems, there
is a general interest in studying the dynamics of many-
component systems composed of different particle species
interacting on a spatially extended domain. Intriguingly, these
systems can form spatially heterogeneous patterns, for ex-
ample, via a coupling of reactions and particle diffusion,
or by phase separation. Both processes are known to play
an important role in the spatial self-organization of the cell
[7,28,110,111]. Phase separation, and biomolecular conden-
sation, as well as intracellular protein-pattern formation are
processes that (approximately) conserve the total number of
molecules of each species.

A. Mass conservation

In classical multicomponent fluid systems, conservation of
mass results in a continuity equation for the densities dictating
the dynamics of each component. For example, in binary
mixtures with two particle species A and B, phase-separation
dynamics must respect that both densities ρA,B(x, t ) follow
a continuity equation. Under an incompressibility constraint
for the whole fluid system, the well-known Cahn–Hilliard
(Model B) dynamics follows.

In contrast, for protein pattern formation by a reaction–
diffusion mechanism, it is important to realize that the
diffusible proteins take on different conformations, with
(chemical) reactions describing the transition between these
different states. The concentrations of the individual states are
not conserved; that is, they do not obey continuity equations.
Nevertheless, the total density of all the different conforma-
tions for each protein is conserved and follows a continuity
equation if pattern formation is fast compared to protein
turnover by gene expression and protein degradation. Thus,
the total densities are control parameters of the (local) dynam-
ics, and the redistribution of the total densities is crucial to
the system dynamics on long scales [37,38,112,113]. Both in
Cahn–Hilliard and reaction–diffusion systems, broken mass
conservation can be accounted for by source terms in the
continuity equation(s).

Building on the common feature of mass conservation,
we demonstrated in Ref. [46] that the concept of coars-
ening dynamics, usually employed in the context of phase
separation, is useful to understand wavelength selection in
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reaction–diffusion systems governed by an (approximate)
conservation law. Here, we have elaborated this approach for
(nearly) mass-conserving two-component reaction–diffusion
(2cRD) systems, which are paradigmatic models for intra-
cellular protein pattern formation. In particular, we have
substantiated our findings by a thorough, model-independent
mathematical analysis based on singular perturbation theory,
which enabled us to find explicit expressions for the growth
rates determining the pattern dynamics. Furthermore, we have
developed a systematic link to classical phase separation as
described by the Cahn–Hilliard and the conserved Allen–
Cahn model. We anticipate that our mathematical analyses
and the correspondences between different types of models
will provide a starting point and conceptual basis for the future
analysis of systems with a larger number of components.

B. Mass-competition process

In strictly mass-conserving 2cRD systems, one observes
coarsening much like the Cahn–Hilliard or conserved Allen–
Cahn dynamics describing phase separation. In the presence
of weak source terms of strength ε, the coarsening process is
interrupted at a characteristic pattern length scale determined
by ε. The same behavior is found when nonequilibrium re-
action terms are introduced in equilibrium phase-separating
systems [17,18,21]. Our mathematical analysis shows that this
length-scale selection is caused by processes that change the
mass of single pattern domains (peaks or mesas): On the
one hand, mass is exchanged diffusively between different
domains. Net transport is determined by the gradients in the
mass-redistribution potential η, which acts analogously to the
chemical potential in equilibrium phase separation. If larger
domains have a lower mass-redistribution potential η, then
the resulting gradients lead to mass transport from smaller to
larger domains, inducing further growth of the already larger
domain. Then, mass exchange destabilizes two interacting
domains, a process we term mass-competition instability. On
the other hand, source terms induce local net production and
degradation which restore the mass of each domain to its
stationary value and therefore counteract the instability.

C. How pattern wavelength determines stability

How can one determine the stability of a pattern with a
characteristic length scale (wavelength) �? For this, we need
to understand whether mass exchange is destabilizing and
whether the destabilizing mass exchange or the stabilizing
production or degradation processes are stronger. Our analysis
demonstrates that these questions are answered by analyzing
the corresponding mass-conserving system without source
terms. The strength and stability of the mass-competition
process are determined by the expression ∂Mηstat of the cor-
responding mass-conserving system, i.e., by answering how
the stationary mass redistribution potential changes with the
mass M of a single pattern domain (peak or mesa). At this
point, the phase-space construction for patterns of 2cMcRD
systems gives rise to several model-independent insights.
First, 2cMcRD systems always fulfill the coarsening condition
∂Mηstat < 0 along the complete branch of stable stationary
elementary patterns [46], implying that mass redistribution

through gradients in η always destabilizes a pattern toward
larger length scales and domain sizes [M ≈ (ρ̄ − ρ−)�] via
the collapse of small domains. Second, we find that ∂Mηstat

typically decreases rapidly as a function of the domain size
(at least ∼M−α−1 with α > 0).

For 2cRD systems with source terms, it follows that
patterns at sufficiently small length scales � < �stop are
destabilized by mass competition between domains. Above
the stability threshold �stop however, mass competition is
weaker than the stabilizing source terms, and the mass-
competition instability is suppressed at length scales � >

�stop.
This stability threshold extends the classical Eckhaus

stability boundary which is derived from amplitude equa-
tions close to the supercritical onset of pattern formation
[43]. In our formulation of the 2cRD system, this super-
critical onset is reached at large source strengths where the
band of unstable modes qc ± √

μ vanishes [type-Is instabil-
ity following Ref. [43]; cf. Fig. 4(b)]. Here, the parameter
μ parameterizes the distance from the onset. The Eckhaus
instability destabilizes all patterns with wavelengths larger or
smaller than q±

E = qc ± √
μ/3, respectively. Starting from a

short-wavelength pattern, q > q+
E , this long-wavelength in-

stability leads to an increase of the pattern wavelength into
the Eckhaus-stable regime similar to coarsening. While these
results are based on the universal form of the amplitude equa-
tions, the form of the stability boundary further away from
onset is strongly system-dependent and may be influenced by
several different instabilities [43,114].

What can we say about the stability threshold further away
from the onset of pattern formation in general? While in
the Eckhaus regime the shortest stable wavelength 2π/q+

E
decreases with the distance from onset, our analysis implies
that—approaching the mass-conserving limit of 2cRD sys-
tems and generalized phase-separating systems—this stability
boundary turns around and starts increasing, i.e., �stop → ∞
as the stabilizing source effects become weaker and weaker.
Thus, the dominant wavelength 2π/qc of the initial instability
is crossed at a low source strength, destabilizing patterns at
the initial wavelength and inducing the coarsening process [cf.
Fig. 9(a)]. The coarsening process stops once it has driven the
pattern length scale � above the stability boundary �stop [cf.
Fig. 9(c)]. Consequently, �stop predicts the final pattern length
scale in this case of interrupted coarsening. On the contrary,
the wavelength 2π/qc determines the length scale of the final
pattern if the threshold �stop lies at lower wavelengths, that is,
in the regime of strong source terms. The fact that mass com-
petition is weak due to the typically strong decrease of ∂Mηstat

as a function of � (in particular in mesa-forming systems)
explains the large parameter regimes observed in general
2cRD systems where the length scale 2π/qc is informative
even for highly nonlinear patterns far from onset. Interrupted
coarsening is only observed for very weak source strengths
(near the mass-conserving limit). Although weak mass com-
petition is necessary to obtain patterns with a final wavelength
� ≈ 2π/qc, we note that broken mass-conservation may give
rise to other instabilities such as oscillatory instabilities [77]
or domain splitting [46,115]. Taken together, the comparison
of 2π/qc and �stop answers the important question of how the
final pattern wavelength is determined given that all patterns
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with wavelengths � > �stop are stable against mass competi-
tion (cf. Ref. [25,114]).

D. Pattern formation and phase separation

In the reaction–diffusion dynamics, the mass-redistribution
potential η plays a role analogous to the chemical potential μ

in close-to-equilibrium systems describing phase separation.
This allows us to find a systematic link between (nearly)
mass-conserving 2cRD systems and (generalized) CH as well
as cAC systems, two standard models for phase separation.
Gradients in η induce mass transport in the same way as
gradients in the chemical potential μ act in CH (Model B)
dynamics. However, the mass-redistribution potential η is not
the derivative of a free-energy functional. It does not adjust
instantaneously to a given (total) density profile [cf. Eq. (6b)]
but by reactive conversion between the chemical species u
and v. In the biologically relevant limit Dv � Du, η ≈ v

is the cytosolic concentration. Consequently, the timescale
of the mass-competition process is the sum of a reactive
timescale—describing the particle release from a domain
(mainly formed in u) into the cytosol and incorporation at
a different domain—and a diffusive timescale—accounting
for diffusive mass transport in the cytosol by gradients in η.
In phase separation, the former process is modeled by the
cAC equation. Thus, it approximates the reaction–diffusion
dynamics in the reaction-limited regime in which the re-
active timescale is rate-limiting. In contrast, the diffusive
mass transport is captured by the CH equation (Model B)
which describes the diffusion-limited regime of 2cRD dynam-
ics. In the context of precipitates, it was already noted by
Wagner that these two regimes of the coarsening dynamics
occur [50].

E. Outlook

Remarkably, reaction limitation, that is, the dynamics of
the mass-redistribution potential η is irrelevant for the thresh-
old of interrupted coarsening and the wavelength thereby
selected. The functional dependence of the stationary mass-
redistribution potential ηstat (M ) on the domain mass M—and
the gradients in η thereby created—alone determine the wave-
length where coarsening stops. Therefore, we expect our
analysis to apply quite generally to systems in which a (total)
density is governed by a modified continuity equation [cf.
Eq. (3)]. As similar techniques have been applied to explain
wavelength selection in models of active phase separation
[12], it seems promising to apply these to further active exten-
sions of CH systems, for example, models for nonreciprocally
interacting active matter [64,66,116]. Our findings may also
help to understand the structuring of the cell interior by
intracellular condensates interacting with reaction–diffusion
systems [19,94].

Moreover, this work builds the basis to analyze wavelength
selection in reaction–diffusion systems with more than two
components. It is an important open question how wave-
length selection proceeds in such systems [7,85,117,118].
Understanding the connection between model parameters and
the typical pattern wavelength will enable further insights

into biological pattern-forming protein systems based on
the phenomenology these show. It is interesting to analyze
whether the mechanisms may be reduced to the elementary
motive of interrupted coarsening we elaborated here, and
which mechanistically different pathways occur. This ques-
tion is particularly interesting for systems showing oscillating
pattern domains [119], traveling waves [120,121], or spa-
tiotemporal chaos [37].

We focused here on one-dimensional systems to isolate
the effects underlying the mass-competition instability but
a new effect arises in higher dimensions. The interfaces of
the protein domains can be curved which leads to a shift
of the stationary mass-redistribution potential proportional to
their curvature (see Supplemental Material of Ref. [46] and
Ref. [55]). The effect of curved interfaces has been discussed
in depth in phase separation and bistable media [84,122,123].
For mesa patterns in 2cMcRD systems, one recovers the
standard coarsening law 〈�〉 ∼ t1/3 in the diffusion-limited
regime in two or three dimensions while the exponent for peak
patterns remains dependent on the reaction kinetics [46,55].
Moreover, droplet splitting occurs in higher dimensions for
phase-separating systems with additional reactions [124] as
well as in 2cRD systems [125]. In one-dimensional systems,
the analog is the splitting of peaks or mesas. This process can
be analyzed geometrically for 2cRD systems and determines
the wavelength selected for patterns that develop on a growing
domain [46,126,127]. Because of the strong similarities we
uncovered between 2cRD, CH and cAC systems, we believe
it is interesting to analyze similarities in the shape instabilities
as well. We expect that such an analysis is another important
step to explain the diverse pattern types emerging from protein
interactions on two-dimensional membranes [128–131].

Another aspect of domain geometry is bulk-surface cou-
pling. Owing to the cycling of proteins between membrane-
bound and cytosolic states, this is a fundamental property of
many protein-based, pattern-forming systems, and has a pro-
found impact on the patterns that emerge [5,28,113,131–133].
However, the impact of bulk-surface coupling on wavelength
selection remains largely unexplored and is an important open
problem for future research.

Lastly, we have focused exclusively on deterministic mass
competition here, but noise could be important because de-
terministic mass competition quickly becomes weak with
increasing domain size. It is an interesting open question
whether stochastic coarsening laws as determined for the
(mesa-forming) noisy CH equation [134] may be used to
determine the wavelength selected in stochastic systems
(cf. Ref. [21]).

Relating back to the biological context, pattern formation
does not (always) start out from a homogeneous steady state
but for example via nucleation, boundary effects, or initial,
spatial templates such that the pattern is part of a whole pattern
cascade [20,28,135,136]. Allowing for a transient coarsening
process which is interrupted at a scale separated from the scale
of the initial instability may give a robust mechanism to select
a pattern. The length scale thereby selected is independent
of the initial process which triggers the pattern formation
process. It is an interesting future task to search for imprints
of interrupted coarsening in biochemical protein systems.
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APPENDIX A: LINEAR STABILITY ANALYSIS
OF THE HOMOGENEOUS STEADY STATES

In this section, we provide the mathematical analysis for
the dispersion relation of the (nearly) mass-conserving 2cRD
system and discuss the limits of small and large wave num-
bers. Further details on the diffusion- and reaction-limited
regimes of the mass-redistribution instability of the HSS, its
geometric representation in phase space, and bifurcation dia-
grams are derived in Ref. [38].

In the nearly mass-conserving 2cRD system, the disper-
sion relation describing the stability properties of a HSS
(ρHSS, ηHSS) is found as follows. The growth rates σHSS(q)
of Fourier modes (δρq, δηq ) with wave vector q are the eigen-
values of the linearized dynamics [cf. Eqs. (3) and (4)]. Thus,
they fulfill

σHSS(q)

(
δρq

δηq

)
= (L + εS)

(
δρq

δηq

)
,

with the Jacobian matrices

L =
(

0 −Dvq2

Duq2 − f̃ρ −(Dv + Du)q2 − f̃η

)
,

S =
(

∂ρstot ∂ηstot

∂ρ (s2 + ds1) ∂η(s2 + ds1)

)
,

where f̃ρ,η := ∂ρ,η f̃ , and all terms are evaluated at the steady-
state densities (ρHSS, ηHSS). This yields the two branches of
the dispersion relation of which one is stable for all wave
numbers q while the other one can show a band of unstable
modes. For small wave numbers q → 0 and small source
strength ε  1, the unstable branch approaches

σHSS(q) ≈ −Dv (∂ρη
∗)q2 + ε ∂ρstot (ρ, η∗(ρ)).

This agrees with the dispersion relation of the generalized CH
system, Eqs. (9), with ε  1 in the limit q → 0. Choosing
κ = Du/ f̃η, the largest unstable wave number qmax for the CH
system agrees with the 2cRD system in the mass-conserving
case ε = 0 (see Fig. 4).

At large wave numbers, the unstable branch σHSS(q) can
be approximated by (expanding the full expression in terms
of 1/q2)

σHSS(q) ≈ −Duq2,

agreeing with the dispersion relation, Eq. (14), for the shadow
(cAC) system at large wavelengths q → ∞.

On the basis of the dynamic equations, Eqs. (3) and (4),
one can understand this close connection between the (mass-

conserving) 2cMcRD, CH, and cAC systems by the following
considerations. In the diffusion-limited regime, mass redistri-
bution limits the time evolution of the 2cMcRD system, and
the pattern dynamics is slow compared to the local reaction
dynamics (cf. Sec. IV). Thus, we can estimate ∂tρ, ∂tη  f̃ .
Since ∂tρ ∼ ∇2η, Eq. (4) for the dynamics of η in this limiting
case reduces to

0 ≈ −Du∇2ρ − f̃ (ρ, η).

Thus, the value of the mass-redistribution potential η becomes
an (implicit) functional of the density profile ρ(x, t ) just as
in the CH equation, Eqs. (9). In the linear regime around a
HSS, the reaction term can be linearized around the nullcline.
This gives f̃ ≈ f̃η [η − η∗(ρ)], and explains the above choice
κ = Du/ f̃η to match the corresponding CH system with the
2cMcRD system. In contrast, in the reaction-limited regime,
mass redistribution is fast compared to the local reaction
dynamics. Thus, the dynamics in this regime can be approx-
imated by assuming instantaneous mass redistribution, that
is, by performing the limit Dv → ∞. This limit retrieves the
shadow system given by Eqs. (11) and (12). Employing the
same linearization f̃ ≈ f̃η [η − η∗(ρ)] around the nullcline as
for the diffusion-limited regime, the shadow system, Eqs. (11)
and (12), gives

∂tρ = Du∇2ρ − f̃η η∗(ρ) + 1

|�|
∫

�

dx f̃η η∗(ρ),

taking the form of the classical cAC equation [cf. Eq. (10)].

APPENDIX B: STATIONARY PATTERNS
OF THE MASS-CONSERVING SYSTEMS

Local equilibria theory, described in Ref. [38], allows the
construction of stationary patterns of mass-conserving 2cRD,
CH, and cAC systems in phase space regardless of the spe-
cific mathematical form of the reaction term f̃ (see Sec. V).
Here, we first highlight the differences in the construction
of stationary patterns when ρ and η are used as phase-space
coordinates instead of u and v as in Ref. [38]. We then present
detailed properties of stationary mesa and peak patterns that
characterize the mass-competition instability. How the sta-
tionary patterns change under the influence of source terms
is presented later in Appendix F.

1. Phase-space construction

The flux-balance subspace η(x) = ηstat (FBS) is horizontal
in (ρ, η) coordinates while it has the finite negative slope
−d in (u, v) coordinates. Therefore, reaction kinetics with Λ-
shaped nullclines (NC) in (ρ, η) coordinates always give rise
to peak patterns [only two FBS-NC intersection points; see
Figs. 5(e) and 5(f)]. In contrast, a Λ-shaped nullcline in (u, v)
coordinates always shows a third FBS-NC intersection point
due to the finite negative slope −d < 0 of the FBS. In gen-
eral, for a physically consistent 2cMcRD system describing
concentrations u, v > 0, the nullcline has to eventually cross
the FBS a third time at high densities (“effective” N-shape).

Such Λ-shaped nullclines in (u, v) coordinates yield highly
asymmetric N-shaped nullclines in (ρ, η) coordinates, with
the third FBS-NC intersection point at large densities ρ when
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d  1. These systems give rise to peak patterns only if the
average density ρ̄ is low and the pattern does not saturate in
a high-density plateau. The Λ-shape in (ρ, η) phase space is
a mathematical idealization of this situation. In the (nonide-
alized) systems with highly asymmetric N-shaped nullclines
there is a crossover from peak to mesa patterns [46,80,137].

Let us now give details on the stationary mesa and peak
patterns, such as the interface width, the interface position, the
pattern tails in the plateaus, and the scaling of the peak profile
with the mass M. Ultimately, these allow us to determine the
change ∂Mηstat which drives mass competition.

2. Stationary mesa patterns

On the infinite line, the stationary state ρ∞
stat (x) with a single

interface, say at x = 0, asymptotically approaches the plateau
densities ρ± given by the two outer FBS-NC intersection
points because ∂xρ

∞
stat → 0 as x → ±∞ [see Eq. (15b); green

profile (dark gray, thin line) in Fig. 5(d)]. Thus, the mass-
redistribution potential η∞

stat of the infinitely large mesa pattern
fulfills total turnover balance [see Eq. (19)]

0 =
∫ ρ+(η∞

stat )

ρ−(η∞
stat )

dρ f̃
(
ρ, η∞

stat

)
. (B1)

Linearization of the profile equation, Eq. (15b), around
the plateau densities ρ± = ρ±(η∞

stat ) shows that the pro-
files approach these plateau densities exponentially [46].
Correspondingly, on a finite domain [0,�/2] with no-flux
boundary conditions we find [see Fig. 5(d)]:

ρstat (x) ≈ ρ+ − δρ+ cosh

[
1

�+

(
�

2
− x

)]
, (B2a)

ρstat (x) ≈ ρ− + δρ− cosh

(
x

�−

)
, (B2b)

in the upper and lower plateau, respectively. The diffu-
sion length scales �± = [ − Du/∂ρ f̃ (ρ±, η∞

stat )]
1/2

describe
the exponential approach toward the plateau densities ρ±.
Within the sharp-interface approximation, the deviations
δρ± = 2a± exp(−L±/�±) from the plateau densities follow
from asymptotic matching of the tail profile to the interface
solution on the infinite line [46,77,138]. The coefficients a±
are constants specific to the reaction term f̃ ; see Ref. [138],
Eq. (2.3c).

In addition to these asymptotic properties of the tails of the
stationary profile, one can also estimate the interface width
�int, i.e., the spatial extent of the transition region between the
two plateaus [cf. Figs. 5(a) and 5(b)]. Following the reasoning
in Ref. [38], this width can be approximated by �int ≈ π/qmax,
where qmax is the wavevector of the fastest growing mode (in
the dispersion relation) for the total density ρinfl determined by
the intermediate FBS-NC intersection point. This yields [38]

�int ∼
√

Du

∂ρ f̃
(
ρinfl, η

∞
stat

) , (B3)

an expression similar to the diffusion lengths �± above. From
this relationship, it can be seen that the sharp-interface limit is
approached for Du → 0.

The position of the interface is determined by the mass in
the system. Given the average density ρ̄, the relative plateau

lengths ξ± are fixed within the sharp-interface limit by [38,77]

ξ+ = 2L+
�

= ρ̄ − ρ−
�ρ

, ξ− = 2L−
�

= 1 − ξ+,

with �ρ = ρ+ − ρ− [cf. Fig. 5(b)].
Finally, of central importance for the strength of the mass-

competition instability is the dependence of the stationary
mass-redistribution potential ηstat on the mesa mass M [see
Eq. (16)]. In the Supplemental Material of Ref. [46], we have
shown that total turnover balance, Eq. (19), within the sharp-
interface approximation implies that

∂Mηstat = ∂−
Mηstat + ∂+

Mηstat, (B4a)

∂±
Mηstat = ± 1

2�ρ
∂L±ηstat

= ∓∂ρ f̃
(
ρ±, η∞

stat

)
Fη

∂Mδρ2
±

2
, (B4b)

with Fη := ∫ ρ+
ρ−

dρ ∂η f̃ (ρ, η∞
stat ). These equations can be ratio-

nalized as follows. Within the sharp-interface approximation,
changes in the mass of a mesa pattern only affect the width
of the plateaus: Adding some mass δM to the mesa mass M
results in the changes δL± = ±δM/(2�ρ) of the half-lengths
of the high- and low-density plateaus, respectively (cf. Fig. 5).
Due to the exponential pattern tails in the plateau regions,
the plateau lengths affect the plateau height as they deter-
mine the offsets δρ± from the plateau densities ρ±. These
changed plateau heights then determine the change ∂Mηstat

of the stationary mass-redistribution potential because the
changed heights change total turnover balance [cf. Eq. (19)].
The two derivatives ∂±

Mηstat describe the effects due to the
change of either the upper or the lower plateau, respectively.
The expressions for ∂±

Mηstat, Eq. (B4b), can then be understood
graphically [cf. the pale-blue/red (pale gray) construction in
Fig. 5(c)]: A change in the plateau height leads to a change
in the area of the (white) triangular areas between FBS and
NC. Due to their triangular shape, total turnover balance, rep-
resented by the (red-) shaded areas enclosed between FBS and
NC, changes proportionally to ∂Mδρ2

±/2. The change ∂±
Mηstat

then corresponds to the shift of the FBS necessary to balance
the changed (red-) shaded areas above and below the FBS.

3. Peak patterns

As with mesa patterns, the low-density plateau of peak pat-
terns is approached by exponential tails emanating from the
peak. Thus, up to exponentially small corrections the pattern
density ρstat (0) in Fig. 5(f) (and in the inset in Fig. 13) agrees
with ρ−(ηstat ). Again, as with mesa patterns, we are interested
in the relation ηstat (M ). In the following, we give a scaling
argument for its functional form.

a. Scaling analysis of the stationary peak profiles

For large densities ρ, we assume that the reaction term can
be approximated by the simple polynomial form

f̃ ∼ ρμ(η − Nρ−ν ), (B5)

where Nρ−ν approximates the high-density tail of the Λ-
shaped nullcline η∗(ρ) (see Fig. 13). This form is suited
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FIG. 13. Asymptotic scaling of the peak profile. For large peak
masses M (see inset), the maximal peak density ρ̂ lies in the asymp-
totically scale-free regime ρ � ρsf of the reaction term f . Above the
density scale ρsf the reaction term can be approximated by a simple
polynomial form, Eq. (B5). The nullcline η∗(ρ ) (solid line) can then
be approximated by a power law Nρ−ν (dashed line). The scaling of
the stationary mass-redistribution potential ηstat (M ) ∼ M−α follows
from total turnover balance, Eq. (19), by analyzing the scaling of the
blue- (dark gray) and red-shaded (rectangular) regions (the striped
region counts to both).

to describe the asymptotic form of a reaction term com-
posed of an attachment term a(u)v minus a detachment term
b(u)u because, for Dv � Du, we have η ≈ v and the pat-
tern forms mainly in the slowly diffusing species u, i.e.,
ρ ≈ u. Moreover, the polynomial form is appropriate be-
cause, on the one hand, mass-action kinetics are in general
of polynomial form. On the other hand, composite reac-
tion terms like Hill-type kinetics approach a power law
at large densities, e.g., enzymatic detachment might give
b(u) ∼ 1/(K + un) ≈ 1/(K + ρn) → ρ−n.

With f̃ being asymptotically scale-free (being of polyno-
mial form for densities ρ � ρsf ; see Fig. 13), one expects that
the profile equation (15b) yields approximately scale-free so-
lutions for the family of stationary peak profiles with different
mass M—if the maximum density ρ̂ lies far in the scale-free
regime (in Fig. 13, one needs ρ̂ � ρsf ). As parametrization of
the family of solutions, we set

ρstat (x) = ρ̂ �

(
x

ρ̂δ

)
,

ηstat = ρ̂−τ �,

where � and � are the (approximate) scaling solutions for the
density profile and the constant stationary mass-redistribution
potential, respectively. The exponent δ describes the scaling
of the peak width, and the exponent τ gives the scaling
of the stationary mass-redistribution potential with the peak
height ρ̂.

Total turnover balance, Eq. (19), then reads

0 ∼
∫ ρ̂

0
dρ ρμ(η − Nρ−ν )

∼ ρ̂1+μ−τ�

∫ 1

0
d� �μ

−
[
C + N ρ̂1+μ−ν

∫ 1

ρsf /ρ̂

d� �μ−ν

]
. (B6)

Here we used that the density of the lower plateau (approx-
imately given by ρ−) fulfills ρ̂ � ρ− ≈ 0 and set the lower
integration boundary to zero. The first term on the right-hand
side is qualitatively represented by the red-shaded (rectan-
gular) area below ηstat in Fig. 13 (scaled by the reaction
rate ∼ ρμ). The second term corresponds to the blue-shaded
(dark gray-shaded) area below the nullcline, again scaled by
the reaction rate ∼ ρμ. To approximate this second term, we
choose an intermediate density ρsf describing the onset of
the scale-free regime of the nullcline. The integral is then
dissected into the constant (we set ρsf to a fixed value) integral
C over the low-density region up to ρsf , and the integration of
the asymptotic tail.

To find the (approximate) scaling solution we require that
the dominant terms for large peak amplitudes ρ̂, i.e., the terms
growing fastest with ρ̂, have to cancel in Eq. (B6). Hence,
these terms must scale with the same exponent in ρ̂. Compari-
son of the exponents in Eq. (B6) thus yields the (approximate)
scaling exponent of the stationary mass-redistribution poten-
tial

τ = min(ν, 1 + μ). (B7)

In addition, the profile equation determines the second expo-
nent δ. Inserting the scaling solution into Eq. (15b), one finds

0 ∼ ρ̂1−2δ∂2
y �(y) + ρ̂μ−τ�μ� − ρ̂μ−ν�μ−ν,

where y = x/ρ̂δ . Again, the terms growing fastest for ρ̂ → ∞
have to scale with the same exponent in ρ̂. Because the expo-
nent of the third term is always smaller than the exponent of
the second, this gives the exponent identity

δ = 1 − μ + min(ν, 1 + μ)

2
. (B8)

With the peak mass scaling as M ∼ ρ̂1+δ , the stationary mass-
redistribution potential scales as

ηstat ∼ M−α ∼ M− τ
1+δ , (B9)

which defines the exponent α introduced in the main text (see
Sec. V). Thus, the exponent α depends on the reaction kinetics
described by f̃ . Because α also determines the coarsening
exponent (see Sec. VII), the above relations, Eqs. (B7), (B8),
and (B9), relate the coarsening law to the reaction kinetics via
their asymptotic scaling exponents. The result is power-law
coarsening for peaks in 1D with a system-dependent expo-
nent. The simple scaling argument put forward in Ref. [46]
to determine the coarsening exponent holds if ν � 1 + μ. In
particular, this simpler scaling argument is valid for systems
where the detachment term ∼ ρμ−ν is nondecreasing with the
density ρ, i.e., μ > ν.

Similar arguments as above can be used to derive the clas-
sical t1/3-coarsening law for mesa-forming 2cMcRD systems
in two dimensions (see Supplemental Material of Ref. [46]).

On a technical note, the above analysis shows that our
assumption of slow mass competition, Eq. (23), will al-
ways be fulfilled sufficiently late during the coarsening
process when peaks have grown sufficiently large. Because
α > 0, the derivative ∂Mηstat decreases faster with the domain
mass than ∼1/M, and mass conservation ensures 〈M〉 ∼ 〈�〉
(see Sec. VII).
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APPENDIX C: LINEARIZED DYNAMICS
OF STATIONARY PATTERNS

The mass-competition instability describes the linearized
dynamics around a symmetric stationary pattern. The analysis
of the linear stability of a pattern is analogous to the linear
stability analysis of the HSS (see Sec. IV and Appendix A).
The only difference is that the linear operator (the Jacobian)
describing the linearized dynamics is space-dependent be-
cause the stationary state one linearizes around is not uniform.
Therefore, the Fourier modes are not the eigenmodes of this
operator, and one has to determine not only the eigenvalues
but must also construct the eigenmodes. To start out with this
analysis, we derive the linearized dynamics in this subsection.

1. Linearized mass-conserving dynamics

We start by linearizing the (one-dimensional) 2cMcRD
system, Eqs. (3) and (4) (ε = 0), around a fully nonlin-
ear stationary pattern [ρstat (x), ηstat]. To this end, we set
ρ = ρstat (x) + eσ t δρ(x) and η = ηstat + eσ t δη(x), where we
already anticipated that the eigenmode (δρ, δη) we are look-
ing for grows exponentially with growth rate σ . We find—to
linear order in the perturbation (δρ, δη)—the Sturm–Liouville
eigenvalue problem

σ

(
δρ

δη

)
=
(

0 Dv ∂2
x

−Du ∂2
x − f̃ρ (Dv + Du) ∂2

x − f̃η

)(
δρ

δη

)
,

(C1)

with the coefficients f̃ρ = ∂ρ f̃ (ρstat (x), ηstat ) and
f̃η = ∂η f̃ (ρstat (x), ηstat ), which are space-dependent through
the spatial profile ρstat (x). The eigenmode (δρ, δη) is defined
on the same domain � as the original dynamics and has
to fulfill the same boundary conditions (here always no-flux
BCs). As the coefficients f̃ρ,η depend on the spatial coordinate
x, the eigenmodes are not simply Fourier modes (as in the
linear stability analysis of the homogeneous steady state)
and have to be determined together with the values σ for
which solutions to Eq. (C1) exist. There is no general method
to solve such a Sturm–Liouville eigenvalue problem. Here,
we build on the singular limit �int/� → 0 [sharp-interface
approximation, see Eq. (17)] to make analytic progress and to
find approximate solutions.

It is useful to define the linear operator

L = −Du ∂2
x − f̃ρ, (C2)

which depends on the stationary pattern [ρstat (x), ηstat]
through f̃ρ . Differentiating the stationary profile equa-
tion (15b) with respect to x and ηstat, we find the relations

0 = L ∂xρstat, (C3a)

f̃η = L ∂ηstat
ρstat. (C3b)

Inserting the second relation into Eq. (C1) shows that
[∂ηstat

ρstat (x; ηstat ), 1] is an exact zero mode (eigenmode with
eigenvalue 0). This “mass mode” ∂ηstat

[ρstat (x; ηstat ), ηstat] is a
zero mode due to the conservation of the total mass, which
can be seen as follows: Because of this conservation law, the
total mass is a control parameter and a continuous family of
stationary patterns with different masses (and different ηstat,

see Sec. V) exists. The mode ∂ηstat
[ρstat (x; ηstat ), ηstat] describes

how the stationary peak/mesa profile changes upon changing
the average mass in the system. As it leads from one stationary
pattern to another, it has to be a zero mode of the linearized
dynamics. It is important to note that this mode breaks mass
conservation (as it leads from a stationary pattern of mass M
to one with a higher or lower mass) and therefore is irrelevant
to the dynamics of a closed system. An in- or outflow of mass
is necessary to excite this mode.

In addition, the mode [∂xρstat, 0] = ∂x[ρstat (x), ηstat] solves
the linearized dynamics, Eq. (C1), with σ = 0. This mode
∂x[ρstat (x), ηstat] is the translation mode of the pattern. In the
infinite system, it is a Goldstone mode due to the translational
invariance of the system (i.e., an exact zero mode). In a fi-
nite system with no-flux boundary conditions, the boundaries
break the translational invariance such that the translation
mode is only an approximate zero mode. It does not fulfill
the no-flux boundary conditions because the derivative of the
translation mode, ∂x(∂xρstat ), does not vanish at the bound-
aries.

2. Linearized dynamics including source terms

Weak source terms modify the stationary pattern. Thus,
the 2cRD dynamics, Eqs. (3) and (4) (for ε > 0), have to
be linearized around the stationary state [ρε

stat (x), ηε
stat (x)] of

the non-mass-conserving system, which is distinct from the
stationary state [ρstat (x), ηstat] of the mass-conserving system.
The linearized dynamics can then be written as(

σ ε − ε∂ρsε
tot

)
δρ = (

Dv∂
2
y + ε∂ηsε

tot

)
δη, (C4a)[

f̃ ε
η + σ ε + ε∂η

(
sε

1 + d sε
2

)]
δη

= [
Lε + (1 + d )σ ε − ε∂ρ

(
sε

1 + d sε
2

)]
δρ. (C4b)

The superscript ()ε signifies the evaluation at the stationary
state (ρε

stat, η
ε
stat ), e.g., f̃ ε

η = ∂η f̃ [ρε
stat (x), ηε

stat (x)].
Analogously to the mass-conserving case [see Eq. (C2)],

we define the linear operator

Lε = −Du ∂2
x − f̃ ε

ρ .

Because the conservation law is broken, only the translation
mode ∂x(ρε

stat, η
ε
stat ) is left as (approximate) zero mode. The

peak mass M is no longer a control parameter. Rather, it is set
by source balance [cf. Sec. V B and Eq. (F2)]. Therefore, the
system with source terms has only a single (or several) station-
ary patterns and no continuous family of stationary solutions
parameterized by M. Thus, no mass mode “∂M[ρε

stat, η
ε
stat]”

exists here.

3. Linearized dynamics in the pattern plateaus

In the next sections, we will repeatedly use that the slow
dynamics around the plateaus of stationary peak or mesa
patterns can be approximated as purely diffusive. This is due
to the fact that all gradients in the plateaus are shallow. In
addition, weak source terms introduce only a linear production
or degradation term with a constant rate.

To show this, we note that the stationary pattern (ρstat, ηstat )
is basically constant in the plateaus, except for the exponential
approach toward the plateau densities ρ± (see Appendix B
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and Sec. V). These exponential tails become small in the
sharp-interface approximation, or, equivalently, far from the
interfaces. Furthermore, the corrections of the stationary pat-
tern (ρε

stat, η
ε
stat ) due to weak source terms are of order ε.

Consequently, up to the exponential corrections and correc-
tions of order ε, in the pattern plateaus, we can set

f̃ ε
ρ,η ≈ ∂ρ,η f̃ (ρ±, ηstat ) = f̃ ±

ρ,η,

sε
tot ≈ stot (ρ±, ηstat ) = s±

tot,(
sε

1 + d sε
2

) ≈ (s±
1 + d s±

2 ),

which are all spatially constant. As the mass-competition dy-
namics is (by assumption, see Sec. VI A) slow compared to
the local relaxation of the stationary pattern ( f̃ ±

ρ,η � σ ), the
linearized dynamics, Eq. (C4), simplifies to(

σ − ε∂ρs±
tot

)
δρ ≈ (

Dv∂
2
x + ε∂ηs±

tot

)
δη, (C5a)

[ f̃ ±
η + O(σ, ε)]δη ≈ −[

Du∂
2
x + f̃ ±

ρ + O(σ, ε)
]
δρ. (C5b)

Large gradients in the pattern ( f̃ρ ∼ Du∂
2
x ) only appear in the

narrow interface regions (see Sec. V). Thus, let us assume we
can neglect the term Du∂

2
x δρ in the plateaus. One then finds

from the second equation that the ρ and η profiles fulfill the
local equilibrium assumption η ≈ η∗(ρ) because (cf. discus-
sion of mesa splitting in Ref. [46])

δη ≈ − f̃ ±
ρ

f̃ ±
η

δρ = (∂ρ±η∗)δρ. (C6)

Inserting this into Eq. (C5a), one finds

σδρ ≈ Dv∂ρη
∗(ρ±) ∂2

x δρ + ε∂ρs∗
tot (ρ±) δρ, (C7)

which describes diffusive dynamics with an effective diffusion
constant D± = Dv∂ρη

∗(ρ±). Importantly, lateral stability of
the pattern plateaus ensures a positive nullcline slope at the
plateau densities ∂ρη

∗(ρ±) > 0 such that the effective diffu-
sion constant is positive (see Sec. IV). Additionally, the effects
of production and degradation are captured by evaluating the
source terms along the nullcline, s∗

tot (ρ) = stot (ρ, η∗(ρ)), and
linearizing for small deviations δρ. Using the final expression,
Eq. (C7), we see that the gradient term neglected is indeed
small ∼ d

∂ρη∗(ρ± )O(σ, ε).

APPENDIX D: STABILITY OF ELEMENTARY PATTERNS

This subsection serves a twofold purpose. First, we show
systematically that the stability of the stationary peak profile
in 2cMcRD systems demands (see Fig. 14)

�∂ηstat ρ− < |∂ηstat M|. (D1)

This condition was derived heuristically in the Supplemental
Material of Ref. [46]. It states that the peak is stable if the
mass-redistribution potential η increases more strongly in the
plateau (δηplateau in Fig. 14) than at the peak (shift δηpeak in
Fig. 14) when a small amount of mass δM is redistributed
from the peak into the plateau. This ensures that the ensuing
gradient in η redistributes the mass back into the peak.

Second, the analysis of the corresponding relaxation rates
shows that relaxation due to mass redistribution between
the peak and plateau regions is indeed fast if the condition
Eq. (23) is fulfilled. This is a basic assumption underlying

FIG. 14. A stable stationary peak has to be stable against re-
distribution of a small amount of mass δM from the peak into the
plateau. This perturbation reduces the peak size and increases the
plateau density (dotted line, shift δρ in the plateau). The induced
shift δηplateau in the mass-redistribution potential in the plateau has to
be larger than the shift δηpeak at the peak. Then, the resulting gradient
moves the redistributed mass [yellow (double) arrow] back into the
peak region [0, b].

our mathematical analysis of the mass-competition instability
(see Sec. VI A).

Here we use the sharp-interface approximation and asymp-
totic matching to derive the relaxation rates of the redistribu-
tion modes. If mass redistribution is the limiting process, then
these redistribution modes between the peak and plateau will
be the slowest relaxation modes because redistribution within
the narrow peak or interface region will be fast in compari-
son. However, one cannot quantify the relaxation modes and
rates of a peak or interface itself based on the sharp-interface
approximation. Therefore, beyond the heuristic argument of
rapid mass redistribution within the narrow peak and interface
regions, we rely on the observation that the pattern profile is
well approximated by a quasi-steady state in the numerical
simulations (see Fig. 1) to neglect the relaxation modes of the
peak or interface profile itself.

For concreteness, we now focus on peak patterns. The
calculations proceed along the same lines for mesa patterns
and yield the same condition. Let us, therefore, consider the
stationary elementary peak pattern (see Fig. 14) of a 2cMcRD
system. To determine the eigenmode (δρ, δη) and relaxation
rate σrelax describing the relaxation of mass redistributed from
the peak into the plateau, asymptotic matching uses the sepa-
ration of scales between the narrow peak and the long plateau
(singular perturbation theory). First, the eigenvalue problem is
solved in the plateaus assuming the stationary pattern profile
as spatially uniform there. Afterward, one approximates the
eigenmode at the peak under the assumption that the variation
δη of the mass-redistribution potential—which is constant in
the stationary state—only varies on long scales and is constant
within the narrow peak region. Both results are then matched
at an intermediate scale between the peak and plateau regions
(scale b in Fig. 14).

In the plateau, the eigenmode fulfills Eq. (C7) (with ε = 0),
which is solved by

δρplateau(x) ∝ cos

[√
−σrelax

D−

(
�

2
− x

)]
, (D2a)

δηplateau(x) = ∂ρη
∗(ρ−) δρplateau(x), (D2b)
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where we anticipated that the mode should be stable, that
is, σrelax < 0, and used the effective diffusion constant
D− = Dv∂ρη

∗(ρ−). Thus, we find at the peak location x = 0
and the matching scale b [choosing �int  b  � within the
“sharp-peak approximation”]

∂xδηplateau|x=b

δηplateau|x=b
≈ ∂xδηplateau|x=0

δηplateau|x=0
= 2χ

�
tan(χ ), (D3)

with χ = �
2

√|σrelax|/D−. This (relative) gradient determines
the mass in- or outflow at the peak and thereby how fast the
peak mass changes.20

Assuming that the relaxation within the peak is fast com-
pared to mass transport between the plateau and the peak,
the peak profile adiabatically follows the changing peak mass.
Thus, we approximate the mode at the peak by the mass mode:
(δρ ≈ δM∂Mρstat , δη ≈ const.) with the mode amplitude δM
which gives the change of the peak mass. Integration of the
continuity equation over the peak region thus yields

σrelaxδM
∫ b

0
dx ∂Mρstat ≈ σrelax

δM

2
≈ Dv∂xδη|x=b. (D4)

This “inner” solution at the peak has to be matched to the
“outer” solution in the plateau, Eq. (D3). This gives

σrelax
δM

δηpeak
≈ 4Dvχ

�
tan (χ ). (D5)

Here, δηpeak = δη|x=0 ≈ δη|x=b denotes the approximately
constant change of the stationary mass-redistribution poten-
tial in the peak region. Because χ = χ (σrelax), Eq. (D5)
is an implicit equation that fixes the rate σrelax such that
the matched approximation of the relaxation mode is self-
consistent.21 In the diffusion-limited regime, the stationary
mass-redistribution potential at the peak can be approximated
by its QSS. This yields δM/δηpeak = 1/∂Mηstat = ∂ηstat M,
which closes Eq. (D5).

In contrast, outside the diffusion-limited regime, δηpeak

deviates from its QSS δM∂Mηstat due to the finite rate
of reactive conversion between the u and v species
(cf. Secs. VI B, VIII B). To capture this deviation, we approx-
imate the “conversion-rate integral” given by∫ b

0
dx f̃η δρ. (D6)

Because δρ ∼ ∂Mρstat is localized to the peak, this integral de-
scribes an average reaction rate at the peak. It can be expressed
in two different ways using the eigenmode approximation
at the peak and the linear eigenmode dynamics, Eq. (C1).
The procedure of how this fixes δM/δηpeak is detailed in the
derivation of the mass-competition rates (see Appendix E);

20Only the relative gradient is important because the amplitude of
the plateau perturbation [proportionality constant in Eq. (D2a)] is
arbitrary.

21Matching of the density profile δρ(x) does not need to be con-
sidered separately because the matching region x ≈ b lies in the tail
region of the peak pattern (�int  b  � by assumption), and the
local equilibrium assumption η ≈ η∗(ρ ) holds [see Eq. (C6)]. Hence,
δρ and δη are slaved to one another.

the integral will appear in different variants in the derivation
of all growth rates, also for the mass-competition instability.
For the analyzed relaxation mode this calculation results in
the expression

δM

δηpeak
≈ 1

1
∂ηstat M + (1+d )σrelax

2�int〈 f̃η〉int

. (D7)

The quantities �int and 〈 f̃η〉int are defined as for the mass-
competition rate (see Sec. VI B and Appendix E). In the limit
of fast reactive conversion 〈 f̃η〉int/σrelax � 1, we retrieve the
result δM/δηpeak = ∂ηstat M of the QSS approximation.

Combining Eq. (D5) with Eq. (D7), one retrieves the im-
plicit (self-consistency) relation that determines χ and thus
the relaxation rate σrelax throughout both the diffusion- and
reaction-limited regimes:

χ

[
�∂ηstat ρ−
−∂ηstat M

+ 4Dv (1 + d )

2��int〈 f̃η〉int
χ2

]−1

≈ tan(χ ).

Recall that ∂ηstat M < 0, such that the first term in the denomi-
nator is positive. Comparing with the mass-competition rates
[Eqs. (31)], we write more compactly

χ

(
�∂ηstat ρ−∣∣∂ηstat M

∣∣ + σD

σR
χ2

)−1

≈ tan(χ ). (D8)

Before calculating the slowest relaxation rate from the so-
lutions χ (σrelax) to Eq. (D8), we have to ensure for the stability
of the peak that no unstable mode exists. The above analysis
can be repeated under the assumption of a positive growth
rate σrelax > 0. If such a solution exists, then the associated
eigenmode renders the elementary stationary pattern unstable.
In this case, the mode profile [see Eqs. (D2)] in the plateaus is
given by a hyperbolic cosine and the matching condition for
the unstable mode(s) follows as

χ

(
�∂ηstat ρ−∣∣∂ηstat M

∣∣ − σD

σR
χ2

)−1

≈ tanh(χ ). (D9)

This equation has at most one solution for χ > 0
[see Fig. 15(a)]. It has no solution if

�∂ηstat ρ− < −∂ηstat M,

implying that there is no positive eigenvalue, and thus, that the
peak is stable. With this, we recover the heuristic stability ar-
gument introduced in the Supplemental Material of Ref. [46].

If the peak is stable, then Eq. (D8) yields solutions χ > 0
on each branch of the tangent [see intersection points in
Fig. 15(b)]. The solution on the first branch is lost and gives
rise to the unstable mode if the stability condition is violated.
While the solution on the first branch yields redistribution of
mass between the plateau and the peak, solutions on higher
branches correspond to modes with several nodes in the cosine
profile in the plateau. Consequently, these describe in addition
redistribution of mass within the plateau itself. The slow-
est relaxation mode corresponds to the solution on the first
branch because σrelax increases monotonously with χ : One has
|σrelax| = 4χ2D−/�2 by definition. The higher modes have
faster relaxation rates because the mass redistribution occurs
on shorter scales in these modes.
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FIG. 15. Graphical construction of the solutions to the matching
conditions for the mass-redistribution modes of the stationary ele-
mentary peak pattern. (a) The growth rate of an unstable mode has to
fulfill condition Eq. (D9). The solutions of this equation correspond
to intersections of the left-hand side (black) and right-hand side
[blue (dark gray) line]. One unstable mode [(blue) dot)] arises if
�∂ηstat

ρ− > ∂ηstat
M. (b) The relaxation rates have to solve Eq. (D8).

The left-hand side is shown in black (different dashing corresponds
to the cases labeled in a), and the right-hand side is in blue (dark
gray). Infinitely many relaxation modes are found due to the periodic
branches of the tangent. A solution on the first branch exists if no
solution is found for the unstable mode.

We can now use Eq. (D8) to estimate the magnitude of
the slowest relaxation rate σrelax. If this slowest relaxation
rate is fast compared to the rate of the mass-competition
process, then our assumption of fast (regional) relaxation of
the elementary stationary patterns holds. From the functional
form of the tangent, we know that the first solution fulfills
0 < χ < π/2. It follows that χ ∼ 1 if it is not particularly
small. Thus, from the definition of χ we find, if χ ∼ 1, then

σ D
relax ∼ −4Dv

�2
∂ρη

∗(ρ−). (D10)

The relaxation rate shows different behavior if χ  1, a
case which arises in two ways. First, χ is small if the
fraction �∂ηstat ρ−/|∂ηstat M| is very close to one, i.e., if
|�∂ηstat ρ−| − |∂ηstat M|  1. This is not generic in the 2cM-
cRD systems because the two terms in the latter condition
scale differently with the peak mass or domain size (see Ap-
pendix B 3 a), and we do not consider this case here. Second,
for σD � σR, that is, in the reaction-limited regime, we find

χ ≈ √
σR/σD  1 and thus

σ R
relax ≈ −2�int〈 f̃η〉int

(1 + d )�
∂ρη

∗(ρ−). (D11)

Consequently, the first expression, Eq. (D10), describes the
relaxation rate in the diffusion-limited regime while the sec-
ond expression, Eq. (D11), gives the relaxation rate in the
reaction-limited regime.

The above two expressions, Eqs. (D10) and (D11), resem-
ble the growth rates of the mass-competition instability in the
diffusion- and reaction-limited regime [see Eqs. (31)], with
the crucial difference that there is the factor ∂ρη

∗(ρ−)/�,
which is always positive, instead of ∂Mηstat, which is negative
for 2cMcRD systems (see Sec. V). As a result, and in con-
trast to the rates σD, σR of the mass-competition instability,
here both rates are negative and thus stabilizing. In addition,
by comparison of the rate magnitudes, one finds that the
mass-competition instability is indeed slow compared to this
relaxation mode if [cf. Eq. (23)]

�∂ηstat ρ−  −∂ηstat M. (D12)

The same analysis as above can be performed for mesa
patterns. The observed interface stability has been discussed
as “wave-pinning” in Ref. [139]. Again, the relaxation mode
has cosine profiles in the plateau regions. For continuity, they
have to meet at the interface. Mass incorporation or release at
the interface during the relaxation of the mesa pattern toward
its stationary profile creates a flux difference left and right of
the interface, that is, a mismatch in the gradients left and right
[integrate the continuity equation, Eq. (3) (ε = 0), over the
interface region],

Dv∂xη|x0+b − Dv∂xη|x0−b = ∂t M,

where ±b denotes a small offset from the interface position x0

fulfilling �int  b  �/2. This mass change corresponds to
an interface shift

∂t M = �ρ ∂t x0.

The reaction-rate integral is used to determine the value of the
mass-redistribution potential at the interface consistent with
the rate of mass uptake ∂t M. This inner solution is matched
to the cosine profiles in the plateaus. The procedure results in
the same condition, Eq. (D12). For mesas, |∂ηstat M| becomes
exponentially large in the plateau size (see Sec. V and Ap-
pendix B) such that the above condition is clearly fulfilled for
sufficiently narrow interfaces compared to the overall length
�/2 of the elementary pattern.

APPENDIX E: GROWTH RATE OF THE MASS-
COMPETITION INSTABILITY WITHIN

THE SHARP-INTERFACE APPROXIMATION

In this section, we perform the linear stability analy-
sis (LSA) of two neighboring stationary peaks and mesas
(peak/mesa competition) in the 2cMcRD system. The re-
sult is the growth rate σ of the mass-competition instability
within a singular perturbation calculation. The rate for mesa
coalescence is found analogously as for mesa competition
since the coalescence scenario can be interpreted as compe-
tition between the low-density plateaus of the mesa pattern
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(see Sec. II A). This rate also estimates the speed of the peak-
coalescence scenario.

1. Competition of two peaks

We choose the system domain as � = [−�/2,�/2] and
analyze the stability of the symmetric pattern containing two
half peaks at the outer boundaries [see Fig. 6(a)]. This sym-
metry of the stationary pattern ensures that the eigenmodes
of the linearized dynamics around this pattern are either sym-
metric or antisymmetric under the replacement x → −x. The
mass-competition mode increases the mass of one peak while
reducing the mass of the other such that it has to be anti-
symmetric around x = 0 [see Fig. 6(b)]. Assuming that mass
competition is slow compared to the relaxation modes of the
single peaks themselves (see Sec. VI A and Appendix D),
the peak profiles adiabatically follow the stationary profiles
as mass competition changes the peak mass. All deviations
from the stationary peak profile relax, by assumption, on
a timescale fast compared to the timescale on which mass
competition changes the peak masses. Thus, we approximate
the mode at each peak by the mass mode (∂ηstat ρstat, 1), which
describes the change of the stationary peak profile under mass
change. Because deviations from the stationary profile are due
to the finite relaxation rate σrelax onto the stationary profile in
comparison to the rate σ of the mass-competition dynamics,
we expect deviations of the order ∼σ/σrelax. This scaling of
the eigenmode’s deviations from its unperturbed form (here
this is the mass mode of an isolated peak) can be supported
by a more rigorous perturbation theory for the Jacobian oper-
ators, which we do not perform here. Thus, one has

δρ(x) = A

[
sgn(x)

2∂ηstatρstat (x)

∂ηstat M
+ O(σ/σrelax)

]
, (E1a)

δη(x) = AO(σ/σrelax), (E1b)

introducing the mode amplitude A. Using the chain rule in
Eq. (E1a), one obtains δρ ≈ 2A sgn(x) ∂Mρstat (x). From this
expression, one reads off that the discontinuity introduced in
δρ at x = 0 is only of order A∂Mρ− = AO(σ/σrelax ) [using
Eqs. (31), (D10), and (D11)], and thus of the same order as
the correction terms. Hence, the continuity of the eigenmode
profile can be ensured by the correction terms. In contrast,
no term larger than ∼σ/σrelax can appear in δη. Because η

is constant in the mass mode, such a term would induce a
jump ∼A at x = 0, in contradiction with the continuity of the
eigenmode profile.

We will now proceed in three steps. First, we show that
δη can be assumed to be linear between the peaks. Second,
integration of the continuity equation [first row of Eq. (C1)]
yields a relationship between σ , A and δη|x=�/2. Last, the
equation for δη [second row of Eq. (C1)] is used to find
another equality based on approximating the conversion-rate
integral [cf. Eq. (D6)] relating again σ , A and δη|x=�/2. As the
mode amplitude A is arbitrary and can be scaled out (due to
the linearity of the dynamics), the resulting two equations to-
gether determine the growth rate σ and the ratio δη|x=�/2/A.

a. Linear gradient in δη

In the plateau between the peaks the eigenmode has to
fulfill Eq. (C7) (ε = 0):

σ

Dv∂ρη∗(ρ−)
δη ≈ ∂2

x δη. (E2)

The relaxation rate of a single peak fulfills the inequality
|σrelax| � 4Dv

�2 ∂ρη
∗(ρ−) (Appendix D), which implies

σ

Dv∂ρη∗(ρ−)
δη � σ

σrelax

δη

�2
.

Consequently, the curvature of the δη profile on the scale of
the peak separation � is of order O(σ/σrelax ) and negligible:

∂2
x δη

δη/�2
� σ

σrelax
.

With Eq. (E2) describing the diffusive mass redistribution
within the plateau, this explicitly shows that mass redis-
tribution in the plateau proceeds fast compared to the
mass competition process between the peaks. Consequently,
the mass-redistribution potential rapidly relaxes to fulfill
the Laplace equation 0 = ∂2

x δη between the peaks. Using the
antisymmetry of the mode it follows

δη(x) = 2δη|x=�/2
x

�
[1 + O(�int/�)], (E3)

where the correction term is due to the finite peak width, and
it may be neglected within the sharp-interface approximation
[see Fig. 6(b)].

b. Mass redistribution from peak to peak

Integration of the continuity equation [see Eq. (C1)] and
using the approximation, Eq. (E1a), of the density mode then
gives

σA
∫ �

2

0
dx 2∂Mρstat (x) ≈ σA ≈ −2Dv

�
δη|x=�/2. (E4)

Thus, the gradient in δη between the peaks determines how
fast the peaks grow/shrink.

c. Value δη|x=�/2 at the peak

The gradient in δη is determined by the change of the mass-
redistribution potential δη|x=�/2 at the peak. To determine
a second condition on the change of the mass-redistribution
potential, we will express the conversion-rate integral [cf.
Eq. (D6)] in different ways. Similar integrals will be cen-
tral to the derivations of all other growth rates as well, and
we already used the conversion-rate integral to determine
the relaxation rates in Appendix D. Why does it appear?
The mass-redistribution potential changes at the peak due
to the reactive conversion of particles between the u and v

states (see Sec. VI B). The strength of the reactive conversion
determines how strongly δη|x=�/2 deviates from δM∂Mηstat

(cf. Sec. VIII B). This strength is captured by the conversion-
rate integral (as we see below) while it does not enter in the
mass-redistribution equation, Eq. (E4). On this note, we use
the approximation of the density mode Eq. (E1a) to express
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the conversion-rate integral by∫ �
2

0
dx f̃η δρ ≈ A

∫ �
2

0
dx f̃η 2∂Mρstat = A〈 f̃η〉int. (E5)

Here, 〈 f̃η〉int represents the reaction rate f̃η averaged at the
peak/interface. The basis for this average is the distribution of
mass inclusion at the peak/interface which can be defined by
the change of the density profile of the stationary elementary
pattern due to mass increase:

P(x) = 2∂Mρstat (x) = 2(∂Mηstat )∂ηstat
ρstat (x).

The factor 2 is introduced such that P(x) is (approximately)
normalized:∫ �

2

0
dx P(x) = 2∂M

∫ �
2

0
dx ρstat (x) ≈ ∂MM = 1.

Intuitively, the derivative ∂Mρstat (x) is localized at the
peaks/interface. Technically, this is ensured by the condition
Eq. (23). Thus, P(x) defines a weighted average that is local-
ized to the peak/interface by

〈·〉int =
∫ �

2

0
dx · P(x). (E6)

Moreover, we define the half-peak or interface width �int as
estimate of the width of P(x): Because 〈P(x)〉int gives the
average height of the distribution P(x), a width estimate for
P(x) follows by distributing the area under the curve into a
rectangle �int〈P(x)〉int ≈ 1, where we used that P(x) is (ap-
proximately) normalized. Thus, we define

�int = (〈P〉int )
−1. (E7)

Coming back to the conversion rate integral Eq. (E5)
and using that the mass mode is a zero mode [specifi-
cally, Eq. (C3b)], we find as second approximation of the
conversion-rate integral∫ �

2

0
dx f̃η δρ ≈

∫ �
2

0
dx

(
∂ηstat ρstat

)
L δρ

≈
∫ �

2

0
dx

(
∂ηstat ρstat

)
[ f̃ηδη − (1 + d )σδρ]

≈ 1

2
δη|x=�/2

(
∂ηstat

M
)〈 f̃η〉int

− (1 + d )σ
A

2

(
∂ηstat

M
) 1

�int
. (E8)

In the first line, we neglected exponentially small bound-
ary terms from the pattern tails approaching the low-density
plateau. In the second step, we used the evolution equation of
the eigenmode, Eq. (C1), and σ/ f̃η  1. In the last line, we
applied the sharp-interface approximation in the first term to
take δη as constant across the peak. In the second term, we
used the mode approximation Eq. (E1a).

Combining Eqs. (E4), (E5), and (E8) one finally extracts
the growth rate [cf. Eqs. (30) and (31)]

σ ≈ − ∂Mηstat
�

4Dv
+ 1+d

2�int〈 f̃η〉int

.

2. Competition between mesas

We can apply the same analysis as above to determine the
growth rate σ of the mass-competition instability of mesa pat-
terns (mesa competition/coalescence). However, the growth
rate is exponentially small in the plateau lengths because
the steady-state mass-redistribution potential ηstat (M ) is only
varying due to exponentially small contributions from the
pattern tails approaching the high- and low-density plateaus
[recall that ∂±

Mηstat = O(δρ2
±), see Sec. V]. Thus, one has to be

careful where one can neglect boundary terms that arise due
to these exponential tails of the pattern approaching the high-
and low-density plateaus. For peak competition, we neglected
these contributions because the mass-redistribution potential
changes much more strongly due to the changing peak heights
(cf. Appendix B) than due to the exponential tails in the
pattern plateau.

For concreteness, consider two high-density “half” mesas
separated by a trough on the domain � = [−�/2,�/2] sym-
metrical about x = 0 (mesa competition). Mass competition
redistributes mass between the two mesas and shifts the
interfaces—due to mass conservation—synchronously. Thus,
the trough separating the mesas is translated as a whole. Ac-
cordingly, we approximate the mass-competition eigenmode
by

δρ(x) ≈ A ∂xρstat, (E9a)

δη(x) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2δηint

ξ−�
x x ∈ (− ξ−

2 �,
ξ−
2 �

)
,

−δηint x < − ξ−
2 �,

δηint x >
ξ−
2 �.

(E9b)

We use the relative length ξ− of the lower plateau introduced
for the stationary mesa patterns in Appendix B. The derivative
∂xρstat describes the translation mode of the stationary density
profile. On the infinite line, it is an exact zero mode due to
the translation invariance of the system. In the finite system,
deviations appear at the boundaries [see Fig. 16(b)]. More-
over, as for the peak-forming system [see Eqs. (E1)] this mode
approximation neglects corrections ∼σ/σrelax due to the finite
relaxation rates of the elementary stationary pattern.

The piecewise linear approximation of the mass-
redistribution potential δη uses once more that the relaxation
of the plateaus is fast compared to the mass redistribution
between the two mesas (σrelax � σ ). Thus, δη has to fulfill the
Laplace equation 0 = ∂2

x δη in the plateaus up to corrections
∼σ/σrelax, that is, δη has to be linear in the plateaus [cf.
derivation for peak patterns, Eq. (E3)]. The antisymmetry
of the eigenmode, continuity, and the no-flux boundary
conditions then prescribe the chosen form, Eq. (E9b). The
finite interface width yields corrections that are smaller by a
factor proportional to �int/�.

Integration of the continuity equation, first component of
Eq. (C1), then yields [analogously to Eq. (E4)]

σ+A
∫ �

2

0
dx ∂xρstat (x) ≈ σ+A�ρ ≈ − 2Dv

ξ−�
δηint, (E10)
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FIG. 16. Mass competition of two mesas. (a) We consider the
competition for mass between two stationary half mesas ρstat (x),
each containing mass M/2. (b) The mass-competition mode [blue
(dark gray), orange (light gray)] is antisymmetric. At the inter-
faces and in the inner plateau, the density mode δρ(x) [blue (dark
gray)] is well approximated by the translation mode ∂xρstat (black,
dashed) as mass-competition translates the trough between the two
half mesas. Deviations appear at the boundaries x = ±�/2 (inset).
Within the sharp-interface approximation, the mass-redistribution
potential δη(x) [orange (light gray), strongly magnified] is linear in
the plateaus [red (dashed, piecewise straight) line]. In this figure,
the stationary state and the mode approximations are exemplified for
the cubic model f̃ = η − ρ3 + ρ with parameters Du = 1, Dv = 10,
� = 40, and ρ̄ = −0.2 (see Appendix H 1).

with �ρ = ρ+ − ρ−. The conversion rate integral yields anal-
ogously to Eqs. (E5) and (E8) the two expressions [using
Eq. (C3b)]∫ �

2

0
dx f̃ηδρ ≈ A�ρ〈 f̃η〉int, (E11a)

∫ �
2

0
dx f̃ηδρ = Du

[(
∂ηstat ρstat

)
∂xδρ

] �
2

0

+
∫ �

2

0
dx

(
∂ηstat ρstat

)
L δρ

≈ −Du∂ηstat ρstat

∣∣
x=0∂xδρ

∣∣
x=0

+ δηint

2
〈 f̃η〉int

(
∂ηstat

M
)

− (1 + d )
σ+A�ρ

2�int

(
∂ηstat

M
)
, (E11b)

where [ ]x
y denotes the boundary terms due to partial inte-

gration. The conversion rate 〈 f̃η〉int and the interface width
�int are defined as for peaks [see Eqs. (E6) and (E7)] using
P(x) = ∂xρstat/�ρ. We can use the translation mode ∂xρstat

to define the distribution P(x) of mass inclusion at the mesa
interface because, within the sharp-interface approximation,
additional mass added to the mesa only translates the interface
(see Sec. V and Appendix B).

The new aspect in Eq. (E11b) for mesa patterns compared
to peak patterns is the boundary term that must not be dropped
because it is of the same order as the other terms, as we see
now. We approximate the boundary term using the asymptotic
result for the tails of the density profile in the lower plateau,
Eqs. (B2). This yields

−∂ηstat ρstat|x=0∂xδρ|x=0 ≈ −(
∂ηstat δρ−

)
A∂2

x ρstat

∣∣
x=0

≈ − A

�2−

∂ηstat δρ
2
−

2
. (E12)

Combining Eqs. (E10), (E11), and (E12) the growth rate fol-
lows as [cf. Eqs. (30) and (32)]

σ+ ≈ −
1 + f̃ρ (ρ−,ηstat )

�ρ〈 f̃η〉int

∂ηstat δρ
2
−

2

ξ−�

4Dv
+ 1+d

2�int〈 f̃η〉int

∂Mηstat

= − ∂+
Mηstat

ξ−�

4Dv
+ 1+d

�int〈 f̃η〉int

. (E13)

The second mass-competition scenario, that is, mesa coa-
lescence may be treated analogously. Repeating the above
analysis yields the growth rate

σ− ≈ − ∂−
Mηstat

ξ+�

4Dv
+ 1+d

2�int〈 f̃η〉int

,

describing the growth of one and simultaneous shrinking of
the other trough [translation of the mesa in the middle of
the domain, cf. Fig. 2(b)]. Because ∂±

Mηstat is exponentially
small in ξ±�/�±, the relative size of the two growth rates
σ± (mainly) depends on the relative lengths ξ±�/�± of the
upper and lower plateaus compared to the exponential tails.
Moreover, recall that the length ratio of the upper and lower
plateaus, i.e., the interface position is tuned by the average
density ρ̄ (see Sec. V and Appendix B). Consequently, at
sufficiently low average density ρ̄, we have σ+ � σ−, and
coarsening proceeds via growth and shrinking of mesas [see
Fig. 1(c)]. In contrast, at high average density σ− � σ+ holds,
and coarsening is mainly driven by the growth and shrinking
of troughs, that is, coalescence of mesas [see Fig. 1(e)].

In a periodic pattern containing several peaks/mesas,
modes of mass competition between second-next and further
neighbors exist as well. Their growth rates are suppressed
with respect to the nearest-neighbor competition as mass re-
distribution is slower over larger distances [46,51]. Also in
the reaction-limited regime, the rate of nearest-neighbor com-
petition is a good estimate of the fastest competition rate in
all cases.22 Hence, the full growth rates derived for 2cMcRD
systems in this section can be used to estimate the dynamics

22In Ref. [59], growth rates for next-neighbor and higher modes
are calculated in the reaction-limited regime for mesa patterns, that
is, if diffusive mass redistribution is not the limiting factor of the
instability. The growth rates for the higher modes are found to be the
same as for nearest-neighbor competition if σ+ � σ− or σ− � σ+.
Only if the average density ρ̄ is tuned such that σ+ ≈ σ−, the longest-
wavelength mode is the most unstable with a rate ≈ σ+ + σ−.
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FIG. 17. Modification of the stationary elementary pattern by
weak source terms. (a) The peak profile of the mass-conserving
system ρstat (black dashed) approximates the peak profile in the
presence of source terms ρε

stat [blue (dark gray)] up to corrections
∼ε. In the plateau, ρε

stat can be approximated analytically by a
parabolic profile [ρapprox, red (thin) line]. (b) Due to the source
terms, the stationary mass-redistribution potential ηε

stat = ηstat + δηε

[δηε shown in orange (light gray)] attains a spatially varying pro-
file. In the plateau, it is also approximately parabolic [δηapprox,
red (dark gray)]. The offset at the peak is approximated by δηε

stat

(red dashed). (c) The same construction as for the stationary peak
profile is shown for the elementary stationary mesa pattern. Two
distinct approximations [ρ±

approx, red (dark gray)] apply in the high-
and low-density plateaus. (d) The change of the mass-redistribution
potential δηε

stat [orange (light gray)] induced by the source terms
is approximated by matching the quadratic approximations in both
plateaus δη±

approx [red (dark gray)] at the interface position to the
offset δηε

stat (red dashed). We illustrate the construction for the peak-
forming model f̃ = η − 10ρ/(1 + ρ2), (s1, s2) = (p − ρ, 0) with
parameters Du = 1, Dv = 103, p = 4, ε = 10−3, and � = 200 (see
Appendix H 3). The cubic model f̃ = η − ρ3 + ρ with the same
source terms is used with parameters Du = 1, Dv = 10, p = −0.2,
ε = 10−2, and � = 40 to exemplify the construction for mesa pat-
terns (see Appendix H 1).

of coarsening as described in Sec. VII. The rates for the mass-
conserving CH and cAC models, agreeing with the limiting
expressions in the diffusion- and reaction-limited regimes, can
be obtained by the same methods.

APPENDIX F: MODIFICATION OF THE STATIONARY
STATES BY WEAK SOURCE TERMS

Before we can analyze mass competition under the influ-
ence of weak source terms, we need to discuss the stationary
state [ρε

stat (x), ηε
stat (x)] of the 2cRD system including weak

source terms (see Fig. 17). The effect of weak source pro-
cesses is captured as perturbation ε(δρε, δηε ) to the stationary

state of the mass-conserving system:

ρε
stat (x) = ρstat (x; ηstat ) + ε δρε(x),

ηε
stat (x) = ηstat + ε δηε(x),

where the dependence of the stationary profile ρstat (x; ηstat )
on the value of the stationary mass-redistribution poten-
tial of the mass-conserving system ηstat is stated explicitly
(see Sec. V). As mass conservation is broken, the stationary
mass-redistribution potential is no longer spatially constant
under the influence of source terms. This coincides with a
deformation of the density profile. Moreover, the source terms
that break mass conservation fix the mass of the stationary
pattern because the peak or mesa mass M is no longer de-
termined by the initial condition (see Sec. V B). Rather, the
pattern mass, and equivalently the average density ρ̄, evolves
until global production and degradation balance [Eq. (22)].

In the following, we determine the deformation of the
stationary pattern and the selected pattern mass to first order in
the source strength ε. Within the same perturbative approach,
we find conditions on the source terms necessary for the
elementary stationary patterns to be stable. One starts out from
Eqs. (15), which imply that at first order in ε the steady-state
correction has to fulfill the equations

0 = Dv∂
2
x δηε + stot (ρstat, ηstat ), (F1a)

and

s1(ρstat, ηstat ) + d s2(ρstat, ηstat )

= −Du∂
2
x δρε − f̃ρδρε − f̃ηδηε

= Lδρε − f̃ηδηε. (F1b)

The linear operator L = −Du ∂2
x − f̃ρ was already defined

in Eq. (C2) for the linear mass-conserving dynamics. For
concreteness, we analyze the modification of the stationary
elementary pattern on the domain � = [0,�/2] with no-flux
boundary conditions and the high-density region (peak or
high-density plateau) located around x = 0 (see Fig. 17).

1. Source balance

Integration of Eq. (F1a) over the domain � respecting
no-flux boundary conditions yields an explicit equation select-
ing the stationary pattern (ρstat, ηstat ) of the mass-conserving
system which approximates the stationary pattern (ρε

stat, η
ε
stat )

under the influence of weak source terms (solvability condi-
tion). It reads

0 =
∫ �

2

0
dx stot (ρstat, ηstat ). (F2)

This equation enforces the overall balance of production and
degradation in the stationary state and thereby selects a pattern
mass M out of the continuous family of stationary patterns in
the mass-conserving system. For mesa patterns, this condition
simplifies within the sharp-interface approximation. Since in
that limit production and degradation in the interface region
can be neglected, and the source terms can be approximated
in the plateaus by s±

tot = stot (ρ±
stat, ηstat ), Eq. (F2) reduces to a

balance between the overall production and degradation in the
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upper and lower plateaus:

s+
tot ξ+ ≈ −s−

tot ξ−. (F3)

2. Stability of elementary stationary patterns

Next, we exploit the requirement that a stationary peak
or mesa must be stable. This means that any change of the
profile caused by the addition of a small amount of mass δM
must lead to increased degradation. Since we consider systems
with a small source strength ε, the induced dynamics of the
mass change δM is slow and the change of the pattern pro-
file adiabatically follows the stationary profile. Thus, we can
approximate the change of the pattern profile by the change
∂MρstatδM of the stationary profile. Integration of the modi-
fied continuity equation [using that the boundary conditions
ensure ∂xη|x=0,�/2 = 0 and employing the definition of the
interface average, Eq. (E6)]

∂t
δM

2
≈
∫ �

2

0
dx [(∂ρstot )∂Mρstat + (∂ηstot )∂Mηstat]δM

≈ 〈∂ρstot〉int
δM

2
,

where we neglect the second term as ∂Mηstat is small by
assumption [Eq. (23)]. We conclude from this analysis
that peak stability in the presence of source terms de-
mands that 〈∂ρstot〉int < 0. For mesa patterns, the additional
mass δM only shifts the interface such that ∂Mρstat ∼ ∂xρstat

and 〈∂ρstot〉int ≈ (s+
tot − s−

tot )/�ρ. In addition, the source bal-
ance condition, Eq. (F3) ensures that the source terms s±

tot
have different signs. Taken together, the stability criterion
(s+

tot − s−
tot ) < 0 [derived from 〈∂ρstot〉int < 0] translates into

the conditions s−
tot > 0 and s+

tot < 0 [46]. They imply net
degradation when the length of the upper plateau is increased,
and vice versa net production when its length is decreased.
Similarly, the condition 〈∂ρstot〉int < 0 for peak patterns en-
sures that the source terms lead to net degradation if the peak
density is increased, i.e., if the peak mass increases.

3. Plateau profiles

We will now show that the second effect of the source
terms is a parabolic concentration profile in the plateaus (see
Fig. 17). This profile is due to a gradient in the stationary
mass-redistribution potential ηε

stat which is necessary to re-
distribute particles from the production regions at low pattern
density (low-density plateau) toward the degradation regions
at high pattern densities (peak or high-density plateau). This
process is described by the modified continuity equation,
Eq. (F1a), which yields (up to corrections due to the expo-
nential tails of the stationary pattern of the mass-conserving
system)

δηε(x) = A + s±
tot

2Dv

(x − B)2, (F4)

where the constants A, B remain to be determined to fulfill
the boundary conditions and continuity of the profile across
the pattern interface or at the peak [see Figs. 17(b) and 17(d)].
Because gradients are small in the plateaus [see Appendix C 3
and Figs. 17(a) and 17(c)], the density profile δρε in the
plateaus follows the profile δηε. Hence, we make an ansatz
for δρε by linearization of the nullcline around the plateaus.

We set δηε = δρε∂ρ±η∗ + const. with a constant accounting
for deviations from the nullcline. From Eq. (F1b) one then
finds

δρε(x) = δηε(x) ∂ηstatρ± − s±
1 + d (s±

2 + s±
tot∂ηstat ρ±)

f̃ ±
ρ

, (F5)

in the upper and lower plateau, respectively. Here,
we employed the implicit function theorem to write
∂ηstat ρ± = (∂ρ±η∗)−1. With this, the first term in Eq. (F5)
states that the pattern profile is pinned to the nullcline in
the plateaus (cf. discussion of mesa splitting in Ref. [46]).
However, the source terms induce an offset from the nullcline
which gives rise to weak reactive conversion between the u
and v species. This offset is analogous to the offset of the
stationary mass-redistribution potential δηε

stat at a stationary
peak [cf. Eq. (43)].

4. Shift of the stationary mass-redistribution potential

These shifts can be understood as follows: In steady state,
production (degradation) in the slow-diffusing species u has to
be balanced by the outflow (inflow) of particles toward (from)
pattern regions where degradation (production) prevails. In
the (biologically relevant) limit Du  Dv , redistribution of
particles (in- and outflow) proceeds mainly through the fast-
diffusing species v. Hence, these redistributed particles need
to be converted by the reactions f̃ to balance production or
degradation in the slow species u. To allow for this net reactive
flux, the concentrations in the plateaus must deviate from the
nullcline where f̃ = 0 [see Eq. (F5)]. For the same reason, at
a peak or a mesa interface, the stationary mass-redistribution
potential will be offset by ε δηε

stat from the value which fulfills
reactive turnover balance, Eq. (18) [cf. Eq. (43)]. To determine
the offset ε δηε

stat at a peak, one needs that it is (approximately)
constant in the peak region (discussion of mesa patterns be-
low). Therefore, one has to assume that Dv/�

2
int � 〈 f̃η〉int, that

is, fast cytosolic diffusion on the length scale of peaks or inter-
faces compared to the average reaction rate [see Sec. VIII A].
As argued in the main text, this condition is naturally fulfilled
in the biologically relevant limit Du  Dv . Apart from this
condition of η being constant in the peak region, the following
analysis is independent of the condition Du  Dv . One can
then determine the offset of the mass-redistribution potential
at the peak δηε(0) = δηε

stat via averaging of Eq. (F1b) over the
interface [using the interface average Eq. (E6)], which gives

〈s1 + ds2〉int =
∫ �

2

0
dx (s1 + d s2)2∂Mρstat

≈
∫ �

2

0
dx(2∂Mρstat )L δρε − 〈 f̃η〉intδη

ε
stat

= 2∂Mηstat

∫ �
2

0
dx f̃ηδρε − 〈 f̃η〉intδη

ε
stat. (F6)

In the second line we used that δηε ≈ δηε
stat is approximately

constant in the peak region, and the third line is obtained
by partial integration and the property, Eq. (C3b), of the lin-
ear operator L. Finally, by assumption, Eq. (23), the change
∂Mηstat of the stationary mass-redistribution potential as a
function of the peak mass is small. Thus, one can neglect
the first term on the right-hand side of Eq. (F6), which yields
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[see Fig. 17(b)]

δηε
stat ≈ −〈s1 + d s2〉int

〈 f̃η〉int
.

This agrees with the expression, Eq. (43), given in the main
text. Moreover, one can read off that in the limit Du  Dv

that we discussed above to interpret the shift, indeed only the
source term s1 in the slow-diffusing species contributes. This
underlines that the shift in the mass-redistribution potential is
due to the additional reactive turnover necessary to balance
particle production and degradation.

In the main text, we analyzed the shift δηε
stat also from

a different perspective. For this, one modifies the reaction
term as f̃ → f̃ ′ = f̃ + ε(s1 + ds2). This redefinition cancels
all source terms in the profile equation, Eq. (15b), and the
stationary equations take the form [cf. Eqs. (15)]

0 = Dv∂
2
x ηε

stat + εsε
tot, (F7a)

0 = Du∂
2
x ρε

stat + f̃ ′(ρε
stat, η

ε
stat

)
. (F7b)

One defines the stationary pattern [ρ ′
stat (x), η′

stat] of the mass-
conserving system with the modified reaction term f̃ ′ [setting
ε = 0 in Eq. (F7a) where it appears explicitly]. This station-
ary pattern deviates from the stationary pattern [ρstat (x), ηstat]
of the original mass-conserving model due to the modified
reaction term. Expanding Eqs. (F7) (εstot = 0) to first order
in ε, the deviations ε[δρ ′(x), δη′] = [ρ ′

stat − ρstat, η
′
stat − ηstat]

fulfill

0 = −Lδρ ′ + f̃ηδη
′ + s1(ρstat, ηstat ) + ds2(ρstat, ηstat ). (F8)

As both ηstat and η′
stat are spatially uniform, Equation (F7a)

(εstot = 0) is trivially fulfilled. Importantly, Eq. (F8) agrees
with Eq. (F1b). The only difference is that δη′ in Eq. (F8)
is exactly constant. Performing the interfacial averaging,
Eq. (F6), for Eq. (F8) we can identify δη′ = δηε

stat. Thus, the
shift ε δηε

stat = η′
stat − ηstat describes the change of the sta-

tionary mass-redistribution potential due to the modification
of the reaction term f̃ → f̃ ′. This builds the basis for the
interpretation of the mathematical form of the growth rate σ ε

in Sec. VIII B.
Now with a full understanding of the shift δηε

stat, we shortly
note where the condition Dv/�

2
int � 〈 f̃η〉int stems from. One

can derive this condition by considering a quadratic correction
in δηε in the peak region and using the average 〈 f̃η〉int as
a scale for the typical reaction rate f̃η in the peak region.
If the condition is fulfilled, then the quadratic correction is
negligible in comparison to the constant contribution. Hence,
δηε is approximately constant at the peak if the condition
Dv/�

2
int � 〈 f̃η〉int is fulfilled.

We can determine the same quantity δηε
stat for mesa pat-

terns by averaging Eq. (F1b) over the interface region [again
using the interface average, Eq. (E6)]. Different from peak
patterns, in mesa patterns, most of the mass produced in
the low-density plateau is transported through the interface
into the high-density plateau where degradation prevails. Pro-
duction and degradation in the interface region only weakly
contribute. In contrast, for peak patterns all mass produced
in the low-density plateau must be degraded in the peak re-
gion, requiring a stronger shift δηε

stat than for mesa patterns.
At the mesa interface the gradient in δηε is large to trans-

port the particles from the low-density into the high-density
plateau [compare the profiles in Figs. 17(b) and 17(d)]. There-
fore, the linear gradient in δηε at the interface cannot be
neglected and δηε(x) ≈ δηε

stat cannot be assumed constant at
the interface, even if Dv/�

2
int � 〈 f̃η〉int. However, the offset

ε δηε
stat ∼ ε/〈 f̃η〉int of the mass-redistribution potential at the

interface only becomes significant compared to the profile of
the mass-redistribution potential in the plateaus (∼ε�2/Dv)
if Dv/�

2 � 〈 f̃η〉int. In this regime, a calculation analogous
to Eq. (F6) including the linear gradient in δηε(x) at the
interface shows that the gradient can be neglected for mesa
patterns as well. Thus, in the regime where the offset of the
mass-redistribution potential at the interface is significant, it
is again given by δηε

stat, Eq. (43).
In summary, we showed in this section that source

balance fixes the stationary pattern [ρstat (x), ηstat] of the
mass-conserving system that approximates the stationary pat-
tern [ρε

stat (x), ηε
stat (x)] in the presence of source terms [see

Eq. (F2)]. In the plateaus, the pattern profiles in the presence
of source terms were found to be parabolic, and they are
approximated by Eqs. (F4) and (F5). Last, we discussed that
the value of the stationary mass-redistribution potential ηε

stat
at a peak or interface shifts compared to its value ηstat in the
corresponding mass-conserving system. The shift is given by
ε δηε

stat, Eq. (43).

APPENDIX G: MASS-COMPETITION GROWTH RATE
UNDER THE INFLUENCE OF WEAK SOURCE TERMS

In this Appendix, we now adapt the linear stability analysis
of the stationary patterns in the mass-conserving system to
include the effects of source terms and calculate the growth
rate σ ε [cf. Eq. (39)]. To address the regime in which the
interplay between mass redistribution and the source terms is
important, we assume that the strength of source processes
εσS [cf. Eq. (39)] is of the same order as the growth rates σD

and σR. We neglect all higher-order terms ε2, σε, σ 2, as well
as ε δρ± [recall δρ2

± � ∂Mηstat following from Eqs. (B4), and
the assumption, Eq. (23)].

1. Mesa patterns

We first consider the competition of two half mesas
separated by a trough on the domain � = [−�

2 , �
2 ] with

no-flux boundary conditions [see Fig. 18(a)]. As in the mass-
conserving case, mass competition redistributes mass between
the two mesas, thereby translating the trough. Due to the
antisymmetry of the eigenmode (stationary pattern symmetric
around x = 0), the two interfaces shift synchronously. Due to
this antisymmetry, the length of the trough stays constant as
in the case with mass conservation although the conservation
law is broken here. Therefore, the change δρ(x) in the spatial
profile can again be approximated by a displacement of the
stationary profile, that is, by the (approximate) Goldstone
mode

δρ(x) ≈ A
∂xρ

ε
stat

�ρ
(G1)

in the inner plateau and at the interfaces [see Fig. 18(b)].
Correction terms arise in the outer plateaus (the high-density
plateaus in Fig. 18) due to the boundaries which break trans-
lation invariance [see inset in Fig. 18(b)]. Again, A is the
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FIG. 18. The mass-competition scenario under the influence of
weak source terms for mesa patterns. (a) We consider the competition
for mass of two stationary half mesas ρε

stat (x) [blue (dark gray)].
(b) The density mode δρ [blue (dark gray)] is approximated by the
translation mode ∂xρ

ε
stat (black, dashed) in the inner plateau and at

the interfaces. Because the mass-competition eigenmode changes
the length L+ of the outer (high-density) plateaus, the density mode
has to be approximated by the corresponding change of the sta-
tionary profile ∂L+ρε

stat ∼ ∂Mρε
stat at the domain boundaries (inset).

The change of the mass-redistribution potential δη [orange (light
gray)] is again approximately linear in the plateaus (red, dashed).
The construction is shown for the cubic model f̃ = η − ρ3 + ρ with
parameters Du = 1, Dv = 103, p = −0.2, ε = 10−3, and � = 40
(see Appendix H 1).

amplitude of the eigenmode and �ρ = ρ+ − ρ−. Correction
terms to Eq. (G1) are suppressed by ∼σ ε/σrelax, analogously
as in the mass-conserving system [see Appendix E].

To approximate the mode in the outer plateaus (at
x ≷ ±ξ−�/2, see Fig. 18), one observes that the translation
of the interfaces changes the length of these plateaus as if
the mesa mass M is changed. Therefore, we approximate the
eigenmode in the outer plateau by the mass mode ∂Mρstat (x)
[cf. inset in Fig. 18(b)].

As in the mass-conserving system, the mass-redistribution
potential δη(x) is linear in the plateau regions due to the fast
relaxation of the plateau density compared to mass compe-
tition [see Fig. 18(b) and Appendix E]. We again employ
for δη(x) the ansatz given in Eq. (E9b). Inserting the ansatz,
Eqs. (G1) and (E9b), into the modified continuity equation,
Eq. (C4a), integrating over [0,�/2], and using the interface
average, Eq. (E6), gives within the sharp-interface approxi-
mation

δηint

A
≈ −ξ−�

2Dv

(σ ε
+ − ε〈∂ρstot〉int )

≈ −ξ−�

2Dv

(
σ ε

+ − ε
s+

tot − s−
tot

�ρ

)
. (G2)

Here, we used δη/A ∼ max(σ, ε), following from this equa-
tion, Eq. (G2), to drop the second term on the right-hand

side of the modified continuity equation (C4a) used in its
derivation.

Again, we need a second condition to determine the two
unknown quantities δηint/A and σ ε

+. To this end, we now de-
termine a (modified) conversion-rate integral [cf. (D6)]. First,
we note that the translation mode of the stationary profile
(ρε

stat, η
ε
stat ) fulfills [applying the derivative ∂x in the station-

arity equations, Eqs. (15)][
f̃ ε
η + ε∂η

(
sε

1 + d sε
2

)]
∂xη

ε
stat

= [
Lε − ε∂ρ

(
sε

1 + d sε
2

)]
∂xρ

ε
stat. (G3)

Comparing this relation with Eq. (C3b) and the conversion-
rate integral used in the mass-conserving system, Eqs. (E11),
we define here the modified conversion-rate integral∫ �

2

0
dx

[
f̃ ε
η + ε∂η

(
sε

1 + d sε
2

)]
(∂xη

ε
stat )δρ

≈ A∂xη
ε
stat

∣∣
x= ξ−�

2
〈 f̃η〉int. (G4)

The approximation holds because ∂xη
ε
stat is approximately

constant across the interface in the sharp-interface approxi-
mation [see Fig. 17(d)].

Again we determine a second approximation for the
conversion-rate integral. Here, this is not done with the help
of Eq. (C3b)—which only holds for the mass-conserving
system—but with the identity, Eq. (G3), for the translation
mode. Using in addition, the dynamic equation, Eq. (C4b),
one finds∫ �

2

0
dx
[

f̃ ε
η + ε∂η

(
sε

1 + d sε
2

)]
∂xη

ε
statδρ

= −Duδρ
∣∣
x=�/2 ∂2

x ρε
stat

∣∣
x=�/2

+
∫ �

2

0
dx
[

f̃ηδη − (1 + d )σ ε
+δρ

]
∂xρ

ε
stat. (G5)

For the boundary term, we first use the approximation of the
non-mass-conserving stationary states Eq. (F5) to find

Du∂
2
x ρε

stat

∣∣
x=�/2 = Du∂

2
x ρstat

∣∣
x=�/2 + Du∂

2
x δρε

∣∣
x=�/2

≈ −| f̃ +
ρ |δρ+ + O(ε),

where δρ+ describes the offset from the upper plateau of
the stationary pattern in the mass-conserving system [see
Eqs. (B2)]. Then, we approximate the eigenmode in the outer
plateau using the change of the stationary profile due to a
change of the plateau length, that is, due to a change of the
plateau mass [cf. inset in Fig. 18(b)]:

δρ|x=�/2 ≈ −2A∂Mδρ+|x=�/2 + O(ε).

Neglecting terms of order ∼ εδρ± [one has δρ2
± � ∂Mηstat and

the assumption, Eq. (23)], the two approximations lead to the
boundary term

−Duδρ|x=�/2 ∂2
x ρε

stat

∣∣
x=�/2 ≈ −2A

| f̃ +
ρ |

∂ηstat M

∂ηstat δρ
2
+

2

= −2A�ρ〈 f̃η〉int∂
+
Mηstat.

The second line follows from the definition of ∂+
Mηstat,

Eq. (B4b).
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We are left to determine the gradient ∂xη
ε
stat|x=ξ−�/2 in

Eq. (G4), which is readily found from Eq. (F4) as

∂xη
ε
stat

∣∣
x= ξ−�

2
≈ −ε

|s+
tot|ξ+�

2Dv

.

Altogether, we then find from Eqs. (G2), (G4), and (G5)
analogously to the mass-conserving case [cf. Eq. (39)]:

σ ε
± ≈ σ±

R

σ±
D + σ±

R

(
σ±

D − ε
|s±

tot|
�ρ

)
.

The rates σ±
D,R are the diffusion- and reaction-limited

growth rates of the mass-competition instability in the mass-
conserving system. We performed the derivation for mesa
competition, that is, σ ε

+. The derivation proceeds analogously
for the growth rate σ ε

− describing mesa coalescence, i.e., the
competition of two troughs.

2. Peak patterns

At last, we analyze the competition between two half peaks
situated at the boundaries of the domain � = [−�/2,�/2]
symmetric around x = 0 with no-flux boundary conditions
(see Fig. 6). Neglecting corrections of order ε and corrections
due to relaxation modes [∼σ ε/σrelax, see Appendix E], we
will approximate the competition mode again by the mass
mode, that is, we use the same ansatz, Eqs. (E1), as in the
mass-conserving case.

Integration of the modified continuity equation, Eq. (C4a),
over [0, �

2 ] yields [using the no-flux boundary conditions and
the interface average, Eq. (E6)]

δη|x=�/2

A
≈ − �

2Dv

(σ ε − ε〈∂ρstot〉int ). (G6)

Following the same line of argument as in the previous cases,
one needs a second relation between δη|x=�/2/A and σ ε to de-
termine these two unknown quantities. As a second condition,
we again write down approximations for the conversion-rate
integral. To find two expressions analogous to Eqs. (E5) and
(E8) in the mass-conserving system, one needs to construct
a mode for the system including source terms that resembles
the mass mode. We cannot directly use the mass mode as in
Eq. (E8) because the source terms break the conservation law
and there does not exist a family of stationary peak patterns of
different masses. Thus, no mass mode “∂M (ρε

stat, η
ε
stat )” exists

in the system including weak source terms. Also, we cannot
use the translation mode as in the above derivation for mesa
patterns because the peak interfaces are not only translated but
the whole peaks grow or shrink.

Instead, we need a different approach. Recall that source
balance, Eq. (F2), fixes the average density of the stationary
pattern. Thus, we can emulate the mass mode by modifying
the source terms in a way that changes the average density of
the stationary pattern. To this end, we introduce an auxiliary
parameter p inducing this shift of the source terms, p = 0
recovering the original source terms. We might introduce
p by changing stot → stot + p or s1(ρ, η) → s1(ρ − p, η),
s2(ρ, η) → s2(ρ − p, η) [cf. Eq. (F2)]. The only condition is
that p parameterizes a family of stable elementary stationary
patterns which fulfill ∂pM �= 0, i.e., that the peak mass indeed

changes with p. The final result for the growth rate will be
independent of the choice of p.

From this new parameter p, one then gets the auxiliary
mode ∂p(ρε

stat, η
ε
stat ), which fulfills

− ε
(
∂ρsε

tot

)
∂pρ

ε
stat − ε

(
∂psε

tot

)
= (

Dv∂
2
x + ε∂ηsε

tot

)
∂pη

ε
stat,[

f̃ ε
η + ε∂η

(
sε

1 + d sε
2

)]
∂pη

ε
stat + ε∂p

(
sε

1 + d sε
2

)
= [

Lε − ε∂ρ

(
sε

1 + d sε
2

)]
∂pρ

ε
stat.

One may now calculate a modified conversion-rate integral
for peak patterns, analogously to Eqs. (G4) and (G5), using
the auxiliary mode, and one finds

∫ �
2

0
dx
([

f̃ ε
η + ε∂η

(
sε

1 + d sε
2

)]
∂pη

ε
stat

)
δρ

≈ A〈 f̃η〉int∂p
(
ηstat + ε δηε

stat

)
,

≈
∫ �

2

0
dx
(
[ f̃ηδη − (1 + d )σ εδρ]∂pρ

ε
stat

− ε
[
∂p(sε

1 + d sε
2

])
δρ
)
. (G7)

The boundary term arising during the calculation is exponen-
tially small in the plateau length and can be safely neglected
for the competition between peaks due to their strong mass
competition (cf. Appendix E). Using that ρε

stat − ρstat = O(ε)
implies ∂pρ

ε
stat = ∂pM ∂Mρstat + O(ε), and one finds from

Eq. (G7)

A(∂pM )〈 f̃η〉int

⎛
⎝∂Mηstat − ε∂M

〈s1 + d s2〉int

〈 f̃η〉int

∣∣∣∣∣
p=0

⎞
⎠

− εA〈∂p
(
sε

1 + d sε
2

)〉int

≈
δη
∣∣
x=�/2

2
(∂pM )〈 f̃η〉int − A

2
(∂pM )σ ε 1 + d

�int

− εA
〈
∂p
(
sε

1 + d sε
2

)〉
int.

Applying the modified continuity equation, Eq. (G6), we fi-
nally derive the growth rate, Eq. (39), which we restate here
for the reader’s convenience

σ ε ≈ σR

σD + σR

[
−4Dv

�
∂M

(
ηstat + ε δηε

stat

) + ε〈∂ρstot〉int

]
.

The rates σD,R are the diffusion- and reaction-limited
growth rates of the mass-competition instability in the mass-
conserving system [given in Eqs. (31)]. Any dependence on
the auxiliary variable p cancels out.

Finally, we use a (rough) scaling argument to show that the
additional effect of the shift ε δηε

stat only becomes significant
in the reaction-limited regime. This argument justifies the
simple expression, Eq. (44), for the growth rate σ ε in the
diffusion-limited regime, which was also verified numerically
(see Sec. VIII D). The growth rate σ ε [cf. Eq. (39)] shows that
the term including ε δηε

stat cannot be neglected as compared to
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the term εσS if

4Dv

�

∣∣∂Mδηε
stat

∣∣ � |σS|.
With the expressions for the shift δηε

stat, Eq. (43), and the rate
σS, Eq. (41), this yields

Dv

�

∣∣∣∣∣∂M

〈s1 + d s2〉int

〈 f̃η〉int

∣∣∣∣∣ � |〈∂ρstot〉int|. (G8)

To make further progress, we use that a change δρ̄ of the
average density ρ̄ mainly changes the peak mass [by assump-
tion, Eq. (23)]. Thus, the average local change δρpeak of the
density at the peak can be estimated as δρ̄ ∼ �int

�
δρpeak. As

a consequence, we have ∂M = �−1∂ρ̄ ∼ �−1
int ∂ρpeak . Building

then on the observation that the interface average, Eq. (E6),
is localized at the peak one may estimate∣∣∣∣∣∂M

〈s1 + d s2〉int

〈 f̃η〉int

∣∣∣∣∣ ∼ 1

�int

∣∣∣∣∣∂ρpeak

〈s1 + d s2〉int

〈 f̃η〉int

∣∣∣∣∣
∼ |〈∂ρstot〉int|

�int〈 f̃η〉int
. (G9)

In the second line, we additionally assumed that derivatives
with respect to ρ are of the same order when acting on the
average source term or the average reaction rate. This esti-
mate is expected to hold if the patterns are (approximately)
scale-free because all expressions are then given by power
laws (cf. Appendix B 3 a). Moreover, the strength of the source
term s1 + d s2 can be estimated by stot if the source terms are
not restricted to the fast-diffusing species v, that is, if one
has s1 � s2. Otherwise, the effect of the shift ε δηε

stat is even
smaller.

If the scaling given in Eq. (G9) holds (approximately), then
one may use it in the above inequality, Eq. (G8), and one finds
that the shift in the steady-state mass-redistribution potential
only yields a significant contribution to the growth rate σ ε if

Dv

��int〈 f̃η〉int
� 1,

which agrees with the condition for the reaction-limited
regime [cf. Eq. (33)]. The significance of the shift in the
stationary mass-redistribution potential in the reaction-limited
regime underlines our heuristic explanation that this shift is
induced by the limited rate of reactive conversion between the
slow and fast species at the peak (see Appendix F). In the
diffusion-limited regime, this conversion is fast in comparison
to the mass-redistribution process between the peaks as well
as between a peak and its plateau, and the shift is negligible.

APPENDIX H: EXAMPLE SYSTEMS

The numerical analysis of example systems was im-
plemented using Mathematica v12.2. The simulations
of coarsening and its interruption (see Figs. 1, 3, 9)
were performed using Comsol Multiphysics, Version 5.6
[107]. The Mathematica scripts and Comsol setup files
are available under https://github.com/henrikweyer/2cRD-
wavelength-selection. We now give details on the analysis of
the example models studied in detail in Sec. VIII D.

1. The cubic model

The cubic model with source terms, which serves as a pro-
totypical model for mesa-forming 2cRD systems, is defined
in Sec. VIII D 1. The profile equation, Eq. (15b), which de-
termines the stationary pattern of the mass-conserving cubic
model reads

0 = Du∂
2
x ρstat (x) + ηstat − [ρstat (x)]3 + ρstat (x). (H1)

It is equivalent to the stationary equation for the classical CH
equation. The interface profile on the infinite line is thus given
by

ρ∞
stat (x) = tanh

(
x√
2Du

)
,

and η∞
stat = 0. Asymptotically, at x → ±∞, the interface pro-

file can be approximated as

ρ∞
stat (x) → ±1 ∓ 2 exp (−|x|/�),

with the diffusion lengths �± = � = √
Du/2.23 This length

scale is related to the interface width, Eq. (E7), which reads
in the cubic model

�int ≈ 4

(∫ ∞

−∞
dx

(
∂xρ

∞
stat

)2
)−1

= 6 �. (H2)

The approximation neglects that we analyze the pattern on a
finite domain, not on the infinite line. Hence, it holds within
the sharp-interface approximation because then the interface
is well separated from the system boundaries.

To construct the stationary plateau profile on the finite
domain of length �/2, we have to account for the boundaries.
To this end, we exploit that we know the pattern profile in the
plateaus from the linearization around the plateau densities
[see Eqs. (B2)]. These cosh-profiles quickly become close
to exponential a distance ∼� away from the boundaries [see
Fig. 5(d)]. Thus, in the sharp-interface limit, we can match
these pattern tails to the interface profile calculated on the
infinite line [6� = �int  �, see Eq. (H2)]. This procedure
is called asymptotic matching [44,48,77] and determines the
offsets δρ± as

δρ± = 4 exp

(
−L±

�

)
,

which yields [using Eq. (B4b)]

∂±
Mηstat = −4

�
exp

(
−2

L±
�

)
.

Thus, inserting the above terms into the general growth-
rate expressions, Eqs. (32) and (40), one finds for the cubic
model introduced in Sec. VIII D 1

σ±
D = 16Dv

ξ∓��
exp

(
−ξ±�

�

)
,

σ±
R = 48

1 + d
exp

(
−ξ±�

�

)
,

σ±
S = |p ∓ 1|

2
.

23Note that we set the unit of time to 1 by defining the reaction term
as f̃ = η − ρ3 + ρ with the reaction rate f̃η set to 1.
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a. Approximation including pattern deformation
by the source term s1

Beyond the above “standard” approximation of the growth
rates, we also employed in Sec. VIII D 1 an improved approx-
imation that incorporates the deformation of the stationary
pattern by source terms in the slowly diffusing species u.
This modified approximation for the growth rates is obtained
by shifting source terms into the fast-diffusing species v via
replacement f̃ → f̃ ′ = f̃ + ε(p − ρ) [for the source terms
chosen for Fig. 10(b)]. For this choice of the source terms, the
profile equation, Eq. (15b), for the stationary pattern ρ ′

stat (x)
of the modified mass-conserving system takes the same form
as in the original system, Eq. (H1), but with ε-dependent
coefficients:

0 = Du∂
2
x ρ ′

stat + εp + η′
stat − (ρ ′

stat )
3 + (1 − ε)ρ ′

stat. (H3)

The solution on the infinite line is therefore changed to

ρ ′∞
stat (x) = √

1 − ε tanh

(
x

/√
2Du

1 − ε

)
. (H4)

The threshold of interrupted coarsening for mesa competition
is then obtained from numerically solving the implicit expres-
sion for εstop [cf. Eq. (47)]:

16Dv (1 − εstop)

ξ ′−��′ exp

(
−ξ ′

+�

�′

)
= εstop

ρ ′
+ − p

2
√

1 − εstop
, (H5)

where �′ =
√

Du
2(1−ε) and ξ ′

± are evaluated using

ρ ′
± = ±√

1 − ε from Eq. (H4) and ε = εstop.

b. Plateau splitting

In the numerical simulations discussed in Sec. VIII D 1 we
observed splitting of the lower pattern plateau [see Figs. 10(a)
and 10(b)]. In our previous publication, Ref. [46], a criterion
for the onset εsplit of plateau splitting is derived. We can
apply this threshold here to determine the parameter region
of plateau splitting in the cubic model. We briefly outline
the construction given in Ref. [46]: Splitting occurs if the
amplitude of the (approximately) parabolic profile of the high-
or low-density plateaus [see Eqs. (F4) and (F5)] becomes large
and its minimum or maximum, respectively, enters into the
density regime of lateral instability [−√

1/3 < ρ <
√

1/3 in
the cubic model, Eq. (57)], that is, the nullcline slope be-
comes negative at the minimum or maximum of the plateau
profiles (see Sec. IV). Because the lower plateau is longer
than the upper plateau for the chosen source terms [see insets
in Figs. 10(a) and 10(b)], the maximum of the lower plateau
enters the regime of lateral instability first, and plateau split-
ting occurs first in the lower plateau. Because in the plateaus
the local equilibrium approximation holds [Eq. (C6)], the
density profile ρε

stat (x) is slaved to the profile ηε
stat (x) given by

[see Eq. (F4)]

ηε
stat (x) = η∗(ρ−) − εs−

tot

2Dv

[
x2 −

(
ξ−�

2

)2
]
.

The profile enters the regime of lateral instability when
the maximum of ηε

stat equals the maximum of the nullcline

ηmax = 2/(3
√

3), because the nullcline slope becomes neg-
ative at its maximum. This yields the threshold for mesa
splitting

εsplit ≈ 64Dv

3
√

3(1 + p)(1 − p)2�2
, (H6)

where we neglected η∗(ρ−) as it is exponentially small in
the plateau length [cf. Sec. V]. In Figs. 10(a) and 10(b), this
threshold is depicted as a purple (top-most, diagonal) line.

2. Brusselator model

The Brusselator model was introduced in Sec. VIII D 2 as a
mass-conserving core system supplemented by source terms.
Here we use the mesa shape of the patterns at slow cytosolic
diffusion Dv and the asymptotic peak shape at large cytosolic
diffusion Dv � 1 to obtain explicit analytic approximations
for the growth rates in these two limiting regimes [cf. inset in
Fig. 11(a)]. Afterward, we discuss how the growth rates can be
determined throughout the crossover from mesa toward peak
patterns by numerically solving the stationary pattern profile.

a. Mesa-forming regime

For the mesa-forming regime, the calculation of the sta-
tionary interface pattern on the infinite domain and the
asymptotic matching to the pattern on the finite domain was
already performed in the Supplemental Material of Ref. [46].
This gives the change of the stationary mass-redistribution
potential with the mesa mass as

∂±
Mηstat = − 6�

(1 − d )Dv

exp

(
−ξ±�

�

)
,

where �± = � = √
Du. Because the interfacial profile on the

infinite line is given—as for the cubic model—by an appro-
priately scaled hyperbolic tangent function (see Ref. [46]), the
interface width is again given by

�int = 6 �.

Moreover, using the definition of the interface average,
Eq. (E6), the average conversion rate is found as

〈 f̃η〉int = 2

3d
.

Using the stationary profile and inserting the above terms into
the general growth-rate expressions, Eqs. (32) and (40), one
finds for the mesa-forming regime of the Brusselator model
introduced in Sec. VIII D 2

σ±
D = 12�

(1 − d )ξ∓�
exp

(
−ξ±�

�

)
,

σ±
R = 24

1 − d2
exp

(
−ξ±�

�

)
,

σ±
S = 1

2

∣∣∣∣p − 1√
2d

∓ 1√
2d

∣∣∣∣.
b. Peak-forming regime

As Dv is increased, the upper plateau density
ρ+ = 3

√
d/2 + (1 − d )

√
2/d increases and a transition

into peak patterns occurs (if the average density ρ̄ is fixed).
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The peak height is then limited by the total mass in the system
and its profile approaches an asymptotic form as ρ+ moves to
much higher densities, that is, as Dv → ∞. The asymptotic
peak profile ρpeak (x) [u = upeak (x) and η = ηpeak = vpeak] can
be calculated from the profile equation, Eq. (15b), in the limit
Dv → ∞, which reads

0 = Du∂
2
x upeak + (upeak )2ηpeak − upeak.

It is solved on the infinite line by (cf. the second model in
Ref. [30])

upeak(x) = M

4�
sech2

( x

2�

)
, (H7)

and the stationary mass-redistribution potential ηpeak

ηpeak = 6�

M
.

The peak mass is denoted by M. Using this stationary so-
lution and the definition of the interface width and average,
Eqs. (E7) and (E6), one finds the interface (half-peak) width
�

peak
int = 3� and the average conversion rate

〈 f̃η〉int = M2

30�2
.

Collecting the above results and using the general growth-rate
expressions, Eqs. (31) and (41), one has in the peak-forming
regime of the Brusselator model introduced in Sec. VIII D 2

σD = 24�Dv

�3 p2
, σR = 6

5
, σS = 1.

To calculate the full growth rate σ ε from these rates, one also
needs the shift of the stationary mass-redistribution potential
for the case (s1, s2) = (p − u, 0). With the stationary peak
profile, Eq. (H7), the shift given by Eq. (43) follows as

δηε
stat ≈ − p − M

6�

M2

30�2

≈ 5�

M
,

where the change in the density of the lower plateau was
neglected, and the second approximation holds for large peaks
(M/� � p). The last term δηε

stat ≈ 5�/M is used in Fig. 11(b)
to calculate the dashed, black line.

c. Mass-competition instability at the crossover
from mesa to peak patterns

Next to these analytic approximations in the mesa- and
peak-forming regimes, we can numerically determine the
growth rate σ ε throughout the crossover from mesa to peak
patterns. For this, we need to find an expression for σ ε that
interpolates in the crossover region in which the pattern is nei-
ther purely peak- nor mesa-like. For the considered scenario of
mesa/peak competition, we guessed the following expression
based on the basic physics underlying the mass-competition
instability:

σ ε = σ+
R

σ+
R + σ+

D

[
− 4Dv

ξ−�

(
∂+

Mηstat + ε ∂Mδηε
stat

)

+ ε

(
〈∂ρstot〉int + s−

tot

�ρ

)]
. (H8)

Let us analyze this expression in detail. To this end, we
first focus on the first term describing the mass exchange
between the peaks. Within the sharp-interface approxima-
tion, one has ∂Mδηε

stat ≈ 0 in the mesa-forming regime as
discussed in Sec. VIII A [see Eq. (43)]. Hence, we recover
the correct competition term in the mesa-forming regime [cf.
Sec. VIII A]. In the peak-forming regime, one finds ∂+

M ≈ ∂M ,
and also [σ+

D,R ≈ σD,R], by neglecting terms due to the pattern
tails in the low-density plateau. These correction terms are
exponentially small in the plateau length and do not con-
tribute significantly for peak patterns because the change of
the peak height induces much stronger changes of ηstat (see
Appendix B 3 a). Furthermore, in the peak-forming regime we
have ξ− ≈ 1 (up to corrections of the order of �int/�  1.
Thus, the chosen expression, Eq. (H8), also correctly de-
scribes the peak-forming regime. In the crossover region, the
use of ∂+

Mηstat and σ+
D,R ensures that no contributions from the

pattern tails in the inner, merely translated, trough are wrongly
accounted for in the mass-competition rate. Introducing ξ−
accounts for the reduced distance—and thus the increased
gradient—between the mesa/peak interfaces due to the finite
mesa/peak width.

Second, also the source contribution, the second term in
Eq. (H8), has to be modified to describe the crossover from
mesa to peak patterns. Again, one has to ensure that no con-
tributions from the inner, low-density plateau are included.
As the trough is only shifted during the mass-competition
process, total production in the low-density plateau remains
constant. To honor the shifting of the trough, let −δx describe
the shift of the interface position if the small amount of mass
δM is transferred from the left to the right (half-)mesa or
(half-)peak, i.e., δx ≈ δM/(�ρ) for mesa patterns. The source
terms then induce additional degradation at the right mesa
(peak) leading to a relaxation of the mass difference by [cf.
Eq. (63) in the Supplemental Material of Ref. [46] and use
Eqs. (49) and (50)]

∂
(source)
t δM = −εσSδM

= ε

∫ �
2

−δx
dx stot

≈ ε

(
1

2
〈∂ρstot〉int + s−

tot∂Mδx

)
2δM.

The translation of the lower integration boundary accounts
for the translation of the inner plateau and keeps the
length of the lower plateau within the integration inter-
val constant. For mesa patterns we have ∂Mδx = 1/(2�ρ)
and ε〈∂ρstot〉int = (s+

tot − s−
tot )/�ρ within the sharp-interface

approximation (see Sec. VIII B). Therefore, we recover
σS = |s+

tot|/�ρ in the mesa-forming regime [cf. Eq. (40)].
In fact, ∂Mδx ≈ 1/(2�ρ) is a good estimate as long as
the pattern amplitude does not change strongly with the
mesa/peak mass M. In the peak limit where this is no
longer the case, ∂Mδx � 1/[2(ρ̂ − ρ−)] is an upper bound
because the peak height increases with the peak mass as
well, letting the peak grow less strongly in width than
∼ 1/(ρ̂ − ρ−). Since the peak height is large in the sharp-
peak limit [(ρ̂ − ρ−) ∼ (ρ̄ − ρ−)�/�int due to the definition
of the peak mass, Eq. (16)], it follows that the additional
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term s−
tot∂Mδx is negligible in comparison to 〈∂ρstot〉int in the

peak-forming regime, and one recovers the correct rate σS for
peak patterns, Eq. (50). Moreover, one can use the approx-
imation ∂Mδx ≈ 1/(2�ρ) to express the corresponding term
in Eq. (H8). Taken together, Eq. (H8) correctly accounts for
the basic physics of mass competition under the influence of
weak source terms in the crossover regime between peak and
mesa patterns.

For the analysis in Fig. 11, we apply Eq. (H8). For this, the
phase-space construction yields s−

tot/�ρ = p
√

d/2/(1 − d )
and the simple choice of the source terms gives
〈∂ρstot〉int = −1/(1 − d ). In contrast, one has to numerically
calculate ∂+

Mηstat in the crossover region. To this end recall
that it holds ∂Mηstat = ∂+

Mηstat + ∂−
Mηstat where for plateaus

∂±
Mηstat are exponentially suppressed in the relative plateau

length 2L±/� = ξ±�/� [see Eqs. (B4)]. Given the length of
the upper plateau L+ for which we want to determine ∂+

Mηstat,
the value of ∂Mηstat is a good estimate for ∂+

Mηstat if L− � L+.
Then, one can use the value of ∂Mηstat to approximate ∂+

Mηstat.
In addition, if the plateau lengths fulfill L− � L+ on the
simulation domain, then one can construct the elementary
stationary pattern on an enlarged domain of length �̃/2
such that, for example, ξ− � 0.6 while keeping L+ fixed
(the precise threshold value of ξ− is arbitrary). Within the
sharp-interface approximation, the length of the upper plateau
is kept constant by changing the average density ρ̄ → ρ̃ on
the enlarged domain by

ρ̃ − ρ− = 2L+(ρ+ − ρ−)

�̃
= (ρ̄ − ρ−)

�

�̃
.

The value of ∂Mηstat calculated on the enlarged domain is
again a good estimate for ∂+

Mηstat at the given half-mesa length
L+ because ∂+

Mηstat only depends on the upper plateau.

3. Constant-reaction-rate peak model

As the third model system, we introduce a system
that always forms peaks in the mass-conserving case
(see Sec. VIII D 3). The peak profile is independent of the

fast diffusion constant Dv but the profile is not known ana-
lytically. The quantities appearing in σ ε are determined from
the numerically determined stationary peak profile.

a. Approximation including pattern deformation
by the source term s1

Moreover, for the analysis of the source term s1 in
Sec. VIII D 3 we again used the improved approximation ob-
tained by the reaction-term modification f̃ → f̃ ′ = f̃ + εs1

[see Fig. 12(b)]:

f̃ ′ = η − a
ρ

1 + ρ2
+ ε(p − ρ).

Consequently, the nullcline attains a (highly asymmetric)
N-shape for finite source strengths ε. This explains the ob-
served transition from peak into mesa patterns [see inset in
Fig. 12(b)]. The profile equation for the stationary profile (of
the modified mass-conserving system) turns into

0 = Du∂
2
x ρ ′

stat + η′
stat − a

ρ ′
stat

1 + ρ ′2
stat

+ ε(p − ρ ′
stat ),

which has to be solved numerically for all values of ε. The
properties of the stationary pattern entering σ ε are then calcu-
lated from the stationary patterns for the corresponding value
of ε.

b. Plateau splitting

As for the cubic model, we observe plateau splitting in the
simulation of this model [see Figs. 12(a) and 12(b)]. Again,
we use the approximation described in the Supplemental Ma-
terial of Ref. [46], to find the threshold of plateau splitting as
(calculation shown for the cubic model in Appendix H 1)

εsplit ≈ 4Dva

p�2
, (H9)

where we neglected η∗(ρ−) as well as ρ− because ρ− ≈ 0 is
small for large peaks. In Fig. 12, this threshold is depicted as
a purple (top-most, diagonal) line.
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