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Corner transfer matrix approach to the Yang-Lee singularity in the two-dimensional
Ising model in a magnetic field
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We study the two-dimensional (2D) Ising model in a complex magnetic field in the vicinity of the Yang-Lee
edge singularity. By using Baxter’s variational corner transfer matrix method combined with analytic techniques,
we numerically calculate the scaling function and obtain an accurate estimate of the location of the Yang-Lee
singularity. The existing series expansions for susceptibility of the 2D Ising model on a triangular lattice by
Chan, Guttmann, Nickel, and Perk allowed us to substantially enhance the accuracy of our calculations. Our
results are in excellent agreement with the Ising field theory calculations by Fonseca, Zamolodchikov, and the
recent work by Xu and Zamolodchikov. In particular, we numerically confirm an agreement between the leading
singular behavior of the scaling function and the predictions of the M2/5 conformal field theory.
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I. INTRODUCTION

The two-dimensional (2D) Ising model plays a prominent
role in the development of the theory of phase transition and
critical phenomena [1–10]. In Refs. [11,12] the scaling and
universality of the 2D Ising model in a magnetic field were
studied by Baxter’s corner transfer matrix approach [4]. Here
we further continue this study. We consider the planar nearest-
neighbor Ising model on regular square and triangular lattices.
Its partition function reads

Z =
∑

σ

exp

{
β

∑
〈i j〉

σiσ j + H
∑

i

σi

}
, σi = ±1, (1)

where the first sum in the exponent is taken over all edges,
the second sum—over all sites and the outer sum—over
all spin configurations {σ } of the lattice. The constants H
and β = J/kBT denote the (suitably normalized) magnetic
field and inverse temperature. The free energy, magnetization,
and magnetic susceptibility are defined as

f = − lim
N→∞

1

N
ln Z, M = − ∂ f

∂H
, χ = − ∂2 f

∂H2
, (2)

where N is the number of lattice sites and derivatives are taken
at zero field H = 0. The model exhibits a second-order phase
transition at β = βc and H = 0, where

β (s)
c = 1

2 ln(1 +
√

2), β (t )
c = 1

4 ln 3, (3)

for the square [1] and triangular [13] lattices, respectively.
Since we investigate the large lattice limit, boundary condi-
tions become irrelevant in the off-critical regime. We shall
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be using the fixed boundary conditions, which are naturally
arising in the corner transfer matrix method.

It is convenient to introduce a new temperature-like vari-
able τ ,

τ = 1

2

(√
k − 1√

k

)
, k = (τ +

√
1 + τ 2)2, (4)

defined via the “elliptic modulus” parameter k. The latter is
connected to the inverse temperature β through the following
lattice-dependent formulas [8]:

k(s) = 1

s2
, s = sinh 2β (s), (5)

k(t ) = 4t3/2

(1 − t )3/2(1 + 3t )1/2
, t = e−4β (t )

, (6)

where the superscripts (s) and (t ) stand for the square and
triangular lattices, respectively.

The temperature variable τ is inspired by the Kramers-
Wannier duality transformation τ → −τ and k → 1/k around
the critical point τ = 0. The high-temperature regime corre-
sponds to τ > 0 and k > 1.

Close to the critical point τ, H → 0, the singular part of
the lattice free energy, fsing, dominates the free energy f due
to a logarithmic singularity. It has the form

fsing(τ, H ) = m2

8π
ln[m2] + m2G(ξ ), ξ = h

|m|15/8
, (7)

where m and h are specially constructed nonlinear scaling
variables [14] whose leading terms for small τ, H → 0 are
proportional to τ and H , respectively, see Eq. (10) below.
The universality implies that the scaling function G depends
on h and m only via the ratio ξ defined in Eq. (7). Analytic
properties of the scaling function G(ξ ) in the complex plane
ξ have been thoroughly analyzed in Ref. [9].

In this paper, we investigate a detailed structure of G(ξ ) in
the neighborhood of the so-called Yang-Lee edge singularity
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[15,16]. In particular, we give a very accurate estimate for
the location of this singularity, extending the recent results of
Ref. [10].

The paper is organized as follows. In Sec. II we give a
brief exposure of the Ising scaling theory, discuss different
critical regimes and describe our approach. We also explain
the benefits of working with a triangular lattice instead of the
square one. In Sec. III we review known analytic results for
the Ising model at zero magnetic field on a triangular lattice.
We use them to determine certain parts of the free energy in
the thermodynamic limit. The calculations of the magnetic
susceptibility are reviewed in Sec. IV. In Sec. V we explain
the corner transfer matrix method and its modification for the
triangular lattice. In Sec. VII we present all numerical results
which we used to determine the expansion of the scaling
function near the Yang-Lee singularity. Finally, in Conclusion
we discuss the results and make some comments on unsolved
problems.

II. SCALING THEORY

According to the scaling theory, the lattice free energy (2)
in the vicinity of the critical point τ, H → 0 can be written as

f (τ, H ) = fsing(τ, H ) + freg(τ, H ) + fsub(τ, H ), (8)

where the leading singular part

fsing(τ, H ) = F (m(τ, H ), h(τ, H )) (9)

can be expressed through a universal scaling function
F (m, h), with the parameters τ and H entering the right-hand
side (RHS) of Eq. (9) only through nonlinear scaling variables
[14]

m(τ, H ) = −Cτ a(τ ) τ + μh H2b(τ ) + O(H4),

h(τ, H ) = CH c(τ ) H + eh d (τ ) H3 + O(H5). (10)

Note, that all the constants and coefficient functions in the
above formulas are lattice dependent. Here we assume the
following normalization:

a(τ ) = 1 + O(τ ), b(τ ) = 1 + O(τ ),

c(τ ) = 1 + O(τ ), d (τ ) = 1 + O(τ ), (11)

with Cτ > 0, CH > 0. The leading singular part (9) has the
form

F (m, h) = m2

8π
ln[m2] + m2G(ξ ), ξ = h

|m|15/8
. (12)

which was already quoted in Eq. (7). Next, the regular part
freg(τ, H ) in Eq. (8) contains no singularities at τ, H → 0 and
have the following Taylor expansion

freg(τ, H ) = A(τ ) + H2B(τ ) + O(H4). (13)

The last term fsub(τ, H ) in Eq. (8) denotes the less singular
than fsing(τ, H ) part. It can be written as

fsub(τ, H ) = H2 fsub(τ ) + O(H4). (14)

The first nontrivial contribution to fsub(τ ), associated with
irrelevant operators in the Ising CFT [17], will be determined
from the susceptibility calculations of Ref. [8].

TABLE I. Values of coefficients Gn

G2 −1.84522807823(1)
G4 8.3337117508(1)
G6 −95.16897(3)
G8 1457.62(3)
G10 −25891(2)

Analytic properties of the scaling function G(ξ ) for com-
plex ξ have been discussed in details in Refs. [9,10]. In fact,
to describe F (m, h) for both positive and negative m it is
convenient to use two different (but, of course, related) scaling
functions in Eq. (12). In the high-temperature regime m < 0
the scaling function G(ξ ) admits a series expansion

Ghigh(ξ ) = G2ξ
2 + G4ξ

4 + G6ξ
6 + G8ξ

8 + . . . . (15)

convergent in some domain around the origin ξ = 0. Note,
that this expansion contains only even powers of ξ , since for
m < 0 there is a symmetry H → −H .

In the low-temperature regime m > 0, the scaling function
admits an asymptotic expansion for small ξ

Glow(ξ ) = G̃1ξ + G̃2ξ
2 + G̃3ξ

3 + G̃4ξ
4 + . . . . (16)

containing all powers of ξ . Coefficients Gi and G̃i are univer-
sal for all lattices [12]. The first few of these coefficients are
known with a very high accuracy [11]. For later use, in Table I
we quote the coefficients Gn with n � 10.

Next, it is convenient to introduce another scaling variable

η = m

h8/15
(17)

and rewrite Eq. (12) as

F (m, h) = m2

8π
ln[m2] + h16/15
(η). (18)

Then for the high-temperature regime one obtains


(η) = η2Ghigh((−η)−15/8) for real η < 0. (19)

The function 
(η) admits the expansion for small η [9]


(η) = − η2

8π
ln η2 +

∞∑
k=0


kη
k, (20)

where the series converges in a finite domain around the origin
of the complex η-plane. The first two coefficients 
0 and 
1

are known exactly, thanks to the integrability of the critical
Ising field theory in a magnetic field [7]. The higher coeffi-
cients 
k , with k � 8 are known numerically, see Refs. [9,11].

From the high-temperature regime the function Ghigh(ξ )
can be analytically continued to complex values of ξ . The
Yang-Lee theory [15,16] guarantees analyticity of Ghigh(ξ ) in
the complex ξ -plane with two branch cuts (−i∞,−iξ0) and
(iξ0,+i∞) on the imaginary axis. These cuts arise from a
condensation of the Yang-Lee zeros of the partition function
in the thermodynamic limit [18]. In this paper, we study the
neighborhood of the Yang-Lee edge singularity at ξ = ±iξ0,
which is another critical point of the Ising model (1) asso-
ciated with the nonunitary minimal CFT model M2/5 with
the central charge c = −22/5 [19,20], often named as “Yang-
Lee” CFT (YLCFT). It has only one primary field φ with

064136-2



CORNER TRANSFER MATRIX APPROACH TO THE … PHYSICAL REVIEW E 108, 064136 (2023)

the scaling dimension 2� = −2/5. To analyze this critical
point, one needs to consider the M2/5 CFT perturbed by
the relevant operator φ together with an infinite number of
irrelevant operators. Further details are given in Sec. VII.

The suggested numerical value of ξ0 in Ref. [9] is

ξ0 = 0.18930(5). (21)

In this paper, we numerically calculate the scaling function
to study its expansion near the singularity and, in particular,
significantly improve the above estimate for ξ0, see Eq. (101)
below.

Our strategy is as follows. We consider the lattice Ising
model in the high-temperature regime with a complex mag-
netic field H in the neighborhood of the Yang-Lee edge
singularity, ξ = ±iξ0, with ξ0 given by Eq. (21). Using the
numerical corner transfer matrix algorithm, we calculate the
lattice free energy fctm(τ, H ) with relatively high accuracy (at
least 15 decimal places) for a large set of numerical values of
the temperature and magnetic field.

Using Eqs. (8) and (12), one can express the scaling func-
tion as

G(ξ ) = 1

m2

[
fctm(τ, H ) − m2

8π
ln[m2]

− freg(τ, H ) − fsub(τ, H )

]
, (22)

where all functions in the RHS are given by series in τ and
H and can be determined from analytic results and numerical
calculations in the high/low-temperature regimes.

Consider the high-temperature regime m < 0 and fix the
variable ξ . Then using Eq. (7) the scaling variable h can be
written as

h(τ, H ) = (−m(τ, H ))15/8 ξ . (23)

Combining this with Eq. (10) one can invert the series in H
and obtain the following expansion:

H (τ ) = ξ τ 15/8
∞∑

k=0

ξ 2k τ 11k/4 pk (τ ), (24)

where pk (τ ) are regular in τ . Then it is easy to see that the
coefficients of a series expansion of H (τ ) in powers of τ are
finite polynomials in ξ . Thus, the variable ξ can be assigned
to any fixed value—not necessarily small.

Substituting Eq. (24) into the RHS of Eq. (22) one obtains
a function of two variables ξ and τ , which should not depend
on τ . This is a highly nontrivial self-consistency test that
determines the accuracy of the calculation of G(ξ ). Indeed,
taking two different values of τ with a fixed ξ , one should get
the same value of G(ξ ).

The CTM method can be applied to regular square, trian-
gular, or honeycomb lattices. As was shown in Refs. [8,17],
for the Ising model the CTF irrelevant operators contribute
in the order τ 4 for the square lattice and in the order τ 6 for
the triangular/honeycomb lattices. This implies that one can
achieve much better accuracy for the triangular lattice [12].
For this reason, we restrict all further analysis to this case.

The precision of CTM calculations is limited by the ma-
chine accuracy, which in our case is 10−16. As we shall

see below, for the triangular lattice one can reliably control
the series expansion coefficients in the RHS of Eq. (22) up to
the order of τ 8. Therefore, there is an upper limit on the value
of τ for which the unknown higher terms in Eq. (22) do not
affect the precision of calculations. Having this in mind, one
needs, nonetheless, to choose τ as large as possible to speed
up the convergence of the CTM algorithm. The latter is mainly
determined by the variable

�β = β (t )
c − β = 1

4τ + O(τ 2). (25)

Numerical experiments suggest that the optimal value of �β

for the maximum precision calculations should be in the range

0.006 � �β � 0.012, (26)

where the lower bound is near the boundary of convergence of
the CTM algorithm. To reach the numerical accuracy of 10−15

the calculations were performed with corner transfer matrices
of the size N = 170.

Since the RHS of Eq. (22) contains an extra factor 1/m2,
the accuracy of calculations of G(ξ ) is reduced by four or five
decimal places. Therefore, one can expect the accuracy of the
scaling function to be around 10−10. Indeed, we calculated
G(ξ ) for a large set of points ξi in the complex plane with
three values of �β,

�β = 0.006, 0.007, 0.012, (27)

corresponding to

τ � 0.024, 0.028, 0.048. (28)

A difference between the values of G(ξ ) for these values of τ

never exceeded 2. × 10−10. Therefore, it suggests that this is
the accuracy of our calculations of the scaling function G(ξ ).

III. ISING MODEL WITH H = 0 ON A TRIANGULAR
LATTICE

In this and the next sections we will use all available exact
and perturbation theory results for the 2D lattice Ising model
to determine the lattice-dependent regular (13) and subleading
(14) contributions to the free energy, as well as to find coeffi-
cients entering the nonlinear scaling variables (10) to highest
possible orders in the variables τ and H .

The free energy of the Ising model on the triangular lattice
can be written in the form of the following integral [13]:

f (t )(τ, 0) = −1

2
ln(4 sinh 2β ) − 1

8π2

∫∫ 2π

0
dφ1dφ2

× ln[r(β ) − cos φ1 − cos φ2 + cos(φ1 + φ2)],
(29)

where

r(β ) = 3 + e8β

2(e4β − 1)
(30)

and β and τ are related through Eqs. (4) and (6).
At τ = 0 the integral in Eq. (29) can be evaluated explicitly

f (t )(0, 0) = − 5

2π
Cl2

(π

3

)
− 1

4
ln

4

3
, (31)
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where Cl2(x) is the Clausen function,

Cl2
(π

3

)
≈ 1.0149416064096536. (32)

To calculate the expansion of f (t )(τ, 0) for small τ > 0 we
first calculate the derivative of Eq. (29) with respect to β. It
can be expressed in terms of the complete elliptic integral of
the first kind

df (t )(τ, 0)

dβ
= e2β (e4β − 3)

π tanh 2β
K (1/k), (33)

and k is given by Eq. (6).
From Eqs. (4) and (6) we can express �β in Eq. (25) as

series in τ

�β = τ

4
− τ 2

16
− 11τ 3

192
+ 7τ 4

256
+ 39τ 5

1280
− 205τ 6

12288

− 1165τ 7

57344
+ 767τ 8

65536
+ 8887τ 9

589824
+ O(τ 10). (34)

Expanding Eq. (33) for small τ > 0 and integrating, we
arrive at the high-temperature expansion of the free energy
(29) at H = 0,

f (t )(τ, 0) = m2(τ, 0)

8π
ln m2(τ, 0) + A(τ ), (35)

m(τ, 0) = −Cτ τa(τ ), Cτ = 33/4

√
2

. (36)

Comparing this with Eq. (10), we obtain series expansions for
the functions a(τ ) and A(τ ),

a(τ ) = 1 − 3τ 2

16
+ 23τ 4

256
− 229τ 6

4096
+ 25819τ 8

655360
+ O(τ 10),

(37)

A(τ ) = − 5

2π
Cl2

(π

3

)
− 1

4
ln

4

3
+ τ

2
− τ 3

12
+ 3τ 5

80

− 5τ 7

224
+ 35τ 9

2304
+ τ 2

32

[
2 − 3

√
3(2 + 3 ln 12)

π

]

+ τ 4

256

[
−7 + 3

√
3(5 + 9 ln 12)

π

]
+

+ τ 6

8192

[
410

3
− 9

√
3(28 + 55 ln 12)

π

]
+

+ τ 8

65536

[
−767 +

√
3(1291 + 2682 ln 12)

π

]
+ . . . .

(38)

Using the exact expression for a zero-field magnetization
for τ < 0,

M = (1 − k2)1/8, (39)

we find the expression for the function c(τ ) in Eq. (10),

c(τ ) = − M(τ )

CH G̃1[−Cτ τa(τ )]1/8
, (40)

where the coefficient G̃1 from Eq. (16) is known [3]

G̃1 = −21/12 e−1/8 A3/2 = −1.357838341706595 . . . , (41)

and A = 1.282427 . . . is the Glaisher constant.

Using Eqs. (4) and (6), we can also expand k(τ ) in τ ,

k(τ ) = 1 + 2τ + 2τ 2 + τ 3 − τ 5

4
+ τ 7

8
− 5τ 9

64
+ O(τ 11).

(42)
Combining Eqs. (39)–(42), we finally obtain

CH = 211/48e1/8

33/32A3/2
= 0.825075494181738 . . . , (43)

c(τ ) = 1 + τ

4
+ 15τ 2

128
− 9τ 3

512
− 1447τ 4

32768
+ 649τ 5

131072

+ 109293τ 6

4194304
− 29803τ 7

16777216
− 194751097τ 8

10737418240
+ O(τ 9).

(44)

IV. SUSCEPTIBLITY

Our analysis greatly relies on the availability of the
high-order perturbation theory calculations of the magnetic
susceptibility in the Ising model on the triangular lattice [8].
As mentioned before, the first nontrivial contribution from the
CFT irrelevant operators in this case comes only at the order
τ 6 and this helps to obtain very accurate results for the scaling
function. First, we start with our definition of susceptibility
(2) with the free energy given by Eq. (8). For simplicity,
we consider the high-temperature regime τ > 0. Substituting
Eqs. (10), (12), (13), and (14) into Eq. (8) and differentiating
over H twice, one obtains

χ (τ ) = − 2C2
H G2

C7/4
τ τ 7/4

c(τ )2

a(τ )7/4
− 2[B(τ ) + fsub(τ )]

+ Cτμhτa(τ )b(τ )

2π
[1 + 2 ln(cτ τa(τ ))], (45)

where G2 is the first expansion coefficient in the scaling func-
tion Ghigh(ξ ) and given in Table I. It was evaluated with a very
high accuracy in Ref. [21].

The first term in Eq. (45) describes the contribution of
the Aharony and Fisher scaling function [14] on a triangular
lattice

FAF(τ ) = c(τ )2

a(τ )7/4
= k1/4

[
1 + τ 2

2
− 21τ 4

256

+ 85τ 6

2048
− 8669τ 8

327680
+ 49507τ 10

2621440
+ O(τ 12)

]
(46)

and the coefficient C0

C0 = −2C2
H G2

C7/4
τ

= 1.089549651052967 . . . (47)

coincides with Ctr
0± from Ref. [8].

Now let us give the expression for the Ising susceptibility
on a triangular lattice [8]. It can be written in the form

χCGNP(τ ) = C0τ
−7/4Flat(τ ) + Blat(τ ), (48)

Blat(τ ) =
∞∑

p=0

bp,q(ln τ )pτ p2
Bp(τ ), (49)

where Bp(τ ) are regular in τ . Let us note that the term with
p = 3 starts with the lowest power τ 9 and its contribution to
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the scaling function is of the order H2τ 9 ∼ ξ 2τ 11+3/4. Func-
tions Bp(τ ), p = 0, 1, 2 are given in Appendix C.3 of Ref. [8]
and we will not list them here.

We have

Flat(τ ) = FAF(τ ) + �F, (50)

�F = k1/4[c6τ
6 + c8τ

8 + c10τ
10 + O(τ 12)], (51)

c6 = −0.1774838832948664 . . . ,

c8 = − 1

102400
− 403

400
c6

= 0.1788052467945779 . . . ,

c10 = −0.1488704025260859 . . . . (52)

The term �F comes from CFT irrelevant operators and con-
tributes to the subleading part fsub(τ ).

Finally, comparing Eqs. (45) and (48) we can determine
μh, b(τ ), B(τ ), and fsub(τ ). We give them up to the order τ 5,
further terms’ contributions to the free energy are less than
10−15. We also restrict accuracy of the coefficients to 10−10

because all these functions are multiplied by H2 ∼ τ 15/4 ≈
10−6 for values of τ ≈ 0.025.

μh = −0.01047478006 . . . , (53)

b(τ ) = 1 + τ

2
+ 0.122460779 τ 2 + 9.228424771 τ 3

− 4.710909908 τ 4 + 6.54812548 τ 5 + . . . , (54)

B(τ ) = 0.02478055826 + 0.02444328450τ

+ 0.01102511536τ 2 − 0.001283871801τ 3

− 0.07567570347τ 4 − 0.03469707085τ 5 + . . . .

(55)

Contributions to fsub(τ ) come from �F in Eq. (51) and
terms proportional to (ln τ )2 in Eq. (49). We have

fsub(τ ) = 1.089549651 τ
17
4

(
1 + τ

2
+ 0.8824449774τ 2

)
− 0.0041507859(ln τ )2τ 4

×
(

1 + τ

2
− 0.8222691101τ 2

)
. (56)

Let us also notice that for τ ≈ 0.025 a contribution from
the sub-leading term (56) to the scaling function G(ξ ) is of
the order 10−8.

Finally, we need to determine eh and d (τ ) in Eq. (10). The
value of the constant eh was accurately estimated in Ref. [12],

eh = 0.00129(1). (57)

Since ehH3 = ehξ
3τ 45/8 ≈ 10−14 for τ = 0.025 and ξ = 0.2,

we can expect that the linear term in d (τ ) will give a contribu-
tion ∼10−16 to the free energy. We will neglect it and simply
choose

d (τ ) = 1. (58)

It should not affect the accuracy of the scaling function G(ξ ).

FIG. 1. The four-spin weight w(a, b, c, d ).

V. CTMRG

Corner transfer matrices (CTM) have proven to be an
effective tool for numerical study of lattice systems in 2D
[22–24]. Nishino et al. [25] introduced an improved iteration
scheme for the original Baxter approach, now known as the
corner transfer matrix renormalization group (CTMRG). In
this section we shall give a brief introduction to this method.

We first formulate the algorithm for a square lattice in the
interaction-round-face (IRF) formulation. Although this is not
essential for the algorithm, we assume that all spins take two
values, +1 and −1.

First, we introduce the four-spin Boltzmann weight
w(a, b, c, d ) as in Fig. 1.

For a symmetric square lattice Ising model we have

w(a, b, c, d ) = e
β

2 (ab+ac+bd+cd )+ H
4 (a+b+c+d ). (59)

The factors 1/2 and 1/4 enter Eq. (59) because each edge is
shared by two plaquettes and each vertex is shared by four
plaquettes of the square lattice.

Now we define a half-row transfer matrix (HRTM)
F (a, b)i, j . For the transfer matrix of the length N + 2 we fix
the leftmost spins as (a, b), the rightmost spins as (+1,+1)
and combine the remaining spins into multi-indices i and j,

i = {i1, . . . , iN }, j = { j1, . . . , jN }, (60)

as shown in Fig. 2.
The rightmost spins (+1,+1) play the role of boundary

conditions and we will always fix boundary spins to +1 val-
ues. For 2D models out of criticality, the choice of boundary
spins should become irrelevant in the thermodynamic limit. In
general, we also need a half-column transfer matrix G(a, b).
However, in the symmetric case F (a, b) and G(b, a) are re-
lated by the matrix transposition, see Eq. (63).

Now we define the corner transfer matrix (CTM) A(a)i, j ,
see Fig. 3. Its rightmost and topmost indices are fixed to +1,
the bottom and left spins are combined into matrix indices i
and j except the corner spin a.

We also sum over all internal spins shown by black cir-
cles. Here and below we follow the notation, that the spins
denoted by white circles (or rectangles for multi-indices) are

FIG. 2. The half-row transfer matrix F (a, b)i, j .
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FIG. 3. The corner transfer matrix A(a)i, j .

fixed, while the spins denoted by black circles/rectangles are
summed over.

Notice that the 2N × 2N corner transfer matrix A(a) is
nothing but the partition function of the model on the (N +
2) × (N + 2) square lattice with fixed boundary conditions.

The main idea of the CTMRG method is to calculate A(a)
recursively and truncate it at each step to physically relevant
degrees of freedom. The core of the algorithm relies on the
insight that the eigenvalues of the transfer matrix decay ex-
ponentially fast in the off-critical regime, so the vast majority
of the information about the CTMs is contained in a finite set
of dominant eigenvalues. At each step, the iteration algorithm
doubles the size of A and F , but since the majority of informa-
tion is contained in the largest eigenvalues, the smaller half of
eigenvalues can be discarded with minimal information loss
while reducing the size of the matrix to its original size.

We can summarize the algorithm by the following steps.
1. We start the algorithm with the initialization of matrices

A and F . It is easy to calculate them for small-size lattices. We
could even initialize them as random matrices with positive
entries, this does not much affect the convergence of the
algorithm.

2. We update the CTM A(a)i, j to the expanded CTM
A′(a)I,L of a double size as shown in Fig. 4.

This can be written as

A′(a)I,L =
∑
d, j,k

w(b, d, a, c)F (c, d )i jA(d ) j,kG(d, b)k,l , (61)

with I = {c, i}, L = {b, l}.

FIG. 4. The updated matrix A′(a)I,L .

If the weights w(a, b, c, d ) satisfy the symmetry

w(a, b, c, d ) = w(d, b, c, a), (62)

then the CTM A(a) will be a symmetric matrix and the half-
column matrix transfer matrix G(a, b) is a transposition of
F (b, a),

G(a, b)i, j = F (b, a) j,i. (63)

We update the HRTM F (a, b) by simply adding another
weight w on the left. After several iterations we arrive at
matrices of reasonable sizes the computer can still handle
reasonably well, say 64 × 64.

3. Now we diagonalize A′(a) for a = ±1,

A′(a) = U (a)A′
d (a)U −1(a). (64)

For a real magnetic field, the matrix A′(a) is a real symmetric
matrix. Therefore, the matrix U (a) can be chosen orthogonal.
The columns of U (a) are the eigenvectors of A′(a).

In this paper we investigate the Ising model in a complex
magnetic field H . The CTM in this case will be a complex
symmetric matrix. Its eigenvalues A′

d (a) in Eq. (64) will, in
general, be complex. We will order them by their absolute
value. The numerical calculations clearly show that all these
eigenvalues are nondegenerate (as it would reasonably be
expected). Note also, that the matrix U (a) in Eq. (64) in this
case will no longer be orthogonal or unitary.

As explained in Sec. II, for a fixed value of the temperature-
like parameter τ the free energy of the model is an analytic
function of the magnetic field H in the cut plane with the
branch cuts associated with Yang-Lee edge singularity. We
have carefully investigated a stability of our calculations with
respect to small imaginary variations of the magnetic field.
The results were always consistent and independent of the
path chosen to approach complex values of H starting from
the purely real ones, as long as the path does not cross the
Yang-Lee branch cuts.

4. If the dimension of the original CTM A(a) is N , then the
dimension of the updated matrix A′(a) will be 2N . We now
select first N eigenvalues of A′

d (a) and form 2N × N matrix
from the eigenvectors

V (a)I, j = U (a)I, j, I = 1, . . . , 2N, j = 1, . . . N. (65)

We notice that the first index of V (a) still has the tensor
structure I = {c, i} inherited from Eq. (61).

Now we form new N × N CTM An(a) and HRTM Fn(a, b),

An(a)i, j = δi jA
′
d (a)i,i, i, j = 1, . . . , N, (66)

Fn(a, b)k,l =
∑

c,d,i, j

w(b, d, a, c)

× V T (a)k,{c,i}F (c, d )i, jV (b){d, j},l , (67)

as shown in Fig. 5.
5. Then we go back to step 2 and repeat iterations until

the process converges. We may also increase the size N of
the transfer matrices to get a better convergence. We used
Intel Fortran with the maximum value N = 170 to achieve
the error comparable with the machine accuracy 10−16 for a
range of temperatures and magnetic fields near the Yang-Lee
singularity.
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FIG. 5. The updated matrix Fn(a, b).

It is possible to achieve a much higher accuracy with larger
values of N performing calculations with quad precision. For
example, in the high-temperature regime, our numerical free
energy matched the Onsager’s result with 10−25 accuracy.
However, this will not improve the accuracy of the scaling
function because we need to know series in τ to higher orders
which are determined by irrelevant operators and very hard to
control.

VI. PARTITION FUNCTION PER SITE

Once we calculated the CTM A and the HRTM F , we can
calculate the partition function per cite following Baxter’s
variational arguments [22,23]. We shall refer the interested
reader to the original Baxter’s papers and first give the result
for a square lattice. The partition function per site κ is given
by

κ = r1r4

r2r3
, (68)

with each term on the right given explicitly by

r1 =
∑

a

Tr[A(a)4],

r2 =
∑
a,b

Tr[A(a)2F (a, b)A(b)2F (b, a)],

r3 =
∑
a,b

Tr[A(a)2F (b, a)T A(b)2F (a, b)T ],

r4 =
∑

a,b,c,d

w(a, b, c, d )Tr[A(a)F (a, c)A(c)F (d, c)T

× A(d )F (d, b)A(b)F (a, b)T ]. (69)

For the symmetric Ising model, A(a) is symmetric and

F (a, b) = F (b, a)T . (70)

Now let us discuss the case of the symmetric Ising model
on a triangular lattice. We can reduce the CTMRG algorithm
to the square lattice one by choosing the weight in the form

w(a, b, c, d ) = e
β

2 (ab+ac+bd+cd+2ad )+ H
6 (2a+b+c+2d ); (71)

see Fig. 6.
The square lattice CTMRG algorithm will still work since

the weight (71) satisfies the property (62) and the matrix A(a)
is symmetric. However, the matrix F (a, b) no longer satisfies
the property (70) and we need to use F T . We also need to
modify a calculation of the partition function per site.

FIG. 6. The four-spin weight w(a, b, c, d ) for a triangular lattice.

First, we draw a triangular lattice in the form of four parts
separated by bold lines where each dashed rectangle is iden-
tified with the weight (71). We can identify this with a square
lattice with two transfer matrices A(a) and B(a) assigned to
different quadrants; see Fig. 7.

It is clear from Fig. 7 that the B(a) is equal to A2(a).
Therefore, they are both symmetric and diagonalized by the
same transformation.

A (nonnormalized) partition function r1 becomes

r′
1 =

∑
a

Tr[A(a)B(a)A(a)B(a)] =
∑

a

Tr[A6(a)]. (72)

Repeating Baxter’s arguments for the partition function per
site, we come to the expression

κt = r′
1r′

4

r′
2r′

3

, (73)

with

r′
2 =

∑
a,b

Tr[A(a)3F (a, b)A(b)3F (b, a)],

r′
3 =

∑
a,b

Tr[A(a)3F (b, a)T A(b)3F (a, b)T ],

r′
4 =

∑
a,b,c,d

w(a, b, c, d )Tr[A(a)2F (a, c)A(c)F (d, c)T

× A(d )2F (d, b)A(b)F (a, b)T ],

where w(a, b, c, d ) is given by Eq. (71). Note also, that the
HRTM F no longer satisfies Eq. (70).

We can now apply the square lattice CTM algorithm to
calculate the transfer matrices A(a) and F (a, b) and then
calculate the partition function per site using Eq. (73). The

FIG. 7. CTMs for a triangular lattice.
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free energy per site is simply given by

fctm(τ, H ) = − ln k(τ, H ). (74)

VII. NUMERICAL RESULTS

In this section, we describe numerical calculations used
to generate and analyze the data for the scaling function in
the region close to the Yang-Lee singularity. We will consider
the high-temperature regime m < 0 with a complex magnetic
field H . As explained before, the scaling function Ghigh(ξ ) has
two branch cuts (−i∞,−iξ0) and (iξ0,+i∞) with the value
ξ0 estimated in Ref. [9] and quoted here in Eq. (21).

Following Ref. [9], let us introduce the function 
imh(z)
[and a simply related function GYL(z)] via an analytic con-
tinuation of Ghigh(ξ ) to purely imaginary ξ . Here we define


imh(z) = z2GYL(z) = z2Ghigh(−iz−15/8), (75)

noting that our variable z is equal to (−y) in the original
definition of this function in Eq. (3.38b) of Ref. [9]. In terms
of the nonlinear scaling variables (10) it reads

z = (iξ )−8/15 = −m (ih)−8/15. (76)

The functions 
imh(z) and GYL(z) have a branch cut on the
real axis for 0 < z < Z0, where [9] [cf. (21)]

Z0 = 1/ξ
8/15
0 ≈ 2.4295. (77)

Below, for series expansions it will be convenient to use the
variable

v = (z − Z0) = 4
15 Z19/4

0 u + 38
225 Z17/2

0 u2 + · · · , (78)

where ξ = −iz−15/8 and

u = ξ 2 + ξ 2
0 = 15

4 Z−19/4
0 v − 285

32 Z−23/4
0 v2 + · · · . (79)

The scaling function GYL(z) has a concise interpretation
in terms of 2D Euclidean quantum field theory. Namely, it
coincides with the vacuum energy density of the Ising field
theory (IFT) in the vicinity of the Yang-Lee singularity. The
IFT is defined as the c = 1/2 CFT perturbed by the energy
and spin operators [9],

AIFT = A(c=1/2) + m

2π

∫
ε(x) d2x + h

∫
σ (x) d2x, (80)

where A(c=1/2) stands for the action of the c = 1/2 CFT of
free massless Majorana fermions, σ (x) and ε(x) are primary
fields of conformal dimensions ( 1

16 , 1
16 ) and ( 1

2 , 1
2 ). Their nor-

malization is fixed by the usual CFT convention,

x2〈ε(x)ε(0)〉 → 1, x1/4〈σ (x)σ (0)〉 → 1, as x → 0. (81)

The coupling constants m and h, appearing in Eq. (80), are
the nonlinear scaling variables, related to the lattice model
parameter τ and H via Eq. (10). Remarkably, the same field
theory can also be defined [up to a constant shift of the vacuum
energy density, see Eq. (89)] as a model of perturbed minimal
conformal field theory M2/5 (YLCFT),

Aeff = AYLCFT + λ

∫
φ(x) d2x +

∑
i

ai

∫
Oi(x) d2x, (82)

involving an infinite tower of irrelevant operators Oi(x), with
dimensions (�i,�i ) such that �i = �i (see Ref. [10] for the
details). In this work, we take into account the first few “least
irrelevant” operators∑

i

ai

∫
Oi(x) d2x

= + α

π2

∫
T T̄ (x) d2x + β

2π

∫
�(x) d2x

+ γ

2π

∫
�6(x) d2x + α5

π2

∫
(T T̄ )3(x)d2x

+ δ

2π

∫
�8(x) d2x + higher irrelevant operators.

(83)

The action (82) involves the M2/5 relevant primary operator
φ with the conformal dimensions (− 1

5 ,− 1
5 ) and the irrelevant

operators T T and (T T )3 with the dimensions (2,2) and (6,6),
respectively; the operators �, �6, and �8 with the dimensions
( 19

5 , 19
5 ), ( 29

5 , 29
5 ), and ( 39

5 , 39
5 ). The latter are the level four,

level six, and level eight descendants of the primary field
φ. We will disregard all operators with the mass dimension
greater than 78/5, since their contribution is too small to
be properly accounted for by our numerical data. Here we
assume the same definitions and normalizations of these oper-
ators as in Refs. [10,26].

The coupling constant λ carries the mass dimension [λ] ∼
[mass]12/5, while the constants α, β, γ and δ have nega-
tive mass dimensions, α ∼ [mass]−2 and β ∼ [mass]−28/5,
γ ∼ [mass]−48/5, and δ ∼ [mass]−68/5. In IFT these coupling
constants depend on the scaling parameter ξ or z, and admit
convergent series expansion in powers of v = (z − Z0), in
particular,

λ(z) =
∞∑

k=1

λ̂k (z − Z0)k = λ̂1v + λ̂2v
2 + · · · ,

α(z) =
∞∑

k=0

α̂k (z − Z0)k = α̂0 + α̂1v + · · · ,

β(z) =
∞∑

k=0

β̂k (z − Z0)k = β̂0 + β̂1v + · · · ,

γ (z) =
∞∑

k=0

γ̂k (z − Z0)k = γ̂0 + γ̂1v + · · · ,

δ(z) =
∞∑

k=0

δ̂k (z − Z0)k = δ̂0 + δ̂1v + · · · . (84)

The QFT defined by the first two terms in the action (82) is
called the Yang-Lee QFT. It is an integrable QFT containing
one scalar particle with the mass

MYL = CYL λ5/12, (85)

where [27]

CYL = 219/12√π

55/16

(
�

(
3
5

)
�

(
4
5

))5/12

�
(

2
3

)
�

(
5
6

) . (86)
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With these notations the vacuum energy density of IFT
defined by the action (82) reads

Fsing = fYLM2
YL +

∑
i

ci ai M2�i
YL

+
∑
i, j

ci j ai a j M
2�i+2� j−2
YL + · · · , (87)

where fYL = −
√

3
12 and numerical constants ci, ci j, . . . are

expressed through the vacuum expectation values of the prod-
ucts of the operators Oi(x). Remarkably, the contribution of
the operator T T (x), generated by the first term in Eq. (83),
can be calculated to all orders [28] in the coupling constant α

in Eq. (83). The result is [10]

Fsing =
F (0)

sing

1 + α F (0)
sing

, (88)

where F (0)
sing is defined by Eq. (87) with α = 0.

Next note that the energy density Fsing defined above is, of
course, a function of the scaling variable z, since the coupling
constants (84) are the series in z. The scaling function GYL(z)
introduced in Eq. (75) can now be expressed as

GYL(z) = g(z) + Fsing(z), (89)

where the function g(z) is analytic near z = Z0,

g(z) =
∞∑

k=0

ĝk (z − Z0)k = ĝ0 + ĝ1 (z − Z0) + · · · , (90)

it can be viewed as an “induced cosmological term” [10] for
the IFT (82). Note that ĝ0 = GYL(Z0).

The formula (89) allows one to parametrize the scaling
function GYL(z) by the coefficients of the series expansions
(84) and (90). Our aim is to determine the leading coefficients
of these series by fitting the results of the numerical CTM
calculations of the scaling function. Obviously, we need to
reasonably truncate the series (84) so that the contribution
of dropped terms does not exceed the error of the numerical
data used for the fit [looking ahead, we will drop all terms,
contributing powers higher than O[(z − Z0)8] into the series
(89)].

Next, note that irrespective of such truncation, the series
(84) contain an overdetermined set of coefficients, some of
which cannot be found solely from the knowledge of the
scaling function. To illustrate this point consider a few first
terms in the expansion F (0)

sing(z), given by Eq. (87) with α = 0,

F (0)
sing = fYLM2

YL + c� βM38/5
YL + c�6 γ M58/5

YL + O
(
M66/5

YL

)
,

(91)

where the constants c� and c�6 are expressed via the vacuum
expectation values of the corresponding operators, appearing
in Eq. (83), see Eq. (2.5) in Ref. [10]. Now, make the fol-
lowing transformations. First, let us absorb the coefficients γ̂k ,
k = 0, 1, 2, . . . by redefining λ̂k+5 in the first term of Eq. (91).
Next, since the coefficients λ̂k also enter the second term via
MYL one can compensate their change there by redefining β̂k ,
k = 4, 5, . . .. Therefore, the third term in Eq. (91) is “redun-
dant” as it could be completely absorbed into the first two.

Performing a similar analysis and omitting other redundant
terms one can write F (0)

sing as

F (0)
sing = fYLM2

YL + c� βM38/5
YL + c�� β2M66/5

YL

+ c�8 δM78/5
YL + O

(
M88/5

YL

)
. (92)

We stress that the above reduction of the “redundant” terms
does not mean that they do not contribute. We just state, that to
write a series expansion for F (0)

sing suitable for the fitting proce-
dure, the contribution of these terms will be accounted for via
a redefinition of the higher coefficients entering the remaining
terms in Eq. (92). In particular, the modified coefficients λ̂k+5

and β̂k+4, with k � 0, will contain additions proportional to
γ̂k . Moreover, the “induced cosmological term” (90) will have
an addition proportional to ∼(z − Z0)5 α5(z) coming from the
contribution of the (T T )3 term, contained in Eq. (83).

It is instructive to consider the series expansion of the
scaling function (89). A simple (but a bit tedious) analysis of
the possible powers of the variable v = (z − Z0) [to within the
order of O(v8)] leads to the following expression:

GYL(z) = b0 v19/6 +
∑

0�5k/6+l�8
0�k�5

ak,l v5k/6+l . (93)

It is worth noting that the coefficients in this formula will not
be all independent, since, to within the same order in v, the ex-
pression (89) contains a lesser number of different coefficients
than Eq. (93). Note also, that using Eq. (78) one could easily
rewrite Eq. (93) as a series in the variable u defined in Eq. (79).
The reason we prefer the variable v is because the expansion
coefficients ak,l in Eq. (93) do not grow as fast as those for the
corresponding expansion in u. Moreover, we could compare
our results for the first coefficients ak,l with those obtained in
Ref. [9].

Since only an approximate location of the singularity Z0 is
known, one must use a nonlinear fit to simultaneously deter-
mine the value of Z0 and coefficients ak,l and b0 in Eq. (93).
Given this, we used the following iteration procedure.

Starting with some value of Z0, initially given by Eq. (77),
the function 
imh(z) was calculated from Eqs. (75) and (22)
using the CTM method for about thirty points in the vicinity
of Z0. Then we used the NonlinearModelFit package from
Mathematica to determine the coefficients in Eq. (93) and
a new value of Z0. Subsequently, the same procedure was
repeated with an updated value of Z0 on each step.

Quite remarkably, the above iterations quickly converge to
a rather accurate value of Z0,

Z init
0 = 2.429169172, (94)

which was used as an initial value for subsequent calculations.
Alternatively, we have also used the nonlinear formula (88) to
simultaneously determine Z0 and the coefficients (84), (90),
but this led to the same result (94).

Next, we have generated approximately 2000 points in the
neighborhood of Z init

0 ,

z = Z init
0 + (ρ + δ) eiφ j , φ j = π j

6
, j = 0, 1, 2, 3, (95)

with 0 < ρ < 1, δ = 0.002, and calculated the correspond-
ing values of 
imh(z) from Eqs. (75) and (22). For further
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FIG. 8. Numerical data points (red dots) for ln[−Im
′
imh(Z0 +

iε)] fitted by Eq. (98).

reference, it is convenient to split these points into the sets

�i = { 0.1(i − 1) + δ < |z − Z0| < 0.1 i + δ }, (96)

where i = 1, . . . , 10, containing 200 points each. All calcula-
tions were done with several values of τ , given by Eq. (28), for
each value of ξ (or z), as previously explained. A difference
between the values of the scaling function with the same ξ (but
different τ ) never exceeded 2 × 10−10, so we kept 10 decimal
figures in our results for 
imh(z). Some numerical data for the
function 
imh(z) are given in the Appendix.

The first test for our numerical analysis is to demonstrate
the presence of the leading singular contribution (z − Z0)5/6

in Eq. (93) to confirm the CFT prediction (93). In doing
this, we need to suppress the regular terms a0,0 + a0,1(z − Z0)
which smoothen the behavior of 
imh(z) near z = Z0. This
is achieved by differentiating (93) with respect to z and con-
sidering Im
′

imh(z) with z = Z0 + iε, ε > 0 (here the prime
denotes the z-derivative). Since we expect a1,0 to be real, a
simple calculation gives

Im 
′
imh(Z0 + iε) = −5Z2

0

6
a1,0 sin

π

12
ε−1/6 + O(ε2/3).

(97)
Using a very accurate numerical differentiation, we have

calculated the data points for Im
′
imh(z) in the range 2.5 ×

10−3 < ε < 4.5 × 10−3 and obtained the following fit:

ln[−Im 
′
imh(Z0 + iε)]

= −0.1650 ln(ε) − 1.204 + 0.2197 ε5/6 + O(ε), (98)

which also takes into account the correction term in Eq. (97).
The fitting function (98) together with numerical data points
is shown in Fig. 8 in the logarithmic scale.

As expected, the plot is very close to the straight line with
the slope − 1

6 with a small deviation due to the next order

TABLE III. Coefficients ĝk , λ̂k , and α̂k

k ĝk λ̂k α̂k

0 0.0928378351 – −1.3478038278
1 0.1035665061 0.1720881869 0.0845043112
2 −0.0406336255 −0.0530975348 −0.1988535226
3 −0.1021530341 −0.0432647893 0.1096925182
4 0.0622170621 −0.0060926724 0.0588155481
5 −0.0427391325 0.0015477546 −0.0907062356
6 0.0367166751 −0.0026569648 0.0650203209
7 0.0120039152 −0.0046983681 –
8 −0.0179189367 −0.0050775498 –

corrections in Eq. (97). The result confirms the CFT prediction
for the exponent (5/6) of the leading singular term in Eq. (93)
to within 0.2% accuracy (our value is 5.010/6).

For the subsequent fits, we used the nonlinear formula
obtained from Eqs. (89) and (88), with truncated series (84)
and (90) dropping all terms whose contributions into Eq. (93)
are of the orders higher than O[(z − Z0)8]. As follows from
our estimates, the coefficients ak,l for such terms appear be of
the order 10−2 and smaller. This means that for |z − Z0| < 0.2
contributions of the discarded terms are expected to be of the
order of 10−9 or less.

For this reason the main nonlinear fit for 
imh(z) we used
400 points (95) with 0 < ρ < 0.2, i.e., for which z ∈ (�1 ∪
�2), as defined in Eq. (96). Subsequently, the accuracy of the
fit was tested for all subsets (96) of calculated data points. The
Table II contains the maximum difference (error) between the
value of the fit and a numerical value of 
imh(z) calculated
with the CTM method,

�i = max
z∈�i

∣∣
imh(z) − 
CTM
imh (z)

∣∣. (99)

Since the points z ∈ {�1 ∪ �2} were used for the fit, it is
not surprising that for i = 1, 2 the error is of the order of 10−10

or less. In fact, it coincides with the accuracy of our numerical
calculations of 
imh(z). The same accuracy also holds for the
location of the singularity

Z0 = 2.4291691718(2), (100)

arising from our final fit. The corresponding position of the
singular point ξ0 for Ghigh(ξ ) is

ξ0 = 0.18935060551(3). (101)

Further, Table II shows that for the subsequent sets z ∈ �i,
with i � 3, the accuracy of the fit drops down, which is natural
due to an increasing effect of truncation of the series (93).
Nevertheless, the value of Z0, given in Eq. (100), remains
stable, even if points z ∈ �i, with i � 3, are included in the
fit.

TABLE II. The maximum error between 
trun
imh (z) and 
CTM

imh (z) for the points z ∈ �i.

i 1 2 3 4 5 6 7 8 9 10

�i 1.1 × 10−10 4.3 × 10−11 1.8 × 10−8 3.0 × 10−7 1.8 × 10−6 1.6 × 10−5 1.2 × 10−4 6.5 × 10−4 3.1 × 10−3 1.3 × 10−2

064136-10



CORNER TRANSFER MATRIX APPROACH TO THE … PHYSICAL REVIEW E 108, 064136 (2023)

TABLE IV. Coefficients ak,l of the truncated scaling function GYL(z) from Eq. (93).

�����l
k

0 1 2 3 4 5

0 0.0928378351 −0.2326384010 0.0729439864 −0.0228716546 0.0071714285 −0.0201278728
1 0.1035665061 0.0598168387 −0.0420846767 0.0205105351 −0.0087246739 −0.0105062255
2 −0.0406336255 0.0502778268 −0.0135928541 0.0012416359 0.0012912732 −0.0151031033
3 −0.1021530341 0.0095546595 −0.0076813505 0.0222269546 −0.0081326053 −0.036304106
4 0.0231406896 0.0184911041 −0.0070095153 −0.0314395832 0.0212048796
5 −0.0183244972 −0.0135214010 0.0173465826 0.0001177947
6 0.0426269803 0.0054321576 −0.0088442156
7 0.0237701200 −0.0002697285
8 0.0032474000

The final fit for the coefficients ĝk , λ̂k , and α̂k from
Eqs. (84) and (90) is shown in Table III. Let us notice that
the higher coefficients may be correct only up to one or two
significant digits due to the series truncation. The lower coeffi-
cients should be still correct up to eight or nine digits. It is hard
to estimate the number of correct digits in each coefficient, so
we left them as they were produced by Mathematica.

Let us comment on this in more detail. We need to use all
digits in coefficients in Table III to produce accurate values
for 
imh(z) from the Appendix. Any truncation will cause
a significant deviation from the values given there. It seems
that this contradicts the statement from the previous para-
graph. The explanation is that the series (93) contains too
many independent powers in v with a very small separation
of exponents. As a result, one can construct another fit for

imh(z) which will reproduce the data from Appendix with
10−10 accuracy but higher coefficients will coincide only up
to one or two significant digits. In other words, one needs the
data with much higher precision to get reliable information
about coefficients with k > 2 in Table III.

Now let us give coefficients ak,l of the series expansions
(93) for the function GYL(z). They are shown in Table IV. The
coefficient b0 coming from the leading power in the second
term of Eq. (92) is estimated as

b0 = 0.0623126407. (102)

Let us notice that to get the series expansion for 
imh(z) from
GYL(z) we could use Eq. (75). However, due to the presence
of the extra factor (Z0 + v)2, coefficients for 
imh(z) will be
in the range (0.1,0.5).

We can also get an estimate for the term c� β(z) in Eq. (92),

c� β(z) = 0.01015847 + 0.0070108 v

+ 0.009344 v2+ 0.006279 v3− 0.00058 v4+ . . . ,

(103)

where v = z − Z0. From the third term in Eq. (92) we can
estimate c��:

c�� ≈ 7.69 c2
�. (104)

Finally, from the expansion for the fourth term in Eq. (93) we
obtain

c�8δ(z) = −0.00064 − 0.00094 (z − Z0) + . . . . (105)

It appears, that the values in Eqs. (103)–(105) should be un-
derstood only as an order-of-magnitude estimate.

Note that the value of a1,0 can also be estimated from
Eq. (98),

a1,0 ≈ − 6

5Z2
0 sin(π/12)

exp(−1.204) ≈ −0.236, (106)

which is below the more accurate value

a1,0 = 2 fYLC2
YLλ̂

5/6
1 = −0.232638 . . . . (107)

The discrepancy is mostly caused by the fact that Eq. (98) con-
tains an approximate “fitted” value of the leading coefficient
−1/6, while in Eq. (93) the related exponent 5/6 is set to its
exact value.

Next, we present a few coefficient functions Gk (u) in the
expansion of Ghigh(ξ ) near ξ = ±iξ0 in terms of variable u =
ξ 2 + ξ 2

0 ,

GYL(ξ ) = G0(u) + G1(u)u
5
6 + G2(u)u

5
3 + G3(u)u

5
2 + · · · ,

(108)

G0(u) = 0.09284 + 1.871u + 19.8u2 − 371u3 + . . . ,

G1(u) = −2.5947 − 26.154u − 172u2 + . . . ,

G2(u) = 9.076 + 171.35u + 2091u2 + . . . ,

G3(u) = −31.75 − 878.7u + . . . . (109)

FIG. 9. A comparison of Ghigh(ξ ) and GYL(ξ ) along the imagi-
nary axis ξ = ix.
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TABLE V. The values of the function 
CTM
imh (zk j ) for k = 1 . . . , 50 in Eq. (112).

k j = 0 j = 1 j = 2 j = 3

1 0.5381281124 0.5388576178−0.0037551981 i 0.5409580608−0.0069867366 i 0.5441685923−0.0092201138 i
2 0.5316643828 0.5328233012−0.0061499721 i 0.5361791624−0.0115048992 i 0.5413665298−0.0153222565 i
3 0.5260966328 0.5276005678−0.0081648500 i 0.5319740744−0.0153345159 i 0.5387912192−0.0205573761 i
4 0.5210726235 0.5228705683−0.0099492992 i 0.5281177055−0.0187460166 i 0.5363536754−0.0252653491 i
5 0.5164343051 0.5184902651−0.0115704462 i 0.5245091767−0.0218608258 i 0.5340142086−0.0295986922 i
6 0.5120922803 0.5143787623−0.0130662842 i 0.5210914732−0.0247476642 i 0.5317504712−0.0336436922 i
7 0.5079893267 0.5104842833−0.0144611440 i 0.5178281207−0.0274505408 i 0.5295482110−0.0374555959 i
8 0.5040858306 0.5067709856−0.0157718755 i 0.5146938778−0.0299999370 i 0.5273975912−0.0410726638 i
9 0.5003528306 0.5032126646−0.0170108013 i 0.5116702953−0.0324181461 i 0.5252914378−0.0445228788 i
10 0.4967682841 0.4997893762−0.0181873018 i 0.5087433332−0.0347221428 i 0.5232243020−0.0478275482 i
11 0.4933148872 0.4964854624−0.0193087421 i 0.5059019694−0.0369252573 i 0.5211919134−0.0510034067 i
12 0.4899787168 0.4932883244−0.0203810488 i 0.5031373353−0.0390382187 i 0.5191908407−0.0540639260 i
13 0.4867483441 0.4901876190−0.0214090870 i 0.5004421500−0.0410698372 i 0.5172182704−0.0570201703 i
14 0.4836142303 0.4871747133−0.0223969170 i 0.4978103353−0.0430274680 i 0.5152718561−0.0598813788 i
15 0.4805683018 0.4842422993−0.0233479759 i 0.4952367452−0.0449173385 i 0.5133496129−0.0626553764 i
16 0.4776036425 0.4813841164−0.0242652072 i 0.4927169705−0.0467447846 i 0.5114498414−0.0653488693 i
17 0.4747142661 0.4785947448−0.0251511589 i 0.4902471931−0.0485144256 i 0.5095710707−0.0679676661 i
18 0.4718949444 0.4758694503−0.0260080558 i 0.4878240772−0.0502302976 i 0.5077120165−0.0705168428 i
19 0.4691410739 0.4732040640−0.0268378567 i 0.4854446843−0.0518959546 i 0.5058715475−0.0730008712 i
20 0.4664485728 0.4705948890−0.0276422980 i 0.4831064078−0.0535145486 i 0.5040486604−0.0754237191 i
21 0.4638137990 0.4680386259−0.0284229288 i 0.4808069204−0.0550888928 i 0.5022424597−0.0777889290 i
22 0.4612334838 0.4655323133−0.0291811392 i 0.4785441326−0.0566215125 i 0.5004521412−0.0800996825 i
23 0.4587046785 0.4630732792−0.0299181827 i 0.4763161585−0.0581146859 i 0.4986769789−0.0823588509 i
24 0.4562247111 0.4606591018−0.0306351951 i 0.4741212875−0.0595704781 i 0.4969163144−0.0845690386 i
25 0.4537911490 0.4582875763−0.0313332100 i 0.4719579624−0.0609907693 i 0.4951695480−0.0867326173 i
26 0.4514017700 0.4559566876−0.0320131714 i 0.4698247587−0.0623772773 i 0.4934361308−0.0888517558 i
27 0.4490545358 0.4536645878−0.0326759450 i 0.4677203696−0.0637315780 i 0.4917155594−0.0909284440 i
28 0.4467475713 0.4514095759−0.0333223268 i 0.4656435919−0.0650551216 i 0.4900073696−0.0929645144 i
29 0.4444791458 0.4491900821−0.0339530514 i 0.4635933143−0.0663492465 i 0.4883111328−0.0949616591 i
30 0.4422476574 0.4470046528−0.0345687985 i 0.4615685075−0.0676151917 i 0.4866264515−0.0969214452 i
31 0.4400516192 0.4448519390−0.0351701985 i 0.4595682156−0.0688541072 i 0.4849529565−0.0988453284 i
32 0.4378896486 0.4427306853−0.0357578378 i 0.4575915486−0.0700670629 i 0.4832903036−0.1007346635 i
33 0.4357604556 0.4406397209−0.0363322630 i 0.4556376760−0.0712550567 i 0.4816381714−0.1025907149 i
34 0.4336628353 0.4385779517−0.0368939847 i 0.4537058210−0.0724190213 i 0.4799962592−0.1044146650 i
35 0.4315956590 0.4365443522−0.0374434807 i 0.4517952559−0.0735598299 i 0.4783642848−0.1062076215 i
36 0.4295578677 0.4345379609−0.0379811995 i 0.4499052971−0.0746783020 i 0.4767419829−0.1079706247 i
37 0.4275484663 0.4325578734−0.0385075620 i 0.4480353017−0.0757752080 i 0.4751291039−0.1097046528 i
38 0.4255665178 0.4306032380−0.0390229647 i 0.4461846638−0.0768512731 i 0.4735254122−0.1114106278 i
39 0.4236111385 0.4286732516−0.0395277812 i 0.4443528118−0.0779071816 i 0.4719306851−0.1130894193 i
40 0.4216814936 0.4267671553−0.0400223642 i 0.4425392049−0.0789435794 i 0.4703447122−0.1147418496 i
41 0.4197767938 0.4248842310−0.0405070472 i 0.4407433317−0.0799610779 i 0.4687672937−0.1163686968 i
42 0.4178962913 0.4230237988−0.0409821459 i 0.4389647071−0.0809602558 i 0.4671982402−0.1179706984 i
43 0.4160392770 0.4211852132−0.0414479597 i 0.4372028704−0.0819416625 i 0.4656373716−0.1195485544 i
44 0.4142050774 0.4193678617−0.0419047727 i 0.4354573842−0.0829058193 i 0.4640845166−0.1211029299 i
45 0.4123930522 0.4175711612−0.0423528547 i 0.4337278321−0.0838532219 i 0.4625395118−0.1226344578 i
46 0.4106025921 0.4157945570−0.0427924627 i 0.4320138174−0.0847843423 i 0.4610022015−0.1241437408 i
47 0.4088331163 0.4140375204−0.0432238413 i 0.4303149616−0.0856996303 i 0.4594724370−0.1256313534 i
48 0.4070840710 0.4122995468−0.0436472237 i 0.4286309036−0.0865995147 i 0.4579500760−0.1270978444 i
49 0.4053549275 0.4105801545−0.0440628325 i 0.4269612983−0.0874844051 i 0.4564349824−0.1285437377 i
50 0.4036451802 0.4088788829−0.0444708802 i 0.4253058155−0.0883546928 i 0.4549270260−0.1299695344 i

It is instructive to compare the previous results [11] for the
scaling function Ghigh(ξ ) [given in Eq. (15) and Table I] and
our new results for the function GYL(ξ ) for purely imaginary
values of the argument ξ = ix in the interval x ∈ (0, 0.2). As
shown in Fig. 9, the two functions match very well in the
intermediate region and deviate from each other towards the
ends of the interval.

Finally, note that our results for the leading coefficients of
the coupling constant

λ(z) = λ̂1 v + λ̂2 v2 + . . . = λ1 u + λ2 u2 + . . . (110)

are in excellent agreement with the results of Refs. [9,10] [the
variables v and u are defined in Eqs. (78) and (79)]. Indeed,
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TABLE VI. The values of the function 
CTM
imh (zk j ) for k = 51, . . . , 75 in Eq. (112).

k j = 0 j = 1 j = 2 j = 3

51 0.4019543458 0.4071952913−0.0448715701 i 0.4236641390−0.0892107524 i 0.4534260817−0.1313757145 i
52 0.4002819614 0.4055289577−0.0452650967 i 0.4220359659−0.0900529422 i 0.4519320294−0.1327627374 i
53 0.3986275835 0.4038794777−0.0456516463 i 0.4204210056−0.0908816059 i 0.4504447541−0.1341310440 i
54 0.3969907869 0.4022464634−0.0460313975 i 0.4188189794−0.0916970728 i 0.4489641450−0.1354810570 i
55 0.3953711632 0.4006295423−0.0464045214 i 0.4172296190−0.0924996591 i 0.4474900954−0.1368131827 i
56 0.3937683205 0.3990283567−0.0467711826 i 0.4156526673−0.0932896684 i 0.4460225027−0.1381278114 i
57 0.3921818820 0.3974425624−0.0471315389 i 0.4140878761−0.0940673926 i 0.4445612681−0.1394253186 i
58 0.3906114851 0.3958718287−0.0474857422 i 0.4125350071−0.0948331124 i 0.4431062961−0.1407060656 i
59 0.3890567810 0.3943158370−0.0478339386 i 0.4109938303−0.0955870981 i 0.4416574949−0.1419704005 i
60 0.3875174339 0.3927742803−0.0481762685 i 0.4094641243−0.0963296098 i 0.4402147755−0.1432186585 i
61 0.3859931199 0.3912468629−0.0485128675 i 0.4079456753−0.0970608982 i 0.4387780522−0.1444511633 i
62 0.3844835269 0.3897332993−0.0488438661 i 0.4064382769−0.0977812052 i 0.4373472419−0.1456682267 i
63 0.3829883536 0.3882333142−0.0491693900 i 0.4049417301−0.0984907641 i 0.4359222643−0.1468701502 i
64 0.3815073092 0.3867466418−0.0494895607 i 0.4034558422−0.0991898001 i 0.4345030418−0.1480572248 i
65 0.3800401129 0.3852730251−0.0498044954 i 0.4019804272−0.0998785308 i 0.4330894990−0.1492297318 i
66 0.3785864931 0.3838122157−0.0501143074 i 0.4005153050−0.1005571663 i 0.4316815631−0.1503879434 i
67 0.3771461874 0.3823639734−0.0504191060 i 0.3990603012−0.1012259101 i 0.4302791634−0.1515321227 i
68 0.3757189420 0.3809280659−0.0507189970 i 0.3976152471−0.1018849586 i 0.4288822313−0.1526625247 i
69 0.3743045108 0.3795042680−0.0510140828 i 0.3961799791−0.1025345023 i 0.4274907001−0.1537793961 i
70 0.3729026561 0.3780923618−0.0513044624 i 0.3947543389−0.1031747255 i 0.4261045053−0.1548829760 i
71 0.3715131472 0.3766921361−0.0515902317 i 0.3933381726−0.1038058068 i 0.4247235841−0.1559734963 i
72 0.3701357607 0.3753033861−0.0518714835 i 0.3919313311−0.1044279190 i 0.4233478755−0.1570511819 i
73 0.3687702797 0.3739259134−0.0521483079 i 0.3905336697−0.1050412301 i 0.4219773200−0.1581162509 i
74 0.3674164943 0.3725595249−0.0524207921 i 0.3891450479−0.1056459029 i 0.4206118602−0.1591689151 i
75 0.3660742004 0.3712040338−0.0526890207 i 0.3877653291−0.1062420951 i 0.4192514396−0.1602093800 i

our values

λ1 = 3.10916(2), λ2 = 37.6(8), (111)

corresponding to λ̂1, λ̂2 from Table III, perfectly match
the values λ1 = 3.089 ± 0.008, λ2 = 38.4 ± 1.6, given by
Eq. (4.7) of Ref. [10]. Similarly, their values for f0 =
0.092746 . . . (denoted here as ĝ0) and for α̂0 = −1.32 ± 0.05,
given in their Eqs. (3.10) and (4.8), respectively, match our
values presented in Table III.

VIII. CONCLUSION

One of the motivations of our work was to confirm
and extend the field theory results [9,10] on the Yang-
Lee edge singularity through ab initio calculations, directly
from the original lattice formulation (1) of the Ising
model.

We used Baxter’s variational approach based on the corner
transfer matrix (CTM) method [24], enhanced by an improved
iteration scheme [25], known as the corner transfer matrix
renormalization group (CTMRG). The main advantage of this
approach over other numerical schemes (e.g., the row-to-
row transfer matrix method) is that it is formulated directly
in the limit of an infinite lattice. Its accuracy depends on
the magnitude of truncated eigenvalues of the corner trans-
fer matrix (which is at our control), rather than the size
of the lattice. This allows one to calculate the lattice free
energy of the model with a rather high precision, of about
30 digits. However, the accuracy of the calculation of the
universal characteristics of the continuous scaling theory is

limited by the existence of unknown lattice-dependent sub-
leading contribution to the free energy. This is the reason
we have chosen the triangular lattice, where such contribu-
tions only appear in the order of τ 6, where τ ∼ (T − Tc)
is the deviation from the lattice critical temperature. Next,
we were able to completely determine these O(τ 6) con-
tributions by using the best available perturbation theory
calculation of the magnetic susceptibility of the lattice Ising
model [8].

In the analysis presented in Secs. III and IV we used
all available exact and perturbation theory results on the 2D
lattice Ising model to determine the lattice-dependent regular
and subleading contributions to the free energy, as well as to
find coefficients entering the nonlinear scaling variables (10)
to highest possible orders in the variables τ and H . After
these preparations the universal part of the free energy has
been numerically calculated using Eq. (22) for a large number
of different values of the scaling parameter ξ (or z), defined
in Eq. (76). The use of the nonlinear scaling variables (10)
allowed us to perform calculations sufficiently away from the
critical point with a reliable convergence of the algorithm.
Using this technique we have numerically calculated (with
10-digit accuracy) the universal scaling function of the Ising
Field Theory in the vicinity of the Yang-Lee singularity. This
data was used to numerically find a set of main parameters
describing the Ising Field Theory as a model of perturbed
minimal conformal field theory M2/5 involving an infinite
tower of irrelevant operators. We also determined the location
of the Yang-Lee singularity with a much higher (10 digits)
accuracy than it was previously known [10,26] and confirmed
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the leading exponent in the singular expansion of the free
energy near the critical point predicted by the conformal field
theory.
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APPENDIX: NUMERICAL DATA FOR THE SCALING
FUNCTION

In this Appendix, we give numerical values for the function

CTM

imh (z) in the regions �1, �2, and �3 from Eq. (96). In our

original fitting we used the step 0.002 for values of ρ. Here we
only give 50% of all points and use the step 0.004. The values
of z are given by

zk j = Z in
0 + (0.0001 + 0.004k)e

iπ j
6 ,

k = 1, . . . , 75, j = 0, . . . , 3 (112)

Z in
0 = 2.4291691718. (113)

In Table V all points belong to the region �1 ∪ �2. The
maximum error for these data is 1.87 × 10−10. The error is
estimated through the calculation of 
CTM

imh (z) for several
values of τ as explained after (96). It is slightly higher than
the error �1 in the first column of Table II. In Table VI we
give values for points in �3.
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