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Continuum contact process and influence of impurity on the critical behavior in absorbing-state
phase transitions in two dimensions
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We study via Monte Carlo simulations the influence of quenched and mobile impurities in the contact process
(CP) on two-dimensional lattice and continuum systems. In the lattice system, the effect of mobile impurity was
studied for the density ni = 0.2 and two selected values of hopping probability for impurity particles, w = 0.5
and 1. In the continuum system, the CP was defined by distributing spherical impurity particles of diameter σi and
number density ni = 0.2 and active particles of diameter unity and number density 1 − ni on a square substrate
with periodic boundaries. In each dynamic process, a particle is selected at random; the active particle either
creates with a rate λ an offspring at a distance r (1 � r � 1.5) from the active particle or annihilates with a unit
rate, and the impurity particle hops a distance r (0 � r � 1), both along randomly selected directions. We found
that the lattice CP shows power-law behaviors with varying critical exponents depending on the values of w. For
the continuum CP with quenched impurity, the critical behavior followed the activated scaling scenario, whereas
with mobile impurity usual power-law behaviors were observed but the critical exponents varied depending on
the values of σi.
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I. INTRODUCTION

Nonequilibrium continuous phase transitions of reaction-
diffusion systems have attracted considerable attention during
the past decades [1–4]. The simplest model that exhibits
such a transition is the contact process (CP) with a reaction-
diffusion scheme of spreading A → 2A with a rate λ and
extinction A → 0 with a rate μ [5,6]. As λ decreases, the
system undergoes a phase transition from an active phase into
an inactive absorbing state at the critical rate λc. The CP is
known to show the same critical behavior as that of models
that belong to the widely known directed percolation (DP)
universality class [7,8], to which various models satisfying the
DP conjecture—such as the reaction-diffusion process, dam-
age spreading, certain probabilistic cellular automata [9,10],
and pair-contact process [11]—are known to belong. Differ-
ent universality classes such as the parity-conserving class
[12,13] and conserved DP class (also called Manna class)
[14,15] were also reported for models with additional symme-
tries and conservation laws that were not specified in the DP
conjecture.

Most models proposed so far describing the absorbing
phase transition (APT) were proposed on lattices, and only
few that mimic population dynamics were carried out on
a continuum substrate with point particles [16,17]. It was
only recently that models in continuous media with particles
having excluded volume were studied to understand the exper-
imental observations for driven colloidal suspensions [18,19].
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The APT in continuous media is less interesting, because
the lattice and continuum models are known to exhibit the
same critical behavior in equilibrium statistical physics, and
the same universality is believed to hold for nonequilibrium
systems as well. However, the recently developed interacting
particle model in continuous media was reported to exhibit
a critical behavior that is consistent with the DP critical be-
havior despite an additional conservation of the number of
particles [20]. More recently, one of us studied an overlap-
ping particle model that is believed to belong to the same
universality class as the interacting particle model of Ref. [20]
and showed that the critical behavior was distinct from the DP
critical behavior [21].

An influence of uncorrelated quenched disorder on the
critical behavior in the APT was introduced by applying the
Harris criterion [22], established originally for equilibrium
spin systems, to the nonequilibrium APT, and has attracted
great interest in recent decades. The Harris criterion implies
that, for any amount of quenched disorder added to a system,
the pure fixed point is unstable if the specific heat exponent
α > 0, suggesting that the critical behavior of the disordered
system differs from that of the pure system. For an APT, the
hyperscaling relation α = 2 − dν [23] leads the disorder to
be relevant if dν < 2, where d and ν are, respectively, the
substrate dimension and spatial correlation-length exponent.
This problem was first studied by Kinzel [9] and later in
more detail by Noest [24], who studied the critical behavior of
spatially disordered stochastic cellular automata (SCA). Mor-
eira and Dickman subsequently studied by Monte Carlo (MC)
simulations the influence of random dilution of lattice sites on
a two-dimensional (2D) CP [25–27]. Both the clean SCA and
CP are known to belong to the DP universality class for which
dν < 2 holds for d < 4. In these studies, quenched impurity
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yielded spreading from a single particle on a disordered sys-
tem that was logarithmic at the critical point, and the existence
of the Griffiths phase between pure and disordered critical
points where the time dependence is governed by nonuni-
versal power laws. The renormalization calculation using the
Reggeon field theory also supported instability of a pure fixed
point [28].

Recently Hooyberghs et al. further explored the effect of
randomness by strong disorder renormalization-group cal-
culations by mapping a 1D disordered CP onto a random
quantum-spin chain using the Hamiltonian formalism and
found that the transition is controlled by an infinite random-
ness fixed point [29]. At the infinite randomness fixed point,
the power-law scaling τ ∼ ξ z, τ and ξ being, respectively,
the temporal and spatial correlation lengths, was predicted to
be replaced by the activated dynamic scaling ln τ ∼ ξψ , ψ

being the tunneling exponent, whereas the static scaling be-
havior remained a conventional power-law type. The activated
scaling yields the density of particles and survival probability
of diverging logarithmically in the asymptotes. For a weak
disorder, they predicted nonuniversal exponents that vary con-
tinuously with the strength of disorder. Vojta and Dickison
[30] confirmed in one dimension and Vojta, Farquhar, and
Mast [31] in two dimensions by MC simulations the effect
of quenched spatial disorder and showed that the critical
behavior was indeed described by the infinite randomness
fixed point. They also found that this behavior was universal,
suggesting that it occurs even in weak disorder with the same
critical exponents. A mapping of disordered CP onto random
quantum magnets enables one to predict the critical behavior
of disordered CP in higher dimensions. Senthil and Sachdev
showed that the activated dynamic scaling observed in 1D
random quantum Ising model is also observed in any dimen-
sions d > 1 [32]. This prediction in four dimensions, however,
contradicts the Harris criterion that suggested an ordinary
power-law scaling at the upper critical dimension of dc = 4
where dν⊥ = 2. We recently observed in four dimensions the
usual power-law scaling when the amount of disorder is less
than the percolation threshold, favoring the Harris criterion
rather than the prediction by a mapping onto random quantum
magnets [33].

While the influence of quenched disorder on the CP is now
widely understood, the effect of mobile impurity was studied
only in one dimension via numerical simulations. Dickman
studied the CP on a chain with diffusing passive sites that do
not participate actively and found that the critical behavior is
affected; the critical exponents δ and z, the ratio β/ν⊥, and the
moment ratio m = 〈ρ2〉/〈ρ〉2 take the values different from
the DP values [34]. Nearly at the same time Evron, Kessler,
and Shnerb carried out MC simulations for the model in which
certain (good) sites having higher creation rate than others
(bad sites) diffuse on the lattice, and found that the density
of particles showed the power-law behavior ρ(t ) ∼ t−δ with
the same power as that of DP at the critical point [35]. At
first glance, the two models appear to be identical when the
creation rate at the bad sites is 0; however, there is a subtle
difference. While in the latter offspring may be created on
bad sites, in the former particles never sit on passive sites.
Although it was not rigorously proved that this difference
changes the critical behavior, the difference was considered

to be irrelevant because the rate equations for the two models
are equivalent [34].

One dimension is topologically different from higher di-
mensions. Active sites on a chain may be divided into few
finite clusters when passive sites are added, and sizes of clus-
ters may vary by the mobility of passive sites but, the active
sites can never form an infinite cluster. In the CP, particles
on a finite cluster eventually disappear by fluctuation as long
as the creation rate is finite. Dickman avoided this situation
by the prescription that, when a passive site encountered a
particle by diffusion, the positions of the two were assumed
to be exchanged. In two and higher dimensions, such a pre-
scription is unnecessary because finite clusters of active sites
at one time may merge to an infinite cluster at a later time by
mobility of passive sites.

In this paper, we investigate by MC simulations the effect
of impurity on the critical behavior for the lattice and contin-
uum CP models in more the realistic case of two dimensions.
For the lattice model, since the effect of quenched impurity
has been extensively studied in recent years, we study the
effect of mobile impurity to see whether the critical behav-
ior is qualitatively similar to that in one dimension despite
topological differences. For a continuum model, we propose
a continuum version of the CP and examine if the new model
exhibits the DP critical behaviors. We also study the effect
of quenched and mobile impurity to examine if the critical
behavior is qualitatively similar to that of the lattice model.
The impurities are assumed to be disks that are inactive and
impenetrable to each other and to active particles. Details of
the model are presented in Sec. II.

For the lattice CP, the effect of the mobile impurity was
found to be distinct from that for the quenched impurity but
was qualitatively consistent with that in one dimension. For
the continuum CP, the critical behavior of the clean CP was
consistent with that of the lattice CP but was distinct from that
for the interacting particle model proposed to study driven col-
loidal suspensions. The stationary inactive particles yielded
decreasing active-particle density following the nonuniversal
power laws within the region of λ0

c < λ < λc, supporting the
existence of the Griffiths phase as for the disordered lat-
tice CP. The mobile impurity, on the other hand, yielded a
conventional power-law behavior with the critical exponents
depending on the density of impurity particles.

In Sec. II models and simulation methods are presented and
in Sec. III the numerical results with appropriate discussions
are given. Concluding remarks and possible application of the
continuum model are presented in Sec. IV.

II. MODELS AND SIMULATION METHODS

The clean CP has two processes: creation of offspring
(spreading) with a rate λ and annihilation (extinction) with
a rate μ (set to be μ = 1). The MC simulations were car-
ried out probabilistically with creation probability pλ = λ

1+λ

for spreading and annihilation probability pμ = 1
1+λ

for ex-
tinction using two different ways of updates: parallel and
sequential updates. Sequential updates are employed through
out the paper.

CP with mobile impurity on a lattice. When an impurity is
added to the system, the simulation of CP on a lattice is carried
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out as follows. Initially niL2 randomly selected sites are filled
with impurity particles and the remaining ρ0L2 sites are filled
with active particles on an L × L square lattice with periodic
boundaries, i.e., ni + ρ0 = 1. In each update procedure, a
particle is selected at random. (i) If the particle is active,
spreading or extinction is determined as for the clean CP. If
spreading is chosen, a nearest-neighbor (nn) site is selected
at random, and a new active particle is created on the nn site
if it is empty and nothing happens otherwise. If extinction is
chosen, the particle is removed from the system. The evolution
time is increased by an amount �t = 1

ρ(t )L2 , where ρ(t ) is the
density of active particles at time t . The datum of ρ(t ) is saved
whenever the accumulated time exceeds an integer value. (ii)
If the particle is an impurity particle, an nn site is selected at
random and the particle hops to the nn site with probability
w when the nn site is empty. If the nn site is filled with a
particle, the selected particle stays on its position. It should
be noted that the evolution time is increased only for case
(i); however, it can be updated alternatively by an amount of
�t = 1

(ρ(t )+ni )L2 for both cases (i) and (ii). The results should
remain the same.

CP in continuous media. In continuous media, the clean CP
is designed as follows. Initially L2 particles of a diameter unity
(σ = 1) are distributed on the lattice sites, and each particle
either creates an offspring with a rate λ or annihilates with
a unit rate. (Note that the diameter of active particles is the
unit of length through out the paper.) When an offspring is to
be created, it is not necessarily created on the lattice sites but
anywhere at a distance r from the center of the mother particle.
For convenience sake, we choose 1 � r � 1.5. If the position
of offspring i is overlapped with any of the existing particles j,
i.e., if |ri − r j | < 1, ri and r j representing the position vectors
of the centers of particles i and j, respectively, the creation is
abandoned. The continuum CP is similar to the lattice CP and,
therefore, the two models are expected to belong to the same
universality class.

Continuum CP with impurity. When an impurity is added,
we assume that impurity is of the form of disks of diam-
eter σi and number density ni which are impenetrable to
both active and impurity particles. When the impurity is
quenched, niL2 impurity particles and ρ0L2 active particles
are distributed on randomly selected positions in the L × L
square substrate. (We here chose ρ0 = 1 − ni for consistency
with other cases.) In each process, one of the active par-
ticles is selected and spreading or extinction is determined
probabilistically. When spreading is chosen, the new position
r is selected at random within a distance 1 < r < 1.5, as
shown in Fig. 1. Creation of a new particle centered at r is
accepted if |r − r j | >

1+σ j

2 , r j and σ j being, respectively, the
position vector and diameter of the existing nearby particles,
otherwise it is abandoned. When extinction is chosen, the
particle is removed from the system. Assuming the univer-
sality between continuum and lattice CP, the data of ρ(t )
are expected to show a nonuniversal power-law behavior in
the region of λ0

c < λ < λc and activated scaling at λc, where
λ0

c and λc are the critical spreading rates of the clean and
dirty (with impurity) systems, respectively. We will qualita-
tively examine if the system exhibits such behaviors in the
continuum CP.

FIG. 1. Spreading of an offspring (light blue disk) within the
region (light orange shell) of a distance r, σ � r � 1.5σ (σ = 1),
from the center of the mother particle (blue disk). This guarantees
that the offspring avoids overlapping with its mother particle.

When the impurity is annealed or impurity particles are
mobile, initially niL2 impurity particles are distributed on
randomly selected lattice sites and ρ0L2 active particles on
the remaining sites. In the next and forthcoming steps, one
of the [ρ(t ) + ni]L2 particles is selected at random. It should
be noted that the density of active particles varies as time
evolves from the initial density ρ0 to ρ(t ) at time t , whereas
impurity-particle density remains constant. When an active
particle is selected, the spreading or extinction proceeds by
the same way as for the CP with quenched impurity. When
an impurity particle is selected, it hops to a new position
at a distance r within 0 < r < 1 if the new position does
not overlap with any of the nearby particles, otherwise it
stays on its position. Although the dynamics begins with
particles on lattice sites, they will be anywhere in the sys-
tem after a transient time. When the impurity is annealed,
the Harris criterion is no longer applicable, and the ideal
critical exponents for equilibrium systems were known to be
given by the Fisher renormalization [36]. We will investigate
whether the mobile impurity affects the critical behavior of the
continuum CP.

Since our primary purpose is to examine how the mobility
of impurity influences the critical behavior of the APT, it
is necessary to vary the density of impurity particles and
hopping probability, the latter of which is associated with the
velocity of impurity particles. The number density of impuri-
ties is fixed to be ni = 0.2 for both lattice and continuum CP,
so the simulation begins with 8 × 105 impurity particles and
3.2 × 106 active particles on a system of linear size L = 2000.
The two values of hopping probability, w = 0.5 and 1.0, are
selected for the lattice model to qualitatively investigate the
effect of velocity on the critical behavior. For the continuum
CP, the density of the impurity is associated with the excluded
area of occupation for active-particle centers, which can be
varied by varying ni or σi, or both. Keeping ni constant, we
select three different values of σi, σi = 0, 0.5, and 1, in our
simulation. It should be noted that even for σi = 0, i.e., for
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point impurity particles, the excluded area for occupation of
active-particle centers is nonzero.

III. RESULTS AND DISCUSSIONS

We first study the influence of mobile impurity for the
lattice CP in two dimensions. We then focus our study on the
critical behavior of the continuum CP.

A. Lattice CP with mobile impurity

The primary purpose of this work is to examine if the
effect of mobile impurity for the 2D lattice CP is qualita-
tively similar to that in one dimension. We carried out MC
simulations for the two selected values of w, w = 0.5 and
1.0, with ni = 0.2. The higher value of w implies the more
frequent hopping that corresponds to higher diffusion velocity.
The control parameter of the model is apparently λ; however,
in the simulations we employed pλ = λ

1+λ
in the Secs. III A

through III C and λ in Sec. III D. To avoid complexity caused
by using equivalent parameters, we converted the values of p
to the λ values.

Plotted in Fig. 2 are the data of ρ(t ) for (a) w = 0.5 and (b)
w = 1.0. The data in each plot decay rapidly for λ < λc and
saturate for λ > λc, with the critical values λc = 2.057 36(13)
for w = 0.5 and λc = 2.052 41(9) for w = 1.0, at which ρ(t )
decreases following the power-law behavior

ρ(t ) ∼ t−δ (1)

with the decay exponents δ = 0.583(3) and 0.541(3) for w =
0.5 and 1.0, respectively. From the plots, it is evident that the
two data sets are qualitatively similar and appear to exhibit an
ordinary critical behavior; however, the decay exponents are
considerably larger than that of the clean CP, δ0 = 0.451, in
both cases. Although the two values differ by less than 10%,
the difference is clearly beyond error tolerance. The values
of λc for the two cases are also similar but not the same
(see below). For the larger w value, the exponent becomes
smaller and closer to the clean CP value. In principle, higher
w corresponds to higher diffusion rate of D in Ref. [34], where
the value of δ decreased as D increased and converged to the
clean CP value in the D → ∞ limit; thus our observation is
qualitatively consistent with that in one dimension. Therefore,
mobile impurity indeed affects the critical behavior in such a
way that it smears the nonuniversal power-law behavior. The
source of nonuniversal power laws in the Griffiths phase has
been attributed to the competition of spreading and extinction
of active particles in the confined area surrounded by impu-
rities, and mobility of impurities appeared to break up such
confinement.

It is worth emphasizing that the supercritical data of ρ(t )
reach a minimum before saturation for λ close to λc. Simi-
lar undershooting has been observed for the Manna sandpile
model [37,38], where such behavior was attributed to the
initial random distribution of active particles. When dynam-
ics began with uniform or hyperuniform [39] distribution
of active particles, such undershooting was eliminated. In
the CP with impurity, the initial distribution of active parti-
cles is nonuniform because of randomly distributed impurity
particles. As time evolves, the system appears to reach an
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FIG. 2. Data of ρ(t ) for the CP with mobile impurity on a square
lattice of a linear size L = 2000, calculated using the impurity den-
sity ni = 0.2 and hopping probabilities (a) w = 0.5 and (b) w = 1.0
for various values of λ. The dashed line in each plot is the power-law
fit over the data at λc that yields the decay exponent δ = 0.583(3)
for w = 0.5 and 0.541(3) for w = 1.0. The legends are of the same
order as the data from top to bottom in both plots.

optimal distribution at which ρ(t ) becomes minimal and, after
a transient time, the distribution becomes hyperuniform by
consecutive spreading and extinction processes. It might be
interesting to investigate how the distribution of active parti-
cles varies as time evolves. We will leave it for a future work.

The order-parameter exponent β was calculated from the
saturated values of ρ(t ) in the supercritical region, and the
results are plotted in Fig. 3. Data for both w values show good
power-law behaviors

ρsat (ε) ∼ εβ, (2)

ε ≡ λ − λc being the distance from criticality, using the value
of λc obtained from Fig. 2. The exponent β was estimated
to be β = 0.921(8) and 0.878(5) for w = 0.5 and 1.0, respec-
tively. As w increases, the exponent value β decreases and this
trend is also consistent with that in one dimension [34], where
β decreased as D increased. The plots in Fig. 3 also assure us
that the values of λc for the two values of w differ from each
other; the plot is sensitive enough such that any single value
fails to yield both plots linear.
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FIG. 3. Data of ρsat (ε) calculated from the supercritical data of
Fig. 2 for both w = 0.5 (blue circle) and 1.0 (red square) as a
function of ε = λ − λc on a double logarithmic scale. The dashed
lines are the power-law fits, yielding β = 0.921(8) and 0.878(5) for
w = 0.5 and 1.0, respectively.

B. CP in continuous media

We first carried out MC simulations for the clean CP to
validate the proposed continuum model that should exhibit the
DP critical behavior, With initial 4 × 106 particles in a system
of L = 2000, dynamics proceeded up to 106 MC steps, and the
data of ρ(t ) were sampled for selected values of λ. Results are
plotted in Fig. 4. The best power-law behavior was observed at
λc = 1.793 14, with the power of δ = 0.451(2). The saturated
density ρsat was also calculated from the supercritical data
in Fig. 4, and the results were plotted as a function of ε in
Fig. 5; an excellent power-law behavior was observed for
the data close to the critical point (leftmost data), and the
order-parameter exponent was estimated to be β = 0.584(2).
The four data points on the right end deviate from the power
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δ = 0.451

FIG. 4. Data of ρ(t ) for the clean continuum CP for selected
values of λ. The legend shows the values of λ for the data set with
the same order from top to bottom. The best power law was observed
for λc = 1.793 14 with the power of δ = 0.451(2).
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β = 0.584

FIG. 5. Data of ρsat (ε) calculated from the supercritical data in
Fig. 4 as a function of ε = λ − λc on a double logarithmic scale.
The dashed line is the power-law fit using λc = 1.793 14, yielding
β = 0.584(2).

law apparently due to those data being far from criticality and
out of the scaling region. The critical exponents δ and β are
indeed close to the known values in the DP universality class
[3]. We believe it to be sufficient to validate our continuum
model and further analysis is therefore skipped.

C. Continuum CP with quenched impurity

The quenched disorder added to the lattice CP is known
to yield the data for ρ(t ) nonuniversal power-law behaviors
in the region between clean and dirty critical points, i.e., in
the Griffiths phase of λ0

c < λ < λc, and an activated scaling at
λc; the critical point is determined from the power-law plot of
ρ(t ) ∼ (ln t )−δ̄ with δ̄ = β/(ν⊥ψ ) [29,31]. Since an accurate
determination of the critical point is a delicate task for the
activated scaling, we here limit our work for the continuum CP
with quenched impurity showing the nonuniversal power-law
behaviors in the region of λ > λ0

c .
Shown in Fig. 6 are the data of ρ(t ) calculated using (a)

σi = 0 and (b) σi = 1 for selected values of λ. In (a), σi = 0
implies that impurities are point particles and active-particle
centers cannot locate within an area of 1

4π centered on each
of the impurity particles. In the plot, the data for λ < 2.095 98
exhibit clear power-law behaviors, with the powers depending
on the values of λ. For λ = 2.095 98 data appear to be bent
slightly upward; the plot of ρ(t ) against ln t on a double
logarithmic scale indeed yields a linear behavior, indicating
that the critical point is close to λ = 2.096 (not shown). An
accurate determination of λc requires data of longer time
steps, and it is the scope beyond this work. When the size of
impurity particles is the same as that of active particles, i.e.,
σi = 1, the excluded area around each impurity particle is four
times larger than that of (a). The data of ρ(t ) for λ < 3.0 show
nonuniversal power-law behaviors and those for λ = 3.0 show
slight upward bending. Indeed the data for λ = 3.0 plotted as a
function of ln t show the power-law behavior, indicating that
λc is close to 3.0. These results are qualitatively similar to
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FIG. 6. Data of ρ(t ) for the continuum CP with quenched impurity using impurity disks of number density ni = 0.2 and diameters (a) σi =
0.0 and (b) σi = 1.0 for selected values of λ. The legends are of the same order as the data from top to bottom in both plots.

those that were observed from the MC data for the disordered
lattice CP [30]. We therefore confirm that the present contin-
uum model exhibits the DP critical behavior and is distinct
from the interacting particle model in [21].

D. Continuum CP with mobile impurity

We now present the main results of this paper, i.e., those for
the CP with mobile impurity. Assuming that the area fraction
excluded from active-particle centers is the impurity density,
it is increased by varying the size of impurity particles, Simu-
lations were carried out for three selected values of σi, σi = 0,
0.5, and 1.0. For σi = 0, i.e., for point impurities, sum of
areas of diameter unity centered at all point impurities is the
excluded area for active-particle centers to be created. For
σi > 0, the impurity density is the area fraction of disks of
diameter 1 + σi from all impurity particle centers, which is
the area fraction of randomly distributed disks of diameter
1 + σi having an impenetrable core of diameter σi surrounded
by the penetrable concentric shell of thickness 1

2 . Such an
area fraction can be obtained from the early studies for the
penetrable-concentric-shell model as [40]

� = η − I2η
2 + O

(
η3

)
, (3)

where η = ni
π
4 (1 + σi )2 is the reduce density and

I2 = 2(1 − k2) − 1

π

[
3π

2
+ (1 − 4k2) sin−1 k

− 3k(1 − k2)1/2 + 2k(1 − k2)3/2

]

with the impenetrability parameter k = σi
1+σi

. The low density
expression in Eq. (3) was proved by computer simulation to
give an excellent approximation even at high densities [41].
For ni = 0.2, (η, k) = (0.2 π

4 , 0) for σi = 0, (0.2 9π
16 , 1

3 ) for

σi = 0.5, and (0.2π, 1
2 ) for σi = 1; therefore, �i 	 0.145,

0.319, and 0.523 for σi = 0, 0.5, and 1, respectively.
Simulation begins with niL2 impurity particles distributed

on the lattice sites chosen at random and (1 − ni )L2 active
particles on the rest of the sites on a square system of a linear
size L. The critical spreading rate was determined from the
power-law behavior of ρ(t ) ∼ t−δ on a system of L = 2000,
with 8 × 105 impurity particles and 3.2 × 106 initial active
particles. With these particles, simulation requires extremely
long computing time. If smaller systems are used, the sim-
ulation requires less computing time but more samples are
required to reduce statistical fluctuations. In general, smaller
system results in the finite-size effect and thus we prefer
larger systems. We also carried out additional simulations
on smaller systems of L = 50, 100, 200, 400, and 800 to
investigate the finite-size effect.

Shown in Fig. 7 are the data of ρ(t ) for σi = 0 and selected
values of λ on a double logarithmic scale. Data for λ = 2.1050
show reasonably good power-law behavior with the power
of δ = 0.513(6). It should be noted that the accuracy of λc

is limited to four decimal digits because of large computing
time. Data for other values of λ deviate upward or down-
ward, depending on whether the system is supercritical or
subcritical. Thus, the CP with mobile impurity yields the usual
power-law behaviors, unlike the case with quenched impurity.
The decay exponent δ is estimated to be slightly larger than
that of the clean CP, δ0 	 0.451, indicating that mobile im-
purity suppresses creation of offspring and enhances decay of
the density of active particles. The order-parameter exponent
was also estimated from the saturated values of ρ(t ) in the
supercritical region; the estimated exponent was β = 0.76(1),
as shown in the inset, which is considerably larger than that of
the clean CP, β0 = 0.584(4).

In order to calculate the critical exponents associated with
the finite-size effect, we analyze the data for various size
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FIG. 7. Data of ρ(t ) for the continuum CP with mobile impurity,
using the point impurities (σi = 0) of number density ni = 0.2. The
λ values of the data in the main panel are shown in the legend with
the same order from top to bottom. The data exhibit usual power-law
decay at λc = 2.1050. The dashed line on top of the data for λc is the
power-law fit, yielding δ = 0.513(6). The inset is the steady-state
density ρsat as a function of ε ≡ λ − λc, giving the exponent β =
0.76(1).

systems at criticality, using the scaling ansatz for the density
of active particles,

ρ(t, ε, L) ≡ t−δF (tεν‖ , t/Lz ), (4)

where ε = |λ − λc|, and ν‖ and z are the temporal correlation-
length exponent and dynamic exponent, respectively. One
obtains that, in the supercritical region, ρ(L � ξ ) = εδν‖ =
εβ or, equivalently, β = δν‖. On the other hand, for a finite
system, because the spatial correlation length cannot exceed
the system size, i.e., ξ ∼ |ε|−ν⊥ ∼ L close to the criticality,
one obtains that the temporal correlation length is given as
τ ∼ |ε|−ν‖ ∼ ξν‖/ν⊥ ∼ ξ z, i.e., z = ν‖

ν⊥
. At the critical point of

ε = 0, the steady-state density is a function of only L, i.e.,
ρsat (L) ∼ L−δz ∝ L−β/ν⊥ . Therefore the steady-state density
plotted against the system size on a double logarithmic scale
yields a power law behavior with the power of −β/ν⊥. Fig-
ure 8 shows the data of λc = 2.1050 on systems of linear sizes
L = 50, 100, 200, 400, and 800; the saturating data are the
averages over surviving samples up to time t and decaying
data are the all-sample averages (averages over those samples
that survive and fall into absorbing states). In the main panel,
the data in the asymptotic region yield the power-law behavior
ρ(t ) ∼ t−δ (as marked with a dashed line) and, in the inset, the
saturated densities ρsat (the values marked with dotted lines in
the main panel) yield the power β/ν⊥ = 0.844(5).

We also calculated the quantity defined recently for surface
roughening [42] and applied to the APT [43], given as

R(t, ε, L) = L
√

〈ρ(t )2〉/〈ρ(t )〉2 − 1, (5)

where 〈· · · 〉 indicates the average over samples. The quantity
R(t, ε, L) is associated with the moment ratio of the density of
particles that was employed by Dickman [34]. In sufficiently
large systems, the data of Eq. (5) are known to behave as

100 101 102 103 104 105 106
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ρ(
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       100
       200
       400
       800

102 103
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ρ sa
t(L

)

β/ν
⊥  = 0.844

FIG. 8. Data of ρ(t ) at λc = 2.1050 for the continuum CP with
mobile impurity, calculated using the point impurities (σi = 0) of
ni = 0.2. The decaying data are the all-sample averages and satu-
rating data are the surviving-sample averages on systems of sizes,
from top to bottom, L = 50, 100, 200, 400, and 800. Plotted in the
inset are the data for ρsat as a function of L, with the power-law fit
that gives the critical exponent β/ν⊥ = 0.844(5).

R(t ) ∼ t1/z at criticality, and the saturated values in the super-
critical region follow the power lawRsat (ε) ∼ ε−ν⊥ . Thus, the
data of Eq. (5) give accurate estimates of the exponents z and
ν⊥. Unfortunately, however, R(t, ε, L) shows large statistical
fluctuations unless the sample size is sufficiently large and,
accordingly, accurate estimates of Rsat (ε) requires extremely
long computing time. For this reason, we calculated the expo-
nent z only. Figure 9 shows the data of R(t, L) at criticality for
five selected values of the system size L; the diverging data are

100 101 102 103 104 105 106

t

100

101

102

103

104

R
(L

,t)

L =   50
       100
       200
       400
       800

102 103

L
101

102

103

R
sa

t(L
)

1/z = 0.584

FIG. 9. Data of R(L, t ) for active-particle densities in the con-
tinuum CP with mobile impurity as a function of the evolution
time, calculated using ni = 0.2 and σi = 0. The diverging data in the
main panel are the all-sample averages and the saturating data are
the surviving sample averages on systems of sizes for, from top to
bottom, L = 50, 100, 200, 400, and 800. The data in the inset are the
steady-state values of Rsat (L), with the power of ≈1.
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FIG. 10. Finite-size scaling data of (a) ρ(t, L) and (b) R(t, L), as a function of scaled time for the continuum CP with mobile impurity of
ni = 0.2 and σi = 0.0, using the measured values of the critical exponents, β/ν⊥ = 0.844 and 1/z = 0.584. The data for various size systems,
i.e., for L = 50, 100, 200, 400, and 800, fall on the same curve.

the all-sample averages and saturating data are the surviving-
sample averages. As the system size increases the power-law
region becomes wider and, in the limit of L → ∞, the data of
R(t ) are expected to show the power-law behavior as marked
with a dashed line, giving the power of 1/z = 0.584(5).

The estimates were confirmed by the finite-size scaling of
ρ(L, t ) = L−β/ν⊥G(t/Lz ) and R(L, t ) = LG(t/Lz ) at critical-
ity as shown in Fig. 10, where the data were scaled using the
measured values of critical exponents.

Simulations for σi = 0.5 and 1.0 were also carried out,
and the critical behavior was found to be qualitatively sim-
ilar to that for σi = 0. Figure 11(a) shows the plot of ρ(t )
at criticality for selected values of σi; the critical spread-
ing rates were estimated as λc = 2.1050(3), 2.5311(1), and

3.1425(3), and the estimated decay exponents were δ =
0.513(6), 0.571(5), 0.624(5), for σi = 0, 0.5, and 1.0, respec-
tively, As the size of impurity particles increases, the decay
exponent increases, as expected. The order-parameter expo-
nent β was also estimated using the saturated values ρsat (ε) in
the t → ∞ limit, and the results were β = 0.76(1), 0.91(1),
and 0.99(2), for σi = 0, 0.5, and 1, respectively, as shown
in Fig. 11(b). It should be noted that the saturated values
show downward curvatures as the distance from criticality
increases, and the values of β were estimated from the data
close to criticality. This deviation is not unusual and is natural
because the power-law behavior of the order parameter holds
near criticality and the distance from criticality ε ≡ λ − λc ≈
0.1 is quite large, and most data in this region are known
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FIG. 11. Data for the continuum CP with mobile impurity of ni = 0.2. Plotted in (a) are the data of ρ(t ) calculated at λc given in the legend.
Data in (b) are the data of ρsat (ε) in the supercritical region. Both plots are for σi = 0.0, 0.5, and 1.0, from top to bottom.

064135-8



CONTINUUM CONTACT PROCESS AND INFLUENCE OF … PHYSICAL REVIEW E 108, 064135 (2023)

TABLE I. Summary of the critical exponents for continuum CP with mobile impurity of number density ni = 0.2. The first four exponents
are those that were measured and the last two were calculated using the scaling relations.

σi � λc δ β β/ν⊥ 1/z ν‖ ν⊥

0.0 0.145 2.1050(3) 0.513(6) 0.76(1) 0.844(5) 0.584(5) 1.48(4) 0.90(2)
0.5 0.319 2.5311(1) 0.571(5) 0.91(1) 0.885(2) 0.600(2) 1.59(3) 1.03(1)
1.0 0.523 3.1425(3) 0.624(5) 0.99(2) 0.942(5) 0.624(3) 1.59(4) 1.05(3)
clean CP 0.0 1.7931 0.451 0.584(4) 0.796 0.567 1.295(6) 0.734(4)

to deviate from the power law in the APT. More elaborate
estimates will be attained if the data of ρsat are sampled for
smaller values of ε; however, such work was not feasible in
the present work.

The estimates of the critical exponents are summarized in
Table I; the first four exponents are those that were directly
measured from the MC data and the last two are those which
were calculated using the scaling relations. It should be noted
that the measured values of 1/z devaites by 5–8% from the
values of ν⊥/ν‖. It is unclear if the differences were attributed
to the violation of the scaling relation or are simply due to the
inaccurate estimates of associated exponents that were used to
estimate ν⊥ and ν‖. More extensive simulations are necessary
to clarify the cause of such differences; however, we limited
our work to the development of the continuum model and such
work is beyond the scope of this work.

IV. SUMMARY AND CONCLUSIONS

We have studied by numerical simulations the critical
behavior of the APT for lattice and continuum CPs with
quenched and mobile impurities in two dimensions. Our
primary aim was to examine whether the effect of mobile
impurity on the critical behavior on a topologically different
2D lattice is qualitatively similar to that on a linear chain stud-
ied years ago by Dickman. On a 1D chain, impurity particles
block the chains of active sites that participate activity and,
as a result, active sites are finite and clustered, whereas in
two and higher dimensions an infinite network of active sites
always exists as long as the density of impurity particles is
less than the percolation threshold. We found that despite the
typological difference the critical behavior in two dimensions
was qualitatively similar to that in one dimension, although
the exponent values differed.

We also developed a continuum version of thr CP on a
flat substrate without and with impurity. We first qualitatively
examined the critical behaviors of a clean CP and a CP with
quenched impurity. The impurity was assumed to be randomly
distributed disks of diameter σi and number density ni =
0.2. For the clean CP, the universal critical exponents were

consistent with the corresponding lattice values, For the CP
with quenched impurity, we observed nonuniversal power-law
behaviors in the Griffiths phase of λ0

c < λ < λc and activated
scaling at λc for both σi = 0 and 1, where λ0

c and λc are
the critical spreading rates of the clean CP and the CP with
impurity, respectively. Our continuum model of the CP thus
falls into the same universality class as the lattice CP.

The CP with mobile impurity was also studied, and the
critical behavior was found to differ from that with quenched
impurity but was found to show an ordinary critical behavior
with the critical exponents differing from the DP values. As
the hopping probability increased, the exponent became closer
to the DP values. Although we were not able to observe
whether the exponent values approach the clean-CP value as
the hopping rate goes to infinity, our results are consistent
with the general trend observed on a chain. It is also clear
that, as the area fraction excluded from active-particle cen-
ters decreased, the exponents became close to the DP values.
Thus, both the hopping probability of impurity particles and
impurity density are relevant parameters that affect the critical
behavior.

Our continuum model is purely a mathematical model that
enables one to investigate the effect of impurity on the critical
behavior in nonequilibrium phase transition. It can, however,
readily be modified to the model of epidemic spreading such
as that of COVID-19. For example, active particles are consid-
ered to be infected persons, impurity particles are recovered
or immunized persons, and susceptible persons are anywhere
in the space. When these persons form a crowd and mobile
in a confined region, the spreading of epidemics might be
examined with our model with some necessary modifications.
Such a work might be an interesting topic for a future study.
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