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Memory of incomplete phase transitions from a random squares model
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We present a simple two-dimensional model for a phase transition, then study its predictions, in particular
the memory properties. The direct transformation is modeled by randomly placing small squares, “nuclei”, on
an initially empty surface. Then, the nuclei expand (“grow”) up to finite final sizes which are randomly chosen
in a given range, while keeping their square shape. An important issue is the “interaction” which forces some
squares to remain at smaller sizes if the surrounding squares get in the way of their growth. Interestingly, this
naturally leads to quasiequal total area covered by the squares of each size after a complete direct transformation.
Next, it is shown that the system “remembers” incomplete (“arrested”) reverse transformations taking place in
reversed order of the squares sizes. The memory is “encrypted” in the distribution of the squares sizes after a
next direct transformation and manifests as a significant imbalance between the areas covered by the “big” and
“small” (relative to the arrest size) squares. We are able to also reproduce the so-called “hammer effect” and the
memorizing of multiple arrest points. Our model is particularly relevant for the thermal memory effect in shape
memory alloys, and we actually borrowed many features from existing thermodynamic models addressing this
effect. However, here we eliminate the explicit thermodynamics and end up with a statistical geometry model,
presumably easier to reproduce.
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I. INTRODUCTION

Memory effects imply the existence of multiple states
(ground states or metastable ones) that a system can access
selectively, depending on the history acting upon them (mag-
netic field variations, temperature variations, etc).

Perhaps the most encountered memory effect in solid state
physics is the magnetic hysteresis, when ferromagnetic ma-
terials “remember” the sense of the magnetic field variation.
Similarly, the ferroelectric materials keep a memory of the
electric field variation. The hysteresis loops are described in
an elegant and simple manner by the purely Mathematical
model of Preisach [1], based on the consideration of a large
number of independent hysterons, each with a “switch up”
and a “switch down” value. Subsequently, the Preisach model
received various developments and was shown to apply to a
wider class of phenomena (see, e.g., Refs. [2,3]).

A different kind of example is the memory of shape exhib-
ited by the shape memory alloys (SMA), which, after being
deformed cam recover their initial shape by heating, applying
magnetic fields, etc. This property relies on the small enthalpy
difference between the austenite and martensite crystalline
phases, as well as the nondiffusive nature of the phase tran-
sition; layers of atoms just slip collectively. As such, a SMA
may undergo the phase transition rather then accumulate elas-
tic stress or create defects, when acted upon. The reversibility
of the phase transition implies the “remembering” of the ini-
tial shape (the literature here is vast, we indicate just some
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examples [4–6], and the alloys may be, e.g., Ni-Ti, Cu-Zn-Al,
Fe-Mn-Si, Cu-Al-Ni, Ni-Ti-Pd, Ni-Mn-Ga, Ti-Nb etc).

Interestingly, the SMA were shown to remember not only
shapes, but also temperatures corresponding to incomplete
phase transitions which happened in the past. The thermal
memory effect (TME) in SMA [7–16], sometimes also named
“thermal arrest”, is however less understood and received less
attention so far. In short, the TME manifests as follows: A
system which is initially in the martensite phase at low tem-
peratures is wormed up to a temperature where the austenite
transformation started but didn’t finish, lets call this “arrest
temperature” (AT). Next, the system is again fully cooled
into martensite and finally fully heated into austenite. If one
records the calorimetric signal, the heat exchange of the final
martensite to austenite transformation, a dip will be noticed to
a temperature close to AT.

The TME is not restricted to SMA, being also found in,
e.g., FeRh, which has a first-order magnetic transition [17],
suggesting that it may rely on more general principles than the
particularities of the martensitic transformation. Apart from
the fundamental relevance towards a better understanding, the
effect may find also important practical applications [13,18].

Other works [7,9,19–22] showed that the TME also
manifests as: memorizing multiple arrest temperatures, the
possibility to erase the memorized temperature(s) by heating
to a superior temperature, but also to an inferior close one, and
the effect can be increased by repeating the arrest (“hammer
effect”).

In this paper we present a simplified, purely statistical
geometry version of the thermodynamic models already ex-
isting in the literature [9,10,15] which reproduced the TME.
As seen from the Preisach case [1–3], mathematical models
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have high generality and ease of use. Here, a solid state phase
transition is modeled by nucleation and growth of random
finite sizes squares. Although related to, our nucleation and
growth scenario differs from the much more studied random
sequential absorption (RSA), see, e.g., the review [23], where
the shapes (squares, circles, etc) are placed directly with their
final size in an available place. While the RSA applies directly
to phenomena such as adsorption of molecules, a nucleation
scenario fits better the phase transition problems. Also, our
scenario differs from the classical nucleation and growth,
where the growth of germs only stops at the completion of the
phase transition or when they meet areas already transformed
(see, e.g., Refs. [24–26]).

Our approach is directly inspired by the martensitic trans-
formation in SMA, that is known to take place by formation
of finite size plates, i.e., that do not grow indefinitely, then
the phase transition continues by formation of new plates,
rather than further growth of the existing ones. About the
reverse transformation, it will be assumed that the smaller
squares transform back first (“disappear”) and the bigger ones
last. Accordingly, an incomplete reverse transformation would
leave the larger squares untransformed and therefore would
influence the squares sizes distribution of a subsequent direct
transformation, this being a memory effect discussed in detail
in this paper.

The outline of the paper is as follows: In Sec. II we briefly
review existing thermodynamic models capturing memory
effects (TME), in Sec. III we present the features of the
new statistical model, which is numerically tested in Sec. IV.
Appendix A gives a toy model for the calorimetric signal of
the reversed phase transition (“reading” the memory), Ap-
pendix B gives details of the numerical implementation and
some additional data, while in Appendix C we briefly talk
about the Palasti conjecture.

II. EXISTING THERMODYNAMIC MODELS
(1 AND 2) FOR THE TME IN SMA

In this section we briefly outline the main features of two
existing thermodynamic models that predict memory effects,
more precisely, the TME. These models represented the start-
ing point of our study, and what we will do in the following
sections will be to provide an alternative that is purely sta-
tistical geometry. Throughout this paper, the thermodynamic
models will be called Model 1 and Model 2.

Model 1 was proposed by Rodriguez-Aseguinolaza et al.
[9,10] and its features can be summarized:

(M1a) (direct transformation) The finite size marten-
site plates—formed during the austenite to martensite
transformation—have different densities of elastic energy
incorporated. The densities of elastic energy range from
0 to Gmax

el .
(M1b) (reverse transformation) In the reverse transfor-

mation (martensite to austenite) the plates with the larger
elastic energy stored are the first to transform back (“disap-
pear”) and the plates with the smaller elastic energy transform
back last.

(M1c) (thermal memory cycle) If a reverse transformation
is stopped before completion (arrested at a temperature TA)
the plates with the elastic energy in the interval 0 to GA

el

remain untransformed, while those with elastic energies in the
interval GA

el to Gmax
el transform back (disappear). A subsequent

cooling back into martensite would therefore start from this
distribution of plates with elastic energy in the interval 0 to GA

el
plus austenite domains which will transform to martensite like
the initial transformation: with elastic energies in the range 0
to Gmax

el .
(M1d) (implications) At this point, please note that the

distribution of elastic stress after (c) differs from the one
from (a) in the sense that we have a larger number of plates
with elastic stress in the interval 0 to GA

el (those remained
untransformed plus those newly formed) and a depletion of
plates with elastic stress in interval GA

el to Gmax
el . This is a

memory effect and can be “read” by a calorimetric scan when
heating back to austenite.

Model 2 was proposed by Ţolea et al. [15] and its features
can be summarized:

(M2a) (direct transformation) The martensite plates,
formed during the austenite to martensite transformation,
are modeled as squares which nucleate in random places
and then grow to intrinsic maximum sizes, with the sides
lengths in the range Lmin to Lmax. The “intrinsic maximum
size” of the squares is assumed to decrease with temperature,
while the actual size reached can be smaller due to geo-
metrical constrictions imposed by neighboring squares. An
isothermal martensitic transformation was assumed, and the
speed of the cooling had an important role in the final sizes
distribution.

(M2b) (reverse transformation) In the reverse transfor-
mation (martensite to austenite) the smaller plates are the first
to transform back (“disappear”) and the larger plates trans-
form back last.

(M2c) (thermal memory cycle) If a reverse transformation
is stopped before completion (arrested at a temperature TA) the
plates with sizes from LA to Lmax remain untransformed, while
those with sizes from Lmin to LA transform back (disappear). A
subsequent cooling back into martensite would therefore start
from this distribution of plates sizes in the interval LA to Lmax

plus austenite domains which will transform to martensite like
the initial transformation: by formation of squares with sides
from Lmin to Lmax.

(M2d) (implications) The distribution of plates sizes after
(c) differs from the one from (a) in the sense that we have
a larger number of plates with sizes in the interval LA to
Lmax(those remained untransformed plus those newly formed)
and a depletion of plates with sizes in interval Lmin to LA. This
redistribution of plates sizes distribution is a memory effect,
detectable calorimetrically.

Please note that the “size of the plate” from Model 2
plays the role of the “elastic stress density” from Model 1. A
smaller plate has a higher “surface to volume” ratio and would
be the first to became unstable, just like a plate with larger
elastic stress. Size and stress density are therefore equivalent
thermodynamically, where the two models are concerned.

III. STATISTICAL GEOMETRY MODEL 3

We start by giving the features of the Model 3, proposed
in this paper, followed by discussions and numerical
simulations:
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FIG. 1. Schematic description of a solid state phase transition
modeled by nucleation and growth of random squares. (a) One starts
from an empty surface. (b) A first square with the minimum allowed
size (Lmin) is randomly placed (we call this “nucleation”) and then
grows (c) up to a random final size (L1) in the range Lmin � L1 �
Lmax. [(d)–(e)] The same happens with the second square. (f) It is
possible that some squares nucleate in the vicinity of others, as
square No. 3. Then let us assume that we randomly chose a final
size for him L3. (g) However, due to the geometrical constrictions
imposed by the squares 1 and 2, the third square can only grow to a
final size L′

3 < L3. We call this effect “interaction between squares”
and it plays an important role in the final distribution of squares sizes.

(M3a) (direct transformation) We model a phase transi-
tion by formation of squares which nucleate in random places
and then grow to randomly chosen sizes, with the sides lengths
in a given range from Lmin to Lmax. However, if the already
existing neighboring squares get in the way, the new squares
may grow to smaller sizes than initially chosen (“interaction”
effect).

(M3b) (reverse transformation) In the reverse transfor-
mation, the smaller squares are the first to transform back
(“disappear”) and the larger squares transform back last.

(M3c) (memory cycle) If a reverse transformation is in-
complete, only the squares with sides in the range Lmin to,
say, LA transform back (disappear), while the squares with
sizes from LA to Lmax remain untransformed. A subsequent
direct transformation would therefore start from this existing
distribution of square sizes in the interval LA to Lmax, then the
phase transition continues with new squares formed with sides
in the range Lmin to Lmax.

(M3d) (implications) The distribution of plates sizes after
(c) differs from the one from (a) in the sense that we have
a larger number of plates with sizes in the interval LA to
Lmax(those remained untransformed plus those newly formed)
and a depletion of plates with sizes in interval Lmin to LA. In
particular, squares with sizes close to (but smaller than) LA

will be the fewest, due to the increased role of geometrical
constrictions, see the numerical simulations below. This re-
distribution of squares sizes is a memory effect.

(a) (b) (c)

(d)

FIG. 2. Scheme of “memorizing incomplete phase transitions”.
Let us assume that a “normal” phase transition—taking place by ran-
dom nucleation and growth of squares, as described at (M3a)—ends
up with the sizes distribution from (a). Next, an incomplete reverse
phase transition transforms back the smaller red and green squares
(i.e., they “disappear”) and only the big blue square survives (b).
In the next direct transformation there is a probability that another
big square forms nearby, such as in (c) or (d), and this only allows
the formation of two more small squares, therefore a distribution
different from the one in (a).

Please note that the above described model is purely
geometrical and can be implemented without any knowledge
of thermodynamics. We now find ourselves in the land of
mathematics, although the mathematicians themselves are less
interested in nucleation and growth problems, so the main use
will likely stay with the physicists. In the following we discuss
in detail how the new model compares with the previous ones.

The main theme presented in this paper resides in the prop-
erty (M3a) which essentially differs from the previous (M2a)
and (M1a) shifting the model towards statistical geometry.
In Model 2, the thermodynamics was heavily involved in
the property (M2a), where it was assumed that plates grow
at most up to a “maximum intrinsic size” which was tem-
perature dependent. A rather complicated phenomenological
dependence was assumed, with many parameters influencing
the final plates sizes distribution. For instance, because of
the dependence of the intrinsic maximum size on tempera-
ture, a balanced distribution of plates sizes was obtained only
for certain speed of cooling (neither too high, nor too low,
which reduced the generality of the model). Instead, within
the Model 3 we will now assume random “intrinsic maxi-
mum size” for each new plate, not related to the temperature,
nor with the minimum germ size. This is a simplifying fea-
ture inspired by Model 1 (M1a) where a relatively uniform
distribution of elastic stress was assumed. In our case, the
randomness of sizes plus the geometrical constrictions nat-
urally ensure uniform mass distributions, as will be shown in
the numerical simulations.

As can be noticed, the newly introduced Model 3 main-
tains similarities with the previous Model 2 (see Sec. II). For
instance, (M3d) is textually similar with (M2d), and indeed
the two models can predict, in principle, similar final plates
size distributions. However, the sizes distribution predicted by
Model 2 depend on the thermodynamic parameters chosen,
unlike the distribution predicted by Model 3. Also notice
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that (M3b) and (M3c) are textually similar with (M2b) and,
respectively, (M2c), however, the temperature is no longer
explicitly present in Model 3.

At this point, we want to give some justification of the fact
that the squares have sizes in a range from Lmin to Lmax [prop-
erty (M3a)], while keeping relevance for solid state phase
transitions. The existing of a minimum allowed size Lmin has
to do with the “critical nucleation germ” concept. As the plates
get smaller, the “surface to volume” ratio increases and the
surface being a defect very small germs are thermodynami-
cally unfavorable. The existing of a maximum allowed size
Lmax, on the other hand, has to do with the experimental
observation that the formed martensitic plates stop growing
at a point and the phase transition continues by formation of
new plates, rather than the growth of existing ones. In the
experimental paper [27], for instance, one notices that the
occurrence of very large plates tends to zero, thus supporting a
“maximum size” assumption. Also the sequential proceeding
of our phase transition (squares are placed one by one) hides
the assumption that the growth of the nuclei is much faster
than the formation of new ones.

Figure 1 shows in more detail how our Model 3 works
[we refer here to the direct transformation, property (M3a)].
We start from an “empty” surface [Fig. 1(a)], which is grad-
ually filled with small squares of different sizes, mimicking
the plates formed during the martensitic transformation. The
plates “nucleate” in random positions, meaning that we ran-
domly place a square of the minimum size Lmin [as shown
in Fig. 1(b) for the square labeled “1”]. Next, we chose a
random final size of the square, which can be any value in the
interval (Lmin, Lmax). In the case depicted in Fig. 1(c), plate
No.1 grows to its final size L1. Next, the scenario continues
with the nucleation and growth of plate No. 2 (see Figs. 1(d)
and 1(e), respectively). Finally, Figs. 1(f) and 1(g) exemplify
another important aspect of our model: a plate (No. 3 in our
case) may grow to a smaller size if existing plates are in the
way. That is, it was assumed that plate no.3 should have grown
to the randomly assigned size L3, but because of geometrical
constrictions from squares no. 1 and no. 2, it only grows to
the final size L′

3 < L3. This scenario has a small probability to
happen in the early stages of the transformation, but becomes
dominant in the late stages, near the jamming limit. Impor-
tantly, please note that the process is sequential, meaning that
the squares are placed one at a time.

The main idea behind memorizing incomplete phase
transitions is sketched in Fig. 2. Let us assume that a normal
complete phase transition generates the plates distribution
from Fig. 2(a), with one “big” blue square, three “intermediate
size” red plates and three “small” green squares. When
performing a reverse transformation, the smaller squares
disappear first and the bigger ones last (property M3b), so one
can end up in the situation from Fig. 2(b) with one the big blue
square still standing. If one proceeds with another direct phase
transition, then there is a probability that another big square is
formed in the empty space, which would restrict the available
place for other squares, as seen in Figs. 2(c) and 2(d). Of
course, there is also the possibility of smaller squares to form,
given the randomness assumed at (M3a), but after averaging
large ensembles, the big plates will be more numerous after
the arrest procedure than in “normal” transformations.

IV. NUMERICAL RESULTS

In this section, we present the results form numerical im-
plementation of Model 3, previously introduced in Sec. III. A
discrete “lattice” approach is used (see more details in
Appendix B), and we start from an empty surface, a 120X120
“big square”, which is gradually filled with oriented squares,
whose sides are between Lmin = 4 and Lmax = 12. Figure 3 a
shows an instance of randomly placing the first 50 squares,
while Figs. 3(e) and 3(i) show the average number of squares
and, respectively, the average mass distribution after throwing
the first 50 squares 100 times. By “mass” we mean the total
area occupied by the squares of a certain size. Please note
that the size distribution is relatively uniform, all averages in
Fig. 3(e) being between 5 and 6, which was to be expected,
given the assumption (M3a) that the final size of squares is
randomly chosen. Figures 3(b), 3(c), and 3(d) show situations
after placing 100 plates, 150 plates, and, respectively, the jam-
ming limit. The “jamming limit” denotes the end of the phase
transition, when there in no free space left to fit the smallest
square of side Lmin. Below them, we give the average squares
numbers and mass for each size. At the jamming limit we
have a much larger number of small size plates and relatively
much fewer big plates. This is because of the geometrical
constrictions that become more and more relevant as the phase
transition advances. This again, was to be expected, but what
we did not expect a priori was that the mass distribution is rel-
atively uniform at the jamming limit. It is a result potentially
interesting in itself, which may require further analysis.

In the following, we simulate a transformation circle that
generates memory. As mentioned in property (M3b), for the
reverse transformation it is assumed that the smaller plates
transform back (disappear) first and the big plates last. An
“incomplete” reverse transformation means that squares with
sides smaller than a certain value (say, La) are removed,
while the squares with sizes equal or bigger than La re-
main where they are. For the case depicted in Fig. 4(a),
we have La = 9. Figures 4(c) and 4(e) can actually be
regarded as details of Figs. 3(h) and 3(l), showing just
the distribution of number and mass of the untransformed
“big” squares. Next, a direct transformation proceeds from
this point until the jamming limit is again reached. Fig-
ures 4(d) and 4(f) show the new square numbers and mass
distributions, which differ significantly from the situation in
Figs. 3(h) and 3(l). This is a memory effect, showing that
the system remembers having passed through the mentioned
incomplete reverse transformation. Notably, Fig. 4(f) shows
that the largest squares that disappeared in the incomplete
reverse transformation (with L = 8) have in the end the
smallest total mass, while smallest untransformed squares
(with L = 9) have the biggest mass. Additional data, corre-
sponding to “arresting” the reverse transformation at different
stages, can be found in Appendix B.

A legitimate question is how can memory effects appear
in random transformations? Indeed, the direct transformation
consists in spatially random placing squares of (also) random
sizes. The answer may reside in the reverse transformation,
which is not random but in reverse squares sizes. The details
of the mass distribution after a previous arrest (lowest mass
for the biggest transformed squares and higher mass for the
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FIG. 3. Illustration of random filling of a 120X120 square (a discrete model is used) with oriented squares of sizes ranging from 4X4 to
12X12. [(a)–(d)] Example of squares spacial distribution after we randomly place the first 50, 100, 150 or all squares than can fit (jamming
limit).(e)–(h) Plates sizes distribution after averaging over 100 realizations. [(i)–(l)] the corresponding mass distribution, i.e., total areas
occupied by different sizes squares. Note that the randomness ensures uniform squares sizes distribution in early stages (e) but geometrical
constrictions lead to uniform mass distribution at jamming limit (l).

smallest untransformed squares) are due to the subtle role of
geometrical constrictions.

We have also performed numerical simulations for a
reverse transformation in random order of the squares, regard-
less of their sizes (not shown here). Interesting, the system
also keeps a memory of incomplete reverse transformations,
manifested this time in a reduction of the big squares total
area.

The Hammer effect consists in accentuating (i.e., enforc-
ing, deepening) the memory of previous arrested transforma-
tions if the arrest procedure is repeated, similar to driving a
nail deeper through successive hammer strikes. This effect has
been experimentally proven for the case of thermal memory
in shape memory alloys (see, e.g., Refs. [10,28] and was also
numerically captured by the thermodynamic Model 1 [9,10]
(described in Sec. II). In the following, we show that our
statistical model also captures the hammer effect. While the
experimental signature of the hammer effect would be a longer
dip in the differential scanning calorimetry (DSC) signal (or a
wider shoulder [10,28]), within our model we expect an even
bigger imbalance in the squares distribution, and it will be
shown that this indeed is the case.

To illustrate the effect with our model, we start with a
“large” square of 120x120 which is randomly filled with
squares in the size range Lmin = 4 and Lmax = 20. One

resulting complete transformation outcome is depicted in
Fig. 5(a), while the corresponding averaged squares sizes
distribution is shown in Fig. 5(d). Next, an incomplete reverse
transformation is performed, leaving (untransformed) only the
squares with sides bigger than La = 12, followed by another
complete direct transformation; see Fig. 5(b) for a possible
spacial distribution of the squares and, respectively, Fig. 5(e)
for the average distribution of sizes over 100 realizations.
Finally, if the incomplete reverse transformation is repeated
and another direct transformation is performed, we end up
with the average distribution depicted in Fig. 5(f). We can see
that the memory effect (i.e., the imbalance between the areas
covered by small versus large squares) is indeed accentuated,
and this is more clearly seen in Fig. 6 which plots the dif-
ference between the sizes distribution in Figs. 5(f) and 5(e).
One can notice from Fig. 6 that the sizes distribution after a
single and a double arrest differ mostly for the values around
the arrest value (in this case La = 12) and tends to zero for
largest squares, respectively to low values for the smallest
squares.

Double Arrest. Apart from the previously described ham-
mer effect, it was also experimentally proven that SMA can
memorize not only one but multiple temperatures at which the
reverse transformation was previously stopped before comple-
tion (see, e.g., Ref. [29]).
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FIG. 4. (a) From the complete phase transition depicted in
Fig. 3(d) we eliminated all the squares with sides smaller than 9.
This mimics an incomplete reverse phase transition. (b) Then, a
direct phase transition proceeds as described, by randomly placing
new squares until the jamming limit. (c) and (e) Number of plates
and mass distribution after the incomplete reverse transformation.
(d) and (f) Number of plates and mass distribution after a new direct
transformation is performed. [(c)–(f)] graphs present average values
over 100 realizations.

To illustrate this with our model, we start from a 200x200
large square which is filled as described in Sec. III with
squares in the size range Lmin = 4, Lmax = 20. One such
instance is depicted in Fig. 7(a), and the averaged sizes
distribution of Fig. 7(d). Next, an incomplete reverse transfor-
mation is performed, arrested at the size La1 = 16 followed
by a direct transformation, the average distribution obtained
being given in Fig. 7(e). Finally, if the next arrest procedure
is done at the size La2 = 10, we end up with the distribution
in Fig. 7(f), showing that the system memorized both of the
previous incomplete reverse transformations.

To this end, let us do a “chromatic” comparison between
Figs. 7(a), 7(b), and 7(c). The bigger squares are the color red,
the intermediate ones are orange-yellow-green and the smaller
ones are blue, while the “untransformed” surface is purple.
It is “visual” that Fig. 7(b) has “less blue” then Fig. 7(a),
after the first arrest, while after the second arrest blue is even
less present and the orange-yellow become dominant. Similar

chromatic differences can be found between Figs. 5(a), 5(b),
5(c) or between Figs. 4(b) and 3(d).

We have, therefore, shown that our statistical model mem-
orizes the simple arrest but also repeated or double arrests.
It is trivial that we also capture the property of “erasing”
the memory after a complete reverse transformation—case
in which we go back to the empty initial surface with no
squares on it—while effects like “aging” (memory of multiple
complete transformations) cannot be captured by our model,
for the same reason.

V. CONCLUSIONS

We describe a simple “random squares” model for a phase
transition with memory properties. The direct transformation
is modeled by nucleation of squares in random places, squares
which then grow to (also random) final sizes, ranging between
a minimum and a maximum value. The reverse transformation
consists in “disappearing” of the squares in reverse size order,
the smaller squares first and the larger last.

Numerical simulations have been performed on a discrete
square grid, the results being summarized in the following. In
the early stages of the direct transformation one has a uniform
number of square with different sizes (as expected from the
sizes randomness), but interestingly in the late stages one has
a uniform mass distribution of the different sizes. The smaller
squares become increasingly more numerous, so in the end
they cover a total surface similar to the largest squares that
are much fewer. This happens because of the geometrical
constrictions, which play an increasing role as the number of
plates increases and force the plates to stop growing at smaller
and smaller sizes. The “interaction” between plates therefore
plays an important role in establishing the final square size
distribution.

Next, we showed that our system has memory properties,
following the scenario of TME in SMA. If one performs
an incomplete (“arrested”) reverse transformation, only the
squares with the sides smaller than a certain value (say, LA)
disappear, while the bigger ones remain untransformed. As
such, a subsequent direct transformation will end up having
an “anomalously” large number of big plates (existing plus
newly formed), and a depletion of intermediate and small
plates. As a detail of the numerical results, we noticed that
the smallest squares untransformed in the incomplete reverse
transformation will end up having the highest total mass in the
end, and the largest plates transformed in the incomplete re-
verse transformation the smallest mass. Therefore, the system
remembers not only that, but quite precisely when the reverse
transition was “arrested”.

Separate numerical calculation (not presented in the paper)
show that even if the reverse transformation is also random
(squares randomly disappear, regardless of their sizes) the
system still keeps a memory of incomplete reverse transfor-
mations, but manifested differently: after a subsequent direct
transformation the total area covered by the squares of differ-
ent sizes decreases uniformly with the size.

It is also shown that our statistical model can reproduce
both the so called “hammer effect” and the memorizing of
multiple arrest points, features that have been previously ob-
served experimentally in the case of SMA and also captured
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FIG. 5. Hammer effect, see description in the text. (a) A random distribution of plates after a “normal” complete direct transformation,
(b) after one previous incomplete reverse transformation stopped at size 12 and (c) after repeating twice the same incomplete reverse
transformation. [(d)–(e)] Total area covered by squares of different sizes for the three transformations, averaged over 100 realizations.

by the existing thermodynamic models. This proves (in our
opinion) the potential of our statistical model to describe a
large class of phenomena.

A toy model is given in the Appendix A showing that the
mass distribution differences should be detectable by calori-
metric measurements, should our model be applied to physical
systems. The different distribution of plates sizes should also
be detectable by microscopy or by magnetic measurements for
magnetic solids.
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FIG. 6. Quantitative description of the Hammer effect shown

in Fig. 5. The difference between the total area (mass) covered
by different sizes squares after a double and, respectively, a single
previous incomplete transformations (which left untransformed the
squares with sides bigger than 12; i.e., the ratio per size in Figs. 5(f)
versus 5(e)).

Our model borrows many features from already existing
thermodynamic models which succeeded to reproduce the so-
called TME in SMA (see Sec. II). Still, the novelty of random
sizes squares and the absence of explicit thermodynamics shift
it towards statistical geometry. Nevertheless, even if the ther-
modynamics is not present in an explicit way, the assumptions
made do have implicit thermodynamic justification. The finite
size of the squares is inspired from the finite size of the plates
in the martensitic direct transformation and the reverse trans-
formation takes place in reverse size order because smaller
plates are the first to become unstable, having a larger “surface
to volume” ratio. Thus, our model should be relevant for solid
state phase transitions in general and for shape memory alloys
in particular. In Appendix C we discuss possible relevance of
our discrete model for the Palasti conjecture, which will be
addressed in a future work.
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APPENDIX A: “READING” THE MEMORY: A TOY MODEL

Within our model, the memory of a previous incomplete
transformation is “encrypted” in the changes of the square
sizes distribution. Technically, this memory can be “read” by
microscopy, or, as usually happens for the TME in SMA, by
calorimetry measurements (DSC).

064134-7
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FIG. 7. Double arrest, see the description in text. (a) A random distribution of plates after a “normal” complete direct transformation,
(b) after one previous incomplete reverse transformation stopped at size 16 and (c) after a second incomplete reverse transformation, this time
stopped at size 10. [(d)–(f)] Total area covered by squares of different sizes for the three transformations, averaged over 100 realizations.

It is not a purpose of this paper to simulate accurately a
calorimetric signal that would correspond to measuring the
phase transitions described. A detailed suggestion to simulate
a DSC signal for a similar “squares” system can be found in
Refs. [15,22].

Just for illustration, we give below a simple toy model for
simulating the DSC signal during the reverse phase transition,
thus “reading” the memory stored in the distribution of plates
sizes. The toy model presented in this Appendix assumes:
(a) the square plates transform back in the reverse order of
their sizes; the temperatures at which the plates become ther-
modynamically unstable increase with the plates sizes, and
(b) the calorimetric signal corresponding to each plate size is
a Gaussian curve, whose amplitude is proportional with the
mass corresponding to that respective size.

Figure 8(a) shows a simulation of the DSC signal for
a reverse transformation of a “normal” (uniform) mass
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FIG. 8. Generic illustration of the way in which the memory
(stored in the plates sizes distribution) may be read by a DSC
calorimetry scan. (a) normal squares sizes distribution (described
in Fig. 2) and (b) the squares sizes distribution after a previous
incomplete reverse transformation (described in Fig. 3).

distribution of the squares sizes (such as in Fig. 3(l)), while
Fig. 8(b) simulates the DSC signal of a revers transformation
after a previous arrest (such as in Fig. 4(f)). The colorful small
Gauss curves in Fig. 8 simulate the DSC signals for each
squares size (from Lmin = 4 to Lmax = 12), which are summed
up to obtain the tall curves.

The “shoulder” noticed on the summed signal in Fig. 5(b)
shows that the modified squares sizes distribution can, in
principle, be detected by a calorimetric scan.

APPENDIX B: DETAILS ON THE NUMERICAL
IMPLEMENTATION AND ADDITIONAL DATA

In this Appendix we give some details on how we did the
numerical implementation. As mentioned in the main text,
we use a discrete model. The “nucleation” of a new plate
means randomly placing a square with the smallest allowed
size, let us assume Lmin = 4. In Fig. 9 such a minimum
size square is labeled with “0”, meaning the initial size, or
the “step zero in growing”. Next, our algorithm chooses a
random maximum size to which this square will grow, in
the range Lmin − Lmax (Lmin means that there is no growth,
while Lmax is the maximum size allowed). Now, for the exam-
ple depicted in Fig. 9, let us assume that the maximum size
was randomly chosen to be 8. No preferential directions of
growth are assumed, so we want the square to grow uniformly
around the initial one. However, given the discrete model, one
has to start in some direction. In Fig. 9 it is assumed that
the square grows from size 4 to size 5 in the upper right
direction, adding the surfaces labeled with “1”. To ensure
uniform growing, the next step is expanding in the bottom
left direction and becoming a size 6 square by the addition
of the areas marked with “2”. The third growing is in the
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FIG. 9. Squares growth mechanism (see description in text).

upper left direction, and the square reaches size 7 by gaining
the areas labeled with “3”. The next growth should be in the
bottom right direction, however, this is not possible because
the limits of the system have been reached. So our square
from Fig. 9 will only grow to size 7, not 8 as initially chosen.
The same would have happened if other pre-existing squares
would come in the way, while if no geometrical constric-
tions are encountered the squares grow to the initially chosen
maximal size.

Next, we include some additional numerical data. In the
main text, Fig. 4 shows the situation after a memory circle
including an incomplete reverse transformation which “made
to disappear” the squares with sizes up to the value 8. We
noticed that in the next direct transformation this size 8 has
the smallest total mass, while the one immediately larger, size
9, has the biggest total mass (Fig. 4(f)). In general all squares
with sizes 4–8 have a lower total mass than those remained
untransformed, sizes 9–12. Here in, Fig. 10 we give numerical
simulation for the cases when the last transformed squares
have sizes from 6 to 9, to illustrate that the main conclusions
hold and do not depend on the “arrest” moment (the “Total
mass” in Fig. 10 is expressed in hundreds of unit cells, within
our discrete model used).

In Fig. 11 we present another analysis of the memory effect
keeping the arrest squares size and the maximum squares size
fixes (La = 8 and Lmax = 12, respectively), and varying Lmin

from 1 to 6. The memory effect is clearly present in all cases,
and we propose here a “quantification” of the memory effect
by the ratio between the maximum and minimum areas cov-
ered by different squares. This happens to be the ratio between
the area occupied by the smallest squares untransformed (in
the incomplete reverse transformation) and the largest squares
transformed. For the case in Fig. 11, we should do the ratio
between the masses of the sizes 9 versus 8. From Fig. 11(a)
to Fig. 11(f), these ratios have the values, respectively, 2.36,
2.45, 2.32, 2.41, 2.44, 2.50. We can comment that there is not
a significant variation, and also the instances plotted in Fig. 10
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FIG. 10. Squares sizes mass distribution (see description in text)
after a previous incomplete reverse transformation stopped at the
squares having the sides (La): (a) 6, (b) 7, (c) 8, (d) 9. For all plots,
we have Lmin = 4 and Lmax = 12.

have these ratios in the range 2.32–2.41. This is an interesting
finding, suggesting a weak dependence of the memory prop-
erty on the size at which the arrest was made. For the case
in Fig. 5(e) the ratio around the arrest value (areas occupied
by squares with side 13 versus side 12) is 2.38, similar to the
above calculated values, while in Fig. 5(e), after a repeated
arrest (hammer effect) the ratio grows to 3.64.

A complete transformation. As discussed, our simulations
of phase transitions on a discrete lattice have two main pa-
rameters Lmin and Lmax which are the sides of the smallest
and the largest squares. In the previously presented numer-
ical results, we had Lmin > 1 (except only for the case in
Fig. 11(a)), meaning in particular that there remains some
surface “untransformed” where even the smallest square (of
size Lmin) wouldn’t fit. It is generally accepted that solid state
phase transitions are in general incomplete and the martensitic
transformation in particular. However, there is no reason not
to try Lmin = 1 in numerical calculation and see how a “com-
plete” phase transition looks like, also in the context of the
memory properties. The numerical results are given in Fig. 12,
where normal and a previously arrested phase transitions are,
respectively, presented. The numerical calculations were per-
formed on a 200X200 grid and Lmin = 1 with Lmax = 20 and
La = 10. One can conclude that the memory effect is equally
present even for a complete phase transition. Also, for the
un-arrested, “normal” phase transition we notice a rather low
total mass for the smallest squares, which differs slightly from
the more uniform distributions in the case of incomplete phase
transitions.

APPENDIX C: A FEW WORDS ABOUT
THE PALASTI CONJECTURE

This Appendix is not directly related to the main
content/idea of this paper, but we include it because some
readers may find it of interest and also points towards possible
further directions of study.
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FIG. 11. Square sizes mass distribution (see description in text) after a previous incomplete reverse transformation stopped at La = 8, the
minimum size squares Lmin being from 1 (a) to 6 (f). For all cases Lmax = 12.

Our numerical simulations were about filling a surface with
random sizes squares. If instead we would have wanted to
fill the surface with oriented squares of the same size, we
would have found ourselves in the frame of Palasti conjecture
[30], which can be regarded as the most famous RSA problem
[23]. To briefly describe it, one should start from the one-
dimensional (1D) problem, consisting of randomly placing
segments of the same size on a line, also known as “car park-
ing problem”. The same size segments are randomly placed
until there is no more place for another one (i.e., all distances
between segments are smaller than the segments length). The
question now is: what is the average coverage? For this 1D
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FIG. 12. (a) A “complete” direct phase transition (Lmin = 1,
Lmax = 20, on a 200x200 lattice) (b) the same after a previous arrest
at La = 10. (c) and (d) are the respective sizes mass distribution after
averaging over 200 realizations.

case there is an analytical solution (in integral form, which can
be solved numerically with indefinite precision), the average
covering being l = 0.747597.... Going to higher dimensions
(d) (filling a surface with squares, a space with cubes, etc.),
Palasti conjectured [30] that the average coverage is ld . For
the case of 2D, this would be l2 = 0.55889....

Even if some early numerical estimations [31] confirmed
the Palasti conjecture within numerical marge of errors, more
accurate estimations later suggest that the average coverage of
a surface with oriented identical squares is 0.5620009 + / −
0.000004 [32], which is slightly higher than the Palasti value.

Our numerical simulations (an example is presented in
Fig. 13) on discrete lattices and various l/L (square side

FIG. 13. Example of randomly filling a “big” square with the
side L = 100 with “small” oriented squares having the side l = 10.
The small squares are randomly placed until the jamming limit is
reached. In this example we could fit N = 54 small squares, corre-
sponding to 0.54 filling, while the average value we obtained was
slightly less than 0.56.
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versus the side of the total area to be filled) systematically
yield average values above 0.55 with higher values when
discretization plays a bigger role (i.e., l is just a few lattice

constants). However, we have also finite total area effects and
discretization effects, which call for a further more detailed
study.
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