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The corner transfer matrix renormalization group (CTMRG) algorithm has been extensively used to investigate
both classical and quantum two-dimensional (2D) lattice models. The convergence of the algorithm can strongly
vary from model to model depending on the underlying geometry and symmetries, and the presence of algebraic
correlations. An important factor in the convergence of the algorithm is the lattice symmetry, which can be
broken due to the necessity of mapping the problem onto the square lattice. We propose a variant of the CTMRG
algorithm, designed for models with C3-symmetry, which we apply to the conceptually simple yet numerically
challenging problem of the triangular lattice Ising antiferromagnet in a field, at zero and low temperatures.
We study how the finite-temperature three-state Potts critical line in this model approaches the ground-state
Kosterlitz-Thouless transition driven by a reduced field (h/T ). In this particular instance, we show that the
C3-symmetric CTMRG leads to much more precise results than both existing results from exact diagonalization
of transfer matrices and Monte Carlo.
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I. INTRODUCTION

A very successful approach to study classical spin models
on two-dimensional lattices is to write the partition function
of the system as the contraction of a tensor network [1–5].
Inspired by the original transfer matrix formulation [6,7], this
tensor network associates to each interaction a tensor carrying
its Boltzmann weight and is typically defined on the same
lattice as the original model. With the exception of a few
well-known exactly solvable cases, namely zero-field Ising
models on planar lattices [7–12], an exact evaluation of this
partition function is generally exponentially hard. In those
cases, an approximate contraction scheme, such as tensor
network renormalization group (TRG, TNR) [4,13], bound-
ary matrix product state (MPS) with infinite time-evolved
block decimation (iTEBD) [14–16], variational uniform MPS
(VUMPS) [17–19], or the corner transfer matrix renormal-
ization group (CTMRG) [1,2,5,18] can provide very accurate
results.

With the notable exception of TRG/TNR [4,20–22], these
algorithms are, in most cases, formulated on the square lat-
tice. In particular, this is the case for CTMRG, which has
become a cornerstone of tensor network approaches in clas-
sical and quantum lattice models. This algorithm was first
introduced by Nishino and Okunishi [1–3] as an efficient
contraction scheme to evaluate partition functions of infi-
nite two-dimensional square lattice models. It comes as a
combination of Baxter’s corner transfer matrix [23–26] and
White’s density matrix renormalization group (DMRG) algo-
rithm [27,28]. Although initially introduced in the context of
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2D statistical physics as a complementary approach to other
transfer matrix methods or to Monte Carlo, its use rapidly
extended to 2D quantum physics. Indeed, in the last two
decades, CTMRG has been used as a contraction algorithm
for infinite projected entangled pair states (iPEPS) wavefunc-
tions [5,15,22,29,30]. Pairing CTMRG with different update
schemes for iPEPS such as simple [31] and full update [32]
and more recently automatic differentiation [33,34] has no-
tably supported new results in fermionic systems [35–38] and
frustrated systems [39–42].

Besides the now well-established power of tensor networks
for quantum systems, a promise of tensor networks for classi-
cal spin systems has been to offer either a powerful alternative
to Monte Carlo (see, e.g., Refs. [43–47]) or a support to
improve sampling [48,49]. However, in recent years, their
application to frustrated two- and three-dimensional classical
models has attracted some attention [50–59], as it has been
established that particular care has to be taken in the ten-
sor network formulation to avoid numerical instabilities or
convergence to wrong results. Importantly, these instabilities
seem to get significantly reduced away from a macroscopi-
cally degenerate ground state [50], but they can create issues
close to a critical ground state such as that of the triangular
lattice Ising antiferromagnet [53]. In the context of exact,
differentiable contraction, these instabilities can be dealt with
by working with the logarithm of the Boltzmann weight [54].
In the case of approximate contraction, where it is unclear
how to use such a construction, a successful alternative ap-
proach has been to rely on ensuring that the ground-state local
rule is satisfied at the level of the tensor, such that the low-
temperature limit of the tensor network remains well-defined
[53,55,58]. This approach has been mostly validated using
VUMPS; here, we find that it is also successful with various
CTMRG algorithms.
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Since CTMRG is defined on the square lattice, a usual
first step is to map the tensor network from the original
lattice onto the square lattice [42,60–65]. While it has been
generally successful (of particular interest here, there is the
case of the triangular lattice Ising ferromagnet [60]), this step
may occasionally lead to problems such as poor convergence
or nonphysical breaking of symmetry [66]; in contrast, it is
well known that improved performance is achieved when the
algorithm makes use of the underlying symmetry of the lattice
[66,67]. In this spirit, proposing variants of existing algo-
rithms formulated to fit the lattice symmetry of the problem
could allow investigation of systems with better accuracy.

In this paper, we design a CTMRG algorithm to contract
infinite tensor networks defined on the honeycomb lattice,
naturally giving rise to a C3-symmetric contraction scheme.
A simple construction enables us to apply it to the low tem-
perature phase diagram of the triangular antiferromagnet Ising
model in a field. In Sec. II we describe this model and re-
call previous works on the topic. In Sec. III, we recall the
CTMRG algorithm on the square lattice and then introduce
the CTMRG algorithm on the honeycomb lattice. In Sec. IV,
we first benchmark the algorithm on the classical Ising an-
tiferromagnet in zero field on the triangular lattice, naturally
formulated through a dual construction as a tensor network
on the honeycomb lattice. We then revisit the effect of the
magnetic field both in the constrained model and the finite-
temperature case. We show that the location of the critical
line at finite temperature can be evaluated with much higher
precision than previously achievable. Finally, in Sec. V we
discuss our results and provide an outlook.

II. THE MODEL

The antiferromagnetic Ising model on the triangular lattice
in a magnetic field is defined by the Hamiltonian

H = J
∑
〈i, j〉

σiσ j − h
∑

i

σi, (1)

with σ ∈ {+1,−1} an Ising spin variable, J > 0 the interac-
tion parameter and h the field parameter.

We show a sketch of its phase diagram in Fig. 1. In the
absence of a magnetic field, the model has a macroscopi-
cally degenerate ground state [10,11], i.e., a finite residual
entropy, and is characterized by each triangle satisfying a
two-up one-down, two-down one-up (UUD/DDU) rule for the
spins. This critical point has algebraically decaying spin-spin
correlation [68] characterised by a critical exponent η = 1/2
and central charge c = 1, and is commonly referred to as the
Villain-Stephenson (VS) point. It can be described using a
Coulomb-gas construction [69–71] thanks to an exact map-
ping onto a triangular solid-on-solid (SOS) model [70,72,73].
Upon introducing a positive field, the configurations with each
triangle having UUD spins are favored, giving rise to long-
range correlations. This m = 1/3 magnetization plateau, with√

3 × √
3 symmetry breaking stabilizes until h = 6J . This

point has a finite residual entropy S = 0.333242... [74,75].
For h > 6J , the ground state is fully polarized.

At zero field, for any nonzero temperature, the system has
a finite correlation length which diverges exponentially fast
as T → 0 [76,77]. In contrast, for 0 < h < 6J , the

√
3 × √

3

FIG. 1. (a) Sketch of the phase diagram in the (h/J, T/J ) units.
The ordered phase melts through a three-state Potts transition. The
slope of the critical line near the m = 1 magnetization plateau is de-
termined by a mapping to the hard hexagon model. (b) Phase diagram
of the model in reduced coordinates (H, K−1) with H = h/T and
K = J/T . At K−1 = 0, the system maps onto an SOS model with a
critical phase and an ordered phase separated by a KT transition.

ordered phase melts at finite temperature through a three-state
Potts transition as expected from the ground-state symmetry
[78] and verified by phenomenological scaling and transfer
matrix calculations [79–84]. This transition is characterized
by critical exponents β = 1/9, ν = 5/6, η = 4/15, c = 4/5,
with β describing the order parameter power law in the
ordered phase and ν characterizing the divergence of the cor-
relation length.

The shape of the Potts critical line in the limit T → 0
has attracted quite some interest. In the vicinity of h = 6J ,
the shape of the line is predicted by the hard-hexagon model
whose second-order phase transition is also in the three-state
Potts universality class. Indeed, the partition function of the
triangular Ising antiferromagnet in the limit T → 0, h → 6J
with (6J − h)/T =: ln(ζ )/2 remaining finite maps to that of
the hard hexagon model with fugacity ζ [84,85]; thus, the
slope of the three-state Potts critical line in that limit is de-
termined by the critical fugacity of the hard-hexagon model
ζc = 11+5

√
5

2 [86] as

Tc → 1

ln(ζc)
(12J − 2h). (2)

The limit T → 0, h → 0 has proven much more challeng-
ing. A first conjecture [79] was that the Potts line would
approach the VS point with an infinite slope, but renormal-
ization group investigation instead showed that in this limit,
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FIG. 2. The partition function written as the infinite contraction
of a rank four tensor in a square lattice is approximated by a con-
traction of nine different tensors. Bold lines represent legs of bond
dimension χ while thin lines represent bond dimension d .

the slope of the transition line should remain finite [70].
The model is sometimes introduced considering the reduced
Hamiltonian with parameters H = h/T and K = J/T :

HR = H
T

= K
∑
〈i, j〉

σiσ j − H
∑

i

σi, (3)

where an additional critical phase appears at K−1 = 0. In-
deed, introducing a finite reduced field at the VS point acts
as a perturbation which become relevant only when η = 4/9
where a Kosterlitz-Thouless (KT) [70,87,88] transition into an
ordered phase must occur. The location of the KT transition is
not predicted by the RG analysis, but transfer matrix studies
have located it around HKT = 0.266 ± 0.01 [82–84,89,90].
The three-state Potts transition should then meet the KT point
in the zero temperature limit. A study based on transfer matrix
and renormalization group analysis [84] has given evidence in
favor of that scenario and further suggested that the transition
line in the (K−1, H ) phase diagram approaches HKT with a
square root singularity. However, the smallest accessible criti-
cal field of the three-state Potts transition remains significantly
larger than HKT and a definitive answer on the shape of the
transition near HKT remains to be given.

For the rest of the paper, we will sometimes refer to K−1

as the temperature but will always distinguish between the
reduced field H and the field h.

III. CORNER TRANSFER MATRIX
RENORMALIZATION ALGORITHM

In this section we give a brief overview of the square
CTMRG and its implementation for the triangular Ising
antiferromagnet. We then introduce a new version of the
CTMRG algorithm that contracts honeycomb tensor networks
and show how to express the partition function of the an-
tiferromagnetic Ising model on the triangular lattice as the
contraction of an infinite honeycomb tensor network.

A. Algorithm for the square lattice

The square CTMRG algorithm approximates the contrac-
tion of infinite square tensor networks made of rank-four local
tensor a of dimension d × d × d × d with a contraction of
eight different tensors referred to as the environment and the
local tensor a as shown in Fig. 2. The environment is made
of four corner tensors Ci of dimension χ × χ and four edge

FIG. 3. Illustration of the absorption step of square CTMRG in
tensor network notation.

tensors Ti of dimension χ × d × χ . The approximation is
controlled by the bond dimension χ and in the infinite bond
dimension limit one recovers the exact result.

To find a representation of the infinite lattice tensor net-
work with a finite bond dimension, tensors are iteratively
added into the network and the thermodynamic limit is ob-
tained when some observables have converged. There are
different ways of constructing the environment and in the
present case we focus on the directional CTMRG algorithm
[5], where columns are added to the network one at a time.
It consists of two steps, which when repeated along the four
lattice directions define a full CTMRG iteration:

(i) Absorption: A new column is introduced into the
network in one of the directions and contracted with the ap-
propriate corner and edge tensors, increasing their dimension
by a factor of d . An illustration of the absorption for a left
move is included in Fig. 3.

(ii) Renormalization: If one of the dimensions of a tensor
exceeds the cutoff dimension, then the dimension of this index
is truncated after application of an isometry U . This step is
illustrated in Fig. 4 for a left move.

There are several possible choices for the definition of the
isometry U , which can affect the convergence of the algo-
rithm. In the present case we used the isometry first introduced
by Corboz in Ref. [36].1

One of the advantages of the CTMRG formalism is that it
gives access to the entanglement entropy, whose divergence
at second order phase transitions can be used to study the
associated universality classes [44,91,92] and is defined as

S = −Tr[ρln(ρ)] (4)

by setting the density matrix ρ as

ρ = C1C2C3C4/Tr(C1C2C3C4). (5)

1. Mapping on the triangular lattice

For a given statistical mechanical system the choice of a
tensor network representation of its partition function is not
unique. In the case of frustrated systems such as the triangular
Ising antiferromagnet the choice of the tensor greatly affects

1The isometries first introduced by Nishino and Okunishi in
Ref. [1] or Orus in Ref. [5] performed poorly at small reduced field
and close to the critical regime.
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FIG. 4. Illustration of the renormalization step of square
CTMRG in tensor network notation.

the convergence. It was observed [53,56] that it is best to
use a tensor network construction obtained by factorizing
the Boltzmann weight of a global spin configuration into a
product over a set of tiles whose reunion covers the whole
lattice. In this spirit, we define a tensor for the triangular Ising
antiferromagnet that accounts for the Boltzmann weight of a
hexagon of seven spins given by

a(σ1,σ2 ),(σ7,σ3 ),(σ5,σ4 ),(σ6,σ8 ) =
∑

σ0=±1

e−βH (σ0,...,σ6 )δσ2,σ7δσ5,σ8 ,

(6)

with

H (σ0, . . . , σ6) = J

(
σ0

6∑
i=1

σi +
5∑

i=1

σiσi+1 + σ6σ1

)

− hσ0 − h

3

6∑
i=1

σi. (7)

We give the schematic picture of the tensor in Fig. 5.

FIG. 5. Local tensor made of seven spins given by Eqs. (6)
and (7).

FIG. 6. Partition function written as a two-dimensional honey-
comb tensor network, and then contracted to an environment made
of nine tensors, and a unit cell made of six onsite tensors. Bold lines
represents bond dimension of χ while thinner lines indicate a smaller
bond dimension of d .

B. Algorithm for the honeycomb lattice

We now introduce a variant of CTMRG that contracts
infinite tensor networks defined on the (bipartite) honeycomb
lattice with local tensors a and b of dimension d × d × d . It
is worth noting that there are other CTMRG algorithms on
lattices other than square [93,94]. The most relevant in our
case has originally been introduced by Gendiar et al. [95]
while studying Ising models on triangular-tiled hyperbolic
lattices formulated as interactions-round-a-face (IRF) tensor
networks. This was recently adapted to the context of 2D-
quantum physics model using automatic differentiation [66]
with iPEPS wave-functions defined on a honeycomb lattice
with a single local tensor a. Although they apply to similar lat-
tices, we see a key difference between this algorithm and the
one presented here. In Ref. [66], the corner matrix represents
a sixth of the partition function while in ours it corresponds
to a third. This in turn leads to inserting the isometries in
different places and to a more natural generalization of our
algorithm when the bipartite lattice is made of two different
local tensors. We postpone this discussion to the end of the
present section.

The algorithm presented here approximates the infinite
tensor network with nine tensors which represent the envi-
ronment E = {T i

α,Ci | i ∈ {1, 2, 3}, α ∈ {a, b}} as shown in
Fig. 6 where the corner tensors Ci are of dimension χ × χ ,
and the edge tensors T i

α are of dimension χ × d × χ . Just
as in the square lattice CTMRG case [2], the approximation
is controlled by the bond dimension χ and in the infinite χ

limit, one recovers the exact result. The algorithm iterates two
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FIG. 7. One full iteration for the corner tensor C1, Eqs. (8) and
(11). C2 and C3 are updated similarly.

alternating steps as well, the update and the renormalization,
until the convergence of some observable of interest.2 For the
CTMRG on the honeycomb lattice, we propose the following
update (the full iteration is shown in Figs. 7 and 8):

C′
i = abCiT

i
a T f (i−1)

b , (8)

T i′
b = T i

a b, (9)

T i′
a = aT i

b , (10)

where we have introduced f (i) = mod(i, 3) to make the nota-
tion lighter. We then have to project the tensors in a relevant
subspace to keep their dimensions under control. This is called
the renormalization step and goes as

Ci = UiC
′
iU†

f (i−1), (11)

T i
b = T i′

b Ui, (12)

T i
a = U†

i T i′
a , (13)

where the isometry Ui is computed by truncating the singular
value decomposition of Cf (i+1)Cf (i+2)Ci. This isometry would
be the equivalent in the square CTMRG of the isometry
originally used by Nishino and Okunishi [2]. We illustrate pic-
turally in Fig. 9 how the iterations correspond to contracting
the partition function on the whole honeycomb lattice.

Similar to the square CTMRG we can compute the entan-
glement entropy by setting the density matrix ρ as

ρ = C1C2C3/Tr(C1C2C3). (14)

A particularly useful case is when the local tensors a and
b are invariant by rotation. Then, one can reduce the environ-
ment to only three different tensors, E = {C, Ta, Tb}, and the
density matrix becomes

ρ = C3/Tr(C3). (15)

We will refer to the algorithm making use of that symmetry as
the C3 symmetric (honeycomb) CTMRG.

In the case of local tensors which are symmetric under
rotation and reflection (without any particular relation be-
tween a and b), the C3 symmetric CTMRG algorithm gives
direct access to the transfer matrix whose spectrum can be
used to compute the correlation lengths and wave-vector in

2See, e.g., Refs. [22,96] for a discussion of finite-size vs finite-bond
dimension in the square lattice CTMRG.

FIG. 8. One full iteration for the edge tensors T 1
a and T 1

b ,
Eqs. (9), (10), (12), and (13). The other edge tensors are updated
similarly.

their respective directions. Indeed, by denoting the normalized
eigenvalues of the transfer matrix as

λi = e−εi+iφi , (16)

one can show that the correlation length and wave-vector are
given by

ξχ = ε−1
2 qχ = φ2. (17)

It was suggested by Rams et al. [97] to extrapolate the finite
bond dimension correlation length with respect to higher gaps
δ in the transfer matrices as

ξ−1
χ = ξ−1

∞ + aδ. (18)

Indeed, when the bond dimension increases, the spectrum
above the first gap needs to converge to a continuum and δ

goes to zero. We will be using in the next section δ = ε4 − ε2.
In Fig. 10, we show the transfer matrix in the x direction with
the convention of direction shown in Fig. 6.

Furthermore, if the infinite corner tensor is hermitian, then
one can keep C diagonal and use an eigenvalue decomposition
for better numerical stability. In particular, this is the case if
the tensor network has a C3v symmetry.

FIG. 9. Schematic way of representing how the environment is
updated. Primed tensors represent the tensors after one iteration.
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FIG. 10. Transfer matrix in the x direction in the case of fully
symmetric tensors a and b.

We now briefly discuss the practical differences between
the algorithm introduced in Ref. [66] and the C3-symmetric
CTMRG introduced here. As already mentioned, the main
difference between the two algorithms is the definition of
the corner transfer matrix which in turn leads to a different
truncation scheme. In the present case we consider the CTM
to represent a third of the partition function while in Ref. [66]
it represents a sixth. Using Gendiar’s algorithm on a bipartite
lattice, one would then need to define two different corners
Ca and Cb which in turn at the renormalization step would
naively require two different isometries U1 and U2 to be pro-
jected onto their relevant subspace such that C′

a = U1CaU2

and C′
b = U2CbU1. In contrast using only one corner matrix C

which effectively represents C = CaTaTbCb only requires one
isometry and C′ = UCU .

1. Mapping from the triangular to the honeycomb lattice

To apply the C3-symmetric CTMRG algorithm to the tri-
angular lattice Ising antiferromagnet we map the triangular
lattice onto the honeycomb lattice by defining the local tensors
a and b on the dual as

a(σ1,σ4 )(σ2,σ5 )(σ3,σ6 ) = δσ1σ6δσ4σ2δσ3σ5 e
H
6 (σ1+σ2+σ3 )

× e− K
2 e− K

2 (σ1σ2+σ2σ3+σ3σ1 ),

b(σ1,σ4 )(σ2,σ5 )(σ3,σ6 ) = δσ1σ5δσ2σ6δσ4σ3 e
H
6 (σ1+σ2+σ3 )

× e− K
2 e− K

2 (σ1σ2+σ2σ3+σ3σ1 ), (19)

where δ denotes the Kronecker δ with K and H the reduced
coupling constants. We give a diagrammatic expression of the
tensors a and b in Fig. 11. A more detailed explanation on how
to express a classical partition function as the contraction of
a two-dimensional network and how to map the problem on
a specific lattice geometry can be found in [53]. Defined as
such, the local tensors a and b are rotation invariant, and we
can use the C3 CTMRG algorithm. We note that the tensors
a and b are related by ai, j,k = bk, j,i. Although the tensors a
and b are not fully symmetric and the previous construction
of the transfer matrix (Fig. 10) cannot be applied, we can still
construct a transfer matrix but in a different way as shown in
Fig. 12 with δ a 4 × 4 matrix representing the permutation of

FIG. 11. Definition of the local tensors a and b. By grouping
the indices pairwise we end up with tensors a and b of dimension
4 × 4 × 4.

two legs given by

δ =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠. (20)

This construction applies to the case of the triangular Ising
model and does not generalize to arbitrary rotational invariant
tensors a and b.

In the ordered phase, the system undergoes a translational
symmetry breaking and the triangular lattice is divided into
three sublattices A, B and C with different magnetizations
(Fig. 1). We note that the honeycomb CTMRG naturally

FIG. 12. Transfer matrix in the x direction for the Ising model for
a 6 × ∞ system on the triangular lattice. The same reasoning applies
to an infinite system in both directions and give the same results.
The red lines indicate lines that must be contracted. The dashed lines
represent the perspective in 3D and indicate that the legs pass below
the full lines.
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FIG. 13. Illustration of the implication of the C3 symmetry on the
expectation value of local observables. The tensors a and b are given
by Eq. (19), and each tensor describes three sites. The C3 symmetry
in the environment imposes that different sites on the same sublattice
have the same local magnetization. The figure highlights the sublat-
tices on the tensors a and b. One site belongs to the sublattice A (•).
Three sites belong to the sublattice B (•) and three more sites belong
to the sublattice C (•).

allows for this freedom while imposing the translational
symmetry associated with the long-range correlations in the
ground state. This property can be deduced by looking at
Fig. 13, where we have highlighted the different sublattices
in the local tensors a and b. Indeed, any observable mea-
sured on a site of the sublattice A, B, or C (represented by
colored dots) has to be the same if measured on a different
site of the same sublattice due to the network being invariant
by C3. This is only valid when the corner and edge tensors
are identical in all three possible directions. As we will see,
enforcing this symmetry will lead to a better convergence and
will allow us to access lower temperatures than previously
available.

IV. RESULTS

We now present the results obtained by the C3-symmetric
CTMRG. We benchmark the algorithm on the antiferromag-
netic triangular Ising model at zero and finite temperature. We
then turn to the constrained model, where we investigate the
location of the KT transition. Finally, we discuss and compare
results obtained from the square and honeycomb CTMRG. We
define the order parameter as

ψ = 1
3 |ψA + e2π i/3ψB + e−2π i/3ψC |, (21)

with ψi the magnetization on the sublattice i. In the ordered
phase, due to the

√
3 × √

3 unit cell, the honeycomb CTMRG
algorithm converges to three different environments EA, EB,
and EC . Observables such as the magnetization in the middle
of the plaquette or the entanglement entropy thus converge

FIG. 14. Simulations were done at h = 0 for two different bond
dimensions. The error is of the order 10−13 for temperatures larger
than 0.6 where the correlation length is small. For the smallest
computed temperature (T = 0.1), the error is of the order 10−10.

modulo three. Similarly, the transfer matrices obtained from
Ei’s do not have the same spectrum. One cannot then consider
this as the proper transfer matrix and would need to take into
account all environments to construct the true transfer matrix.
To do so, we would need to generalize the algorithm to a
CTMRG with a general, multisite unit cell [5]. We thus only
have access to the correlation length in the disordered phase.
Yet, as we will see, a two-site unit cell CTMRG is powerful
enough for our purposes.

A. Benchmark at zero field

As mentioned in the Introduction, at h = 0 we recover the
solvable triangular lattice Ising antiferromagnet whose energy
is exactly known [10,11,98]. Its ground state has critical corre-
lations, and upon decreasing the temperature, the correlation
length is known to diverge exponentially fast [76,77] as

1

ξ
= −ln[tanh(βJ )], (22)

and this critical point belongs to the Villain-Stephenson uni-
versality class [76,99,100]. We compare our results with the
exact values in Figs. 14 and 15 where the energy and cor-
relation length are in good agreement with the associated
theoretical predictions.

At zero field, the system is critical with infinite correlation
length. However, when introducing a finite bond dimension χ ,
the correlation length will become finite as well and can only
be increased by considering a larger bond dimension. It has
been argued that it follows a power law ξ ∼ χκ with universal
exponent κ given by [101,102]:

κ = 6

c(
√

12/c + 1)
. (23)
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FIG. 15. Simulation done at h = 0. Top panel: the correlation
length with respect to the temperature. The straight line represents
a linear fit of the inverse correlation length. Bottom panel: the ex-
trapolation used for the correlation length with respect to the gap
δ = ε4 − ε2 in the transfer matrix. We have used bond dimensions
χ ∈ [100, 200].

Using the correlation length scaling, one can derive the
following finite bond dimension dependency of the order pa-
rameter and entanglement entropy [101,102]:

ψ = χ−κη/2, (24)

S = cκ

6
ln(χ ). (25)

Assuming the central charge, we can thus define effective
exponents κ and η by fitting the order parameter and entan-
glement entropy with Eqs. (24) and (25) over a certain range
of bond dimensions Iχ . By defining α and β such that

S = βln(χ ), (26)

ln(ψ ) = αln(χ ), (27)

and assuming the central charge we then get κ = 6β/c and
η = −2α/κ and the computation of the critical exponent is
reduced to a simple linear fit. As the environment converges
modulo three, the entanglement entropy takes three different
values SA, SB, SC depending on the modulo of the number of

FIG. 16. Simulations done at h = 0 and T = 0 with the square
and honeycomb CTMRG algorithms using χ ∈ [200, 400]. Top
panel: the logarithm of the order parameter versus the logarithm
of the bond dimension. Bottom panel: entanglement entropy versus
the logarithm of the bond dimension. Results obtained from the
honeycomb CTMRG are more accurate than the one obtained from
the square CTMRG. The black lines indicate the slope predicted by
Eq. (23) using c = 1 while the yellow lines are the linear fits from
which we extract the critical exponents.

iterations. Furthermore, by symmetry of the model we have
SB = SC and we can then define two different exponents ηA ≡
η(SA) and ηB ≡ η(SB) depending on which entropy SA or SB

we choose to define κ from. We benchmark the methodology
at the Villain-Stephenson point at H = K−1 = 0 using bond
dimension χ ∈ [200, 400] and compare the results with the
square CTMRG. The results are shown in Fig. 16. Assuming
c = 1, we found for the honeycomb CTMRG ηA = 0.4990 ±
0.0027 and ηB = 0.4986 ± 0.0027 in good agreement with
the exact value η = 1/2 where the error bars have been com-
puted from the goodness of the fit. Conversely, one could
have assumed η = 1/2 and we recover cA = 1.002 ± 0.005
and cB = 1.003 ± 0.005. However, we note that even by as-
suming the central charge c = 1 we find κA = 1.230 ± 0.003
and κB = 1.231 ± 0.003 which do not agree with the theoret-
ical prediction given by Eq. (23). We attribute this behavior
to various corrections in bond dimension [22,44,103]. We
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then choose to assume κ as an independent parameter to be
measured from the entanglement entropy rather than using
the theoretical prediction. We note that we cannot measure
κ from looking at the correlation length scaling with respect
to the bond dimension as the algorithm at zero temperature
already spontaneously breaks translational symmetry and we
lose access to the transfer matrix. Applying the same method-
ology with the square CTMRG and assuming the central
charge c = 1 we found η = 0.4839 ± 0.0131. Furthermore,
assuming η = 1/2 we obtain c = 1.0334 ± 0.0280. The crit-
ical exponent and central charge obtained from the square
CTMRG are less accurate than the ones obtained with the C3-
symmetric CTMRG with larger error bars. This is due to noise
present in the fitting of the order parameter and entanglement
entropy seen in Fig. 16, and in that instance the C3-symmetric
CTMRG outperforms the square CTMRG.

We also note that the exponential divergence of the cor-
relation length limits the range of numerically reachable
temperatures. Indeed, since the numerically accessible cor-
relation length is also bound by the bond dimension with
ξχ = χκ , at low enough temperature the (physical) correlation
length will be larger than what can be described with finite
bond dimension χ , i.e., ξ > ξχ , and the system will freeze
in the sense that (i) the correlation length saturates to a finite
value and (ii) correspondingly, the environment converges to
a temperature-independent fixed point. Due to the exponential
divergence of the correlation length, to overcome this problem
and to effectively describe the lower temperatures we would
need to increase χ exponentially fast as well.

B. Constrained model

We now turn to the constrained model by setting K−1 = 0.
As already mentioned, there are two phases separated by a
KT transition characterized by ηKT = 4/9. We thus use the
critical value of η as the criterion to locate the transition and
we found HKT = 0.305 ± 0.006. The exponent is computed
with the scaling relations discussed in the previous section and
the results are shown in Fig. 17 (upper panel). For H � 0.2
we used bond dimension χ ∈ [200, 400] while for H � 0.25,
closer to the transition, we used χ ∈ [300, 520]. We have plot-
ted the transfer matrix results obtained from finite-size scaling
assuming power law correction (Ref. [83], Table II) as well.
At low reduced fields, our results agree reasonably well with
the transfer matrix results while at larger reduced field, the two
methods start to give different results. It is worth noting that
although the values of the exponent obtained from transfer
matrix above H > 0.3 are attributed in Ref. [83] to strong
cross-overs into the ordered phase (see also Refs. [89,104]),
using the ηKT = 4/9 criteria to determine the location of the
KT transition would lead to a larger value than the present
result.

Indeed, around the transition, significant corrections to
scaling are expected [83] and the critical field HKT = 0.266 ±
0.01 in Refs. [82–84] is only obtained by considering both
finite size logarithmic and power-law corrections. It is un-
clear how to perform similar corrections in the framework of
finite-bond dimension scaling. We note that, close to H ∼ 0.3,
our results show a slight dependence on the range of bond
dimension over which we fit: when considering higher bond

FIG. 17. Upper panel: Simulations done at K−1 = 0. At H = 0,
the results are in good agreement with the exact results η = 1/2.
For H � 0.2, we used bond dimension χ ∈ [200, 400], while for
H > 0.2 we used χ ∈ [300, 520]. The transfer matrix results are
from Ref. [83]. Lower panel: simulations done at K−1 = 0. The ◦ and
� symbols denote ηA and ηB, respectively. In the χ goes to infinity
limit one recovers the exact result.

dimensions, the computation of η gives a lower exponent.
We illustrate the dependency in Fig. 17 (bottom panel) for
three different values of the reduced field where in the x axis
χ is used as an abuse of notation referring to the interval
Iχ = [χ − 250, χ ]. As expected, the difference between ηA

and ηB decreases upon increasing the bond dimension. At
H = 0 and H = 0.25 the CTMRG results are well converged.
In contrast, at H = 0.29 we observe some dependency and
it becomes harder to conclude. From the behavior of η in
the lower-panel of Fig. 17, we draw the conclusion that the
obtained critical field should be taken as an upper bound for
the transition.

C. High field

At high field, the critical temperature is large and both
transfer matrices and Monte Carlo methods also have no
problem identifying the location of the Potts transition or its
universality class [78,79,84]. As an additional benchmark of
our approach, we verify the nature of the transition at h = 3:
if the transition belongs to the three-state Potts universality
class, both ψ9 and ξ−6/5 should behave linearly and intersect
the x axis at the critical temperature. This is indeed what we
observe in Fig. 18. More precisely, the intersection between
the linear fit of ψ9 and the x axis gives a critical temperature
Tc = 1.3440 while the intersection between the linear fit of
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FIG. 18. Simulations were done at h = 3. The order parameter
has been computed at fixed bond dimension. The critical temper-
atures obtained from the order parameter and correlation length
respectively are Tc = 1.3440 and Tc = 1.3437.

ξ−6/5 and the x axis gives a critical temperature Tc = 1.3437.
The difference between the two temperatures is of the order
of 10−4, in agreement with a unique transition belonging to
the three-state Potts universality class. The correlation length
has been extrapolated using bond dimension ranging from
χ = 100 to χ = 200. We have used χ = 200 and χ = 250
for the order parameter and we can see in Fig. 18 that it has
converged with respect to the bond dimension.

D. Low field

We now discuss in detail the results obtained at low tem-
peratures. We observe a strong bond dimension dependency
for the order parameter and entanglement entropy, even away
from the critical line (Fig. 19). Yet, as previously discussed,
such dependency can be used to determine the critical tem-
peratures and critical exponents. In contrast to the previous
section, we do not work at fixed field to check the nature of
the universality class, but we are looking for the location of
the critical reduced field knowing that the transition is in the
three-state Potts universality class. We thus choose to locate
the transition by looking at the regime where the order param-
eter decays with respect to χ as a power law and perform a
self-consistent check by assuming the central charge c = 4/5
and then measuring the spin-spin decay critical exponent η.

We show the results in Fig. 20 for the lowest considered
temperature K−1 = 0.25 where we used bond dimension up
to χ = 400. The algebraic decay of the order parameter can
be seen in only a narrow interval Hc ∈ [0.40, 0.42]. By con-
sidering higher bond dimensions, the interval’s width would
diminish. But we are limited to finite bond dimension and
thus consider Hc = 0.41 ± 0.01. Assuming c = 4/5 and con-
sidering only the largest bond dimensions between χ = 200
and χ = 400 we find ηA = 0.270 ± 0.003 and ηB = 0.266 ±
0.003 in good agreement with the three-state Potts universality
class. By recovering the right critical exponent we confirm

FIG. 19. Order parameter and entanglement entropy at tempera-
ture K−1 = 0.4 for different bond dimensions.

FIG. 20. Log-log plot of the order parameter with respect to
the bond dimension at K−1 = 0.25. We can identify the power law
regime to be in between H = 0.40 and H = 0.42. We thus esti-
mate Hc = 0.41 ± 0.01. At Hc = 0.41, by fitting the order parameter
for χ ∈ [200, 400] one finds ηA = 0.270 ± 0.003 and ηB = 0.266 ±
0.003 in agreement with the three-state Potts universality class.
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FIG. 21. Phase diagram of the triangular antiferromagnetic Ising
model in a field shown as K−1 with respect to the reduced field
H . Our results are in good agreement with previous transfer matrix
study. Blue and red dashed lines indicate the fits done up to sec-
ond order on the present transition considering respectively HKT =
0.266 ± 0.01 and HKT = 0.305 ± 0.006.

that we are not in a cross-over regime influenced by the
proximity of the KT point and that we indeed have located
the critical reduced field.

E. Phase diagram

The full phase diagram is given in Fig. 21, where we
have plotted the critical temperature obtained from the C3

symmetric honeycomb CTMRG as well as the transfer ma-
trix results obtained in Ref. [84]. At finite temperature, our
results agree reasonably well with the data from the trans-
fer matrix methods, but with significantly smaller error bars.
Furthermore, we are able to reach lower temperatures while
keeping reasonably small errorbars, such that the transition
line we found shows the first signs of a curvature, which
could not be observed previously. In that regard, our study
further supports the renormalization group predictions which
suggest that the Potts critical line meets the zero tempera-
ture KT point with a leading exponent one-half and a linear
correction [70,84]:

K−1
c ∝ (Hc − HKT)1/2 + o(Hc − HKT). (28)

We have also fitted the new transition line up to the second
order in that expansion and show the results in Fig. 21. We find
that the fit of the transition line is perfectly compatible with
both critical reduced fields HKT = 0.266 ± 0.01 and HKT =
0.305 ± 0.006 and is not enough to distinguish between the
two.

As previously mentioned, due to the exponential diver-
gence of the correlation length upon approaching the K−1 = 0
critical line, there is a limitation for the temperatures we could

reach, and we were not able to study the phase diagram for non
zero temperature smaller than K−1 < 0.25.

V. DISCUSSION AND SUMMARY

We have introduced a variant of the CTMRG algorithm that
contracts infinite honeycomb tensor networks. It is especially
powerful for problems that have a natural C3-symmetry. In
the case of the antiferromagnetic triangular Ising model, this
method is more accurate than the square CTMRG and when
considering an extra field outperforms the more standard
transfer matrix methods. By exploring the triangular Ising
antiferromagnet in a longitudinal field, we confirmed that
the tensor network construction based on ground-state rules
[53] also allows to reach low temperatures in the honeycomb
lattice CTMRG. Our results mostly confirm and support the
predictions from the literature [70,83,84]: at finite tempera-
ture, as expected, we found the nature of the transition to be
three-state Potts by measuring a unique critical temperature
from the correlation length and order parameter but also by
using bond dimension scaling of the entanglement entropy
and order parameter. Overall, we confirm Qian et al. results by
recovering essentially the same critical temperatures but with
significantly smaller error bars, and we extend the transition
line to lower temperatures previously not available. As the
temperature is lowered to zero, we found evidence of the
reduced critical field converging to the Kosterlitz-Thouless
critical reduced field of the constrained model in favor of the
scenario proposed by Nienhuis et al. At T = 0, we locate the
KT transition at a slightly higher reduced field than previously
reported.

Several improvements of this CTMRG for the honeycomb
lattice might be worth investigating. The choice of isometry
could be different: the most commonly used isometry in the
square lattice CTMRG is the one first introduced by Corboz
for contracting iPEPS [36]. It would be interesting to for-
mulate the equivalent isometry for CTMRG on honeycomb
and to see whether it leads to a better convergence rate for
some problems. A more challenging improvement would be
to design a more general multisite version of the algorithm
which can take arbitrary unit cell; as mentioned, this could be
useful to have access to the transfer matrix also in presence
of symmetry breaking. Furthermore, this algorithm can also
be used to contract two-dimensional quantum systems iPEPS
wave-functions on the honeycomb lattice [61] and can easily
be combined with simple or full updates. It could also be im-
plemented with automatic differentiation, in a similar spirit as
Ref. [66]. In the framework of PESS or iPESO, the algorithm
could also be used to investigate 2D quantum systems on the
kagome or triangular lattices [105–108].
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