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The ±J Ising model is a simple frustrated spin model, where the exchange couplings independently take
the discrete value −J with probability p and +J with probability 1 − p. It is especially appealing due to its
connection to quantum error correcting codes. Here, we investigate the nonequilibrium critical behavior of the
two-dimensional ±J Ising model, after a quench from different initial conditions to a critical point Tc(p) on
the paramagnetic-ferromagnetic (PF) transition line, especially above, below, and at the multicritical Nishimori
point (NP). The dynamical critical exponent zc seems to exhibit nonuniversal behavior for quenches above and
below the NP, which is identified as a preasymptotic feature due to the repulsive fixed point at the NP, whereas
for a quench directly to the NP, the dynamics reaches the asymptotic regime with zc � 6.02(6). We also consider
the geometrical spin clusters (of like spin signs) during the critical dynamics. Each universality class on the PF
line is uniquely characterized by the stochastic Loewner evolution with corresponding parameter κ . Moreover,
for the critical quenches from the paramagnetic phase, the model, irrespective of the frustration, exhibits an
emergent critical percolation topology at the large length scales.
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I. INTRODUCTION AND BACKGROUND

Frustrated magnetic systems are ubiquitous in nature, with
applications ranging from neural networks to quantum error
correction codes [1–8]. To understand their physics, one sim-
ple and established pathway is to start with a model having
the key ingredients of the system of interest. In this direction,
the ±J Ising model [2,4,9–13] has been quite popular. This
simple model has many rich features, e.g., different universal-
ity classes of second-order phase transitions, emergence of a
spin glass phase, nontrivial fixed points, etc. Its Hamiltonian
is defined as

H = −
∑
〈i j〉

Ji jSiS j . (1)

Here, Si = ±1 are Ising spins, placed at each site i of the
lattice. The subscript 〈i j〉 denotes a sum over all nearest-
neighbor pairs, and the exchange couplings Ji j are quenched
random variables, taking values ±J (J > 0) from a bimodal
distribution,

P(Ji j ) = pδ(Ji j + J ) + (1 − p)δ(Ji j − J ). (2)

Clearly, the variable p is a parameter which introduces frus-
tration. The pure Ising model is recovered for p = 0, while the
bimodal Ising spin glass is obtained for p = 1/2.

Notably, the model (1) has a finite-temperature spin glass
phase in spatial dimension d > 2. The two-dimensional (d =
2) model exhibits spin glass ordering at temperature T = 0
only and for p > p0 � 0.103. Numerous studies [12–19] have
shown various intriguing properties in two dimensions, due
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to which the model has also gained some attention from
the fields outside the classical statistical mechanics; e.g., the
2d ± J Ising model plays an important role in determining
the error correction threshold for a certain class of Toric codes
[5–7,20–22]. Therefore, this is the topic of the present paper.
Before detailing the problem under consideration, let us first
look into the background of the model.

The p − T phase diagram of the 2d ± J Ising model is
shown in Fig. 1 (with T measured in units of J/kB). For a small
amount of disorder in terms of antiferromagnetic bonds, i.e.,
0 < p � p0, the model exhibits a paramagnetic-ferromagnetic
(PF) phase boundary. Apart from that, due to a local gauge
symmetry, there is also a peculiar curve, known as the Nishi-
mori line, which is defined as [4,23]

e−2βJ = p

1 − p
, (3)

where β = 1/(kBT ) is the inverse temperature and kB is
the Boltzmann constant. Some physical quantities, e.g., the
internal energy, can be exactly calculated along this line.
Most importantly, the Nishimori line is invariant under the
renormalization group (RG) transformation, akin to the PF
transition line. Therefore, the intersection point where the two
lines meet is a multicritical fixed point, also known as the
Nishimori point (NP). Notice that the multicritical behavior
at this special point was first pointed out by McMillan [24] in
the 2d Ising model with Gaussian disorder.

The PF critical line starts from the Ising fixed point located
at T = TIs and p = 0. With increase in p, it bends downwards
and meets the Nishimori line at the point (pN, TN). Notice
that for T > TN, there is only one fixed point on the PF line,
which is the Ising one. The disorder, for TN < T < TIs, is
a marginally irrelevant perturbation to the Ising fixed point
[9,14,19]. Therefore, the RG flow is attracted towards the
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FIG. 1. Phase diagram of the two-dimensional ±J Ising model.
The black solid line locates the paramagnetic-ferromagnetic (PF)
transition line, while the red dashed one represents the Nishimori
line. The symbol N denotes the Nishimori (multicritical) point. The
arrows indicate the renormalization group (RG) flow off the Nishi-
mori point. The filled circles on the PF line indicate the critical points
where we quench the system during the simulations; the RG fixed
points are marked in black.

Ising fixed point. Beyond the NP, the PF line shows a reentrant
behavior and ends at another nontrivial fixed point located at
T = 0 and p = p0 < pN, known as the strong-disorder fixed
point [18,20,25]. As shown in Fig. 1, this zero-temperature
fixed point is a junction of ferromagnetic, paramagnetic, and
spin glass phases. The latter exists at p > p0 and T = 0. In
early studies [26,27], the universality class of NP was claimed
to be that of critical percolation. However, it was later found
[12,13,17,18] with good numerical precision that the univer-
sality classes of both the NP as well as the strong-disorder
fixed point are different from percolation and Ising classes.
In fact, the critical exponents at these points clearly indicate
the emergence of two completely different universality classes
of second-order phase transitions. Furthermore, the transition
along the entire PF line for T < TN is controlled by the strong-
disorder fixed point [18,24].

It is now clear that the 2d ± J Ising model possesses
a quite rich critical behavior due to frustration. To fur-
ther dig into the novel aspects of criticality, people have
been interested in the nonequilibrium critical dynamics—the
postquench critical dynamics of an initially disordered or
ordered system, from both theoretical [28–34] as well as ex-
perimental [35,36] points of view. During the relaxation to a
critical equilibrium configuration, the regions of critical cor-
relations (similar to those in equilibrium at the target critical
point) grow. As the system size diverges, L → ∞, the char-
acteristic relaxation time associated with this nonequilibrium
process also diverges. The dynamical scaling symmetry also
enters in the picture with a critical scaling relation C(r, t ) =
Ceq(r)F [r/ξ (t )]. Here, C(r, t ) is the time-dependent spatial
correlation function (see its definition in Sec. II) and ξ (t )
is the time-dependent correlation length which grows in a
power-law fashion, ξ (t ) ∼ t1/zc , with zc a dynamical critical
exponent [37].

In this paper, we thoroughly investigate the nonequilib-
rium critical dynamics of the 2d ± J Ising model with

single-spin-flip Monte Carlo simulations, where the system is
quenched from an infinitely high temperature to the different
critical points on the PF transition line including the multicrit-
ical points T = TN and T = Tc(p0). In some cases, we also
explore the critical dynamics after a start from an ordered or
critical initial state.

We are particularly interested in how the dynamical expo-
nent zc changes with an increase in the amount of disorder
p. In the pure 2d Ising model (p = 0), the value of zc is
zc � 2.17, and it has been confirmed via numerical simu-
lations [38–41] as well as various analytical methods, e.g.,
the real-space RG approach [42,43], high-temperature series
expansion [44], damage spreading technique [45], etc. In con-
trast, the critical dynamics in the current problem remains
largely unexplored, apart from a few preliminary studies
[46,47].

A very efficient way to analyze criticality is to study the dy-
namic properties of various kinds of geometric structures. We
focus on how the masses of different geometrical spin clusters
(those of like spin signs) evolve during the dynamics. It is well
known that at the critical point, the equilibrium correlation
length diverges and an infinitely large system possesses fractal
structures at all scales r such that r0 < r < ∞ (r0 being the
lattice spacing). During the nonequilibrium evolution towards
the critical point, ξ (t ) is finite; however, the fractality of
growing structures or interfaces is maintained [40,41] at scales
r < ξ (t ) and is identical to that of an equilibrium macroscopic
system at the target critical point. In this way, the critical dy-
namics also provides a clean demonstration of the equilibrium
geometrical features. We emphasize that due to the quenched
antiferromagnetic bonds in the frustrated system, the known
cluster Monte Carlo algorithms [48,49] no longer avoid the
critical slowing down. That is why the geometrical features
of the frustrated critical systems including the spin glasses
have always been mysterious. The nonequilibrium critical
dynamics circumvents this problem by directly examining the
geometrical features at the growing length scales.

Another interesting property of 2d Ising systems is the
emergence of critical percolation structures. It is, by now,
well established [41,50–52] that soon after a quench from the
paramagnetic phase to T � Tc, the system reaches the critical
point of 2d random site percolation. In fact, this phenomenon
is proven to be quite general and robust against quenched
disorder [53], dilution [54], long-range interactions [55], etc.
Therefore, it will be worth seeing what happens in the pres-
ence of frustration. Notice that similar to Ising criticality, the
geometrical features in critical percolation are also fractal,
though of a different kind.

With the above questions in mind, we quantitatively exam-
ine the dynamical properties of geometrical features using the
conformal invariance property [56–59], according to which
the interfaces of the geometrical clusters in the 2d critical
systems can be described by the stochastic Loewner evolution
(SLE) with a diffusion parameter κ . The value of κ is unique
for a universality class of the second-order phase transition
and therefore serves as a mathematical tool for the characteri-
zation of different universality classes. The fractal dimensions
of the spin clusters can be directly calculated from this param-
eter κ . Further details are discussed in the subsequent sections.

The key observations of our study are as follows:
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(1) The dynamical critical exponent zc seems to exhibit
nonuniversal behavior for a quench above [TN < Tc(p) < TIs]
and below [Tc(p0) < Tc(p) < TN] the NP. This, however, is
identified as a preasymptotic feature due to the competition
with the repulsive fixed point at NP. On the other hand, for a
quench directly to the NP, the dynamics reaches the asymp-
totic regime with an exponent zc � 6.0.

(2) The diffusion parameter κ , obtained from small length
scales [r < ξ (t )], uniquely characterizes each universality
class. We measure three different values, depending on Tc >

TN, Tc = TN, or Tc < TN, irrespective of the initial quenched
state.

(3) For all the critical quenches from the paramagnetic
phase, the large-scale [r > ξ (t )] topology belongs to the crit-
ical percolation.

This paper is structured as follows. In Sec. II, we detail
the methodology and observable quantities. In Secs. III and
IV, we present our main results. Section III discusses the
dynamical critical exponent for different critical quenches,
and Sec. IV details the dynamical properties of geometrical
features during the time evolution. Finally, in Sec. V, we
summarize the results obtained so far in this paper and we
discuss some open points indicating possible future directions
of research. Appendices A and B present some additional
large-scale simulations for different critical quenches.

II. METHODOLOGY AND OBSERVABLE QUANTITIES

We study the nonequilibrium critical dynamics of the
2d ± J Ising model on a square lattice with periodic bound-
ary conditions (PBCs) in both the x and y directions. At
time t = 0, the system is prepared by assigning random
values (±1) to each Ising spin Si, which is equivalent to
an infinite-temperature paramagnetic spin configuration. The
model system is then quenched to different points Tc(p) on the
PF transition line including the multicritical points. We choose
Tc � 1.687 at p = 0.07, TN � 0.952 at p � 0.109, Tc � 0.50
at p � 0.107, and Tc = 0 at p = p0, which are taken from
Refs. [17,18]. For the time evolution of the spin configuration
after a critical quench, we exploit the Metropolis algorithm
[48,60] with nonconserved order parameter kinetics. In this
algorithm, a single spin flips with the Metropolis transition
rate,

W (Si → −Si ) = N−1 min{1, e− �E
Tc }, (4)

where �E is the energy difference in the proposed move
and we have set to unity the Boltzmann constant. Time is
measured in terms of Monte Carlo steps (MCSs), each corre-
sponding to N = L2 attempted elementary moves. Notice that
the configuration of bonds {Ji j} is drawn from the probability
distribution in Eq. (2) and is kept fixed during the time evolu-
tion.

One of the main observables that we consider in our study
is the time-dependent correlation length, which can be ex-
tracted from the spatial correlation function,

C(r, t ) = 〈Si(t )Si+�r (t )〉 − 〈Si(t )〉〈Si+�r (t )〉, (5)

where 〈·〉 is a nonequilibrium average, taken over differ-
ent random initial conditions and disorder realizations. For
r 	 r0, it obeys the following scaling relation during the

dynamical scaling:

C(r, t ) = 1

rη
F

(
r

ξ (t )

)
, (6)

where F (s) is a scaling function with F (0) = 1. The correla-
tion length ξ (t ) is defined as the average distance over which
critical correlations have spread at time t . Clearly, C(r, t )
crosses over to the equilibrium correlation function Ceq(r) as
t → ∞,

Ceq(r) = e−r/ξeq

rη
, (7)

with ξ (t ) → ξeq. Here, η is the static critical exponent.
We extract ξ (t ) from the fall of the function, F (r, t ) =

rηC(r, t ), as F [r = ξ (t ), t] = F0. We fix the constant F0 to
F0 = 0.2. This method is widely accepted to calculate ξ (t )
in the scaling regime [61]. In order to quantitatively examine
the dynamical critical exponent zc from the asymptotic growth
law, ξ (t ) ∼ t1/zc , we consider the effective exponent zeff (t )
defined as

1

zeff (t )
= d ln ξ (t )

d ln t
, (8)

and we study its behavior at long times.
One can also estimate zc from the short-time-critical

dynamics (STCD) approach [30,33,62]. The main idea is
that the time evolution after the critical quench is also critical
(on the scale of the time-dependent correlation length). There-
fore, the characteristic features of the target critical point, e.g.,
scale invariance, should remain valid during the short-time
dynamics as well. For the start from an ordered initial state,
the following scaling ansatz [30,62] for the kth moment of the
magnetization density was proposed,

Mk (t, τ, L) = 	−kβ/νMk (	−zc t, 	1/ντ, 	−1L), (9)

where 	 is a rescaling spatial parameter, τ is the reduced
temperature, L is the system size, β and ν are the usual static
critical exponents, and zc is the dynamical critical exponent.
For large system sizes, the above expression predicts a simple
power-law decay for the average magnetization density,

M(t ) ∼ t−β/νzc . (10)

Later on, we will see the importance of the above decay law.
Furthermore, the dynamical length scale and the associated
exponent zc can be independently determined from the STCD
by calculating the time-dependent Binder cumulant [62,63],

U (t, τ, L) = M2(t, τ, L)

[M(t, τ, L)]2
− 1, (11)

where M2(t, τ, L) is the second moment and M(t, τ, L) is the
average of the magnetization density. For large system sizes
and quench to the critical point (τc), this quantity shows a
power-law increase in time,

U (t ) ∼ t d/zc . (12)

Here, d is the dimensionality. One can see from the above
relation that the quantity [U (t )]1/d also serves as a dynamical
length scale in the system, which should be equivalent to the
time-dependent correlation length ξ (t ) (see Appendix B).
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We investigate the geometry of growing domains and inter-
faces in the system by invoking some results from conformal
field theory (CFT). It has been found [56–58] that under con-
formal invariance, the interfaces (external hulls of clusters) of
a 2d critical system can be described in terms of the SLE with
diffusion parameter κ . This κ controls the deviation of a curve
from the straight line behavior and generates a unique con-
formal invariant curve for each κ > 0. Therefore, it uniquely
characterizes the geometry of a critical system. It can also be
related [40,64] to the Hausdorff dimensions by the following
relations:

dl = 1 + κ

8
, dA = 1 + 3κ

32
+ 2

κ
, (13)

where dl and dA are the Hausdorff or fractal dimensions
related to the interface and the area of the critical clusters,
respectively.

In a lattice system, the above diffusion parameter κ can be
extracted from the (average) squared winding angle 〈θ2(r)〉.
For a typical cluster, this quantity is calculated as follows. At
first, two points, say i, j, are chosen at random at a distance
r on the external hull of the cluster. One then calculates the
winding angle θ (r) between them by fixing a particular direc-
tion of rotation, say counterclockwise. Further, by averaging
the square of θ (r) over all possible couples of hull points
at distance r (one can also include ensemble averages for
better statistics), one finds the quantity 〈θ2(r)〉. For 2d critical
systems, this quantity satisfies [56,65]

〈θ2(r)〉 = a + b(k) ln

(
r

r0

)
, (14)

where a is a nonuniversal constant and r0 is the lattice spacing.
The slope b(k) is a function of the diffusion parameter κ ,

b(k) = 4κ

8 + κ
. (15)

Notice that κ = 2 corresponds to the loop-erased random
walks [66], κ = 3 to the interfaces of the critical Ising model
[67], and κ = 6 to the critical percolation interfaces [68]. For
the fractal interfaces [56], the winding angle θ (r) is Gaussian
distributed with zero mean. That is why the above quantity
〈θ2(r)〉 is also referred to as the winding angle variance
(WAV).

Since we are interested in the nonequilibrium dynamics,
the WAV depends on time, i.e., 〈θ2(r, t )〉. In fact, as we will
discuss in further sections, the slope b(κ ) and so the value of
the diffusion parameter κ obtained from Eq. (14) vary with
space (r) and time (t ).

In the next sections, we present our numerical results for
the 2d ± J Ising model. We consider square lattices of two
different linear sizes, L = 128 and L = 1024. For L = 128,
the numerical data are averaged over at least 2000 (sometimes
more) runs, while for L = 1024, the data are averaged over
1000 runs, with each run consisting of a different initial con-
figuration of spins {Si(0)} and disorder realization {Ji j}.

III. DYNAMICAL CRITICAL EXPONENT

Let us start by discussing the growth law of the time-
dependent correlation length. In Fig. 2, the correlation length
ξ (t ) is plotted against time t for different critical quenches

FIG. 2. Plot of the correlation length ξ (t ) vs time t , in log-log
scale, for different critical quenches (see the key) from an infinitely
high temperature, T 	 Tc. The symbols represent data for a system
of linear size L = 1024, while the solid lines correspond to those of
L = 128. Inset: the effective exponent zeff vs t in log-log scale for the
datasets in the main frame. The dashed horizontal lines indicate the
late-time plateau of zeff .

from the paramagnetic phase on the PF transition line. In the
case in which the dynamics is too slow, we also analyzed
the growth law using a smaller system (L = 128) apart from
the larger one (L = 1024). Notice that for smaller sizes, the
simulations are quick and the asymptotic regime becomes
accessible, while for larger sizes, the results are free from
finite-size effects. In the inset, the effective exponent zeff (8)
is plotted against t . Its late-time saturated value provides the
dynamical critical exponent zc.

When disorder p is zero, i.e., at Tc = TIs, the asymptotic
growth law is ξ (t ) ∼ t1/zc , which is clearly observed in the
log-log plot of Fig. 2, and the value of the dynamical critical
exponent zc is in excellent agreement with the known estimate
zc � 2.17 (see Table I).

We next study the disordered case, i.e., p 
= 0. We first
discuss the law for a quench to the Nishimori point (TN). The
inset in Fig. 2 shows that for the long timescales, the effective
exponent zeff saturates to a constant value, zc � 6.0. To cross-
check this observation, we repeat the same simulations from
an ordered initial state and also until much larger timescales
(not shown here). We find that the exponent zc remains un-
changed. This concludes that the current value zc � 6.0 is in
the asymptotic regime. Notice that the value of the exponent
zc is quite larger than that at the Ising fixed point, indicating
the slow relaxation of the system at the NP. The dynamical
scaling during the growth of critical correlations in terms of
ξ (t ) can be observed in Fig. 3.

Now we look at critical quenches between TIs and TN. For a
quench to Tc � 1.687 at p = 0.07, the numerical data in Fig. 2
support an exponent around zc � 2.95 for both system sizes,
L = 128 and L = 1024. At first glance, this observation seems
in contrast to the universality predictions [9,14,19], according
to which the dynamic critical exponent zc should asymptot-
ically tend to the Ising value (� 2.17) for all quenches to
Tc(p) > TN on the PF line. We remind the reader that the
disorder on the PF line above NP is just a marginally irrelevant
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TABLE I. The 2d ± J Ising model: dynamical critical exponent zc, fractal dimension dl, and SLE diffusion parameter κ , for critical tem-
peratures Tc lying in different universality classes at the paramagnetic-ferromagnetic (PF) line. The values are estimated from nonequilibrium
dynamics after a quench from high temperature T 	 Tc to Tc, where disorder parameter p is fixed. The error bars (shown in parentheses)
in the estimated values are obtained from the Jackknife method. For quenches between the two fixed points at the PF line, zc denotes the
preasymptotic value of the effective exponent.

Tc p Universality class dl κ zc [from ξ (t )]

2.269 0 Ising 1.374 (1) 2.99 (1) 2.17 (1)
1.687 0.07 Ising 1.372 (2) 2.975 (9) 2.95 (1)
0.952 0.109 NP 1.277 (2) 2.22 (2) 6.02 (6)
0.5 0.107 strong disorder 1.24 1.932 (4) 12.3 (2)
0.0 0.103 strong disorder ∞

perturbation. Therefore, this large value of zc is likely due
to a preasymptotic behavior, which is explained as follows.
The quench has been done to Tc � 1.687, which lies between
the attractive Ising and the repulsive NP fixed points. The
competition between these fixed points will certainly ensue
crossover effects in the dynamics (see, e.g., Refs. [69,70]).
For a quench to the NP, we measured above an asymptotic
value of zc � 6.0. Likely, the approach to a constant value
around 2.95 in the current simulations is an effect of the fixed
point at NP, and the true asymptotic exponent (zc � 2.17)
should appear on still longer timescales and larger system
sizes (see Appendix A). We prompt the reader to note that due
to disorder, the precise characterization of the crossover might
be hard and even unreachable and that is why a preasymptotic
regime is often misunderstood as a nonuniversal behavior
[46,47,71]. In Appendix A, we have vigorously attempted to
see some signatures of the crossover with large system sizes
and the STCD method discussed in Sec. II. Interestingly, we
observed further decay in the dynamical exponent beyond the
preasymptotic regime. In addition, the preasymptotic value
decreases and the crossover time also shrinks as the disorder
value p is shifted towards the Ising point TIs. This explains

FIG. 3. Plot of rη C(r, t ) against the scaling variable r/ξ (t ) for a
quench from infinitely high temperature T 	 TN to TN of a system
of linear size L = 1024. Different datasets represent different time
steps (see the key). The parameter η (� 0.177) is the static critical
exponent for the equilibrium correlation function (see the main text).

the competition with the repulsive fixed point at NP. We also
mention that in contrast to the dynamical critical exponents,
the effective static exponents soon reach their universal values
and do not show any crossover behavior [46,47,71]. The latter
is expected as the static exponents are not related with the
dynamics of the model.

Before considering a quench to a critical point between
the NP and the strong-disorder fixed point at p = p0, let
us first understand the critical dynamics right at the fixed
point (p = p0, Tc = 0). In Fig. 2, the plot of the correlation
length ξ (t ) shows that after a time t ∼ 103 from a quench at
t = 0, the growth is almost frozen and the system is stuck
in a metastable state. This is obvious due to the absence of
thermal fluctuations and indicates that the dynamical critical
exponent zc is, in practice, divergent, i.e., zc = ∞. With this
information, we now proceed to an interesting case where
Tc 
= 0 < TN. We choose Tc � 0.5, with p fixed to p � 0.107.
For this case, the effective exponent zeff exhibits multiplateau
regimes beyond t ∼ 500. The zeff first stays around zc � 10.
However, for late times (t ∼ 106 onwards), it slightly shifts
to a larger value, zc � 12. Again, our understanding is that
this strange behavior is due to the different fixed point at NP.
The RG flow on the PF line below NP is attracted towards
the strong-disorder fixed point [18,24]. Therefore, the value
of zeff will increase indefinitely. However, given the slowness
of the dynamics, observing a crossover to the true asymptotic
regime in a real-time computation is far more challenging.
Notice, also, that the flow will reach the fixed point only in
the infinite-size limit, i.e., limL→∞ zc = ∞.

In Appendix B, we have also extracted the effective ex-
ponent z′

eff (t ) [see Eq. (B1)] from the quantity [U (t )]1/2 for
different critical quenches above, below, and at TN from the
completely ordered state. We recall that this quantity measures
the exponent zc independent of any static critical exponent,
while the correlation length ξ (t ) inherently incorporates the
universal value of critical exponent η [see Eq. (6)]. We observe
that the exponents z′

eff (t ) obtained from [U (t )]1/2 are in good
agreement with the zeff (t ) obtained from ξ (t ), indicating the
similar values of zc.

IV. DYNAMICAL PROPERTIES OF
GEOMETRICAL FEATURES

A. Quenches to Tc(p) > TN

It is well known that in equilibrium at the Ising critical
point TIs, the system has geometric structures with (interfacial)
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FIG. 4. Winding angle variance (WAV) vs curvilinear distance r for quenches from infinitely high temperature to (a) TIs at p = 0, and
(b) Tc = 1.687 at p = 0.07, in a system with linear size L = 1024. Different datasets are taken at different times after the quench (see the key).
The dashed and dotted lines in both panels correspond to the stochastic Loewner evolution (SLE) with κ = 3 and κ = 6, respectively. The

dot-dashed line in (b) represents SLE with κ = 2.83. The insets in (a) and (b) plot the quantity 〈θ2(r, t )〉 − b(κ (s) ) ln t d (s)
l /zc against r/t d (s)

l /zc for
data in the respective main frames (see the main text for details).

fractal dimension dl = 11/8 (diffusion parameter κ = 3)
[59,67]. Therefore, when a 2d Ising model is suddenly
quenched from the paramagnetic phase to T = TIs, the Ising-
like fractality should hold at growing length scales r < ξ (t ),
and that of the critical percolation (a feature of quenching
from the high-temperature phase) should arise at length scales
r > ξ (t ) [40,51]. Here we particularly investigate the geomet-
rical features in the presence of frustration, especially when
the system is quenched to the marginally irrelevant perturba-
tion regime of the PF line.

Let us first benchmark the disorder-free case [40,41], i.e., a
quench from the paramagnetic phase to T = TIs. In Fig. 4(a),
the behavior of the WAV 〈θ2(r, t )〉 is explored at different
times. One can see that up to a certain value of r that in-
creases with time, the slope of the curves at different times
is similar to that of SLE with κ = 3. Moreover, for large
value of r, the SLE with κ = 6 is recovered, which belongs
to the fractal structures at critical random percolation. Such
a behavior is observed because a stable critical percolation
structure is formed at a time tp [72] after the quench of
the system from a high-T state at time t = 0. This implies
that the interfaces are fractal on all scales, but with differ-
ent fractal dimensions. Therefore, the crossover length scale
rcross ∝ [ξ (t )]d (s)

l ∼ t d (s)
l /zc , where d (s)

l is the interfacial fractal
dimension at small scales. One can write [54]

〈θ2(r, t )〉 − b(κ (s) ) ln(t d (s)
l /zc ) = f

(
r

td (s)
l /zc

)
, (16)

where κ (s) denotes the diffusion constant (of SLE) related to
the interfaces at the small scales, i.e., κ (s) = 3 in the present
case, and zc is the dynamical critical exponent discussed
above. The scaling function f has the following limiting
forms:

f (x) ∼
⎧⎨
⎩

b(κ = κ (s) ) ln x, x 
 1,

b(κ = 6) ln x, x 	 1.

(17)

The parameter b is defined in Eq. (15). The perfect collapse
of data in the inset of Fig. 4(a) confirms the relations (16) and
(17).

In Fig. 4(b), the WAV is plotted for a quench from high
T 	 Tc to Tc � 1.687, where the disorder parameter p is fixed
to p = 0.07. This value of critical point lies below the TIs, but
above the TN (see the phase diagram in Fig. 1). Similarly to the
disorder-free case, the behavior of the curves at small length
scales which increases in time seems compatible with SLE
with κ = 3. When fitting the latest time curve (t = 105) in
a spatial window of r ∈ [5, 200], we find κ � 2.83 (shown
by dot-dashed line). However, when the fitting window is
varied up to r ∼ 650, the value of κ also slightly changes. We
obtain κ � 2.98 by averaging over various such windows (see
Table I). It indicates that the fractality of the domains on the
PF line above NP is similar to the one of the Ising criticality
class. This was expected as the disorder in this region is
a marginally irrelevant perturbation. Further, the large-scale
critical percolation features also persist, as the curves at large
r still follow the SLE with κ = 6. The latter holds for curves
at early times (t ∼ 10) as well, which tells that a pinning
time tp of stable critical percolation structure also exists in
the presence of frustration. The crossover relation (16) is also
justified in the inset.

B. Quenches to TN

We have seen above that a small amount of frustration in
terms of antiferromagnetic bonds induces many new charac-
teristics in the 2d ± J Ising model. The Nishimori point at TN

(see phase diagram in Fig. 1) is one of them, which bifurcates
the PF line into two different universality classes of a second-
order phase transition governed by Ising and strong-disorder
fixed points, respectively. The nature of the phase transition
across the NP is also second order with a unique universality
class. Since the amount of disorder at the NP is tiny (pN �
0.109), it is expected that the conformal invariance of the
system continues to hold [12]. However, since the universality
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FIG. 5. The winding angle variance (WAV) for quenches from (a) T 	 TN and (b) TIs, both to TN. The system size for datasets at different
times (see the keys) is L = 1024 unless mentioned explicitly. The dashed lines in both panels represent the stochastic Loewner evolution
(SLE) with κ � 2.22. The dotted lines represent the SLE with κ = 6 and κ = 3 in (a) and (b), respectively. The inset in (a) plots the quantity

〈θ 2(r, t )〉 − b(κ (s) ) ln t d (s)
l /zc vs r/t d (s)

l /zc for data in the main frame (see the main text for details).

class at the NP is different, the diffusion parameter κ , and so
the fractal dimension dl, should be different from the Ising
ones. In this section, we quantitatively explore these features
via quenches to the NP from different initial states.

In Fig. 5(a), the WAV is shown at different times after a
quench from infinitely high T to TN. The slope of different
curves up to a time-dependent value of length r clearly indi-
cates that the fractality of geometric features at NP is quite
different from the one on the Ising point—the slope at dif-
ferent times rather favors the SLE with κ � 2.22 (dl � 1.27).
This reconfirms the different universality class at the NP. No-
tice that due to the slow growth (large dynamical exponent)
at the NP, the WAV curve for system size L = 1024 and
time t = 105 shows compatibility with κ � 2.22 until r � 10.
However, for a system of size L = 128 and time t = 108, the
same slope prevails until r � 60.

For larger r, the slope of the WAV curves still follows the
critical percolation behavior (κ = 6), as shown in Fig. 5(a).
Further, the crossover between these two distinct behaviors
can be checked by the relation (16), by substituting κ (s) �
2.22 and zc � 6.0. In the inset of Fig. 5(a), we plot the scaling
variable 〈θ2(r, t )〉 − b(κ (s) ) ln t d (s)

l /zc against r/t d (s)
l /zc for data

in the main frame. The nice collapse upholds the validity of
the crossover (16).

To obtain a rigorous understanding, we also quenched the
system on T = TN from a critical Ising state at T = TIs. We
first prepared the initial spin configuration at TIs using the
Wolff cluster algorithm [48,49]. The Metropolis algorithm
(4) was then exploited to evolve the system from TIs to TN.
Notice that contrary to a paramagnetic state, the system at TIs

is power-law correlated,

〈Si(t = 0)Si+�r (t = 0)〉 ∝ 1

rη
, (18)

where η = 1/4. The system at t = 0 already has a fractal
structure with κ = 3 (see the discussion above). Therefore,
after quenching it to some other T , the critical percolation
structures would not emerge. Rather, at large scales [r >

ξ (t )], the system should have the fractality of the initial (Ising)

class [40]. This scenario is explained quite clearly in Fig. 5(b).
At small length scales, the system has geometrical features
with κ � 2.22, while at large length scales, the features of the
Ising universality class persist. The evolution snapshots of the
system after a quench from TIs to TN are shown in Fig. 6.

We finally conclude that the geometrical features at NP are
described by SLE with κ � 2.22, i.e., dl � 1.27.

C. Quenches to Tc(p) < TN

Let us finally discuss the dynamical properties of the geo-
metrical features after a quench from high T 	 Tc to Tc < TN.

FIG. 6. Instantaneous configurations of a system of linear size
L = 1024 (we show only a 3002 portion of the full system), at differ-
ent times given above the snapshots, after a quench from T = TIs to
T = TN.
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FIG. 7. The winding angle variance (WAV) vs curvilinear distance r for quenches from infinitely high temperature to (a) Tc = 0.5 at
p � 0.107, and (b) Tc = 0 at p � 0.103. The system size for datasets at different times (see the key) is L = 1024, unless mentioned explicitly.
The dashed and dotted lines in both panels represent the stochastic Loewner evolution (SLE) with κ � 1.93 and κ = 6, respectively.

As we discussed earlier, the critical behavior on this segment
of the line is governed by the strong-disorder fixed point at
Tc(p0), which is zero. Further, the universality class of the
transition is different from Ising and NP [18]. Therefore, it
is expected that the fractal dimension may also be unique.

In Fig. 7(a), the WAV 〈θ2(r, t )〉 is plotted for a quench from
high T to Tc � 0.5 at p � 0.107. The slope of different curves
at small r is consistent with κ � 1.93. Since the growth of
critical correlations is extremely slow, the WAV curve at the
longest simulation time (t = 105) for L = 1024 agrees with
the slope of κ � 1.93 until r � 5 only (at time t = 108 on
L = 128, the slope with κ � 1.93 remains until r � 20). No-
tice that the value of interfacial fractal dimension dl obtained
from the relation (13) is close (� 1.24) to that at NP. However,
the fractal dimension associated with the cluster area (dA)
differs significantly. The slope of the WAV curves at large r
is consistent with κ � 6.

In Fig. 7(b), the behavior of the WAV is explored for a
quench from infinitely high T to Tc = 0 at p = p0 (strong-
disorder fixed point). As observed in the previous section,
due to the absence of thermal fluctuations, the dynamics in
the system cease soon after the quench. Therefore, we cannot
precisely determine the value of κ or dl at small growing
length scales. However, the initial increase of the WAV in
frozen states is enough to point out that the structures or
interfaces at Tc(p0) are not smooth. The interesting fact is that
the slope of all curves (starting from as early as t � 10) at
large r is still consistent with κ = 6.

The values of the fractal dimension dl and κ for different
critical quenches investigated in this section are summarized
in Table I.

D. Occupancy rates of the largest clusters

Finally, let us look at the average occupancy rates of the
nth largest geometrical clusters (from first to eight) plotted in
Fig. 8 for different critical quenches from an infinitely high
temperature state. Initially, at t = 0 (high temperature), all
clusters are small and are of almost the same mass. With
time, large clusters grow at the cost of smaller ones. Asymp-

totically, the first largest cluster invades the whole system;
however, contrary to a ferromagnetic ground state, the correla-
tion length ξeq near Tc is infinite. Therefore, other clusters also
exist with nonzero probability, which is clearly observed in
both panels of the figure. In Fig. 8(a), the average occupation
rates are presented for Tc � 1.687 at p = 0.07, and TIs at
p = 0. The initial time evolution of these quantities is similar
for both cases. The deviations from the pure case arise only at
late times. In Fig. 8(b), the average occupation rates are shown
for Tc � 0.5 at p � 0.107, and Tc(p0) = 0. An important point
to learn from this panel is that the time evolution of all these
numbers is similar for both quenches, even at the longest
timescales.

V. SUMMARY AND DISCUSSIONS

The effects of frustration on critical phenomena have been
a matter of primary concern in the past few decades. People
have been fascinated about how frustration modifies the crit-
ical properties. In this context, special attention is paid to the
2d frustrated systems, where a weak disorder often acts as a
marginally irrelevant perturbation [3,9] to the pure fixed point.
Moreover, with increase in the disorder, a rich multicritical
behavior [10,24] also emerges in these systems. There are
numerous studies in this direction; however, most of them
are mainly concerned with the static aspects of criticality. The
nonequilibrium properties, e.g., dynamical critical exponents,
are equally important and sometimes they even provide a good
understanding of the equilibrium properties as well [28,30].

In this paper, we have thoroughly explored the nonequi-
librium critical dynamics of the 2d ± J Ising model using
large-scale Monte Carlo simulations. Concretely, we followed
the evolution of large systems over long periods of time after
quenches from different initial conditions to various points
on the PF phase boundary that are above, below, and at the
multicritical Nishimori point (NP).

First of all, we investigated the postquench growth of crit-
ical correlations, in terms of the domain growth law, ξ (t ) ∼
t1/zc , where ξ (t ) is the time-dependent correlation length
and zc is a dynamical critical exponent at the asymptotic
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FIG. 8. The time evolution of the average occupancy rates of the nth largest clusters (see the keys), after a quench from an infinitely high
temperature to different critical temperatures. (a) Tc = 1.687 (symbols) and TIs (solid lines). The dashed lines indicate the equilibrium values
of the average occupancy rates of the nth largest clusters at TIs. (b) Tc = 0.5 (symbols) and Tc = 0 (solid lines).

timescales. Notice that the 2d ± J Ising model has three fixed
points, namely, the Ising point at T = TIs, NP at T = TN, and
strong-disorder fixed point at T = Tc(p0). Out of these, the
Ising and strong-disorder fixed points are attractive, while the
NP is of a repulsive nature (in the sense of the RG flow).
Therefore, it does matter where we are quenching on the PF
boundary. Our numerical simulations show that if the quench
is made directly to the NP at T = TN, soon after the formation
of initial critical regions the dynamics enters into a long-
lasting asymptotic regime, with an asymptotic dynamical ex-
ponent zc � 6.0. On the other hand, if the system is quenched
above [TN < Tc(p) < TIs] or below [Tc(p0) < Tc(p) < TN]
the NP, a peculiar scenario is observed—the dynamics first
reaches a preasymptotic regime related to the repulsive fixed
point and, later on, it crosses over to the asymptotic regime
controlled by the attractive fixed point. However, due to the
competition between the different fixed points, a complete
crossover remains inaccessible in our simulations.

We also analyzed the dynamical properties of the
geometrical features that emerged after the critical quenches.
For this purpose, we mainly exploited the winding angle
variance (WAV). This quantity measures a real parameter κ ,
which is equivalent to the diffusion parameter of the stochastic
Loewner evolution (SLE). We remind the reader that the inter-
faces in a 2d critical system can be envisioned as the random
planar curves generated by the SLE with parameter κ . For
small scales r < ξ (t ), κ attains three distinct values depending
on whether Tc > TN, Tc = TN, or Tc < TN, irrespective of the
initial quenched state. This exhibits the uniqueness of each
universality class on the PF critical boundary. Furthermore,
for large scales, r > ξ (t ), the value of κ for all critical
quenches from a high-temperature phase is consistent with
that at the critical random percolation (κ = 6). Such a behav-
ior onsets beyond an early time t ∼ 10 and holds until the
equilibration time teq ∼ Lzc , confirming an emergent critical
percolation topology akin to the pure case (p = 0) [50–52].

Before ending, let us discuss some open points and pos-
sible future directions. We have seen above that in weakly
disordered systems, the access to an asymptotic regime during

the critical dynamics turns out to be a challenging problem, at
least from the numerical point of view. Therefore, analytical
efforts are highly encouraged in this direction. Possibly, meth-
ods such as high-temperature series expansion, which have
also been applied to spin glasses, can be useful tools for the
current frustrated system. It is also desirable to extend the
present study and use different lattice geometries to verify uni-
versality in this respect. Another interesting problem would be
to analyze the geometric features at the strong disorder fixed
point Tc(p0) = 0. Since the single-flip Monte Carlo method
is nonergodic at T = 0, the exact matching algorithms or the
simulated annealing techniques would be of some interest.
Finally, we hope that our work will gain some attention among
the scientific community and attract other researchers towards
these persisting issues in a simplest frustrated system.
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APPENDIX A: SHORT-TIME CRITICAL DYNAMICS:
CROSSOVER IN DYNAMICAL EXPONENT

The short-time critical dynamics (STCD) is a peculiar
approach to investigate the universal features of the critical
phenomenon. We use it here to calculate the dynamical expo-
nent zc for a quench from an initially ordered state to different
critical temperatures Tc(p) on the paramagnetic-ferromagnetic
(PF) line above the Nishimori point (see the main text for the
details). We emphasize that for the sensitive determination of
the critical exponents using STCD, a quench from an ordered
state is more suitable, as it has less statistical fluctuations.

We take the square lattice system with the linear sizes L =
1024 and L = 4096, initially prepared in an ordered state by
choosing all the spins +1. In different simulations, the system
is evolved at Tc = 1.875 with p = 0.05, Tc = 1.687 with p =
0.07, and Tc = 1.580 with p = 0.08, using the Metropolis al-
gorithm (4). To achieve good statistical accuracy, we average
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FIG. 9. (a) M(t ) vs t in log-log scale and (b) M(t )tβ/zcν vs t in log-linear scale, after a quench from a completely ordered state to Tc = 1.687
on the critical line above the Nishimori point, for different system sizes (see the keys). Here, β and ν are the critical exponents of the
magnetization and the correlation length, respectively, with the values of the Ising fixed point (β/ν = 0.125), and zc is a preasymptotic value
of the dynamical critical exponent (zc � 2.96). The dashed line in (a) denotes the decay law M(t ) ∼ t−β/zcν (see the main text).

the observables over 10 000 independent thermal histories and
disordered configurations. The simulations are fastened by
implementing an optimized code on the graphics processing
unit (GPU).

Let us start by presenting the simulation results first for
disorder value p = 0.07. In Fig. 9(a), the magnetization den-
sity M(t ) is plotted against time t measured in Monte Carlo
step units. After a transient t ∼ 500, the numerical data for
both system sizes are consistent with a power-law decay (10),
M(t ) ∼ t−β/zcν . A fit in the time window t ∈ [500, 10 000]
gives zc � 2.96, where the ratio β/ν is fixed to the criti-
cal Ising value β/ν = 0.125. The estimated value of zc is
compatible with the one obtained from the growth of the
correlation length (see Table I in the main text). We further
observe in the same figure that at t > 104, the slope of the
magnetization density has slightly increased. To visualize this
clearly, we plot in Fig. 9(b) the rescaled magnetization density
M(t )tβ/zcν against t , where β/zcν � 0.0421, i.e., the value
obtained from the fit above. In this type of plot, the plateau
for t ∈ [500, 10 000] indicates that the previous exponent zc �
2.96 is the correct one in this regime. However, going beyond
t ∼ 104 to the longest simulation time t = 105, M(t )tβ/zcν

continuously decreases, which indicates that the value of the
exponent zc starts to decrease.

In the longest timescales that we access, the dynamics is
still in a crossover. The value zc � 2.96 obtained from the
early-time data is preasymptotic. However, to observe the true
asymptotic value zc � 2.17, one would need to reach times
which go far beyond the ones accessible with these simula-
tions. A similar result is obtained for other disorder values
chosen on the PF line above the Nishimori point. In Fig. 10,
we summarize our data for different disorder values on the
PF line. As expected, for small disorder value p = 0.05, a
slightly reduced value of preasymptotic exponent (zc � 2.56)
is recovered, which starts to decrease on a comparably smaller
crossover time (t � 3000). On the other hand, for a larger

disorder value p = 0.08, an exponent zc � 3.23 is achieved.
The latter also decreases, but on the timescale beyond t > 104.

In the end, we mention that it would be desirable to access
large timescales in the current GPU simulations. However,
this requires a huge computational effort, which is not fea-
sible with our current resources. For an example, to access
timescales up to t = 105 MCS with 10 000 samples, our sim-
ulations took approximately 220 GPU hours on an NVIDIA
GeForce RTX 3080 graphic card (with 8704 CUDA cores).
To reach timescales up to t = 106 MCS, a 10 times larger
computational effort would be required.

FIG. 10. Similar to Fig. 9(b), the plot of M(t )tβ/zcν vs t in
log-linear scale, after a quench from a completely ordered state to
different critical quenches Tc(p) on the PF line (see the keys).
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FIG. 11. Plot of the correlation length ξ (t ) and quantity [U (t )]1/2

against time t , in log-log scale, for different critical quenches (see the
key) from an infinitely high temperature T 	 Tc and a completely
ordered state, respectively. The empty symbols denote data for ξ (t )
and the filled symbols correspond to [U (t )]1/2. The inset plots the
effective dynamical exponents zeff (t ) and z′

eff (t ) against t in log-log
scale for the datasets in the main frame (see text for details). The
dashed horizontal lines represent the late-time plateau of zeff .

APPENDIX B: DYNAMICAL LENGTH SCALE FROM
TIME-DEPENDENT BINDER CUMULANT

For a critical quench from the completely ordered state,
the dynamical length scale can also be extracted from the

time-dependent Binder cumulant U (t ) [see Eqs. (11) and
(12)]. In the scaling regime, independent of the initial start,
the quantity [U (t )]1/2 should be proportional to the correlation
length ξ (t ) extracted from the decay of the spatial correlation
function in the main text.

In Fig. 11, we compare the quantities ξ (t ) and [U (t )]1/2

for different critical quenches from an infinitely high temper-
ature and a completely ordered state, respectively. For critical
quench above the Nishimori point TN = 0.952, the linear size
of the system is L = 1024, while for quenches at or below TN,
the linear size of the system is L = 128. The data shown in
Fig. 11 are averaged over 5000–10 000 independent thermal
histories and disordered configurations.

In Fig. 11, the datasets for [U (t )]1/2 are scaled by ap-
propriate multiplicative prefactors to fall on the datasets for
ξ (t ). We observe that once the scaling regime is set, ξ (t )
and [U (t )]1/2 are in excellent agreement with each other. For
rigorousness, we calculate the effective exponent z′

eff (t ) for
[U (t )]1/2 defined as

1

z′
eff (t )

= d ln [U (t )]1/2

d ln t
, (B1)

and we compare it with the exponent zeff (t ) [see Eq. (8) in
main text] of ξ (t ) in the inset. The long-time trend of z′

eff (t )
agrees with zeff (t ). Therefore, the corresponding estimates of
the dynamical critical exponents zc are also similar (indicated
by dashed horizontal lines in the inset). We notice that the
fluctuations in z′

eff are comparatively larger. This is likely be-
cause the Binder cumulant U (t ) is a macroscopic observable
and requires a huge statistics.
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