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Unusual ergodic and chaotic properties of trapped hard rods
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We investigate ergodicity, chaos, and thermalization for a one-dimensional classical gas of hard rods confined
to an external quadratic or quartic trap, which breaks microscopic integrability. To quantify the strength of chaos
in this system, we compute its maximal Lyapunov exponent numerically. The approach to thermal equilibrium
is studied by considering the time evolution of particle position and velocity distributions and comparing the
late-time profiles with the Gibbs state. Remarkably, we find that quadratically trapped hard rods are highly
nonergodic and do not resemble a Gibbs state even at extremely long times, despite compelling evidence of chaos
for four or more rods. On the other hand, our numerical results reveal that hard rods in a quartic trap exhibit both
chaos and thermalization, and equilibrate to a Gibbs state as expected for a nonintegrable many-body system.
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I. INTRODUCTION

The question of how isolated many body systems ther-
malize is of long-standing interest; a canonical study is
that of Fermi, Pasta, Ulam, and Tsingou (FPUT) [1]. The
surprising finding of FPUT was that a one-dimensional an-
harmonic chain of oscillators did not exhibit equipartition
of energy even at very long times, with the system showing
quasiperiodic behavior and near-perfect recurrences. Various
mechanisms have been proposed to explain the results of
FPUT [2–5], e.g., proximity to integrable models such as the
Korteweg–De Vries equation [6] or the Toda model [7–9]
as formalized by Kolmogorov-Arnold-Moser (KAM) theory
[10], the stochasticity threshold [11], the presence of discrete
breathers [12], and most recently the formalism of wave tur-
bulence [13].

One striking feature of this system is a separation between
the timescales for equilibration and chaos. From numerical
simulations of the α-FPUT model [7,14,15], it was shown that
for generic initial conditions [7] the timescale for the system
to thermalize (defined as the time to reach equipartition of
energy) was much longer than the timescale needed to observe
chaos (defined as the time for the system to escape from
regular regions in phase space to chaotic ones), with both
timescales increasing as the energy per particle decreased and
appearing to diverge at some critical value. (However, recent
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studies based on wave turbulence seem to indicate the ab-
sence of any such threshold [13].) Some subtleties in defining
thermalization times and their possible relation to Lyapunov
exponents were investigated recently in Ref. [16]. Despite
a vast body of literature on the topic, a definitive theory of
thermalization in the FPUT chain still eludes the community
and there appears to be no consensus.

More recently, another family of clean many-body sys-
tems that fail to thermalize under their own dynamics has
been scrutinized. These systems consist of particles with inte-
grable two-body interactions, which are placed in an external
trapping potential that breaks both translation symmetry and
integrability of their interactions. Given that the trap breaks
integrability, such systems are naively expected to thermalize
to the Gibbs ensemble, but a prominent experiment realizing
a trapped Lieb-Liniger gas with ultracold rubidium atoms
showed that this expectation was not warranted [17]. A de-
tailed theory of the resulting Newton’s-cradle-like dynamics
had to await the development of generalized hydrodynam-
ics [18,19] (GHD). While the latter theory appears to be
more than adequate for modeling short-time dynamics of such
trapped integrable systems [20–26], the fate of these systems
at long times and in the absence of experimental imperfections
remains somewhat unclear.

For example, previous work on one-dimensional classical
hard rods in an integrability-breaking quadratic potential [22]
found numerically that, despite the dynamics exhibiting pos-
itive Lyapunov exponents, the system did not thermalize to a
Gibbs state at the longest accessible simulation times (on the
order of 10 000 periods of the trapping potential). Moreover,
the long-time steady state was found to be a stationary state
of the ballistic-scale (i.e., nondissipative) GHD equations (as
suggested previously [20]). This observation, together with
further numerical findings reported below, appears to be in-
compatible with a subsequent proposal [24] that diffusive
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TABLE I. The table provides a summary of our findings for
N > 3 hard rods confined to quadratic and quartic traps. The case of
N = 3 rods in a quadratic trap is special [Figs. 1(a) and 1(b)] because
it is characterized by vanishing Lyapunov exponents although its
quartic counterpart, even for N = 2, has nonzero Lyapunov expo-
nents [Fig. 1(c) and 1(d)].

N > 3 Quadratic Quartic

Chaos Yes Yes
(Figs. 2 and 5) (Figs. 4 and 5)

Ergodicity No Consistent with yes
(Fig. 3) (Fig. 4)

Thermalization No Yes
(Figs. 7 and 8) (Fig. 9)

corrections [27,28] to generalized hydrodynamics inevitably
lead to thermalization in integrability-breaking traps. Even
if thermalization does occur for quadratically trapped hard
rods at numerically inaccessibly long times, it remains to be
explained why this timescale is so long. Systems of rational
Calogero particles have also been found not to thermalize on
accessible timescales in traps that are expected to break inte-
grability [25] (though this is not in tension with theory [24]
insofar as diffusive corrections to the rational Calogero GHD
vanish [25]). Finally, we note that the effect of integrability-
breaking by traps has been studied for the classical Toda
system [29,30]. In this case, it was found that the quadrati-
cally trapped system was weakly chaotic while the quartically
trapped system displayed strong chaos and thermalization.

Thus, despite much recent progress, several fundamental
questions concerning the thermalization of trapped integrable
particles remain unresolved, including whether or not these
systems are truly ergodic, whether they can support additional
microscopic conservation laws, and how far these properties
coexist with chaos. Another open question, in answer to which
there is conflicting evidence in the literature, is whether the
stationary state in a generic trap is the Gibbs state [24] or one
of infinitely many nonthermal stationary solutions to ballistic-
scale GHD [20,22]. We will address some of these questions
below.

In this paper, we study the effects of integrability breaking
in one-dimensional systems of hard rods of length a that are
confined to external potentials of the form U (x) = kxδ/δ with
strength k > 0, where δ = 2 for quadratic trap and δ = 4 for
the quartic trap. We diagnose chaos, ergodicity, and thermal-
ization in these systems through probes such as the maximal
Lyapunov exponent (LE), equipartition of energy between
rods, and the position and velocity distributions of the rods.
We find that while quartically trapped rods behave like a typ-
ical nonintegrable many-body system, quadratically trapped
rods exhibit many drastically different and unexpected prop-
erties. The only additional microscopic conservation law for
quadratically trapped rods beyond the total energy, E , appears
to be the energy of the center of mass, Ecm = 1

2N2 [(
∑

i xi )2 +
(
∑

i vi )2]. Nevertheless we find that the system appears to be
nonergodic, has unconventional chaos properties, and fails to
thermalize to the Gibbs state even at extremely long times.

Below we summarize our main findings (see Table I):

(a) (b)

(c) (d)

FIG. 1. Plots of (a) time-dependent Lyapunov exponent λ(t ) and
(b) Poincaré section for N = 3 rods in the quadratic trap for ten and
six different initial conditions, respectively, with E = 6 and Ecm = 0.
Panels (c) and (d) show plots of λ(t ) and the Poincaré section for
N = 2 rods in the quartic potential for five and two initial condi-
tions, respectively, with energy E = 3.2. To compute λ(t ), we used
a linearized dynamics for (a) and two trajectories with ε = 10−10 for
(c). The log t/t behavior in (a) and the regular sections in (b) are
consistent with the integrability of N = 3 rods in the quadratic trap.
Interestingly, panel (c) reveals the existence of both chaotic and
nonchaotic trajectories for the quartic case. This is also reflected in
(d) where we observe two types of patterns, namely scattered (black)
and regular (red).

(1) We find that, in a quadratic trap, a system of N = 3
hard rods shows a strong signature of integrability in the form
of a vanishing maximal Lyapunov exponent [Fig. 1(a)] and a
regular Poincaré section [Fig. 1(b)]. This is in striking contrast
to the case of two rods confined to a quartic trap, which
has both finite (positive) and vanishing Lyapunov exponents
[Fig. 1(c)] and a mixed phase space with both chaotic and
regular regions [Fig. 1(d)]. Our findings hint at the existence
of more conserved quantities for three rods in a quadratic
confining potential (see also [22]).

(2) For any finite number of rods N > 3 in a quadratic
potential, we find that the LE is positive. Nevertheless, we
find compelling evidence that the system is highly noner-
godic. This is demonstrated by the strong initial-condition
dependence of the LE and the time-averaged kinetic tem-
perature (Fig. 2). Such nonergodicity is further suggested by
the broad distributions of Lyapunov exponents and rescaled
temperatures (Fig. 3). These distributions are obtained by
time-evolving initial conditions that are sampled uniformly
from the constant E , Ecm microcanonical surface (see Sec. III
for details). Remarkably, hard rods confined to a quartic trap
exhibit qualitatively completely different behavior, and we
find evidence of conventional chaotic thermalizing dynamics
expected for generic, nonintegrable, classical many-body sys-
tems (Fig. 4).

(3) The system is described completely by two dimension-
less parameters: the rescaled energy, e = E/(Nδ+1kaδ ), and
the number of rods, N . For the quadratic case with fixed e,
the average maximal Lyapunov exponent 〈λ〉 converges to a
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Time evolution of λ(t ) and c1(t ) for N = 4, starting
from 40 different initial conditions (each color denotes one initial
condition) generated using the SMED protocol, for (a,c,e) e = 0.5
and (b,d,f) e = 5.0. This shows the strong dependence on initial
conditions of the late-time values of λ(t ) and c1(t ) for N = 4 hard
rods in a quadratic trap. In (e) and (f) we show the evolution of the
time-averaged values of ci = Ti/N2 of N = 4 hard rods for e = 0.5
and e = 5.0 respectively, for one realization. In the long-time limit,
c1 and c4 are equal but have a value that is significantly different from
c2 and c3, indicating a lack of energy equipartition.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a,b,c,d) Distribution of the maximal Lyapunov exponent
λ and rescaled temperature c1 of the leftmost rod, for 4 � N � 32,
computed at time t = 105. The system sizes corresponding to differ-
ent plots are provided in subplot (c). We find a significant breakdown
of ergodicity for hard rods in this quadratic trap. (e,f) Distribution
of λ for N = 8 at different times, 103 � t � 106, which shows that
P(λ, t ) approaches a steady limiting distribution at late times. The
initial conditions for all the plots are generated using the SMED:
(a,c,e) for e = 0.5 and (b,d,f) for e = 5.0.

(a) (b)

FIG. 4. Probability distribution of (a) maximum Lyapunov expo-
nents λ and (b) c1 for N = 4 rods in a quartic trap. We observe that
both distributions collapse at different times after shifting by their
respective means and scaling by

√
t . This indicates that the width of

these two distributions decreases with time and becomes increasingly
sharp, in contrast to our findings for the quadratic trap depicted in
Fig. 3. In the insets, we show the time evolution of λ and c1 for 20
different realizations (each color denotes one initial condition), all
of which converge to a unique value at late times, regardless of the
initial conditions.

finite value with increasing N . This converged value shows
an ∼e−1/2 scaling over a wide range of e values [Fig. 5(a)].
In sharp contrast, for the quartic case the average LE (〈λ〉)
for a given N grows as ∼e1/2 and the proportionality constant
increases with N [Fig. 5(b)].

(4) We find intriguing behavior in the approach to ther-
malization of macrovariables, such as density profiles and
velocity distributions, for macroscopic systems of trapped
hard rods. For both trap shapes we study thermalization start-
ing from four different types of initial condition, each of
which is determined by choosing either a spatially uniform
or bimodal (Newton’s-cradle-like) position distribution, and

(a) (b)

(c) (d)

FIG. 5. Plot of average maximal Lyapunov exponent (〈λ〉) with
rescaled energy e for (a) quadratic and (b) quartic trap. The average
number of collisions per unit time 〈ncoll〉 as a function of total energy
e for N = 8 for (c) quadratic trap and (d) quartic trap.
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choosing either a uniform or a Maxwellian velocity distribu-
tion. For each of these four initial conditions, we find that
quadratically trapped rods approach different stationary states
at large times, none of which corresponds to the conventional
Gibbs state (Fig. 8). On the other hand, we find that quartically
trapped rods thermalize, eventually reaching the stationary
Gibbs state for different initial conditions (Fig. 9).

The paper is organized as follows. In Sec. II we
describe the model in detail and define the diagnostics that
we will be using to characterize its dynamics. In Sec. III,
we discuss the numerical methods employed. In Sec. IV, we
present the results of extensive molecular dynamics simula-
tions of trapped hard rods. We conclude and discuss some
open questions in Sec. V.

II. MODELS AND DEFINITIONS

We consider one-dimensional hard rods of length a and
unit mass in a confining potential, given by the Hamiltonian

H ({xi, vi}) =
N∑

i=1

[
v2

i

2
+ U (xi )

]
+

N−1∑
i=1

V (|xi+1 − xi|),

(1)

where {xi, vi} denote the position and the momentum of the ith
rod such that xi+1 � xi + a for 1 � i � N − 1. We consider a
confining potential of the form

U (x) = k
xδ

δ
(2)

with two values of δ,

δ =
{

2 for a quadratic trap,
4 for a quartic trap. (3)

The interaction term for hard rods is of the form

V (r) =
{

0 for r > a,

∞ for r � a.
(4)

Under the resulting Hamiltonian dynamics the rods collide
elastically with their neighbours, upon which they exchange
momenta instantaneously. In between collisions, the rods
move independently in the trap potential. Scaling distances
and time by the natural length and time scales, a and τ =
1/

√
kaδ−2, respectively, one finds the total energy of the sys-

tem is given by

E = kaδ

N∑
i=1

[
ẋ2

i

2
+ xδ

i

δ

]
. (5)

The minimum energy, Em, of the system is attained by a close-
packed configuration centered at the origin, with all particles
at rest. It is clear that Em ∼ kaδNδ+1. We are interested in
observing thermalization at high enough temperatures such
that the central density of the gas is reduced from this close-
packed density by a factor of order one or more. This requires
excitation energy Eex = E − Em of the same order as Em or
larger. From Eq. (5), we see that the only relevant parameters
in the system are the rescaled energy [31]

e = E

Nδ+1k aδ
(6)

and N . In the following, without loss of generality, we can set
a = 1, k = 1 and compute various physical quantities for dif-
ferent values of the parameters e and N . We further note that,
for the quadratic case, there is a second conserved quantity

Ecm = 1

2N2

⎡
⎣(∑

i

xi

)2

+
(∑

i

vi

)2
⎤
⎦, (7)

beyond the total energy, which is the energy of the center of
mass [22]. The center of mass moves autonomously, and the
relative motion of the rods is independent of that of the center
of mass, so without loss of generality for the quadratic trap we
can restrict to Ecm = 0. Note that this also implies that Xcm =∑

i xi = 0 and Pcm = ∑
i vi = 0 are separately conserved.

For these systems, we compute the finite time Lya-
punov exponent, λ(t ), and its infinite time limit, λ, defined
respectively as

λ(t ) = lim
ε→0

1

t
ln

∣∣∣∣dt

ε

∣∣∣∣,
λ = lim

t→∞ λ(t ),
(8)

where d0 = ε is the separation between the two initial phase-
space points, and dt is their separation at time t . For chaotic
systems λ > 0, which represents the exponential divergence
of phase-space trajectories for an infinitesimally small initial
separation. In fact, it is possible to write a linearized dynamics
for the variable zt = dt/ε in the ε → 0 limit, which provides
an accurate method for computing λ. We use this method
for computing the Lyapunov exponent in the quadratic case,
whereas for the quartic case we compute it directly from the
evolution of two different initial conditions. In both cases
we use the widely used numerically efficient method due to
Benettin, Galgani, and Strelcyn [32]. To probe thermalization,
we compute the (running) time average of the scaled kinetic
temperature of the individual hard rods defined as

ci = Ti

Nδ
, where Ti(t ) = 1

t

∫ t

0
dt ′v2

i (t ′), (9)

and check for equipartition.
To study the relaxation dynamics and equilibration to a

Gibbs state, we compute the spatial density profile ρ(x, t ) and
the velocity distribution P(v, t ) defined as

ρ(x, t ) =
N∑

i=1

〈δ(x − xi(t ))〉, (10)

P(v, t ) =
N∑

i=1

〈δ(v − vi(t ))〉. (11)

where 〈· · · 〉 denotes an average over many initial microscopic
states with the same initial density profiles and velocity distri-
butions, drawn from a microcanonical ensemble with constant
energy e and Ecm = 0. Details of the preparation of these ini-
tial states are given below in Sec. III. If the system thermalizes
to a Gibbs state, then one expects that ρ(x) will be the same as
the equilibrium distribution obtained from Monte Carlo simu-
lations whose temperature is fixed so that the average energy
(appropriately scaled) equals e. The corresponding velocity
distribution P(v) will be Gaussian at the same temperature.
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III. NUMERICAL METHODS

In this section, we outline the various numerical methods
and conventions that we will use both in and out of equilib-
rium.

Time evolution. For the quadratic case (δ = 2), one can
evolve the equations of motion using exact and numerically
efficient event-driven molecular dynamics (EDMD). For the
quartic trap (δ = 4) case, we employ standard molecular dy-
namics (MD) simulations using a symplectic velocity-Verlet
integration scheme. During collision events, we exchange the
velocities of the particles at the first instant that any two
adjacent rods overlap, defined as xi+1 − xi < a. To ensure the
accuracy of this approximation, we use a very small time
increment dt = 10−6.

Stochastic momentum exchange dynamics (SMED). To
sample initial conditions uniformly over the phase space
from a microcanonical ensemble with e fixed and Ecm = 0,
we allow momentum exchange of randomly chosen pairs
of neighboring particles at random times in addition to the
usual Hamiltonian dynamics. This stochastic process con-
serves the total momentum and energy of the system. For
the quadratic trap case, this stochastic momentum exchange
dynamics (SMED) also conserves the center of mass energy
Ecm. The SMED exhibits the expected equipartition of energy
(flat temperature profiles) and insensitivity to initial condi-
tions, both of which are consistent with ergodicity.

Initial state preparation. To check the initial condition
dependence of the maximal Lyapunov exponent λ and its dis-
tribution we used microcanonical initial conditions generated
by the SMED.

To check thermalization, we prepare the system with spec-
ified nonequilibrium spatial density profiles ρ(x) and velocity
distributions P(v) consistent with given values of e and Ecm =
0. This is achieved via the following protocol. First, we
distribute the rods spatially in accordance with the required
density profile ρ(x), imposing the hard-rod constraint and
fixing the center of mass at x = 0. We then compute the total
potential energy Ep for this configuration and subtract it from
the total energy E to obtain the total kinetic energy Ek. The ve-
locities are drawn from the distribution P(v), and then shifted
and rescaled by appropriate factors so that the center-of-mass
velocity vanishes and the total kinetic energy is exactly Ek. In
this work we consider two nonthermal choices of ρ(x): either
uniform over a finite width (denoted U), or a Newton’s-cradle-
like profile consisting of two uniform blobs, each of finite
width and separated by an O(N ) distance (denoted Nc). For
the velocities, we consider two choices of P(v): either uniform
(denoted U) or Maxwellian (denoted Mx). This leads to four
possible choices of nonequilibrium initial conditions: (i) U-U,
(ii) U-Mx, (iii) Nc-U, (iv) Nc-Mx.

IV. RESULTS ON CHAOS, ERGODICITY,
AND THERMALIZATION

As mentioned earlier, one naively expects that the presence
of the trap makes the system chaotic (λ > 0), ergodic (no
long-time dependence on the details of the initial condition),
and nonintegrable (strictly fewer than N independent integrals
of motion). In the following we investigate these properties

in detail by computing the Lyapunov exponent and kinetic
temperatures for different N in quadratic (δ = 2) and quartic
(δ = 4) trapping potentials.

A. Chaos and ergodicity

It is easy to see that the dynamics of hard rods with N = 2
is integrable for the quadratic trap because of the presence of
the second conserved quantity Ecm. However, this is not the
case in a quartic trap, as will be elaborated below.

N = 3 rods (quadratic trap). We first consider the case
of N = 3 rods in the quadratic trap with Ecm = 0. We find
that the systems displays features akin to integrable systems
as exhibited by the existence of nonchaotic trajectories with
Lyapunov exponents decaying as λ(t ) ∼ log(t )/t [Fig. 1(a)].
This is similar to integrable models such as the Toda chain
[16]. The Poincaré sections are shown in Fig. 1(b) where we
observe regular patterns consistent with Fig. 1(a).

N = 2 rods (quartic trap). In striking contrast to the above
case, the behavior of even N = 2 rods in a quartic trap
shows both chaotic and regular trajectories, as depicted in
Fig. 1(c). This observation is consistent with the Poincaré
sections shown in Fig. 1(d), where we observe that the phase
space of two hard rods can have disjoint chaotic regions
(scattered) and nonchaotic (regular) islands. However, our ob-
servations indicate that the phase space volume of the regular
island is much smaller than that of the chaotic region even for
N = 2.

N � 4 rods (quadratic trap). We find that many trajecto-
ries for N = 4 rods in a quadratic trap are chaotic, although
still nonthermalizing. We compute λ(t ) and c1(t ) for different
initial conditions (IC) obtained from SMED simulations (see
Sec. III) for two values of the rescaled energy, e = 0.5 and e =
5.0. The results are shown in Figs. 2(a), 2(c) and Figs. 2(b),
2(d), respectively. We find that the values of λ(t ) and c1(t ) at
late times are sensitive to the choice of initial condition. Inter-
estingly, we observe that even for N = 4 there is a fraction of
trajectories for which λ(t ) decays in time for all numerically
accessible times, as for the case of N = 3 rods [see Figs. 2(a)
and 2(b)]. To investigate equipartition we plot ci(t ) for i =
1, 2, 3, 4 for a single initial condition in Fig. 2(e) for e = 0.5,
and observe that c1(t ) = c4(t ) and c2(t ) = c3(t ) 
= c1(t ) at
late times. This is also observed for e = 5.0 in Fig. 2(f). These
observations suggest that the N = 4 system is chaotic but not
ergodic for most choices of initial condition. We have verified
that similar nonergodicity is observed for N = 6, 8 particle
systems along with the symmetry ci = cN−i+1; this suggests
that any extra conserved quantity if it exists should possess
the same symmetry.

To quantify and further investigate the IC dependence and
nonergodicity in systems with different numbers of rods N ,
we compute the probability distributions P(λ) and P(c1) of
the late time values of λ(t ) and c1(t ), obtained from an en-
semble of ICs (once again generated using SMED) for e = 0.5
[Figs. 3(a) and 3(c)] and e = 5.0 [Figs. 3(b) and 3(d)]. Inter-
estingly, for the distribution P(λ), we see a peak near λ = 0
for N = 4 arising from the nonchaotic trajectories observed
in Figs. 2(a) and 2(b). This peak, however, decreases sharply
with increasing N . Further, we observe that the mean of the
distribution P(λ) behaves nonmonotonically with increasing
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N . On the other hand, the width of the distribution seems
to decrease with increasing N . The fact that the distributions
of both λ and c1 are still quite broad even at the largest
system size N = 32 studied is strong evidence for a lack of
ergodicity in the system. In order to demonstrate that t = 105

is a sufficiently long time for computing the distributions P(λ)
in Figs. 2(a) and 2(b), in Figs. 3(e) and 3(f) we plot the dis-
tribution of λ(t ) at different times for N = 8. We observe that
these distributions initially display some narrowing, but seem
to converge to a limiting form of finite width at long times.
This suggests that the system is genuinely non-ergodic and
that the identification of λ with λ(t ) at t = 105 in Figs. 3(a)
and 3(b) is justified.

These numerical results are consistent with the following
possible scenarios for the quadratic trap:

(1) The disappearance of the peak in P(λ) at λ = 0 with
increasing N indicates that any possible KAM-like nonchaotic
islands occupy negligible phase-space volume in the limit of
large system size.

(2) The nonvanishing width of P(λ) and P(c1) for the sim-
ulated values of N suggests the existence of multiple chaotic
islands with distinct values of λ and c1 in a given microcanon-
ical shell.

(3) These chaotic islands could arise either from extra con-
served quantities or from strong kinetic constraints (e.g., high
entropy barriers) that prevent movement between different
islands. In the former case, we expect that the width of the
distributions P(λ) and P(c1) will not go to zero even for long
times and large N . In the latter case, these distributions will
eventually become sharp at sufficiently long times, yielding
unique values of λ and c1 for any N . Our numerical results
in Figs. 3(e) and 3(f) are in closer agreement with the former
scenario.

N � 4 rods (quartic). For the quartic trap, numerically
obtained distributions for P(λ(t )) and P(c1(t )) are shown
in Figs. 4(a) and 4(b) respectively, for different times from
t = 100 to t = 104. In contrast to the quadratic trap, we find
that both these distributions are sharply peaked, and that their
widths decrease with time as ∼t−1/2 (see the scaling in Fig. 4).
This suggests that hard rods in a quartic trap thermalize. This
conclusion is supported by the insets of these figures, which
demonstrate that λ(t ) and c1(t ) converge to unique values
(within statistical fluctuations) for different initial conditions.
Thus our numerical simulations find negligible dependence of
the late-time dynamics on initial conditions, which is evidence
for thermalization, and consistent with ergodicity (testing the
latter directly would require a more detailed analysis of indi-
vidual phase-space trajectories).

B. Energy dependence of chaos

In this section, we investigate how the mean maximal
Lyapunov exponent 〈λ〉 [obtained from the distributions in
Figs. 3(a) and 3(b)] depends on the rescaled energy e and N
for both traps. We observe that in the case of the quadratic
trap, 〈λ〉 roughly saturates to a nonzero value at large N for a
fixed value of e. In Fig. 5(a) we plot these saturation values as
a function of e where one observes that 〈λ〉 decreases with e as
∼1/

√
e at large e. A similar decrease of 〈λ〉 with increasing

energy has been reported earlier for soft rods in a quadratic

trap [33]. For the quartic trap, in contrast to the quadratic
case, 〈λ〉 does not appear to converge with increasing N for
the range of N values studied here. For fixed N , 〈λ〉 grows
with increasing e as ∼√

e for large e, as can be seen from
Fig. 5(b). This square-root dependence of λ on temperature is
also observed in other nonintegrable systems [34,35].

To understand this intriguing dependence of λ on e better,
we compute the average number of collisions per unit time
〈ncoll〉 in both traps, for a fixed N = 8 and for different values
of the energy e. These are shown in Figs. 5(c) and 5(d) for the
quadratic and the quartic trap respectively. From Fig. 5(c) we
find that 〈ncoll〉 decreases in the quadratic trap as e is increased.
Thus, as the energy is increased the hard rod gas expands and
collisions become rarer. We expect that this reduced rate of
collisions is responsible for the decrease in 〈λ〉 with increasing
e for the quadratic trap. In contrast, we find for the quartic trap
that 〈ncoll〉 increases as e is increased [see Fig. 5(d)], which
may cause the increase of 〈λ〉 with e.

C. Thermalization in macroscopic systems

In previous sections, we studied the chaos and ergodicity
properties of hard rods in quadratic and quartic traps. For
quadratic traps, we found numerical evidence that for large N
the system is chaotic but not ergodic, while for quartic traps
we found that the system was both chaotic and thermalizing
(and most likely ergodic). A notable feature of the quadratic
trap is that the dynamics becomes less chaotic as the rescaled
energy is increased.

Whether these results have any bearing on thermalization
in macroscopic systems is a nontrivial question, which we
now address. We will study this question by looking at the
time evolution of nonequilibrium density profiles and velocity
distributions of trapped hard rods (evolving under Hamilto-
nian dynamics) and checking whether these relax to the Gibbs
state.

To this end, we compute ρ(x, t ) and P(v, t ), as defined
in Eqs. (10) and (11), as a function of time for four choices
of initial condition (see Sec. III) with fixed values of e and
Ecm = 0. In Figs. 6(a) and 6(b) we show ρ(x) and P(v) for
small times 0 < t � τ = 2π , with N = 128 hard rods in the
quadratic trap, starting from IC Nc-M, i.e., from a Newton’s
cradle initial condition in space (two spatially separated blobs
of rods) with velocities chosen from a Maxwell distribution. It
is clear that the rods, starting from a two-blob initial condition
(at t = 0), go through “breathing” dynamics and exhibit large
oscillations in their density profiles and the velocity distri-
butions. As the system “breathes,” the density profile goes
through different intriguing shapes that are shown in Fig. 6(a).
Such transients in the finite-time dynamics of trapped inte-
grable systems are well documented by now [17,22,23,36].

After these initial transients, the position and velocity
distributions begin to approach a stationary state. We plot
the single-particle distributions for N = 128 hard rods in a
quadratic trap at late times t = 500, 103, 104. These distribu-
tions are shown in Figs. 7(a)–7(d) for e = 0.5 and e = 5.0.
To check whether or not the rods thermalize in the long-time
limit, we also plot the corresponding single-particle distribu-
tions obtained from SMED, which are expected to recover the
microcanonical ensemble.
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FIG. 6. (a) Density profiles ρ(x) and (b) velocity distributions P(v) in the quadratic trap, with e = 0.5 and N = 128, that appear at different
times within one time-cycle of the trap, 0 < t � τ = 2π . These profiles are obtained starting at t = 0 from a two-blob density profile and
Gaussian velocity distribution (i.e., Nc-Mx) of the hard rods. For all the plots in (a) and (b), the abscissa runs from −400 to 400. For (a) and
(b), the ordinate scale ranges are 0–0.007 and 0–0.01 respectively. As can be clearly observed, the hard-rod system in a quadratic trap has an
initial “breathing-mode” dynamics and exhibits oscillations in the distributions, somewhat resembling a Newton’s cradle. For our parameters
these oscillations damp out in O(20) cycles.

Strikingly, in the quadratic trap, we find that the density
profile obtained from the microscopic dynamics even at the

(a) (b)

(c) (d)

FIG. 7. Time evolution of density and velocity profiles: (a,c) for
e = 0.5 and (b,d) e = 5.0 for N = 128 hard rods in a quadratic trap,
starting from a Newton’s cradle initial condition (i.e., two spatially
separated blobs of rods) with Maxwellian velocities (Nc-Mx, in the
notation of Sec. III). The times simulated are indicated by the legend
in (b). These plots illustrate that at late times (t = 104τ ) the density
profiles and velocity distributions obtained from EDMD converge to
forms that differ from those obtained from SMED.

longest accessible times, t = 104τ , (where τ = 2π
ω

is the time
period of the trap) is very different from the SMED predic-
tion. The velocity distribution is also found to differ from the
SMED prediction, for both e = 0.5 and e = 5.0. Thus the hard
rod gas does not thermalize in a quadratic trap even at the very
longest accessible times. This is consistent with earlier work,
which found that the long-time steady state of quadratically
trapped hard rods was a nonthermal stationary solution to
ballistic-scale GHD on comparable timescales [22]. It appears
that for smaller e, the density and velocity profiles are closer
to the equilibrium forms obtained from SMED. Thus, quite
intriguingly, we find that quadratically trapped hard rods at a
higher rescaled energy e are less chaotic, retain the memory of
their initial conditions for longer, and show greater reluctance
to thermalize than systems at lower e.

To argue convincingly against thermalization, we must fur-
ther check that the late-time behavior of the system is sensitive
to the choice of initial condition. In Fig. 8, we investigate the
late-time behavior of hard rods in a quadratic potential for
several initial conditions and compare them with the corre-
sponding thermal predictions from SMED. The four different
initial conditions (see Sec. III) considered are (i) uniform
density and uniform velocity distribution (U-U), (ii) uniform
density and Maxwell velocity distribution (U-Mx), (iii) New-
ton’s cradle density and uniform velocity distribution (Nc-U),
and (iv) Newton’s cradle density and Maxwell velocity dis-
tribution (Nc-Mx). We find that neither the density profiles
nor the velocity distributions of the late-time microscopic
dynamics are consistent with SMED. Remarkably, even the
late-time distributions obtained by evolving different initial
conditions under the microscopic dynamics are distinct from
one another, implying nonergodicity.

In sharp contrast, hard rods in a quartic trap thermalize
rapidly to a Gibbs state, regardless of the choice of initial
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FIG. 8. In this figure, we investigate the initial condition depen-
dence of the late time (t = 104τ ) distributions obtained from EDMD
of hard rods in a quadratic potential. These are compared with ther-
mal predictions obtained from SMED. We compare the density and
velocity profiles of 128 rods at two energies: (a,c) e = 0.5 and (b,d)
e = 5.0. We use four different initial conditions: (i) uniform density
and uniform velocity distribution (blue dashed line), (ii) uniform
density and Gaussian velocity distribution (red dotted line), (iii)
Newton’s cradle density and uniform velocity distribution (yellow
dashed-dotted line), and (iv) Newton’s cradle density and Gaussian
velocity distribution (magenta dashed-double-dotted line). We find
that neither the density profile nor the velocity distribution agree
between EDMD and SMED (black solid line), even at long times
t = 104τ . We also observe that late-time density profiles depend on
the choice of initial condition for both temperatures.

condition. This is shown for two macroscopically distinct
initial conditions in Figs. 9(a) and 9(b) (for the NC-Mx ini-
tial condition) and Figs. 9(c) and 9(d) (for the U-Mx initial
condition), where long-time density and velocity distributions
obtained from the microscopic dynamics are compared with
the expected equilibrium distributions. We observe excellent
agreement for both choices of initial condition.

To characterize the lack of thermalization of the hard-
rods in a quadratic trap in a more quantitative manner, we
characterize the “distance” of the EDMD density profiles
ρ(x), from the expected equilibrium distributions ρSMED(x)
(obtained from SMED), using the absolute value norm,
defined as

DL1(ρ, ρSMED) =
∫ ∞

−∞
dx |ρ(x) − ρSMED(x)|. (12)

The absolute value norm as a function of time, for two dif-
ferent e values, is shown in Fig. 10. As anticipated, DL1 for
e = 5.0 is clearly larger than DL1 for e = 0.5. Furthermore,
DL1(t ) at long times (t ∼ 104τ ) seems to saturate to a nonzero
value, implying a lack of thermalization.

(a) (b)

(c) (d)

FIG. 9. Time evolution of (a,c) MD density and (b,d) velocity
distribution for hard rods in a quartic trap, starting from (a,b) Nc-Mx
and (c,d) U-MX initial condition, compared with Monte Carlo pro-
files for N = 16 and e = 0.10. In this case, the MD profile converges
to the Monte Carlo (MC) result appreciably fast, and the velocity
distribution approaches a Gaussian at late times, as expected for a
nonintegrable system.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated chaos, ergodicity, and
thermalization for one-dimensional gases of classical hard
rods in quadratic and quartic traps. Our work demonstrates
that thermalization properties are radically different between
quadratic traps (δ = 2) and quartic traps (δ = 4). We have ver-
ified that some of the features related to chaos and ergodicity,

FIG. 10. Time evolution of the distance measure, DL1 [defined in
Eq. (12)], between ρ(x) and ρSMED(x) for e = 0.5 and e = 5.0 in a
quadratic trap. For both EDMD and SMED the system is initially
prepared in the Nc-Mx initial condition. The oscillations at small
times are consistent with the oscillations observed in Fig. 6. The
saturation of DL1 to nonzero values at large times indicates a lack
of thermalization to a Gibbs state.
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observed for δ = 4, also hold for δ = 6, suggesting universal
behavior for nonquadratic traps (δ > 2). In the quadratic case,
even though the system has a positive Lyapunov exponent
confirming that integrability is broken, the dynamics never-
theless appear to be nonergodic and fail to thermalize on the
accessible timescale. This is markedly different from expec-
tations for conventional nonintegrable classical many-body
systems. Our main findings for the case of N > 3 hard rods
are summarized in Table. I.

Our results hint at the existence of additional microscopic
conserved (or quasiconserved) quantities that give rise to non-
ergodic behavior in a quadratic trap even when the Lyapunov
exponents are positive. The special case of N = 3 displays
nonchaotic (zero Lyapunov exponent) behavior. On the other
hand, hard rods confined to quartic traps exhibit conventional
non-integrable behavior, namely positive Lyapunov exponents
and thermalization to the expected Gibbs state.

Our work suggests several interesting open questions for
hard rods in a quadratic trap: (i) finding the extra conservation
law for N = 3, assuming this exists (it was previously argued
that any such conservation law must be nonanalytic in the
dynamical variables [22]); (ii) understanding the dependence
of λ on energy e and N (see Fig. 5); (iii) understanding
whether hydrodynamics can capture the regime of interme-
diate times between the initial and late-time dynamics [22];
(iv) exploring whether this lack of ergodicity for large N has
any relation to the known additional, “entropic” conservation
laws of ballistic-scale GHD [20,22,23,37], or some hitherto
undiscovered conservation laws of the full dissipative hydro-
dynamics.

We expect that some of our findings will be valid more gen-
erally for systems of classical or quantum particles confined
to a trap that breaks the integrability of their interactions. We
note that studies of the Toda chain [29,30] have also indicated

drastic differences in transport properties in a quadratic trap
compared to quartic traps. As a more extreme example of
such unusual behavior, the rational Calogero model remains
integrable in both quadratic and quartic traps [38], and its
ballistic scale hydrodynamics is integrable in any trap [25]. A
complete theory of this rich phenomenology of integrability
breaking by traps remains elusive for now.
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