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Vibrational model for thermal conductivity of Lennard-Jones fluids:
Applicability domain and accuracy level
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Exact mechanisms of thermal conductivity in liquids are not well understood, despite a rich research history.
A vibrational model of energy transfer in dense simple liquids with soft pairwise interactions seems adequate to
partially fill this gap. The purpose of the present paper is to define its applicability domain and to demonstrate
how well it works within the identified applicability domain in the important case of the Lennard-Jones model
system. The existing results from molecular dynamics simulations are used for this purpose. Additionally, we
show that a freezing density scaling approach represents a very powerful tool to estimate the thermal conductivity

coefficient across essentially the entire gas-liquid region of the phase diagram, including metastable regions. A
simple practical expression serving this purpose is proposed.
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I. INTRODUCTION

The thermal conductivity coefficient is an important char-
acteristic of a material. It can vary greatly depending on the
specific substance as well on its phase state. While heat trans-
port in gases, plasmas, and solids is relatively well understood,
mechanisms of heat transfer in liquids have remained elusive.

A vibrational model of thermal conductivity in simple
liquids with soft pairwise interactions has been recently pro-
posed and discussed [1]. In this model it is assumed that
atoms in liquids exhibit solidlike oscillations about temporary
equilibrium positions corresponding to a local minimum on
the system’s potential energy surface [2—4]. The equilibrium
positions are not fixed like in solids, but are allowed to dif-
fuse (this is why liquids can flow). However, this diffusion
occurs on long enough timescales, which are irrelevant for
the process of energy transfer. Furthermore, liquid is approxi-
mated by a quasilayered structure with layers perpendicular
to the temperature gradient and separated by the distance
A = p~!/3, where p is the atomic number density. The aver-
age interatomic separation in each quasilayer is also A. Then
elementary consideration based on the assumption that the
energy difference between the atoms in neighboring layers is
transferred at an average frequency of their solidlike vibra-
tions leads immediately to a simple expression [1]

B o, 12 (1)

Here X is the thermal conductivity coefficient (which does
not include the Boltzmann constant and hence is measured
in cm~!s™!), ¢, is the specific heat at constant volume, and
(w) is the average vibrational frequency that approximates
the energy transfer rate. Actually, specific heat at constant
volume ¢, appears in Eq. (1) under the assumption of a small
thermal expansion coefficient. Dense liquids with soft inter-
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actions near the liquid-solid phase transition are essentially
incompressible and this represents a good approximation.

We note in passing that the vibrational paradigm sketched
above is useful not only in relation to the problem of thermal
conductivity of dense fluids. It also allows one to relate the
self-diffusion and the shear viscosity coefficients in the form
of a Stokes-Einstein relation without the hydrodynamic diam-
eter [4-7]. The present paper, however, mostly focuses on the
thermal conductivity mechanism.

Equation (1) emphasizes the relation between the thermal
conductivity and collective mode properties of dense liquids.
To evaluate the average vibrational frequency one would need
to know the liquid vibrational density of states (VDOS).
This is a formidable task, because collective properties can
greatly differ from one liquid system to another and depend
considerably on the state point in the phase diagram. Some
progress has recently been reported [8,9]. Zaccone and Bag-
gioli have developed an analytical model for VDOS based
on overdamped Langevin liquid dynamics [8]. Distinct from
the Debye approximation g(w) o w? for solids, the universal
law for liquids reveals a linear relationship g(w) & w in the
low-energy region. Stamper et al. have confirmed this univer-
sal law with an experimental VDOS measured by inelastic
neutron scattering on real liquid systems [9]. Nevertheless,
the applicability regime and accuracy level of this model still
require clarification. In the meantime, it is natural to employ
some approximations and simplifications which can differ
depending on the type of liquid under investigation (some
examples are provided below).

Interestingly enough, Eq. (1) can be reduced to the known
previous results under special simplifying assumptions about
the vibrational properties [1]. In the simplest approximation
all atoms are oscillating with the same Einstein frequency Qg
(this approximation is known as the Einstein model in solid
state physics). Averaging is then trivial, (w) = Q. We get
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This is very similar to the results obtained by Rao [10] and
later by Horrocks and McLaughlin [11,12]. This form is
particularly suitable for extremely soft interactions such as
Coulomb and screened Coulomb potentials, relevant in the
plasma-related context [13—15]. In dense liquids near freezing
conditions we can set ¢, ~ 3, according to the Dulong-Petit
law. The Einstein frequency at the liquid-solid phase transition
can be estimated using Lindeman’s melting criterion in its
simplest formulation. Then quasiuniversality of the thermal
conductivity coefficient at freezing conditions emerges in the

form [10,16]
A t,/ r 3)
~ const,/ —,
mA*4

where T is the temperature in energy units (kg7') and m
is the atomic mass. The value of the constant is approxi-
mately equal to 10 for usual simple model systems such as
Lennard-Jones, Coulomb, screened Coulomb, and monatomic
liquids (e.g., liquefied noble gases) [17,18]. It is somewhat
larger for a hard-sphere fluid at freezing and reaches values
approximately equal to 15-20 for liquids with more complex
molecular structure [19].

Alternatively, we can relate the average frequency to the
sound velocity. Specifically, consider an acoustic dispersion
of the form w = kcs, where k is the wave number and ¢, is
the sound velocity. The characteristic wave number for energy
transfer between nearest neighbors is k ~ 27 /A. This yields
(w) ~ 2mces/A and hence

Cs
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This resembles Bridgman’s expression for the thermal con-
ductivity coefficient [20]. Actually, Bridgman postulated that
the energy is transferred at the speed of sound, thus lead-
ing to a linear correlation between the thermal conductivity
coefficient and the sound velocity. He also used a constant
coefficient of 2, that is, A ~ 2¢,/A?. This numerical coeffi-
cient remained somewhat controversial; values between 2 and
3 were used in the literature [1,21-23]. In a recent extensive
study of correlations between the thermal conductivity coeffi-
cient and the sound velocity of various liquids [19,24], it has
been demonstrated that linear correlations are well reproduced
for model liquids as well as real monatomic and diatomic
liquids. However, they are less convincing in polyatomic
molecular liquids. The actual coefficient of proportionality
in Bridgman’s formula is not fixed. It is about unity for
monatomic liquids and generally increases with molecular
complexity.

Just like in solids, dense liquids support one longitudinal
and two transverse collective modes [25-29]. A Debye-like
approximation for the vibrational spectra of dense liquid is
thus not completely irrelevant and has demonstrated rea-
sonable success in deriving the Stokes-Einstein coefficient
without the hydrodynamic diameter [4] and estimating ther-
modynamic properties of dense liquids [30,31]. In this
approach the dispersion relations of one longitudinal and two
transverse collective modes are approximated by their corre-
sponding acoustic asymptotes wj(k) = kc; and w(k) = k¢,
terminating at respective cutoff wavelengths k.. Applica-
tion to the problem of thermal conductivity results in the

expression [1]
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Using ¢y =~ 3 near freezing, we get a formula similar to that
of the minimal thermal conductivity model proposed by Cahill
and Pohl [32,33] for amorphous solids.

Equation (5) can be applicable to liquids with conventional
acoustic dispersion relation of the longitudinal collective
mode, but should not be used when dispersion is nonacous-
tic (e.g., in the case of Coulomb one-component plasma
and weakly screened Yukawa systems). In such cases ac-
tual dispersion relations can be used to perform averaging
[7,13]. Another complication arises due to the presence of the
so-called k gap (zero-frequency domain at sufficiently long
wavelengths) in the dispersion relation of the liquid transverse
mode, which has received considerable attention in recent
years [34-39]. The effect of the k gap in the transverse mode
has not yet been discussed in detail in the context of the
vibrational paradigm of transport properties in liquids and will
not be addressed here.

Formula (5) provides a good compromise between simplic-
ity and accuracy. Notably, it does not contain free parameters
and adjustable coefficients.

One of us demonstrated previously that Eq. (5) applies
reasonably well to dense Lennard-Jones (LJ) fluids [1]. How-
ever, only a single exemplary slightly supercritical isotherm
was considered in that work. The purpose of this paper is
to provide a detailed and extensive verification of its appli-
cability domain and accuracy level across the LJ fluid phase
diagram. We demonstrate that for the LJ fluid, Eq. (5) allows
us to express the thermal conductivity coefficient in terms
of thermodynamic properties such as specific heat, excess
internal energy, and excess pressure. An appropriate equa-
tion of state is then used to evaluate the thermal conductivity
coefficient and to quantify the accuracy of the approach.
This is a remarkable example of a direct relation between
transport and thermodynamics. The applicability domain is
defined with reference to a gas-to-liquid dynamical crossover
in supercritical fluids (Frenkel line in the phase diagram),
which represents an important current research topic. Finally,
we reiterate our recent freezing density scaling approach to
transport properties [18,40,41] and put forward an ad hoc
expression for the thermal conductivity coefficient. Overall,
the results reported represent an important step toward better
understanding main mechanisms and peculiarities of transport
phenomena in the liquid state.

II. METHODS

The LJ model is one of the most popular and best studied
systems in condensed matter research. It combines relative
simplicity with adequate representation (at least at the qual-
itative level) of interatomic interactions in real substances,
exhibiting steep short-range repulsion and softer long-range
attraction. The LJ potential is
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FIG. 1. Phase diagram of the LJ system on the density-
temperature plane (p*, T*). The squares correspond to the fluid-solid
coexistence boundaries as tabulated in Ref. [51]; the fluid-solid
coexistence curves are simple fits by Eq. (7). The liquid-vapor coex-
istence boundary is plotted using the formulas provided in Ref. [52].
The reduced triple-point and critical temperatures are 7, 2~ 0.69
[51] and T} ~ 1.33 [52], respectively. The pluses correspond to
the state points investigated in Ref. [50]. Only data points with the
temperature above the triple point are considered. The dashed line
corresponding to a fixed reduced density p/pg =~ 0.6 marks the onset
of the vibrational model applicability (for further details see the text).

where € and o are the energy and length scales (or LJ units).
The reduced density and temperature expressed in LJ units are
p* = podand T* =T /e.

Transport properties of the LJ system have been exten-
sively studied in the literature. Recent overviews of the
available simulation data can be found in Refs. [42-44]. Par-
ticularly extensive and useful data sets have been published
by Meier et al. [45-47] and by Baidakov et al. [48-50].
Transport data have been tabulated along different isotherms
in a wide region of the LJ system phase diagram. Good agree-
ment between the two data sets for overlapping regimes has
been reported [43]. Previously, we used the numerical results
of Meier [45] to demonstrate the adequacy of Eq. (5). Us-
ing the data for the thermal conductivity coefficient, specific
heat, reduced energy, and pressure along a single near-critical
isotherm 7* = 1.35 tabulated in Ref. [46], we document very
good accuracy of Eq. (5) in the dense liquid regime. Here we
first make use of the thermal conductivity data from Ref. [50],
which cover a rather extended area of the LJ system phase
diagram.

The phase diagram of LJ system is shown in Fig. 1. Here
the solid-liquid coexistence data are taken from Ref. [51]. For
convenience, they are fitted by simple expressions

T ~2.111(p*)* — 0.615(p*)%,

* *\4 *\2 (7)
T, ~1.988(p™)" — 1.019(p")",

where subscripts fr and m denote freezing and melting, re-
spectively. The functional form of these expressions arises
in various simple approaches to fluid-solid coexistence in
the LJ model [53-58]. The liquid-vapor coexistence bound-
ary is plotted using the formulas provided in Ref. [52]. The
pluses are the state points for which the thermal conductivity

coefficients are numerically evaluated by means of equilib-
rium molecular dynamics with the use of the Green-Kubo
formalism in Ref. [50]. Some of investigated state points cor-
respond to metastable regions: superheated and supercooled
liquids and supersaturated vapor. Here we consider only state
points with the temperature above the triple-point temperature
(lower temperatures are not relevant because they are beyond
the applicability limits of the vibrational model). An addi-
tional dashed line marks the onset of validity of the vibrational
model. This was identified in Ref. [6] from the analysis of the
Stokes-Einstein (SE) product Dn(A/T), where D is the self-
diffusion coefficient and 7 is the shear viscosity coefficient. At
low densities the SE product scales as (p*)™*/3, as it should in
the gaseous regime. However, it approaches a constant asymp-
totic value of approximately 0.15 at sufficiently high densities,
not too far from that at freezing. The two asymptotes intersect
at p/pgr =~ 0.35 and this can be considered as an indication
of the gas-to-fluid dynamical crossover [59]. At about twice
this density, p/pg 2 0.6, the SE product becomes practically
constant and this can be identified as a lower boundary of
the validity of the SE relation and hence of the vibrational
picture of atomic dynamics [6]. Note that the analysis of
various model systems (such as Lennard-Jones, Coulomb, and
Yukawa) indicates that the onset of validity of vibrational
dynamics corresponds to nearly the same value of excess
entropy sex =~ —2 [6] and this can be considered as a more
general condition of the validity of the vibrational model.

The numerical results for the thermal conductivity coeffi-
cient are traditionally expressed in LJ units as

Ao ymy1/2
A= —<—) . (8)
kB €
Since we measure temperature in energy units, the Boltzmann
constant kg should disappear. Also, we find it more conve-
nient to work with macroscopically reduced units (sometimes
referred to as Rosenfeld’s normalization [60]). This is par-
ticularly advantageous when comparing transport properties
of different systems [60-62]. The macroscopically reduced

thermal conductivity coefficient reads

172
r = Ap~2? (T) . 9
R =Ap T )
From Egs. (8) and (9) a trivial relation emerges
AR = —)L* 10
R = (T*)1/2(p*)2/3" (10)

This relation has been used to evaluate Ag from the available
numerical results.

To compare with the vibrational mechanism of heat
transfer, the longitudinal and transverse instantaneous sound
velocities have to be evaluated. For the LJ system these can be
expressed using the excess energy and pressure of the system
as demonstrated by Zwanzig and Mountain [63] (see also
Ref. [64] for further details):

2
72
L =3 Zug o+ 1pe, (11)
VT 5
2 24
e T (12)
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Here uex = U/NT — 3/2 is the excess internal energy and
Pex = P/pT — 1 is the excess pressure, with U, P, and N the
internal energy, pressure, and number of atoms, respectively.
The sound velocities are expressed in units of the thermal
velocity vy = /T /m. It is a simple exercise to verify that the
Cauchy relation is satisfied in this approach:

C| 2 Cy 2
<_> - 3<_) = 2Pex- (13)
(%0 uT

In order to evaluate the sound velocities, an appropriate
equation of state (EOS) is required. A large number of dif-
ferent EOSs have been proposed in the literature to describe
thermodynamic properties of LJ fluids (see, e.g., Refs. [65,66]
for reviews). Here we use the equation of state developed
by Thol et al. [67]. This is an empirical equation of state,
formulated in terms of the Helmholtz free energy and based
on a large molecular simulation data set and thermal virial co-
efficients. Its applicability range 0.7 < T* < 9 and p* < 1.08
is sufficient for the present purpose. This EOS demonstrates
a reasonable level of accuracy when compared to others [66]
and is relatively simple and convenient in implementation. We
use the EOS of Thol et al. to calculate the specific heat cy,
€XCess pressure pex, and energy u.x. From the latter thermody-
namic quantities the sound velocities ¢; and ¢; are calculated.
This is all input needed to calculate the thermal conductivity
coefficient from Eq. (5). Thus, application of the vibrational
model to LJ fluids represents a remarkable example when
a transport property (thermal conductivity in the considered
case) is determined explicitly by thermodynamic quantities
and knowledge of EOS is sufficient to calculate it. In Sec. III
we will see how well theory compares with results from nu-
merical simulations.

III. RESULTS

Figure 2 demonstrates the comparison between the vibra-
tional model, as calculated using Eq. (5) complemented by the
thermodynamic quantities from the EOS of Thol e al. [67],
with the molecular dynamics (MD) results from Baidakov and
Protsenko [50]. The circles correspond to the results from the
MD simulation. We have selected only the isotherms with
T* > T[;, where the vibrational model makes sense and the
EOS of Thol e al. is applicable. We have also considered su-
percritical densities for which the vibrational model might be
adequate. For this reason we have omitted the two isotherms
T* =1.25 and 1.35 for which only irrelevant low-density
data are available. The remaining data for eight isotherms
are depicted in Figs. 2(a)-2(h). The solid curves in each fig-
ure correspond to our theoretical calculation.

The shaded regions in each figure correspond to the regime
of applicability of the present model. From the side of high
densities the applicability is limited by the fluid boundary of
the fluid-solid coexistence. From the side of low densities the
onset of the applicability is either the condition p/ps >~ 0.6
where the vibrational picture is adequate or the liquid bound-
ary of the gas-liquid coexistence. Although metastable state
points are present in Fig. 2, they should not be used to judge
the applicability of the vibrational model. The model itself
was not designed to deal with coexisting phases, nor can the
EOS from Ref. [67] be expected to be reliable there.

Careful examination of the eight panels in Fig. 2 reveals
very good agreement between the theoretical calculation and
MD simulation in the regime where the theory is applicable.
This is further quantified in Fig. 3. Relative deviations are typ-
ically limited by a few percent, increasing to approximately
5% towards the boundaries of the applicability domain. Some
simulation data for the thermal conductivity reported previ-
ously have considerably larger standard deviations compared
to the observed deviations (see, e.g., Table II in Ref. [68]).
For this reason the agreement can be considered as excellent,
especially taking into account that the theoretical model does
not contain any free adjustable parameters.

To reinforce this conclusion and demonstrate that the
documented agreement is not the result of some fortunate co-
incidence, we have performed an additional comparison using
the set of simulation data reported by Galliero and Boned
[69]. The purpose is twofold. First, in contrast to Ref. [50],
Galliero and Boned employed nonequilibrium molecular dy-
namics simulations to obtain thermal conductivity of LJ fluids.
In this way, we can potentially quantify discrepancies between
different methods, if such disparities exist. Second, the data
set from Ref. [69] covers a considerably higher range of
temperatures and hence we can verify whether the vibrational
model remains meaningful as the temperature increases fur-
ther. Figure 4 presents the comparison between the theory and
nonequilibrium simulations. We observe that for p* 2 0.6 the
deviation between theory and numerical experiment is mostly
within numerical data uncertainty. For a common temperature
T* =2 the theoretical model compares equally well with
equilibrium and nonequilibrium simulations, demonstrating
no major discrepancies between the latter two. For higher
temperatures there is no any sign that the theory may behave
inappropriately.

Thus, where applicable, the vibrational model of heat
transport agrees very well with the results from different
numerical simulations. However, there is another practical
approach, the freezing density scaling (FDS), which allows
one to predict the transport properties, including the thermal
conductivity coefficient, in an even wider parameter regime.
We would like to use this opportunity and reiterate the appli-
cation of FDS to the thermal conductivity coefficient of the LJ
fluid. Section IV serves this purpose.

IV. FREEZING DENSITY SCALING

It has been recently demonstrated that macroscopically re-
duced self-diffusion, shear viscosity, and thermal conductivity
coefficients of LJ fluids along isotherms exhibit quasiuniversal
scaling on the density divided by its value at the freezing
point pg [40]. Originally considered as a useful empirical
observation [40], it was later discussed in the context of
quasiuniversal excess entropy scaling and isomorph theory
[18,41,70]. The FDS approach implies that the transport co-
efficients are functions of a single variable p/ps, and thus
it represents a very convenient corresponding state principle
to estimate transport properties in LJ fluids. Importantly, it
has been shown that FDS holds even at quite low densities
where neither the original form of the excess entropy scaling
nor the isomorph theory is expected to work. Additionally, the
functional form of the FDS is similar (although not identical)
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FIG. 2. Reduced thermal conductivity coefficient Az of the Lennard-Jones fluid as a function of the reduced density p*. Results for eight
isotherms are shown: (a) 7* = 0.7, (b) T* =0.85,(c) T* =1.0,(d) T* =115, () T* =12, () T* = 1.3, (g) T* = 1.5, and (h) T* = 2.0.
The circles denote the numerical results from Ref. [50] and the solid curves are calculated by means of the vibrational model using Eq. (5), as
discussed in the text. The shaded regions in each figure mark the conditions of applicability of the theory.
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FIG. 3. Relative disagreement between theory [Eq. (5)] and MD
simulations of Ref. [50]. The quantity (Aieory — AMD)/Atheory 1S plot-
ted as a function of the reduced density p* for eight isotherms. Only
the state points within the applicability regime of the theoretical
model are considered.
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FIG. 4. Reduced thermal conductivity coefficient Ag of the
Lennard-Jones fluid as a function of the reduced density p*. The
symbols denote the numerical results from the nonequilibrium simu-
lations in Ref. [69]. The solid curves are calculated using Eq. (5).
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p/p,

FIG. 5. Reduced thermal conductivity coefficient A vs reduced
density p/pr demonstrating the success of the freezing density scal-
ing of transport coefficients. Symbols correspond to the numerical
data from Baidakov and Protsenko [50], along different isotherms
(see the legend). The solid curve corresponds to a quasiuniversal fit
of Eq. (14).

to that in the hard-sphere fluid. Thus, it can be expected that
FDS is not a special property of LJ fluids but applies (possibly
with some modifications) to a wider class of fluids.

Detailed analysis of the numerical data set from Ref. [50]
has been further extended to reinforce the FDS concept. The
results are shown in Fig. 5, demonstrating that the data tend to
collapse on a universal master curve. The only region where
the FDS fails is the vicinity of the critical point, where critical
enhancement of the thermal conductivity coefficient becomes
important. For the data set produced in Ref. [50] this concerns
only a few data points, mostly on the near-critical isotherm
T* = 1.3 (see Fig. 5). Importantly, the FDS approach seem-
ingly works well for metastable state points, which are also
shown in Fig. 5. No clear distinction between thermodynam-
ically stable and metastable states can be seen. Also, it is
remarkable that the FDS approach applies to rather low den-
sities. This is rather unexpected, because at such low densities
it is natural to assume that any “memory” about the location
of the fluid-solid phase transition and the freezing density is
completely lost. However, it is necessary to remark that in the
low-density gaseous regime, established methods to calculate
the transport cross sections and the transport properties of the
LJ system do exist (see, e.g., Refs. [71-77] and references
therein for some related works).

The appealing quasiuniversality of the data shown in Fig. 5
calls for an appropriate mathematical description. Among var-
ious fitting functions that we attempted, a particularly simple
but appropriate form is provided by

o

AR=W+ﬂ+yR5. (14)

Here R is the density ratio, R = p/pg. The first term is
chosen to provide a correct asymptote of the thermal conduc-
tivity coefficient in the low-density limit Ag o (p*)~2/3 [40].
Furthermore, «, B, y, and § are the fitting coefficients. Based
on the data set for the supercritical isotherm T* = 2, the co-
efficients ¢ >~ 0.43, 8 >~ 1.18, y =~ 8.39, and § ~ 2.30 have

been obtained. The solid curve in Fig. 5 represents this fit. It is
representative for other isotherms, except those very near the
critical temperature, because the critical enhancement is not
accounted for. Importantly, it appears also representative of
all metastable state points that were investigated in Ref. [50].

V. CONCLUSION

Thermal conductivity is an important characteristic of a
material. While this property is relatively well understood in
gases, solids, and plasmas, the same cannot be said about
liquids. In this paper we have considered the Lennard-Jones
fluid as an important simple model system to investigate the
applicability limits and check the accuracy of theoretical ap-
proaches to the thermal conductivity coefficient. This program
has been realized with the help of extensive MD simulation
data sets provided by Baidakov and Protsenko. [50] and Gal-
liero and Boned [69].

Two theoretical methods have been highlighted in this pa-
per. The first one, the vibrational paradigm of heat transfer,
leads to an expression [Eq. (5)] that relates the thermal con-
ductivity coefficient to the thermodynamic properties of the
LJ fluid. Although very simplistic and to some extent naive,
the vibrational model is able to describe the numerical data on
the thermal conductivity coefficient with remarkable accuracy.
No adjustable parameters are involved and the theoretical
calculation requires only the input from thermodynamics. The
applicability region spans from the gas-liquid coexistence
boundary to the liquid-solid coexistence boundary for subcrit-
ical temperatures and from a constant density ratio p/pg =~
0.6 to the fluid-solid coexistence boundary for supercritical
temperatures.

The second method is the corresponding state principle,
based on the freezing density scaling approach. This is a
more intuitive approach, although solid relations to the ex-
cess entropy scaling and the isomorph theory do exist. The
FDS approach implies that the reduced thermal conductivity
coefficients depends quasiuniversally on the density reduced
by its value at the freezing point (at a given temperature). The
applicability domain of the FDS approach covers almost the
entire gas-liquid-fluid region in the LJ system phase diagram
(probably excluding very low densities and a deep gas-liquid
coexistence region). It is applicable even to metastable regions
of superheated and supercooled liquids and supersaturated
vapor. This can make the FDS approach a very useful practical
tool to estimate the thermal conductivity coefficient under
various conditions and a tentative fitting formula was provided
for this purpose. The only domain where FDS clearly fails
is the close vicinity of the critical point, because it does not
account for critical enhancement.

Overall, the reported results shed light on the properties
and mechanisms of heat transport in liquids and provide
accurate methods for the estimation of the thermal conduc-
tivity coefficient. This can be of interest for researchers in
condensed matter, physics of fluids, materials science, and
beyond.

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.
The authors have no conflicts of interest to disclose.
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