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Heterogeneity is the concept we encounter in numerous research areas and everyday life. While “not mixing
apples and oranges” is easy to grasp, a more quantitative approach to such segregation is not always readily
available. Consider the problem from a different angle: To what extent does one have to make apples more
orange and oranges more “apple-shaped” to put them into the same basket (according to their appearance alone)?
This question highlights the central problem of the blurred interface between heterogeneous and homogeneous,
which also depends on the metrics used for its identification. This work uncovers the physics of structural
stationarity quantification, based on correlation functions (CFs) and clustering based on CFs different between
image subregions. By applying the methodology to a wide variety of synthetic and real images of binary porous
media, we confirmed computationally that only periodically unit-celled structures and images produced by
stationary processes with resolutions close to infinity are strictly stationary. Natural structures without recurring
unit cells are only weakly stationary. We established a physically meaningful definition for these stationarity
types and their distinction from nonstationarity. In addition, the importance of information content of the chosen
metrics is highlighted and discussed. We believe the methodology as proposed in this contribution will find its
way into numerous research areas dealing with materials, structures, and measurements and modeling based on
structural imaging information.
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I. INTRODUCTION

To know if a structure (of the material) at hand is homoge-
neous or not is necessary to evaluate its physical properties.
Examples of such structures are ubiquitous and span from
star and galaxy formations [1,2] to nanoporous media [3,4].
The structure of the material defines its major physical prop-
erties [5–7] that are usually some averaged fields that allow
performing homogenization—in other words, to describe the
continuum-scale property as opposed to local field fluctua-
tions due to local structural inhomogeneities (see Table 1.1
in Ref. [5]). In this context, homogeneity equals statistical
stationarity. The inhomogeneity poses numerous challenges
in different grand research and practical areas: the crystallog-
raphy studies [8–11]; porous media upscaling [12–15]; CO2

sequestration into geological formations [16,17]; improving
soil fertility [18] or hydrocarbon extraction [19]; evaluat-
ing water resources replenishment or contamination hazards
[20–22]; global data analysis in geophysics [23]. This list
just scratches the surface. Depending on the scale of the
structure, different imaging methods are necessary to obtain
structural information. For the majority of the problem ex-
amples listed above, two imaging methods are utilized to
obtain images with resolutions ranging from cm to nm: x-ray

tomography (XCT) and scanning electron microscopy (SEM)
[24,25].

To quantify the heterogeneity, we first recall the rigorous
definition of the spatial statistical homogeneity and station-
arity, which according to the seminal book of Torquato [5],
reads as follows: “The media is statistically homogeneous
if the joint probability distributions describing the stochastic
process are translationally invariant, i.e., invariant under a
translation (shift) of the space origin.” Or put simpler for inho-
mogeneity case: “for which the probability density function of
any property and its various statistical moments vary spatially,
when shifted in space.” As applied to images of porous media
(as considered in this work), such media are also referred to
as macroscopically heterogeneous media, because there is no
representative volume element (REV) such that if the media’s
properties are averaged over such a volume, they will not
change if measured in larger volumes or length scales.

Spatial correlation functions (CFs) are powerful structure
descriptors immediately available as such joint probabilities
or structure descriptors (an example how simpler scalar met-
rics fail as structural descriptors will be presented later). They
are utilized in a multitude of research areas: statistical physics
and material sciences [26–28], material design [29,30], rock
physics [31–33], soil science [34,35], food engineering [36],
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to name a few. Some CFs can be obtained experimentally
from in situ measurements, such as x-ray tomography [37],
nuclear magnetic resonance [38], and small-angle x-ray or
neutron scattering (SAXS/SANS) [39]. Known correlation
functions allow to perform stochastic reconstructions [40–43]
to solve the inverse problem of structure retrieval or multiscale
image fusion [44–46]. Measuring CFs or utilizing them for
reconstructions usually implies structural stationarity [47,48].
This poses difficulties if the structure possesses significant
inhomogeneities [36,49] and requires separate reconstruction
treatment for each inhomogeneity region [50]. To finally un-
lock this Möbius strip of interdependencies between structural
measurements such as small-angle scattering [51], measur-
ing and upscaling physical properties [14], and multiscale
hierarchy in numerous natural (porous) materials [52], one
needs a robust way to measure structural nonstationarity from
images.

Abovementioned definitions of the spatially homogeneous
media relates to a statistical process rather than its samples
that we obtain as digital images. This makes the application
of such a definition hardly applicable without imposing ad-
ditional structural conditions on the data generating process.
In most cases of real imaging data this is not possible, un-
less some well-known sampling procedure is utilized, e.g.,
Gaussian random field or a regular sphere packing generation.
Moreover, it is possible for stationary process to produce
“nonstationary” structures [53] due to nonrepresentativeness.
In most cases the information about the structure at hand is
received using some imaging technology in the form of 2D or
3D images. While for some images it is immediately evident
to the naked eye that the structure at hand is nonstationary, in
other cases it is not immediately evident. From the viewpoint
of classical statistics, to establish stationarity one needs to fit
the statistical model of the process for a given image first.
Lantuejoul [53] also noted on this problem: “The difficulty
in estimating a stereological parameter lies in the fact that
such a parameter is a characteristic of a model, and we have
only experimental measurements obtained from samples.” Es-
tablishing the model for given structural image is usually
impossible except for some very simple cases. For these
reasons, we shall apply terms “stationary” or “statistically
homogeneous” to images in the sense of their homogeneity—
statistical similarity of subregions. We shall study only the
cases where stationarity or nonstationarity is obvious, similar
to reconstruction studies based on Gaussian random fields
[54–56], multiple-point statistics [50] and simulated anneal-
ing [23]. The considerations above highlight the lack of a
physically sound criterion based on theoretical considerations
that could be used instead of the strict definition above for the
digital image analysis.

In this paper, we propose a methodology to quantify het-
erogeneity and reveal the blurry boundary between stationary
and nonstationary structures based on imaging data. Using
porous media images, with the help of CFs computation and
clustering, we establish a way to divide the image into zones
with similar structures. Thus, our work is based on the follow-
ing assumptions:

(1) We analyze the (in)homogeneity of the image on a
predetermined scale D. The answer to this problem may differ
depending on the chosen scale D (see size of the patch below);

(2) We assume that some small portion of the image (a
patch of size D) is homogeneous, i.e., it is possible to average
the statistical characteristics inside it (and compute CFs to
describe the structure);

(3) Homogeneous subregions consist of a set of connected
patches. Subregions can belong to the same homogeneity clus-
ter but are not connected to each other;

(4) We propose (in)homogeneity conditions for a given
image based on the structural information presented in image
itself without using any a priori statistical assumptions.

Below we first describe the details of our methodology and,
with real images, demonstrate how it helps to assess structural
nonstationarity. Next, we show some important results and
provide evidence that some particular structures are stationary.
Based on these results, we discuss some important immediate
outcomes relevant to the structure and physical properties
measurements, stochastic reconstructions, and representative-
ness. Summarily we highlight the most important applications
and the outlook of potential usage to quantify and compare
different structures.

II. METHODS

For ease of explanations we shall consider only 2D im-
ages, keeping in mind that extension to 3D is straightforward.
We start from a description of major building blocks of the
methodology, and then describe each step of the algorithm in
detail. On the upper level, our methodology for determining
(in)homogeneity is based on solving the clustering problem
and consists of the following steps:

(1) Split the input image into a grid of overlapping square
2D image patches of a given size D;

(2) For each 2D image patch calculate its vector represen-
tation (the name “vector descriptor” is also used in the text)
based on the given set of correlation functions;

(3) Divide the set of obtained 2D image patches into sep-
arate clusters based on pairwise L2 distances between their
vector representations;

(4) Determine if the resulting clustering is significant
based on the two following criteria:

1. The distribution of L1 distances between whole im-
age and 2D patches in vector representation space;

2. A pairwise L1 distances between obtained clusters
centers (also in vector representation space).

A. Patches grid

In this subsection, we will consider in detail the algorithm
for constructing a grid of overlapping patches on the original
image.

The first parameter of patches’ grid is D — this is the num-
ber of the pixels on each side of the square patch. Subregions
consist of a connected set of patches. To make the borders
of the subregions smoother, it is convenient to let the patches
intersect with each other. To describe such intersections, we
introduce one more parameter of the algorithm: O (overlay)—
this is the number of pixels by which the patches adjacent to
the grid are overlapped. For a grid with the specified proper-
ties to be constructed correctly, the following conditions for
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FIG. 1. An example of building a coordinate grid using the pro-
posed algorithm. Here we consider the top left corner of the image
grid. The selected patch is highlighted in red dotted line and green
color. The red thick line highlights the subpatch corresponding to the
given patch. The thick purple line shows the subpatch corresponding
to the next patch on the right of the current one. The method assigns a
cluster label only for the subpatch based on the feature representation
vector pi j calculated over the entire patch. Other patches that are
under consideration are highlighted in blue. The image also shows
the size of patch D, the subpatch of size D − O; patches overlap by
O pixels, and the size of the unlabeled image frame O

2 that will not
be clustered after applying the methodology. In the depicted example
O = D

3 .

aforementioned parameters must be met:{
D mod (D − O) = 0,

O
D−O mod 2 = 0.

(1)

In this case the membership of the whole patch to the
cluster defines the cluster label only for the central subpatch of
size (D − O) × (D − O), because each pixel from the central
subpatch belongs to the center of exactly one patch (see Fig. 1
for details).

It is convenient to make the size of the intersection of the
patches depend on the size of the patches themselves. After
a number of experiments, we adopted the parameter value of
O = 4D

5 .
Summarizing the advantage of the above organization of a

grid of intersecting patches, we highlight following points:
1. Better boundaries’ smoothness for selected homoge-

neous subregions;
2. A cluster label is uniquely defined for each pixel of the

input image;
3. Clustering of the central subpatch is more symmetrical.

In other words, it takes into account the contribution of less
distant pixels into the vector representation pi j of the patch
mi j [see Eq. (4)], i.e., pixels at a distance of no more than√

2D
2 contribute to the vector representation for the pixels of

the center subpatch, as opposed to the case O = 0 where the
label of the top left pixel of the patch is affected by the lower
right pixel at a distance of

√
2D.

Now consider the restrictions on the possible sizes of the
input image as imposed by the patch size. An image of size
H × W can be fragmented into (assuming H > D and W >

D) KH patches in height and KW in width:

KH =
⌊

H − D

D − O

⌋
+ 1,

KW =
⌊

W − D

D − O

⌋
+ 1,

H̃ = O + KH × (D − O),

W̃ = O + KW × (D − O). (2)

Thus, we will not be able to determine in advance the
clusters for pixels that do not fit into the outer patches (lying
outside the cropped image of size H̃ × W̃ ). Also, around the
image with dimensions of H̃ × W̃ there will be a nonseg-
mented frame that is O

2 wide, this frame size is highlighted
in Fig. 1 [evenness of O follows from Eq. (1)].

As a simple solution, we crop the image to the desired
dimensions of H̃ × W̃ and do not consider pixels outside
the frame of size O

2 , so the output image has dimensions
of (H̃ − O) × (W̃ − O) pixels. Alternatively, one could do
exactly the opposite—complement the image using mirroring
in such a way that a cluster can be set for each pixel of the
original image, but this solution would result in some artifacts
at the edges.

B. Calculation of the structural descriptors

Suppose we have an image M of size H × W , we denote
the operation of extracting a pixel at coordinates (x, y) as
M[x, y]. To sample “joint probabilities,” we compute correla-
tion functions for the whole image (and also for its 2D or 1D
patches): two-point probability S2 and lineal L2 for the pore
phase within a square region. These functions describe the
probability that two points separated by a line segment lie in
the same phase and the probability that the whole segment lies
within the same phase, correspondingly. Correlation functions
are computed along two major orthogonal directions [57,58]
with a correlation length of Lmax = D

2 and then stacked into
a single vector Eq. (4). In the case of 2D images, correlation
functions of the entire image M using the maximum correla-
tion length parameter Lmax can be written as follows:

Sx
2[r|M] =

∑
x,y I[M[x, y] = M[x + r, y] = 1]

W (H − r)
,

Sy
2[r|M] =

∑
x,y I[M[x, y] = M[x, y + r] = 1]

(W − r)H
,

Lx
2[r|M] =

∑
x,y I[M[x, y] = ... = M[x + r, y] = 1]

W (H − r)
,

Ly
2[r|M] =

∑
x,y I[M[x, y] = ... = M[x + r, y] = 1]

(W − r)H
, (3)

where I[·] is pixel indicator function, x and y defines the di-
rection of function calculation, r < Lmax. Lmax can be as large
as image dimensions, but with larger r the number of samples
decreases and usually leads to somewhat noisy tails (e.g., see
correlation functions in work [35]), so we used Lmax = D

2 in
out study.
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Let us denote vector representation V of our images and
patches as concatenation of correlation functions vectors that
now can be computed as

V x(m) = [
Sx

2[·|m], Lx
2[·|m]

]
,

V y(m) = [
Sy

2[·|m], Ly
2[·|m]

]
,

V (m) = [V x(m),V y(m)]. (4)

Next, we use directional correlation functions descriptors
V d for the vector representation of one-dimensional patch md

i, j
and concatenated descriptors V of two-dimensional patches
mi, j , as well as the entire image M, where i, j are the coordi-
nates of patch’s upper-left pixel in rectangular grid of original
image M, d is the direction of the 1D patch.

In general, to apply our method, we compute the following
feature representations:

1. for the whole image M as P = V (M );
2. for each 2D image patch mi, j as pi, j = V (mi, j );
3. for each 1D image patch md

i, j as ld
i, j = V (md

i, j ) for d ∈
{x, y}.

Note that 1D patch has (D, 1) shape for d = x, and (1, D)
shape for d = y, 2D patch has (D, D) shape, whole image
has (H,W ) shape—but all such objects has the same vector
descriptors shape for a given direction: V d consists of 2Lmax

elements for each direction d [and 4Lmax for whole V vector-
descriptor, but it can be computed only for source image and
2D patches, see Eq. (4)].

C. Distance function

In our method we use the standard L2 metric defined as

L2(v1, v2) = ||v1 − v2||2 =
√√√√ N∑

i=1

(v1[i] − v2[i])2. (5)

We used averaged L1-metric as distance measure:

Lavg
1 (v1, v2) =

∑N
i=1 |v1[i] − v2[i]|

N
= N ||v1 − v2||1. (6)

We introduce linear distance between 2D patches a and b
as

d (a, b) = Lavg
1 (V (a),V (b))

= ||V (a) − V (b)||1
4Lmax

= ||V x(a) − V x(b)||1
2Lmax

+ ||V y(a) − V y(b)||1
2Lmax

= Lavg
1 (V x(a),V x(b)) + Lavg

1 (V y(a),V y(b))

= dx(a, b) + dy(a, b). (7)

In this case, linearity means that we can compute the dis-
tance along the axes separately, that is, the distance along
the full vector representation V (·) is equal to the sum of the
distances between the vector representations along the indi-
vidual axes V x(·) and V y(·). This fact allows us to calculate
the distance between 1D and 2D patches along any axis for
which the 1D patch is specified. This property will be useful
for thresholds calculation in Eq. (11).

FIG. 2. Visualization of the proposed homogeneity conditions
in a descriptor vectors space projected to coordinate plane using
PCA method. In fact, the descriptors space has size 4Lmax, so co-
ordinate plane is used for ease of perception. Large red dot is the
image descriptor P, small blue and green dots are 2D patches from
two different clusters, the circled bright dots are the centers of the
clusters. Note that clustering (division of points into green and blue
groups) is done in descriptors space based on the L2 distance by
Eq. (5). Arrows represent distances and are calculated in descriptors
space based on the L1 distance in Eq. (7). The distances between the
image descriptor P and all other patches pi, j are highlighted by black
dotted arrows and refer to the condition in Eq. (9), while the distance
between c1 and c2 clusters is highlighted by gray dashed arrow and
refers to condition in Eq. (10).

D. Clustering

After descriptor vectors calculation we carry out clustering
of image patches in the space of their vector representations
pi, j . For this we use K-Means clustering, that constructs
spherical clusters based on L2 distance function in Eq. (5)
(this is the only place in the proposed methodology where it
is necessary to use exactly L2 metric). For (non)homogeneity
analysis we use only the clustering into two clusters (but it is
possible to use any number of clusters as will be demonstrated
later for separation of images into heterogeneous zones). After
the clustering procedure we can assign a class label for each
subpatch from the entire set of subpatches and, thus, get the
coloring of the entire image into homogeneous subregions
(see clustering examples on Fig. 7)

Also, at this stage we can obtain a set of cluster center
vectors in descriptors space: {ci}K

i=1, ci ∈ R4Lmax (as mentioned
earlier, in a common case of (in)homogenity analysis K = 2).
The clusters’ centers will be used in the subsequent method
steps.

E. Homogeneity conditions

The final step of the methodology is to determine if the
image is homogeneous. To do this, we compute distribution of
distances [according to Eq. (7)] between full image descriptor
P and descriptors of 2D patches pi, j as

F (x) = P (d (P, p) � x), (8)

where the distribution is calculated over the entire set of
patches and x is the considered distance in descriptors space.
You can see an example of such distribution histogram at the
bottom of the Fig. 3.

Based on this distribution, we introduce following homo-
geneity condition:

Hhomo(Thomo, α) : F (Thomo) > α. (9)
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FIG. 3. The graphical explanation of Thresholds, their evaluation
from original images, and four stationarity-nonstationarity zones.
Red line indicates stationarity T1, green—weakly stationary T2,
blue—transition T3, and purple—definitely nonstationary T4. The
upper right zoomed image of Poisson circles shows how thresholds
are calculated for different distances. Red slices on 2D image are next
to each other (i.e., r = 1), green slices are one pixel apart (r = 2),
blue—two pixels (r = 3), and purple—three pixels apart (r = 4)
[see thresholds values in Eq. (12)]. Such differences between slices
are in good agreement with evaluation of artificial and real images
for which we are sure if they are purely or weakly stationary or
nonstationary at all (see Results section and numerous calculations
as presented in the Supplemental Material [59]). The bottom image
shows the distance thresholds depicted on the histogram of 2D patch
distance distributions from Eq. (8).

This criterion checks what proportion (controlled by param-
eter α that is something similar to the significance level) of
all patches that differ only slightly (controlled by parameter
Thomo) from the whole image (see black dotted arrows between
image descriptor P and all patches representations p in the
Fig. 2). In the next subsection, we shall suggest how to es-
tablish parameter Thomo from the structural information (i.e.,
from the image itself) and parameter α.

Further, we introduce second homogeneity condition based
on distance between clusters (it is applicable even if number
of clusters K is greater than 2):

Hclusters(Tclusters ) : ∃i, j, i �= j : d (ci, c j ) < Tclusters. (10)

The meaning of this condition is quite straightforward: in
a homogeneous image, the selected clusters cannot be very
far (based on parameter Tclusters) from each other (see bold
gray dotted arrow between clusters in the Fig. 2). Similar

FIG. 4. Visual relationship between image homogeneity classes
based on proposed conditions. The class of homogeneous images
includes a subclass of strictly homogeneous images, while the other
classes do not intersect with each other.

to the previous criterion, we will establish parameter Tclusters

using the information extracted from the image in the next
subsection.

The originality of the proposed approach lies with the
fact that we do not pose any a priori assumptions about
the nature of distance distributions, except for the level of
significance α.

F. Threshold evaluation

To get the threshold values, we will construct a function of
the L1 distance between 1D patches in descriptors space from
the distance between patches in image coordinates grid.

We estimate ρ(r), where ρ(r) is the mean distance between
vector representations of two 1D patches (slices) in the same
direction of the coordinate axes and lying at a distance r
from each other in coordinates grid of the original image.
Function ρ(r) is averaged over distances from Eq. (7), i.e.,
calculated over all possible 1D patches pairs in the image
between feature representations of such 1D slices:

ρ(r) = Ei jd
x
(
V

(
mx

i+r, j

)
,V

(
mx

i, j

))
+ Ekld

y
(
V

(
my

k,l+r

)
,V

(
my

k,l

))
= Ei jd

x
(
lx
i+r, j, lx

i, j

) + Ekld
y
(
ly
k,l+r, ly

k,l

)
, (11)

where Ei, j is mathematical expectation over all possible val-
ues of coordinates i and j. You can view the visual examples
with one-dimensional patches at different distances in the
image grid in Fig. 3. Note that for real images, the function
will be monotonic with a gradual plateau. At the same time,
it is easy to construct a sample where this is not the case, for
example, in the case of strictly periodic images.

Now we can introduce the thresholds evaluation:

Tclusters1 = Thomo1 = T1 = ρ(1),

Tclusters2 = Thomo2 = T2 = ρ(2),

Tclusters3 = Thomo3 = T3 = ρ(3),

Thomo4 = T4 = ρ(4). (12)
At the previous stage we got the cluster centers with

feature vectors of {ci}K
i=1. Now we have all necessary in-

formation to formulate our semiempirical conditions for the
(in)homogeneity image analysis following these steps (see
Fig. 4 with the mutual arrangement of classes):

(1) Strictly stationary images: α1 = 0.8,
Hstrictly = Hhomo(T1, α1) ∧ Hclusters(T1)
(2) Weakly stationary images: α2 = 0.8,

Hweakly = ¬Hstrictly ∧ (Hhomo(T2, α2) ∧ Hclusters(T2)),
Hstationary = Hhomo(T2, α2) ∧ Hclusters(T2)
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FIG. 5. The general scheme of stationarity quantification with the help of the correlation functions. On the scheme, D refers to the width
of the sampling patch in pixels, L is the width of the image, S2 and L2 with additional suffixes refer to correlation functions computed in major
orthogonal directions. In the upper left corner there are examples of binary 2D images of different homogeneity. In the middle of the upper
row, the procedure for bypassing the 2D image with a sliding window is shown with the calculation of correlation functions for a 2D patch
of size D. The right picture in the top row shows an example of what the difference between the two vector representations of patches might
look like. Since only one correlation function is shown, the graph can be drawn depending on the length of the correlation, in the example the
length Lmax = D

2 . The x axis plots the length of the correlation, the y axis shows the value of the correlation function. Depending on the task,
the distance between vector representations is considered differently: L2 metric used for clustering and L1 for (in)homogeneity determination.
The right picture in the bottom row shows the function in Eq. (8) (on the left side) and the results of clustering (on the right side). On the
distribution histogram, one can see which patches fraction is covered by the distance value equal to one of the four thresholds according to
Eq. (12) (threshold colors labels can be seen in Fig. 3). For visualization purposes, the results of K-Means clustering shown on a two-dimension
plane (we used only two first components of the PCA decomposition of patches vector representations, raw patches representation vectors has
4Lmax dimensions and, thus, hard to get visualized). The “yes” and “no” marks in left picture in the bottom row highlight the results of our
quantification—if a given structure is stationary or not (additional details of the quantification based on distances between clusters are shown
in Fig. 3 and Fig. 6). More comprehensive methodological description of image analysis steps presented in Sec. II. Results of clustering for a
variety of input images can be found in Ref. [59].

(3) Transition images: α3 = 0.8,
Htransition = ¬Hstationary ∧ Hhomo(T3, α3)
(4) Nonstationary images: Hnonstationary = ¬Hstationary ∧

¬Htransition

III. RESULTS, DISCUSSION, AND OUTLOOK

We start by considering various real and synthetic images
of porous media: periodic crosses, Poisson circle packing,
sandstones, carbonates, and soils. Experimental images are
binary—they consist of the pore and solid phases, as ob-
tained by segmenting XCT or SEM data. Now, following the
methodology described in the previous section we analyze
these 2D images according to the overall pipeline in Fig. 5.

Based on image analysis only periodic structures (such
as crosses on Fig. 5) are stationary according to the strict
definition cited above. If we apply our methodology to such

a periodic image, then we observe zero differences between
windows placed exactly within the periodic unit cells (thus,
not shown), but some nonzero differences are observed in case
we do not sample such cells exactly (Fig. 6). The analysis as
presented in Fig. 5 reveals that images of natural porous struc-
tures are never strictly stationary—this agrees with previous
notion that images of laboratory-scale natural porous media,
since their porosity distribution follows a fractional Brownian
motion, a nonstationary stochastic distribution, should be con-
sidered as at least weakly nonstationary [60]. So is the random
penetrable circles packing image with limited resolution from
Fig. 5, which results from the stationary Poisson random
process and should be considered to produce a stationary
structure [5]. We argue that such structures are indeed station-
ary, but we shall refer to them as “weakly” stationary. This
“nonstrict stationarity” originates from the digital nature of
the imaging procedure (limited imaging resolution [61–63])
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FIG. 6. The examples of binary 2D images and their corresponding distance distributions according to Eq. (8) as compared to the patch size
D of the measuring window. On the distribution histogram, one can observe which patches fraction is covered by the distance value equal to
one of the four thresholds according to Eq. (12) (threshold colors labels can be seen in Fig. 3). It can also be seen that for stationary structures
the larger the patches size D is, the greater part of the distribution is covered by corresponding thresholds.

and, most importantly, noninfinite image size (something
we discuss in more detail later). Nevertheless, the question
is—where are the thresholds in terms of structural distances
between strictly, weakly, and nonstationary structures?

We propose the thresholds in Eq. (12) to be the average dif-
ferences between neighboring slices as shown in Fig. 3. This
way, any sampling approach with D > periodic unit cell will
produce mean absolute difference [or L1

n distance according
to Eq. (6)] between the patch’s and the whole sample’s cor-
relation function descriptor distributions below T1 (between
nearest 1D slices computed along the same directions and
with the same correlation length as for measuring windows)
for such periodic structures (the upper case in Fig. 6). Weakly
stationary structures, such as Poisson circles and some natural
porous media samples, have the majority (e.g., >0.8) of their
distance distribution below T2. For carbonate samples, while
the distances lie to the right of T2, for D → L

2 (where L is
image’s width) only a limited part of the distribution goes

beyond T3. We speculate that the interface between T2 and
T3 can be considered a transition zone and originate from the
nonrepresentativeness of the image. In other words, carbonate
samples could be found weakly stationary in case a larger
image would be taken for the analysis under the condition
that it would consist of the same structural features (i.e., with
larger L, the Thresholds’ values are not shifting to the right).
The distribution spanning to the right of T4 is a clear indicator
of severe nonstationarity, as observed on Fig. 6 for the soil
sample. Established in this manner, our thresholds are based
on analysis of different images and physically consistent with
stochastic processes, that could result in such images (arti-
ficial crosses and Poisson circles, or real images of porous
media for which statistical process is hard to be identified).

As observed from Fig. 6, the size of the measuring window
D affects the analysis results based on distance distribution.
If D is too small to sample some representative part of the
structure, then the distribution will fall out of T1−2. The tail
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of the distribution being in the T3 transition zone can mean
that the image size is close to the representative one. Sam-
pling a larger part of the structure can lead to converging
to (weak) stationarity. This is quite possible that carbonate
samples from Fig. 5 show precisely this type of behavior,
but only under a condition that structure outside the imaged
region does not have statistically different features from those
already present on the image. In such a case, increasing the
size of the image will gradually move the distance distri-
bution to the left and reach strict stationarity in the limit
of the infinite image size. This logic is pretty much in line
with conventional theory for infinitely large structures [5–7].
To demonstrate the influence of image size we applied the
analysis to five Poisson disk images of the same spatial reso-
lution but increasing size (up to 8 × 103 pixels in width). The
results confirmed that the methodology is robust and shows
stationarity for the same D = 600 pixels (see Supplemental
Material [59]). However, while Thresholds were stable for
these images, the distance distributions gradually moved to
the left with increased size, that suggests that for infinite size
image the stationarity will convert from the weak to the strict
state. However, real structures for natural porous media are
not periodic or infinite—there is always a possibility that the
genesis of the material will render finding a stationary area
impossible.

Clustering of patches based on CFs differences allows par-
titioning structure images into similar subregions (shown with
different colors on Fig. 7). Variation in D leads to feature ex-
traction with different resolutions and in the limit of D going
to a pixel size is similar to the image segmentation procedure
[64,65]. This means that our spatial analysis potentially allows
automatic partitioning into stationary and nonstationary zones
in addition to saying whether the image is stationary or not.
The morphological REV based on CFs and the half of the
image size can serve as logical lower and upper bounds on
D. Extension of the methodology to provide such automated
analysis will be the focus of our future work.

From Fig. 7, one can immediately observe that CFs-based
analysis of heterogeneity closely resembles porosity varia-
tions (especially for small D). Porosity analysis in the form
of coarseness [5] or local porosity [66] is a beneficial ap-
proach that led to uncovering hyper-uniformity [67] and local
porosity-permeability relationships. However, porosity (or S1)
alone is not enough to characterize stationarity, as is evident
from our simplified synthetic example with four quadrants on
Fig. 8. Structures with the same porosity may possess very
different structural features far from stationarity. In search for
representativeness, porosity, surface area, or topological char-
acteristics such as Minkowski functionals were previously
used [68–71], which would not distinguish all quadrants (all
four quadrants for porosity, two and four for other spatial av-
eraged metrics) from each other. The same is true for spatially
averaged CFs. Thus, analysis based on S1, spatially averaged
CFs and the one based on directional S2 + L2 produce dif-
ferent results. The immediate question is if it is enough to
utilize directional S2 + L2 to analyze stationarity on images?
While we believe the results presented in this work (see
Fig. 5) to be robust as applied to the samples of porous media
considered, one needs to account for the information con-

FIG. 7. The segmentation of the image into similar subregions
based on correlation functions vector representation in Eq. (4) and
K-Means clustering for different patches size D {100, 200, 400}. The
subpatches within each subregion are colored similarly. Coloring is
missing for image that were found to be homogeneous. This fig-
ure shows in dynamics how the assessment of homogeneity and the
shape of homogeneous subregions change depending on the patches
size D.

tent of correlation functions utilized for the analysis [9,10].
Most importantly, this means that while any CFs can be used
to conclude that structure under study is nonstationary, the
opposite is not true unless the used set of CFs possesses
close to 100% information content. The indirect evidence that
stationarity results are robust as shown in this work is that
theoretically stationary structures such as crosses and Pois-
son disks were indeed found to be statistically homogeneous.
Unfortunately, at the moment, the methodology to assess
information content exists only for spatially averaged S2 cor-
relation function [9,10]; thus, it is of practical importance to
incorporate the majority of existing CFs into the stationarity
analysis.

Stationarity analysis is necessary to characterize structures
and access their physical properties, as nonstationarity will
compromise the homogenization and evaluation of effective
macroscopic property [3,15,18,36,49,72,73] or comparison
of materials morphology [74]. In the same fashion, it is in-
valuable for feature extraction for structure compression or
machine learning [74–77], rigorous bounds [5], and effective
medium approximations [78–81] for fast property estimation.
In the context of measurements, stationarity is closely con-
nected to representativeness [82,83], as measurements within
the nonrepresentative volume will depend on the location.
While in some cases nonrepresentativeness may result from
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FIG. 8. Synthetic example of the structure with four quadrants
having the same porosity distribution, some quadrants also have
similar surface area and topology. Unlike conventional approaches,
our methodology based on directional CFs correctly identifies all
four structural types.

insufficient sample size and lead to a transition to nonsta-
tionarity (Fig. 3), huge distances between clusters based on
computed CFs differences (see Fig. 6) may suggest that in-
creasing the image size will not help—in other words, the
structure at hand is essentially nonstationary. Stationarity
quantification is necessary for input data for stochastic re-
constructions [49,50], especially then averaged correlation
are used [5,9–11,14,29,33,35–37,39–46,48–50,57,58,63,84].
It was shown that periodic structures (i.e., strictly stationary)
could be reconstructed exactly [84]. Based on current find-
ings, we hypothesize that for weakly stationary structures with
high information content CFs, one can create reconstructions
with the same physical properties; however exact recon-
structions are not possible without full correlation map. We
envision that for nonstationary media, accurate reconstruc-
tions [23] can be performed by partitioning into stationary
and nonstationary regions with annealing accounting for local
and global CFs. Our results also indicate that it is possible
to measure nonstationarity experimentally by changing the
field-of-view, e.g., by varying the beam size for small-angle
scattering measurements [51]. Moreover, such measurements
can be effectively combined with nonstationary stochastic
reconstruction to recover structural images.

Each step above in Sec. II has building components that
can be replaced or augmented (thus, leaving a room for future
improvements). The list of these components and potential
improvements include:

(1) Spatial 2D patches grid creation method—any method
for creating a grid is potentially suitable. We chose a rectan-
gular grid because it is a natural extension of digital pixelized

and voxelized images and easy to implement. We allow
patches to overlap to get smoother clustering results.

(2) Structural descriptors—we use specific correlation
functions (S2, L2) as features representation vectors, because
they have relatively high information content, and at the same
time can be independently calculated along any direction. An
important feature of the correlation functions that we used is
the ability to compute it for patches of different sizes and map
such patches in the same vector space. Any other functions
with such properties are suitable for our algorithm. It is possi-
ble to extend the number of CFs to include surface functions
[62,85], higher-order functions (e.g., three-point probability
or surface functions) [86,87], or even vectorized topological
metrics [88]. It is also important to note, that it is possible
to use squared L2-metric instead of Eq. (6) (linearity is the
only condition, therefore, the squared L2 and not just plain
L2 is necessary). However, we chose L1-metric [89] for our
homogeneity criteria and threshold evaluation because it is
more robust to outliers.

(3) Clustering—any clustering algorithm which uses in-
formation about the distances between points and provides
spherical clusters is suitable (for example, DBSCAN, cannot
be used because it provides no guarantee about the form of the
resulting clusters). We chose classical K-means because it fits
well into the logic of the problem.

(4) (In)homogeneity quantification—to assess homogene-
ity, we use two independent criteria. The first criterion is
calculated based on the distribution of L1 distances between
the entire image and a whole set of 2D image patches. It has a
natural interpretation: if the image is not homogeneous, then
a sufficiently large proportion of individual image patches
lies far enough from the whole “averaged” image in vector
representation space. The second criterion is established on
the basis of pairwise L1 distances between cluster centers and
has a simple interpretation: To consider the observed cluster-
ing to be significant, it is necessary that the selected clusters
are far enough from each other. Thus, these criteria require
some thresholds as parameters. It may be possible to explore
some other approaches to compute distances, however, our
implementation is robust in this regard.

(5) Establishing thresholds—we used thresholds that are
calculated in the unsupervised manner from the distribution
of distances between descriptors of 1D patches (or slices) of
the original image. Our goal in this work is to propose an
approach that does not require any additional data to assess
homogeneity, except for the input image itself, and at the same
time has clear physical interpretation. The main advantage of
the proposed method is the absence of the need for any labeled
data or a priori statistical assumptions. We also understand
that the proposed heuristic has a number of disadvantages: it
may not be universal, it may not be suitable for images with
radically different resolutions.

At the same time, it should be noted that thresholds for
the conditions Hhomo in Eq. (9) and Hclusters in Eq. (10) can
be selected using different heuristics. There is a lot of room
for research here. It must also be said that we have chosen
the value of an α = 0.8 experimentally, and it is probably
possible to propose a more reasonable procedure for determin-
ing this parameter. We are planning to explore some of these
possibilities to improve the methodology while developing
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and applying (in)homogeneity analysis to experimental 3D
images.

IV. CONCLUSION

In summary, we have presented a method to quantify the
stationarity of structures from their images. By using (di-
rectional) correlation functions with sufficient information
content and clusterization of subregions according to their dif-
ferences in terms of these CFs, it is possible not only to assess
stationarity of the whole image but also to automatically par-
tition the image into stationary and nonstationary zones with
variable resolution (however, this will require an extension of
the methodology demonstrated in this study). With the help of
the stationarity assessment technique, we were able to identify
strictly and weakly stationary structure types and show that
natural materials without periodic structural unit cells are
never strictly stationary. The problem of scale can also affect
the choice of parameters for (in)homogeneity analysis and,
thus, requires automation as was mentioned above. We believe
the methodology proposed in this paper will find its way into
numerous research areas dealing with materials, structures,
and measurements and modeling within such structures.

While here we focused on 2D binary (two-phase) struc-
tures, our approach is applicable to the analysis of general
multiphase 3D structures—correlation and cross-correlation
functions can be computed for any number of phases, or
covariances can be used for continuous fields. To evaluate

thresholds, neighboring 2D slices through 3D images instead
of 1D slices can be used. With additional effort, our method-
ology can be extended for automatic analysis of images to
extract homogeneous regions readily available for separate
analysis of physical properties modeling. While such analysis
for large 3D datasets is currently hampered by high compu-
tational expenses, using fast convolutions on modern GPU
architectures (e.g., computation of full S2, and possibly other
CFs, maps) [85] can make the stationarity analysis highly ap-
plicable for data of any complexity. The usage of the proposed
methodology is not limited to images of porous media neces-
sary for pore-scale computations or Earth sciences in general.
It can be effectively applied to a broad spectrum of structures
ranging from cosmology and engineering to material sciences
and biology.
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