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The present work is concerned with the uncertainty propagation of the wave turbulent system. In particular,
we study the temporal development and long-term behavior of the probability with respect to the amplitude
and phase of complex-valued waves constituting the generic four-wave system of turbulence. Our approach to
approximating the target distribution function is via the three steps: (i) to grasp the physical process described by
the true turbulence model as random process, (ii) to determine the stochastic differential equation whose solution
exhibits statistically similar behavior with the underlying turbulent signal, and (iii) to solve the corresponding
Kolmogorov forward equation. Our implementation of the methodology is distinguished by employing a number
of simplified stochastic models and applying one of them in the adaptive fashion which varies subject to the
different parameter regime of the true dynamical system model. Accordingly, we become able to demonstrate
the effectiveness of this reduced-order modeling framework for the analysis of the turbulent system characterized
by not only weak but strong interactions among the nonlinear waves. We numerically corroborate our theoretical
predictions in the context of the generalized Majda-Mclaughlin-Tabak wave turbulence prototype.
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I. INTRODUCTION

A. Overview

A group of nonlinearly interacting waves arises in numer-
ous branches of physics. Examples include surface waves,
capillary waves, internal waves, waves on liquid hydrogen,
Alfvén and Langmuir waves in plasmas, and turbulence in
nonlinear optics [1–3]. Such dynamical systems often absorb
and dissipate energy at vastly different spatial and temporal
scales, giving rise to the emergence of an intermediate range
between the well-separated forcing and dissipation areas in
the wave-number domain. In this extensive inertial range, due
to the nearly conservative characteristics of the dynamics,
Hamiltonian formulation is apt for a mathematical descrip-
tion of the relevant physical phenomena. This means that the
evolution equation of the complex-valued variable ak for the
wave turbulence can be written as the canonical equation

i∂t ak = δH

δa∗
k

, (1)

where k is the Fourier index, H is Hamiltonian, and the upper
∗ signifies complex conjugation.

In particular, our treatment in this work will focus on the
Hamiltonian of the form

H =
∑

k

χωk|ak|2 + 1

2

∑
k1234

W 12
34 δ12

34a1a2a∗
3a∗

4

= χH2 + H4, (2)

where k1234 = k1, k2, k3, k4 and a j is shorthand notation of
akj for j = 1, 2, 3, 4. Here W 12

3k (> 0) is the control parameter
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for the four-wave interactions, and δ12
34 equals 1 if k1 + k2 −

k3 − k4 = 0 and zero otherwise. The coefficient χ assumes
the binary value of unity or zero. For the case when χ = 1,
one can read from the corresponding Hamilton’s equation of
motion,

i∂t ak = χωkak +
∑
k123

W 12
3k δ12

3k a1a2a∗
3, (3)

that the physical quantity represented by the canonical vari-
able ak is the nonlinear wave in possession of the linear
dispersion relation ωk . The nonlinear Schrödinger equation

i∂t u = −∂2
x u + |u|2u (4)

in one space dimension exemplifies such a class of dynam-
ical systems: the substitution of u(x, t ) = ∑

k ak (t )eikx into
(4) leads to the dynamics (3) instantiated by ωk = |k|2 and
W 12

34 = 1.
It is indeed physically fruitful to extend dynamic regimes to

more general nonlinear regimes. For the four-wave system of
(2), this can be achieved by considering the case of χ = 0. The
consequence is that the scope of nature phenomena mimicked
by the model equation (3) is broader than the ones arising
from a set of dispersive waves. This is because for the case
when χ = 0 and no linear dispersion exists, the system has
a certain similarity with Clebsch formulation of the Euler
equation in the ideal hydrodynamics [4]. Due to the capability
of encompassing many nonlinear dynamical system models
and as a result creating a variety of turbulent signals with
distinctive characteristics, our study of turbulence phenomena
within the context of (2) ensures a considerable degree of
generality.

Turbulence models such as (3) tend to exhibit highly
disordered and unorganized system behavior [1–3]. Rather
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than unveiling and elucidating the superfluous details of the
trajectories of the dynamical processes, our explanation of
the relevant phenomena is by virtue of the concepts from
probability theory. Now, taking this probabilistic perspective,
our main duty has become the quantification of the propa-
gating uncertainty induced by the initial randomness of the
deterministic model system (1). Though the ultimate goal is
to characterize the full joint probability distribution for the
entire system variables, our description in the present work
is restricted to one mode and we focus on determining the
uncertainties associated with the single variable ak only. Later,
we will additionally care the cross-correlations among the
modes and complete the whole picture by interconnecting and
interweaving altogether the element-wise information about
possibly very different probabilistic characters of the individ-
ual members.

For wave systems, we are interested in the complex-valued
waves and their polar representations. The primary reason is
that many observables in the real-world wave phenomena are
directly related to the complex-valued wave expressions in
the rectangular and polar coordinates, and one can capture
the statistical properties of physically interesting quantities
from those of the wave amplitude and phase angle [2,3]. Fur-
thermore, the thorough investigation of the complex-valued
random variable must include the discussion of the uncertain-
ties with reference to the corresponding polar components. Let
sk = |ak|2 and φk = arg(ak ) be the amplitude and phase of
the wave-profile ak = √

skeiφk , then we are led by the above
arguments to study the joint and marginal distribution func-
tions of sk and φk . One way to do this is through deriving a
differential equation which governs the time evolution of the
relevant probability and solving it. In this research direction,
one previous result is the PDE

∂t Pk (t, s) = ∂s(2γksPk + 2ηks∂sPk ) (5)

for which Pr[s < sk (t ) � s + ds] = Pk (t, s)ds and Pr[· · · ]
means the probability of the event in the bracket occurring.
Here the coefficients γk and ηk are given in terms of the
probability of other modes via the second-order moments. It
is demonstrated in a body of work [5–7] that the random fluc-
tuations in the wave amplitude are approximately distributed
according to the solution of Eq. (5) for the case when χ = 1
and H4/H2 � 1 (the designated system is one main concern in
the classical wave turbulence theory [2,3], and hereafter will
be referred to as the weak turbulence).

B. The goal and methodology

This successful formulation of the transparent and compre-
hensible framework for the study of wave amplitude in case of
weak turbulence creates a clear motivation for the extension
of the existing development and provides a real momentum
for us to undertake the current research of addressing (i) both
the amplitude and phase variables and (ii) both the weakly
and strongly nonlinear dynamical systems. Specifically, our
purpose is to shed further light on the pioneering achievement
for the weak turbulence through the derivation and analysis
of some analogs of the PDE (5) so that one can determine the
temporal change and the long-term behavior of the probability
of sk and φk with regard to the dynamic variable ak as the

solution of the four-wave system (2) and (3). Importantly, our
discussion will not only treat the weak turbulence, i.e., the
system with χ = 1 and H4/H2 � 1, but also cover two rep-
resentative cases of the strong nonlinearities: (i) when χ = 1
and H4/H2 is not a small number and (ii) when χ = 0.

To carry out the program, we employ a number of
reduced-order models for the purpose of approximating the
uncertainties in the polar variables of the turbulent signal gen-
erated from the Hamiltonian system involving the four-wave
interactions. Specifically, we proceed by carefully choosing
the stochastic differential equation (SDE) model which can
capture the key features of the true signal ak at the statisti-
cal level and by studying the Kolmogorov forward equation
(KFE) which governs the probability distribution arising from
the polar representation of the stochastic process model. We
also perform the numerical study verifying that for the Majda-
Mclaughlin-Tabak prototypical wave turbulence system in
thermal equilibrium, the suggested models are capable of
describing the probability of amplitude and phase of the true
underlying signal to a reasonable accuracy.

C. Organization of the paper

The exposition of our work closely follows the standard
way of utilizing simplified models for the analysis of the
complex dynamical system and demonstrating the effective-
ness of the methodology. Accordingly, the remainder of this
paper is arranged in the order of (i) proposing the reduced-
order models in connection with the wave turbulence model
(Sec. II), (ii) analyzing the approximate models so as to make
the theoretical predictions for the underlying turbulent signal
(Secs. III and IV), and (iii) showing their good agreement with
the results from the direct numerical simulation of the true
complex model (Sec. V). To be more precise, in Sec. II, we
introduce two Markov process models and one non-Markov
process model. Those are the coarse-grained equations of
motion for the original dynamical system model (3). Sub-
sequently, we devote Sec. III to the discussion of Markov
models and Sec. IV to that of non-Markov model. In Sec. V,
we numerically demonstrate the outperformance of the non-
Markov process model over the other Markov process models
in approximating the probabilities related to the shortwave
turbulent signal coming from the strongly nonlinear four-wave
dynamics. The paper is then concluded with giving some
remarks in Sec. VI.

II. REDUCED-ORDER MODELS
FOR THE FOUR-WAVE SYSTEM

We begin the presentation of the reduced-order models
with the climatological stochastic model or CSM for short.
The equation of motion is given by

(CSM) ˙̂ak = −(iχωk + γ )̂ak +
√

2η Ẇk, (6)

(throughout this paper, we let âk represent a statistical ap-
proximation of the true signal ak) where the overdot signifies
the time differentiation and Ẇk denotes the complex-valued
white noise. Here γ and η are the positive tunable parameters,
controlling the strength of the linear dissipation and white
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noise forcing. Rewriting (3) as

ȧk = −iχωkak + Nk, (7)

one can recognize that CSM is the result from the approxima-
tion

Nk ≡ −i
∑
k123

W 12
3k δ12

3k a1a2a∗
3

� −γ ak +
√

2η Ẇk, (8)

i.e., the nonlinear interactions are replaced by the linear dissi-
pation and white noise forcing.

Such a coarse-graining technique is often adopted for the
modeling of Brownian motion, and experience has shown that
the resulting SDE can ensure a reasonable accuracy in repro-
ducing the statistical properties of the true signal provided
that ak (t ) is a slowly varying dynamic process. This condition
holds for the weak turbulence system which indicates a sharp
timescale separation between the typical motions of ak and
Nk . However, stepping outside of the weak turbulence (that
is, for the case when χ = 1 and the value of H4/H2 is not
so small, or for the case when χ = 0), a formal application
of this conventional scheme would be highly inappropriate
for the phenomenological description of the true turbulent
signal. This significant limitation of CSM in accounting for
strong wave turbulence provides us with the impetus for the
development of new reduced-order models.

In a body of work [8–11], the author has designed a number
of simplified reductions of the four-wave Hamiltonian system
(2) and (3) which lies beyond the weak nonlinearity regime,
and here two of them are introduced. The mean stochastic
model (MSM) takes the form

(MSM) ˙̂ak = −(i	k + γ )̂ak +
√

2η Ẇk, (9)

and the difference from CSM occurs in the oscillation
parameter

	k ≡ χωk +
∑

k′

(
W k′k

k′k + W kk′
k′k

)〈|ak′ |2〉. (10)

Here and after, the angle bracket denotes the ensemble average
against the stationary distribution. The autoregressive model
(ARM) is the non-Markovian process model given by

(ARM) ˙̂ak = − (i	k + γ )̂ak +
√

2η Ẇk

−
∫ t

0
dτ Ae−(i	k+ν)(t−τ )âk (τ ) + R̃, (11)

where R̃ is the Ornstein-Uhlenbeck process (OUP) satisfying
〈R̃(t )R̃(0)∗〉/〈|̂ak|2〉 = Ae−(i	k+ν)t . Here A is positive real and
ν = νr + iνi is a complex number with positive real part.
Those are the adjustable parameters and respectively related
with the magnitude and decorrelation time of the nonwhite
noise R̃.

The adaptive use of the presented reduced-order models in
mimicking the true underlying signal should refer to the con-
ditions on the strength of nonlinearity of the wave turbulence
system (3) and on the wave number k of the dynamic process
ak , which can be found in Table I.

Below we give a brief outline of the systematic deriva-
tion of MSM and ARM. It is worth emphasizing that our

TABLE I. The various reduced-order models for the true turbu-
lent signal ak and their validity regime for an accurate description of
the probabilistic character of the Hamiltonian system (2).

Model Time-lag χ H4 Wavelength(k)

CSM Markov 1 Weak All
MSM Markov 0,1 Moderate/strong All/longwave (small)
ARM Non-Markov 0,1 Strong Shortwave (large)

construction of these coarse-grained equations of motion is
made through a detailed analysis of the nonlinearities denoted
by Nk . Concretely, we divide the set of nonlinear interactions
into distinct classes and verify their different roles and char-
acteristic timescales in affecting the target system variable ak .

Above all, we perform the decomposition of the
nonlinearity

Nk = Tk + Neff
k , (12a)

Tk ≡ −i
∑

k123,k12=k

W 12
3k δ12

3k a1a2a∗
3

= −i

[∑
k′

(
W k′k

k′k + W kk′
k′k

)|ak′ |2
]

ak, (12b)

Neff
k ≡ −i

∑
k123,k12 
=k

W 12
3k δ12

3k a1a2a∗
3. (12c)

Here Tk singles out the trivial resonances, for which k12 = k
means k1 = k or k2 = k. It turns out that the corresponding
terms essentially do not contribute to the energy-momentum
exchange between the modes but their collective effect plays
the crucial role in determining the effective dispersion relation
of ak by 	k in (10). The mean-field equation

ȧk
.= −i	kak + Neff

k (13)

emerges as a consequence of statistically averaging the co-
efficient of ak in (12b), and one can make use of (13) for
a more realistic description of the dynamical and statistical
pictures exhibited by the genuine dynamics of (3) and (7)
[12]. Note Neff

k operates as the nonlinear interactions in (13)
and thus is called the effective nonlinearity. By performing the
approximation analogous to (8), i.e., applying

Neff
k � −γ ak +

√
2η Ẇk (14)

to (13), we obtain MSM.
In cases where MSM shows a poor performance, the mod-

eling of (14) must be revised. To do this, we attempt the
further decomposition of the effective nonlinearity

Neff
k = Ak + N resid

k , (15a)

Ak ≡ −i
∑

k123,k12 
=k,|	12
3k |

.=0

W 12
3k δ12

3k a1a2a∗
3, (15b)

N resid
k ≡ −i

∑
k123,k12 
=k,|	12

3k |>0

W 12
3k δ12

3k a1a2a∗
3, (15c)

where 	12
3k = 	k1 + 	k2 − 	k3 − 	k . As for (15b), we gather

the terms being resonant with ak in the nontrivial (k 
=
k1, k2) manner to form the auxiliary variable Ak so that this
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macrovariable has a strong interaction with the target sys-
tem variable. By contrast, the interaction between ak and the
residual nonlinearities denoted by N resid

k is insignificant on the
long-term basis. We build this knowledge into the following
approximations:

Ak � −
∫ t

0
dτ �̃(t − τ )ak (τ ) + R̃(t ), (16a)

N resid
k � −γ ak +

√
2η Ẇk, (16b)

which reflect two distinct ways of influencing of Ak and N resid
k

on ak through forcing and dissipation in the non-Markovian
and Markovian fashion. Here the memory kernel �̃ is re-
sponsible for the time-lag dissipation. The combination of
(13), (15a), and (16) yields a regression model with memory.
Particularly, from choosing the damping coefficient �̃ by the
exponential function and identifying R̃ by the OUP, this non-
Markov process model reduces to ARM (11).

Finally, we endow the heuristic development of ARM
sketched in the preceding paragraph with a degree of theo-
retical justification [10,11]. To this end, we derive a bivariate
diffusion model by making use of the Mori-Zwanzig pro-
jection formalism to achieve the exact rearrangement of the
Liouville equation governing the pair of variables (ak, Ak )
and then by performing some reasonable approximations
for the coefficients in the resulting generalized Langevin
equation. Marginalizing the auxiliary variable Ak in this two-
dimensional vector SDE leads to ARM, and this alternative
but more rigorous development of ARM gives further depth
to the demonstration about the effectiveness of the modeling
of (16) based on our intuition and strengthens the plausibility
of ARM.

In the next two sections, we perform the theoretical anal-
ysis of the simplified stochastic models and apply the gained
knowledge for the prediction of the probabilities with regard
to the true turbulent signal ak .

III. TURBULENT SIGNAL MODELED
BY A MARKOV PROCESS

Let us consider CSM (6) and MSM (9). Introducing
the variable zk (t ) = eiωkt âk (t ) in case of CSM and zk (t ) =
ei	kt âk (t ) in case of MSM, both linear Markov models are
transformed into the common form of

(CSM/MSM) ż = −γ z +
√

2η Ẇz, (17)

where the subindex k is dropped for the sake of notational
simplicity. Here the parameters γ and η are positive reals
and possibly depend on time, and Ẇz is complex-valued white
noise.

We first devote Secs. III A, III B, and III C to the study of
the OUP in (17). In particular, we determine the probability
distributions for the processes of z, s = |z|2, θ = arg(z), and
their long-time behavior. We proceed by addressing the case
when the random variable z at t = 0 is distributed by Gaussian
(Secs. III A and III B) and then investigating a more generic
situation where the initial probability P(t = 0, z) is away from
the Gaussian distribution (Sec. III C). Next, in Sec. III D, we
discuss the utility and limitations of the SDE-based approach
for the analysis of real-world turbulent signals.

A. Complex-valued Gaussian process

A complex-valued random variable z = x + iy is referred
to as Gaussian provided that both real and imaginary parts are
independently distributed according to Gaussian distribution
and are in possession of the same variance. That is, by z ∼
N (μ = μx + iμy, � = 1/�) we mean x ∼ N (μx, �/2) and
y ∼ N (μy, �/2). Recall P(x) = exp[−(x − μx )2/�]/

√
π�

where P(·) denotes the probability density function, then
P(x, y) = P(x)P(y) in two-dimensional space can be repre-
sented as

P(z) = �

π
e−�|z−μ|2 (18)

using the complex number notation. Here � = 1/� is the
reciprocal of variance, called the precision.

We now let zt be a time series of random variable having
t as continuous parameter. When this stochastic process sat-
isfies the linear equation in (17), the Gaussian character of
the initial randomness will be preserved in the course of time.
Such dynamics forms one example of Gaussian process, for
which the evolving probability is determined by the mean and
variance. Especially, Eq. (17) admits the solution

zt ∼ N (μt , �t = 1/�t ),

μt = �tμ0, �t = e− ∫ t
0 dτ γ (τ )

�t = |�t |2
[
�0 +

∫ t

0
dτ

2η(τ )

|�τ |2
]

≡ |�t |2�0 + �′
t , (19)

where �t is the integrating factor satisfying �̇t = −γ�t and
�0 = 1. The Gaussian function (18) parameterized by the
coefficients in (19) solves the KFE corresponding to the SDE
in (17). Note that Wz = (Bx + iBy)/

√
2 is a complex-valued

Brownian motion with BX denoting real-valued Brownian mo-
tion, mutually independent for different X . Then writing (17)
as

dx = −γ xdt + √
η dBx,

dy = −γ ydt + √
η dBy, (20)

the relevant PDE reads as

∂t P(t, x, y) = ∂x

(
γ xP + η

2
∂xP

)
+ ∂y

(
γ yP + η

2
∂yP

)
(21)

in rectangular coordinates.

B. From rectangular to polar coordinates

Here we move from rectangular to polar representation of
the statistical model (17).

1. Differential equations governing the evolution of distribution
functions in polar coordinates

Let z = √
seiθ then the recast of (17) in polar

coordinates is given by the set of Itô differential
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equations

ds = (−2γ s + 2η)dt +
√

4ηs dBs, (22)

dθ =
√

η

s
dBθ , (23)

and the corresponding KFE

∂t P(t, s, θ ) = ∂s(2γ sP + 2ηs∂sP) + η

2s
∂2
θ P (24)

governs the joint probability for the polar variables.
Below we address the problem of finding the closed equa-

tions for the marginal distributions: P(t, s) = ∫
dθ P(t, s, θ )

and P(t, θ ) = ∫
ds P(t, s, θ ). The former equation regarding

the progress of the amplitude is readily found by integrating
the differential equation in (24) over the phase variable. Using
the periodic boundary condition, the task yields

∂t P(t, s) = ∂s(2γ sP + 2ηs∂sP). (25)

Note that the Markovian form of (25) is fully consistent be-
cause, in view of (22), the dynamics of s is not affected by θ .
In effect, Eq. (25) is the KFE corresponding to the SDE (22)
for the amplitude process.

By contrast, the latter equation governing the phase vari-
able cannot be obtained simply by marginalizing the KFE (24)
for the joint distribution. The failure is due to the dependence
of θ on s, as can be seen from (23). At this point, we conduct
the projection of the full joint distribution onto the space of
marginal distribution in order to rearrange the PDE in (24) and
to produce the desired output [13]. The resulting integrodiffer-
ential equation is given by

∂t P(t, θ ) =
∫

ds L1ϕ∞(s)P(t, θ )

+
∫

ds L1

∫ t

0
dτ e(t−τ )(1−P )L

× (1 − P )L1ϕ∞(s)P(τ, θ )

+
∫

ds L1et (1−P )L(1 − P )P(t = 0, s, θ ),

(26)

where L = L0 + L1 is the forward operator with L0 =
∂s(2γ s + 2ηs∂s) and L1 = η

2s∂
2
θ and P represents the pro-

jection onto the resolved mode defined by P f (s, θ ) =
ϕ∞(s)

∫
ds f (s, θ ) with some invariant measure ϕ∞ (see

Sec. III C 3 for a discussion of the choice). Note that Eq. (26)
is derived under the assumption that the associated parameters
are constants; the presentation of such form here is mostly for
simplicity of notation, and it is straightforward to formulate
the case of otherwise.

2. Particular solution of the differential equations
for polar variables

Here we would like to quantify the uncertainty with respect
to the polar variables (s, θ ) propagated by the coupled SDEs
in (22) and (23) and further to determine the marginal distri-
bution of each component. This can be achieved by solving
the governing equations of (24)–(26). In doing so, rather than
implementing some well-known numerical schemes, we make

a clever use of the fact that this set of nonlinear (and even
non-Markov) problems is nothing but a linear Markov prob-
lem in disguise. Specifically, our key idea for the resolution
is to reverse the construction argument used for deriving the
sequence of differential equations; (i) one can solve (25) and
(26) by seeking the solution of the KFE (24) for the double
variables and integrating out the irrelevant one; (ii) Eqs. (21)
and (24) are the distinct representations of the same content,
implying that solving one amounts to solving the other.

First, we find one class of solution to the PDE (24) by mak-
ing the change of variable. That is, by substituting z = √

seiθ

into (18), we obtain

P(s, θ ) = 1

2

�

π
e−�|√seiθ−μ|2

= �

2π
e−�(s+|μ|2−2

√
s|μ| cos[θ−arg(μ)]) (27)

as a solution of this KFE for the polar variables. Note the
multiplicative factor of Jacobian J = 1/2 resulting from
P(z)dz = [P(z = √

seiθ )J ]dsdθ = P(s, θ )dsdθ is taken into
account. Here and after, the time index t for the variables z,
s, and θ will occasionally be suppressed to keep the notation
uncluttered.

Second, we perform the marginalization of the joint distri-
bution (27) to obtain one solution of the differential equations
in (25) and (26). They are respectively given by

P(s) =
∫

dθ P(s, θ ) = �e−�(s+|μ|2 )I0(2�
√

s|μ|), (28)

where

I0(p) ≡ 1

2π

∫ 2π

0
dθ ep cos(θ ) =

∞∑
m=0

(p/2)2m/(m!)2 (29)

is the zeroth modified Bessel function of the first kind, and by

P(θ ) =
∫

ds P(s, θ )

= �

2π
e−�|μ|2

�(�, |μ| cos[θ − arg(μ)]), (30)

where

�(p, q) ≡
∫ ∞

0
ds e−p(s−2

√
sq)

= 1

p
+ 2qepq2

√
π

4p
[1 + erf(

√
pq)] (31)

involves the error function (erf). It will help to keep in mind
that this machinery of producing the functional form of (27),
(28), and (30) for the Gaussian process z in possession of the
mean μ and precision � will recur repeatedly throughout the
remainder of the paper.

3. Choice of the amplitude variable

Before studying the case of non-Gaussian initial condition,
we here address the issue of what if the variable ρ = |z| is
used in place of s = |z|2 for the polar representation of the
stochastic dynamics of (17). In such a case, one needs to deal
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with the SDE

dρ =
(

−γ ρ + η

2ρ

)
dt + √

η dBρ (32)

and the corresponding KFE

∂t P(t, ρ, θ ) = ∂ρ

[(
γ ρ − η

2ρ

)
P + η

2
∂ρP

]
+ η

2ρ2
∂2
θ P (33)

instead of (22) and (24). Note the form of the solution to
(33) can also be inherited from the Gaussian function (18)
in rectangular coordinates and found by substituting z = ρeiθ

and caring the Jacobian factor J = ρ obtained from con-
sidering the area element dxdy = ρdρdθ . In this way, one
can duplicate basically the same scenario written in terms of
probability with what we will provide using the variable s.

C. Transition probabilities

We now discuss the case when the random variable z0

for the model equation (17) is not necessarily Gaussian. To
put it another way, P(z0) can be different from the form of
(18) or, equivalently, P(t = 0, s, θ ) can be different from the
form of (27).

1. Rectangular coordinates

Probability theory formalizes the time advance of the ran-
dom process zt by combining the initial distribution P(z0) and
the transition probability P(zt |z0) via the integral

P(zt ) =
∫

dz0 P(zt |z0)P(z0), (34)

and instructs us that the key quantity for the prediction is the
conditional probability distribution of zt given z0.

The process zt |z0 as a solution of the linear equation (17)
possesses the law of Gaussian distribution (intuitively, a point
mass can be viewed as Gaussian) characterized by

zt |z0 ∼ N (μ′
t , �

′
t = 1/�′

t ),

μ′
t = �t z0, �t = e− ∫ t

0 dτ γ (τ )

�′
t = |�t |2

∫ t

0
dτ

2η(τ )

|�τ |2 . (35)

Here and after, the prime notation is used to emphasize the
quantities in relation to the conditioned variable.

The distribution P(zt |z0) is the Gaussian function in (18)
with replacing μ and � by μ′ and �′ in (35). This expression
forms the fundamental solution of the PDE (21) in rectangular
coordinates, which starts out at t = 0 as a Dirac delta func-
tion P(t = 0, z) = δ(z − z0). For an arbitrary initial condition
P(z0), the integral representation of the general solution is
given by Eq. (34).

2. Polar coordinates

Denoting P(t = 0, s, θ ) by P(s0, θ0), the forward mapping
from P(s0, θ0) to P(st , θt ), and to P(st ) and P(θt ), can be
achieved through

P(s, θ ) =
∫

ds0dθ0 P(s, θ |s0, θ0)P(s0, θ0), (36)

and

P(s) =
∫

ds0dθ0 P(s|s0, θ0)P(s0, θ0), (37)

P(θ ) =
∫

ds0dθ0 P(θ |s0, θ0)P(s0, θ0). (38)

As for the mapping from P(s0) to P(st ) and from P(θ0) to
P(θt ), one can convert (37) and (38) into

P(s) =
∫

ds0 P(s|s0)P(s0), (39)

P(θ ) =
∫

dθ0 P(θ |θ0)P(θ0), (40)

together with the kernel functions

P(s|s0) =
∫

dθ0 P(s|s0, θ0)P(θ0|s0), (41)

P(θ |θ0) =
∫

ds0 P(θ |s0, θ0)P(s0|θ0), (42)

by means of the integrals.
Applying the machinery remarked at the end of

Sec. III B 2, the transition probabilities for the polar variables
are obtained via replacing (μ,�) in (27), (28), and (30) by
(μ′,�′) in (35) and given by

P(s, θ |s0, θ0) = �′

2π
e−�′(s+s0|�|2−2

√
ss0|�| cos[θ−θ0]), (43)

P(s|s0) = �′e−�′(s+s0|�|2 )I0(2�′√ss0|�|), (44)

P(θ |s0, θ0) = �′

2π
e−�′s0|�|2

�(�′,
√

s0|�| cos[θ − θ0]). (45)

We note that, in case of wave amplitude, Eq. (44) does not
involve the variable θ0. In case of wave phase, however, one
needs to use (42) in order to remove s0 visible in (45) and to
produce the kernel function P(θ |θ0).

Equations (43)–(45) form the fundamental solutions of the
differential equations in (24)–(26). Together with this set of
transition probabilities, one can resort to (36), (39), and (38)
towards the generic solutions in case of arbitrary initial condi-
tion.

3. Long-time behavior of the marginal distributions

Here we investigate the long-term behavior of P(st ) and
P(θt ). To do this, looking at (39) and (38), it is enough to
consider the limit of the transition kernel functions in (44) and
(45) as t tends to infinity. Because the concept of Gaussianity
underlies the processes of s and θ , it is natural to make a guess
that the long-term probabilistic behavior of the polar variables
can be understood in terms of the mean μ′ and the variance
�′, indefinitely evolving according to (35). We demonstrate
that this is the case, yet there is some difference between the
conditions for P(s) and P(θ ) as clarified below.

As for the amplitude variable, if μ′ → 0 [equivalently
�t → 0 in view of (35)] and �′

t → �̄ in growing t , then
we have P(s|s0) → �̄e−�̄s and the convergence to the expo-
nential distribution occurs. If we have the mean convergence
only without the variance convergence, since I0(p) → 1 as
p → 0, it is found that P(s|s0) � �′

t e
−�′

t s for large t . How-
ever, it deserves to note that if there exists �̄ satisfying
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2γ �̄ = 2η (this relation can be met even when γ and η are
time dependent) then the mean convergence to zero implies
the variance convergence to �̄. This statement is immediately
verified from observing that �′

t in (35) solves the equation
�̇′ = −2γ�′ + 2η, allowing for the relation

�′
t = �̄(1 − |�t |2) (46)

so that �′
t → �̄ = 1/�̄ as t → ∞ and μ′

t ,�t → 0. We com-
ment that the limit measure P(s) = �̄e−�̄s can be used as the
stationary distribution ϕ∞(s) for (26).

As for the phase variable, the condition μ′ → 0 at large
times is enough for P(θ ) to converge to the uniform distribu-
tion. Since �(p, q) → 1/p as q → 0, the long-time behavior
is determined by P(θ |s0, θ0) → 1/2π . Notice that, unlike the
case of amplitude, there is no requirement concerning the
variance.

D. Prediction of the true signal

Now we return our attention to the turbulent signal ak

generated from the Hamiltonian system (2).

1. The recipe

Recall that our goal is to estimate the uncertainty in the
polar representation of the system variable propagated by the
four-wave dynamics of (3). In this regard, our achievement
so far can be summarized as follows. For the case when the
underlying process ak is statistically close to the solution of
CSM or MSM, one is suggested to approximate the target
distribution functions by the probabilities due to the appro-
priate reduced-order model (in case of the phase variable,
the difference between θ = arg(z) and φk = arg(ak ) needs to
be cared). This can be accomplished by tuning the adaptive
parameters γ and η, associated with CSM and MSM, and
applying the prediction mapping (36), (39), and (38) together
with the given initial condition and the transition kernels
(43)–(45) determined by (35) [and (46) in some cases]. One
way to specifying the parameters is via the agreement of the
stationary spectrum and decorrelation time of the true and
approximate models. For this, the detailed discussion can be
found in Ref. [9].

2. Description of weak turbulence using CSM

Here we restrict our discussion to weak turbulence. In this
case, it is worth noting that (i) the KFE (25) in connection
with CSM is of the same form with the PDE (5) derived
from the direct analysis of the true turbulence model and (ii)
Eq. (44) is equal to the fundamental solution of the PDE (5)
obtained by using the Laplace transform and the method of
characteristics in Ref. [2]. From a practical point of view, one
is concerned with the accuracy of the approximation of the
target distribution function and the emphasis will be placed
on the learning scheme for making the parameters γ and η of
the approximate model closer to γk and ηk of the true model.
But the more important consideration is that this agreement
between our theoretical prediction by means of CSM and
the existing result for weak turbulence not only provides a
strong indication that the reduced-order modeling skill is the
mathematically reliable tool in arriving at the correct answer

without recourse to possibly very complicated and lengthy
calculations which are often indispensable for the treatment
of complex dynamical systems but also encourages us to ex-
amine MSM and ARM aimed for strong wave turbulence and
to demonstrate their plausibility.

Prior to proceeding to discuss other simplified models,
however, one should be warned against too much confidence
in the ability of a substantial simplification of the complex
model in mimicking the genuine dynamical system behavior.
The truth is that, even for the weak turbulence, the reality
picture shown by the wave turbulent signal is very rich and
widely varied so that not all statistics of the turbulence dy-
namics can be reproduced together with a simpler stochastic
differential equation. Incidentally, we numerically demon-
strated the validity of the proposed models for the description
of the turbulent signal coming from the four-wave dynamical
system in thermal equilibrium [8–11]. As for their limitations,
providing the relevant discussion in detail is unfortunately
beyond the scope of present paper, in which our concern is
confined to the situations where the characteristics of the true
signal can be captured with reasonable accuracy by the SDE
models introduced in Sec. II. Nonetheless, in the sequel, we
provide two important remarks on the different implications
by the PDE (5) and KFE (25) for the purpose of deepening the
understanding of the applicability of the reduced-order model
approach for the quantification of uncertainty arising from the
wave turbulence.

First, the identical form between the KFE (25) and the
PDE (5) must not be interpreted in such a way that the true
underlying signal is nearly a Gaussian process. Our argument
for this statement is via the random frequency modulation of
(17), i.e., the relaxation of the oscillation parameter by adding
some random noise. To be precise, we replace γ in the linear
model (17) by γ + iξ for some real-valued random process
ξ . Note that the resulting process z is clearly very different
from Gaussian but the corresponding amplitude process (22)
and KFE (25) are unchanged. Note also that in this case, one
cannot use the Gaussian function (18) for the derivation of the
fundamental solution (44) of the differential equation for the
wave amplitude.

Second, the PDE (5) is not the same as but more generic
than the KFE (25) due to the varied options for the bound-
ary condition (in addition to the initial condition, boundary
conditions have to be specified to uniquely determine the
solution of the differential equation which concerns at most
the local relationship). The direct consequence is that from the
analysis of (5), rather than that of (25), one can extract more
information about the weak turbulence system. We verify this
point by comparing the two time-independent solutions of the
PDE (5):

Pk (s) = 1

n̄k
exp

(
− s

n̄k

)
(47)

and

Pk (s) = F

ηk
Ei

(
s

n̄k

)
exp

(
− s

n̄k

)
� F

γks
+ ηkF

(γks)2
+ · · · when s � n̄k = ηk

γk
, (48)
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where F is constant and Ei(·) is integral exponential function.
Note the functional form of (47) is equal to that of the unique
stationary solution of the KFE (25), which can be obtained
by considering the long-term limit of (44). Unlike the expo-
nentially decaying asymptotics of (47) at large amplitudes,
the tail behavior of (48) serving as the boundary condition
for the PDE (5) is characterized by the algebraic decay and
thus any function of the form of (48) cannot be a solution
of the KFE (25). In fact, we doubt that the wave turbulence
scenario due to (48) can be realized together with stochas-
tic differential equations driven by white noise. Furthermore,
we presume that the approximation by means of SDE is apt
for the description of the wave turbulent signal in case of
statistical equilibrium but not suitable for the steady state
of the far-from-equilibrium system for the weak turbulence.
This is mainly for the reason that, writing the PDE (5) as the
continuity equation ∂t Pk = ∂sF with F ≡ 2s(γkPk + ηk∂sPk ),
Eqs. (47) and (48) are respectively obtained from seeking the
solution with the vanishing (F = 0) and the nonzero constant
(F = F ) probability flux [14,15].

IV. TURBULENT SIGNAL MODELED
BY A NON-MARKOV PROCESS

Now let us consider ARM (11). In terms of the variable
zk (t ) = ei	kt âk (t ), the model equation can be rephrased as

(ARM) ż = − γ z +
√

2η Ẇz

−
∫ t

0
dτ Ae−ν(t−τ )z(τ ) + R, (49)

where R = ei	kt R̃ denotes the OUP. For the prediction of
the process zt in (49), one approach is to analyze this non-
Markovian model but the direct treatment of (49) is rather
problematic due to the term involving the time integral. We
circumvent this difficulty by introducing the bivariate Markov
model

ż = Z − γ z +
√

2η Ẇz,

Ż = −Az − νZ +
√

2ζ ẆZ , (50)

and making use of the fact that the probability of z solving the
equation (50) is essentially identical to the distribution of the
solution of ARM (49) [10]. Here ζ is the positive parameter
in connection with the stationary spectrum of Z , and ẆZ is
complex-valued white noise, independent of Ẇz. Our strategy
for estimating the uncertainty of ARM is therefore through
analyzing the duet model (50) and performing the marginal-
ization in a suitable manner. Particularly, we determine the
joint probability of the couple of variables (z, Z ) in Sec. IV A
and the marginal distribution of z in Sec. IV B. We discuss
how to utilize the resulting knowledge in approximating the
probability with reference to the true signal ak in Sec. IV C.

A. Gaussian process in two dimensions

Note that Eq. (50) is the OUP in two dimensions. Thereby
the general discussion of the multivariate OUP, provided in
Sec. IV A 1, precedes the case study of (50), provided in
Sec. IV A 2.

1. Multivariate Ornstein-Uhlenbeck process

We define a complex-valued Gaussian random vector in d
dimensions, denoted by z, as follows. The real and imaginary
parts of each component of z are independent Gaussians,
having the same variance. Let z = x + iy and Z = X + iY be
the two different elements of z. In view of 〈zZ∗〉 = xX + yY +
i(yX − xY ), the cross-correlation 〈zZ∗〉 = I is interpreted as
〈xX 〉 = 〈yY 〉 = Re(I )/2 and 〈yX 〉 = −〈xY 〉 = Im(I )/2. Here
Re means the real part and Im means the imaginary part.
Using the notation z ∼ N (μ,� = �−1) (here and after bold
is used for indicating vector and matrix), the joint distribution
function P({Re(zi ), Im(zi )}d

i=1) for the 2d-dimensional real-
valued Gaussian vector can be represented as

P(z) = |�|
πd

e−(z−μ)∗�(z−μ), (51)

where modulus means determinant of the matrix and ∗
denotes conjugate transpose.

Let zt be governed by the linear system of SDEs

dz = −Mzdt + L dW , (52)

where W denotes a vector of complex-valued mutually inde-
pendent Brownian motions and the coefficient matrices of M
and L can be time varying. If the distribution of z0 is Gaussian,
then the time advance of the mean and covariance of zt is
determined by

μ̇ = −Mμ,

�̇ = −(M� + �M∗) + LL∗. (53)

Equation (53) can be solved to yield the expressions

zt |z0 ∼ N (μ′
t ,�

′
t = (�′

t )
−1),

μ′
t = �t z0,

�′
t = �t

(∫ t

0
ds �−1

s LsL∗
s

(
�−1

s

)∗
)

�∗
t , (54)

and

zt ∼ N (μt ,�t = (�t )
−1),

μt = �tμ0,

�t = �t�0�
∗
t + �′

t ,

(55)

which are in terms of the matrix �t satisfying �̇t = −M�t

and �0 is the identity matrix.
Suppose there exists a time-independent matrix �̄ such that

M�̄ + �̄M∗ = LL∗, (56)

then the relation

�′
t = �̄ − �t �̄�∗

t (57)

holds. In such case, if �t → 0 is satisfied in growing t , then
we have the convergence results: μ′

t → 0, �′
t → �̄ = (�̄)−1,

and P(z|z0) → |�̄|
πd e−z∗�̄z as t → ∞.

064126-8



PROPAGATION OF RANDOM EXCITATIONS IN THE … PHYSICAL REVIEW E 108, 064126 (2023)

2. Case study of the duet model

Here we study the duet model (50) in the rectangular and
polar coordinates.

Rectangular coordinate. Note the OUP in (52) reduces
to the model equation (50) once the choice of z = (z, Z )T

and

−M =
(

−γ 1
−A −ν

)
, L =

(√
2η 0
0

√
2ζ

)
(58)

is made. Here the upper T means transpose. In general, the
transition probability

P(z, Z|z0, Z0) (59)

is in the form of the Gaussian function (51) and can be found
via replacing (μ, �) by (μ′, �′) in (54).

Let us consider the particular situation where the coeffi-
cients in (50) are constants. Then the matrix exponential �t is
given by

�t = exp(−Mt )

= e− γ+ν

2 t

×
[

cos
(Rt

2

) − γ−ν

R sin
(Rt

2

)
2
R sin

(Rt
2

)
− 2A

R sin
(Rt

2

)
cos

(Rt
2

) + γ−ν

R sin
(Rt

2

)],

(60)

where R =
√

4A − (γ − ν)2. Furthermore, if the conditions
n̄ = η/γ and N̄ = ζ/νr = An̄ are fulfilled, then the matrix

�̄ = diag(n̄, N̄ ) (61)

is the solution of (56). In this case, one can make use of (57),
(60), and (61) to compute �′ in (54) with ease.

Polar coordinate. Let z = √
seiθ , Z = √

Sei�, and let ϑ =
θ − � be the phase difference. The polar components of the
variables in (50) are governed by the Itô differential equations

ds = [2η − 2γ s + 2
√

sS cos(ϑ )]dt +
√

4ηs dBs,

dθ =
(

−1

s

)√
sS sin(ϑ )dt −

√
η

s
dBθ ,

dS = [2ζ − 2νrS − 2A
√

sS cos(ϑ )]dt +
√

4ζS dBS,

d� =
[(

−A
S

)√
sS sin(ϑ ) − νi

]
dt −

√
ζ

S
dB�, (62)

and the KFE corresponding to (62) reads

∂t P(t, s, θ, S,�)

= ∂s[2γ sP + 2ηs∂sP − 2
√

sS cos(ϑ )P]

+ ∂θ

[
1

s

√
sS sin(ϑ )P + η

2s
∂θP

]
+ ∂S[2νrSP + 2ζS∂SP + 2A

√
sS cos(ϑ )P]

+ ∂�

[A
S

√
sS sin(ϑ )P + νiP + ζ

2S
∂�P

]
. (63)

The fundamental solution of (63) is given by the transition
probability

P(s, θ, S,�|s0, θ0, S0,�0) (64)

and can be obtained by applying the change of variables to
the Gaussian function of (59) and multiplying the Jacobian
J = (1/2)2 as a consequence of the coordinate transforma-
tion from (z, Z ) to (s, θ, S,�).

In line with the discussion in Sec. III B 3, the SDEs gov-
erning |z| = ρ and |Z| = P read

dρ =
[

η

2ρ
− γ ρ + P cos(ϑ )

]
dt + √

η dBρ,

dP =
[

ζ

2P − νrP − Aρ cos(ϑ )

]
dt +

√
ζ dBP (65)

and can be used instead of the equations for s and S in
(62). The counterpart of (64) in terms of the set of variables
(ρ, θ,P,�) can be obtained by making the change of vari-
ables in (59) and taking care of the Jacobian J = ρP .

B. Marginalized process

Now we concentrate on the processes of z, s = |z|2,
θ = arg(z) among the variables in (50) and (62) and study
their time-evolving probability distributions. In view of (50),
the information of P(z0) is not sufficient and we need to
know P(z0, Z0) in order to completely determine P(zt ) [and
P(st , θt )]. Below, we will discuss the three cases in decreasing
order of generality: (i) P(z0, Z0) is arbitrary (Sec. IV B 1), (ii)
P(Z0|z0) is Gaussian (Sec. IV B 2), and (iii) P(z0, Z0) is jointly
Gaussian (Sec. IV B 3). We investigate the long-time behavior
of the probability of s and θ in Sec. IV B 4.

1. The case of arbitrary P(z0, Z0)

The mapping from P(z0, Z0) to P(zt ) can be achieved
through the integral

P(z) =
∫

dz0dZ0 P(z|z0, Z0)P(z0, Z0). (66)

Note the law of the process zt |z0, Z0 is found by averaging out
the variable Z from the joint Gaussian of (54) with z = (z, Z )T

and given by

zt |z0, Z0 ∼ N (μ′
t,1,�

′
t,11),

μ′
t,z = eT

1 μ′
t = �t,11z0 + �t,12Z0,

�′
t,zz = eT

1 �′
t e1, (67)

where e1 is column vector with the first element 1 and zero
otherwise. The conditional probability P(z|z0, Z0) takes the
form of Gaussian function (18) where the mean and variance
are given by the ones in (67).

The counterpart of (66) in terms of the polar variables
reads as

P(s, θ ) =
∫

ds0dθ0dS0d�0 P(s, θ |s0, θ0, S0,�0)

× P(s0, θ0, S0,�0) (68)

and allows us to perform the mapping from P(s0, θ0, S0,�0)
to P(st , θt ) [and to P(st ) and P(θt ) after the integra-
tion of (68) over the irrelevant variable]. The conditional
probabilities P(s, θ |s0, θ0, S0,�0), P(s|s0, θ0, S0,�0), and
P(θ |s0, θ0, S0,�0) are obtained by applying the machinery
developed in Secs. III C 1 and III C 2 to the Gaussian process
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of (67), and given by the form of (27), (28), and (30), with
replacing (μ,�) by (μ′

t,z,�
′
t,zz ) in (67).

The above-mentioned conditional probabilities are the
fundamental solutions of the differential equations determin-
ing the evolution of the corresponding marginal distribution
functions. As in Sec. III B 1, the governing equations
can be derived from performing the projection of the KFE
(63) onto the space of some of the entire variables. For
instance, the integrodifferential equation for P(t, s, θ ) =∫

dSd� P(t, s, θ, S,�) takes the same form as (26), provided
that the forward operator L = L0 + L1 with

L0 = ∂S[2νrS + 2ζS∂S] + ∂�

[
ζ

2S
∂�

]
,

L1 = ∂s[2γ s + 2ηs∂s − 2
√

sS cos ϑ] + ∂S[2A
√

sS cos ϑ]

+ ∂θ

[
1

s

√
sS sin ϑ + η

2s
∂θ

]
+ ∂�

[A
S

√
sS sin ϑ + νiP

]
,

(69)

and the projection operator P defined as P f (s, θ, S,�) =
ϕ∞(S,�)

∫
dSd� f (s, θ, S,�) are used. For the case of

the constant coefficients in the duet model (50), which we
considered at the end of Sec. IV A 2 a, since the stationary dis-
tribution is given by P(s, S, θ,�) = ( 1

2π
)2 × 1

n̄ e− s
n̄ × 1

N̄ e− S
N̄ ,

the invariant measure P(S,�) = 1
2π

1
N̄ e− S

N̄ can be used as
ϕ∞(S,�).

2. The case when P(Z0|z0) is Gaussian

One can get rid of the appearance of Z0 in (66) and for-
mulate the direct mapping from P(z0) to P(zt ). This can be
achieved by converting (66) into (34) with the help of

P(z|z0) =
∫

dZ0 P(z|z0, Z0)P(Z0|z0). (70)

It is worth noting that when Z0|z0 is Gaussian, the inte-
gration in (70) is analytically tractable and the resulting
process zt |z0 is also Gaussian. In particular, let P(Z0|z0) =
N (μZ0|z0 , �Z0|z0 ) then the conditioned law of zt |z0 is given by

zt |z0 ∼ N (μ′′
t , �

′′
t = 1/�′′

t ),

μ′′
t = �11z0 + �12μZ0|z0 , (71)

�′′
t = �′

11 + |�12|2�Z0|z0 ,

where double prime is used in order to distinguish from
the formula (35) for the univariate OUP (17). Equa-
tion (71) is obtained from plugging in μ′

z = �11z0 + �12Z0

into (�Z0|z0 )−1|Z0 − μZ0|z0 |2 + (�′
zz )−1|z − μ′

z|2 and using
the identity A|z − a|2 + B|z − b|2 = (A + B)|z − Aa+Bb

A+B |2 +
AB

A+B |a − b|2 where A, B > 0 and z, a, b ∈ C.
As was done in Sec. III C 2, the transition probabilities for

the polar variables are inherited from the Gaussian function of
the rectangular form and given by

P(s, θ |s0, θ0) = �′′

2π
e−�′′(s+|μ′′ |2−2

√
s|μ′′| cos[θ−arg(μ′′ )]), (72)

P(s|s0, θ0) = �′′e−�′′(s+|μ′′ |2 )I0(2�′′√s|μ′′|), (73)

P(θ |s0, θ0) = �′′

2π
e−�′′ |μ′′|2

�(�′′, |μ′′| cos[θ − arg(μ′′)]),

(74)

for which (71) is used. In comparison to (44), the attention is
drawn to the presence of θ0 in (73). Given the initial condi-
tion P(s0, θ0), one can obtain the expressions for P(s|s0) and
P(θ |θ0) by applying (73) and (74) to (41) and (42).

Note that the variables s0 and θ0 are implicitly involved
in (72)–(74) through μ′′

t and �′′
t in (71). It is instructive to

illustrate the case when the dependency is explicitly visible.
In particular, let us consider the situation where (i) μZ0|z0 is
a linear function of z0, and (ii) �Z0|z0 does not depend on z0,
so that the emergence of s0 and θ0 is through μ′′

t only and not
through �′′

t = 1/�′′
t . In such a case, we can write μ′′

t in (71) as

μ′′
t = �′

t z0 + �′′
t , (75)

and the dependence of (72)–(74) on s0 and θ0 can be seen from

|μ′′|2 = s0|�′
t |2 + |�′′

t |2
+ 2

√
s0|�′

t ||�′′
t | cos[θ0 + arg(�′

0) − arg(�′′
0 )],

arg(μ′′) = arg(�′
t

√
s0eiθ0 + �′′

t ). (76)

In view of (44), a natural question of when P(s|s0, θ0) in (73)
reduces to P(s|s0) arises. Evidently this occurs when �′′ = 0
[otherwise, P(s|s0, θ0) depends on θ0], and the desired for-
mula for P(s|s0) can be obtained via replacing the two param-
eters (�,�′) that appear at (44) by (�′,�′′) in (75) and (71).

3. The case when P(z0, Z0 ) is Gaussian

In cases where P(z0, Z0) = N (μ0,�0 = (�0)−1) is jointly
Gaussian, the conditioned variable Z0|z0 is also Gaussian and
the law is given by

Z0|z0 ∼ N (μZ0|z0 , �Z0|z0 ),

μZ0|z0 = μ0,Z + �0,Zz�
−1
0,zz(z0 − μ0,z ),

�Z0|z0 = �0,ZZ − �0,Zz�
−1
0,zz�0,zZ . (77)

Equation (77) is one specific example of the circumstances we
assumed in the preceding paragraph, i.e., Eq. (75) is satisfied
alongside

�′ = �11 + �12�0,Zz�
−1
0,zz,

�′′ = −�12�0,Zz�
−1
0,zzμ0,z + �12μ0,Z . (78)

Recall the variable θ0 in (73) can be eliminated if �′′ vanishes
and this is the case, for instance, when μ0,z = μ0,Z = 0.

4. Long-time behavior of the marginal distributions

In general, we can figure out the long-term behavior of
P(st ) and P(θt ) from considering the proper marginaliza-
tion of (68) in the limit of t → ∞. In order to obtain this
knowledge, it suffices to study the long-time behavior of the
transition kernels, determined by the mean and variance in
(67).

As for the amplitude variable, both of the conditions for
the mean μ′

t,z → 0 and the variance �′
t,zz → �̄zz are needed

for the convergence P(s|s0, θ0, S0,�0) → e−s/�̄zz/�̄zz to the
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exponential distribution in the growth of t . Note this holds in
the specific case under consideration in Sec. IV A 2 a.

As for the phase variable, in view of (67), the sufficient
condition for the convergence P(θ |s0, θ0, S0,�0) → 1/2π to
the uniform distribution over the circle is that the mean μ′

t,z
goes to zero as t → ∞.

C. Prediction of the true signal

Suppose that the true signal ak resulting from the four-
wave system and the solution of ARM are statistically similar
to each another. Then one can make use of the analysis of
ARM performed in the preceding sections to estimate the
propagating probability of ak . In view of (16a) and (49), the
variable Z in (50) is a statistical approximation of ei	kt Ak . This
implies that for the case when the auxiliary variable Ak in
(15b) behaves like Gaussian (we believe this presumption is
legitimate in many cases due to the collective effect of chaotic
interactions, which is a manifestation of the central limit the-
orem), the recipe is that (i) one trains ARM, for example, via
the agreement between the autocorrelation functions by the
true signal and ARM [11], and (ii) one exploits the transition
probabilities (72)–(74) determined by Eqs. (57), (60), (61),
and (71) together with the rules (36)–(38) in order to approx-
imately quantify the uncertainty as to the polar representation
of ak .

V. NUMERICAL SIMULATIONS

Here we numerically demonstrate that ARM is superior to
MSM in describing some statistical properties of the short-
wave turbulent signal generated from the four-wave system
with strong nonlinearity. The discrepancy between the predic-
tions by MSM and ARM will be highlighted in both cases of
the stationary distribution (Sec. V A) and of the irreversible
relaxation to the steady state (Sec. V B) for the single wave-
profile ak .

A. Equilibrium state

Our presentation is in the context of the generalized Majda-
Mclaughlin-Tabak (MMT) system, which is the representative
example of the turbulence model (2) and (3) determined by
ωk = |k̂|α and W 12

3k = |k̂1k̂2k̂3k̂| β

4 , where k̂ ≡ kπ/N and N is
total number of Fourier modes [9,12,16,17]. Here α and β

are the positive parameters, controlling the linear dispersion
relation and the strength of the four-wave interactions. Let
us consider two instances of the strongly nonlinear system
in possession of the set of parameters: (i) χ = 1, α = 1/2,
β = 3, Cβ = 3/10 and (ii) χ = 0, β = 1, Cβ = 9/10, where

Cβ = 2
∑

k |k̂| β

2 〈|ak|2〉. In both cases, we choose the domain
size N = 512 so that k ranges as |k| � N/2 = 256 and simu-
late the dynamics for sufficiently long time so that the system
reaches the thermal equilibrium state characterized by the
stationary spectrum

〈|ak|2〉 = T

|k̂|α + Cβ |k̂| β

2

, (79)

where T is the temperature. The details of the direct numerical
simulation setting are described in Refs. [9,16,17].
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FIG. 1. The solid lines are the stationary distributions P(sk ) and
P(θk ) for the MMT signal ak with k = 192. The dashed lines are
the exponential distribution for the amplitude variable (left) and the
uniform distribution for the phase variable (right).

This simulation of the MMT model allows us to produce
an individual trajectory of the turbulent signal and we take the
shortwave ak with the high wave number k = 192 as the target
system variable generating the true signal. These sequential
data in time are used to create Fig. 1 and Fig. 2. In Fig. 1, we
depict the stationary distributions for the polar variables. The
predictions by MSM and ARM are in good agreement with the
numerically measured ones from the MMT signal. In Fig. 2,
we depict the time correlation functions for the canonical
variable in rectangular coordinate. The comparison analysis
reveals that ARM outperforms MSM; while the exponential
function predicted by MSM is unable to reproduce the more
complicated autocorrelation function indicated by the MMT
signal, the prediction by ARM, which is given by the first
component of (60) up to constant multiplication, can fully
recover the numerically found correlation function with high
accuracy.

B. Relaxation to equilibrium

Turning our attention to the conditional probability dis-
tribution, we draw a number of random samples from
P(ak (t )|ak (0)) at fixed time t in the following way. We first
pick up one set of ak for all k as the realization of the
MMT trajectories in equilibrium and replace the value of ak

for fixed k = 192 by a particular number for the purpose of
making the initial condition ak (0) as the Dirac Delta function.
We next apply the forward solver of the full wave system
in equilibrium to find ak (t ) and take it as one sample from
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FIG. 2. The two-point function 〈bk (t )b∗
k (0)〉 for the MMT signal

bk = ei	kt ak with k = 192 is depicted as the function of t . The pre-
diction by MSM is 〈zt z∗

0〉 = n̄k exp(−t/Tc ), where n̄k is the stationary
spectrum and Tc is the decorrelation time of the MMT signal. Left:
χ = 1; right: χ = 0.
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FIG. 3. The solid lines correspond to |E(ak (t )|ak (0))| (top) and
Var(ak (t )|ak (0)) (bottom) of the MMT signal with k = 192 as the
function of t . The quantities are calculated using the samples of size
212 = 4096, and the given variable is set to ak (0) = √

n̄keiπ/4. The
predictions |μ′

t | and �′
t by MSM and ARM are shown for comparison

purposes. Left: χ = 1; right: χ = 0.

P(ak (t )|ak (0)). This set of Monte Carlo samples forward in
time is obtained to simulate the decay process to the stationary
distribution.

Figure 3 shows the evolution of the mean and variance of
ak (t ), calculated using the ensemble average; the predictions
by MSM and by ARM, i.e., Eqs. (35) and (71) are also de-
picted. Figure 4 and Fig. 5 show the distribution functions
of the amplitude and phase for a number of fixed times; the
transition probabilities (44) and (45) for MSM and (73) and
(74) for ARM are also depicted. The comparison analysis
in these plots supports our demonstration that ARM is more
accurate than MSM in estimating the probability of the MMT
signal.

VI. CONCLUDING REMARKS

In this work we apply the reduced-order model approach
for the analysis of the evolving probability of the wave magni-
tude and the phase angle of the canonical variable solving the
nonlinear Hamiltonian system characterized by the four-wave
interactions. Note that our approach is not through a straight-
forward analysis of the underlying turbulence model but is
inspired and guided by the statistical-mechanical treatment
of complex physical models comprising an enormously large
number of degrees of freedom. We adopt this way of accessing
the problem for the reason that, in contrast to the case of weak
turbulence where one can derive the PDE (5) by exploiting the
smallness of H4/H2 and performing the perturbative analysis,
the loss of this apparent small parameter in case of strong
nonlinearity prevent us from applying the regular perturbation
method for the analysis of the turbulence system driven by
strong wave-wave interactions.

We remark that despite a variety of simplified stochas-
tic models, including both Markovian and non-Markovian
ones, which we adopted in this work to handle the turbulent
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FIG. 4. For the dynamics discussed in Fig. 3, the probabilities
of P(st |s0) for t = r × Tc with r = 0.1 (top), r = 0.3 (middle), and
r = 1 (bottom) are presented. Left: χ = 1; right: χ = 0.
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dynamics ranging from weakly to strongly interacting non-
linear waves, the common thing underpinning in all models
is the Gaussianity of the process. Performing the numerical
study in the context of the Majda-Mclaughlin-Tabak model
and being assured of the feasibility of our methodology in
the case of the complex dynamical system in equilibrium,
we plan to pursue the research of addressing the turbulence
dynamics in nonequilibrium steady state and to take a further
step towards the radical extension of the applicability of the
SDE-based approach for the analysis of turbulent signals. The
solution scenario in the case of near equilibrium is presumably
not much different from the equilibrium case, i.e., Gaussian
process modeling remains to be an effective tool. However, in
approximating the random signal generated from the complex
system whose deviation from the equilibrium state is notably
significant, we anticipate a poor performance of the linear
models. One reason for this is that the validity regime of linear
dynamical systems is restricted to linear transport laws for
averaged variables so that they are inevitably inadequate to

the treatment of nonlinear transport processes. Due to this
possibly limited applicability of Gaussian process models,
the subsequent endeavor will be directed towards developing
nonlinear and non-Gaussian models and examining their per-
formances for complex dynamical systems out of equilibrium.
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