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Tight-binding model subject to conditional resets at random times
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We investigate the dynamics of a quantum system subjected to a time-dependent and conditional resetting
protocol. Namely, we ask what happens when the unitary evolution of the system is repeatedly interrupted at
random time instants with an instantaneous reset to a specified set of reset configurations taking place with
a probability that depends on the current configuration of the system at the instant of reset? Analyzing the
protocol in the framework of the so-called tight-binding model describing the hopping of a quantum particle to
nearest-neighbor sites in a one-dimensional open lattice, we obtain analytical results for the probability of finding
the particle on the different sites of the lattice. We explore a variety of dynamical scenarios, including the one
in which the resetting time intervals are sampled from an exponential as well as from a power-law distribution,
and a setup that includes a Floquet-type Hamiltonian involving an external periodic forcing. Under exponential
resetting, and in both the presence and absence of the external forcing, the system relaxes to a stationary state
characterized by localization of the particle around the reset sites. The choice of the reset sites plays a defining
role in dictating the relative probability of finding the particle at the reset sites as well as in determining the
overall spatial profile of the site-occupation probability. Indeed, a simple choice can be engineered that makes
the spatial profile highly asymmetric even when the bare dynamics does not involve the effect of any bias.
Furthermore, analyzing the case of power-law resetting serves to demonstrate that the attainment of the stationary
state in this quantum problem is not always evident and depends crucially on whether the distribution of reset
time intervals has a finite or an infinite mean.
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I. INTRODUCTION

Stochastic resetting in classical and quantum systems has
attracted significant attention in recent years owing to the wide
range of physical processes that it models, but also owing to
the variety of static and dynamic consequences that it may
generate [1]. The basic framework involves a system that is
very general in every aspectl namely, it could be either clas-
sical or quantum, could be either single or many-particle, and
could be evolving in time either deterministically or stochas-
tically. Resetting refers to repeated and sudden interruptions
of the inherent dynamics of the system with a dynamics that
in essence competes with it, and it is this interplay that results
in rich and intriguing long-time observable properties of the
system. Examples are myriad, and a rather comprehensive
discussion of the various examples may be found in the recent
reviews on the subject [2–4].

In this work, our focus is on quantum systems. Before
delving into our work, it is pertinent to refer to some rele-
vant studies addressing resetting in quantum systems. Earlier
works have studied differences in resetting-induced effects in
quantum integrable and nonintegrable systems [5], quantum
coherence and dynamical aspects such as purity and fidelity
in closed quantum systems [6], dynamics of a qubit in the
presence of detectors, revealing a correspondence between
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stochastic wave-function dynamics and the underlying re-
setting process [7], and how the reset algorithm along with
ballistic propagation facilitates quantum-search processes [8].
In a context similar to the last work, Ref. [9] has reported
on the optimal restart times for a quantum first-hitting-time
problem. In a different context, it has been shown how the
eigenvalue spectrum of a Markovian generator gets shifted
in the presence of stochastic resetting, with applications to
resetting in quantum processes that exhibit metastability [10].
There has been an upsurge of interest in understanding the
behavior of entanglement entropy and correlation functions
in resetting processes. For example, Ref. [11] has examined
entanglement dynamics in quantum many-body systems al-
lowing for a quasiparticle description and in the presence
of stochastic resetting, unveiling interesting entanglement
scaling and phase transitions. A recent study [12] has im-
plemented stochastic resetting in closed quantum systems,
quantifying the effects in terms of the von Neumann entropy,
fidelity, and concurrence. Reference [13] has unveiled long-
range quantum and classical correlations in a noninteracting
quantum spin system. In another context, Ref. [14] has ex-
plored how stochastic resetting may be exploited as a tool
to study the thermodynamics of quantum-jump trajectories
in quantum-optical systems, while Ref. [15] discusses reset-
ting processes in quantum systems with quantum-collapse
considered akin to a measurement. There has been a re-
cent focus on ground state preparation from frustration-free
Hamiltonians using resetting techniques; for example, in this
regard, Ref. [16] addresses the ample scope of periodic
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resetting by invoking ancillary degrees of freedom in quantum
systems.

In the above backdrop, our motivation in this work is to
study the effects of a time-dependent conditional resetting
protocol in quantum systems. To this end, we focus on the
paradigmatic tight-binding model (TBM), which models the
unitary quantum dynamics of a single particle hopping be-
tween the nearest-neighbor sites of a one-dimensional open
lattice. In this framework, we implement a protocol of reset-
ting, whereby the particle resets at random times to multiple
reset sites with a probability that depends on the current
location of the particle. This latter feature makes the reset
probability explicitly time-dependent and the resulting re-
setting protocol a time-dependent one conditioned on the
location of the particle at the instant of reset. Specifically,
our protocol involves repeated occurrences of a pair of key
events: unitary evolution for random times, and instantaneous
conditional resetting of the TBM particle to the specified reset
sites with a probability that depends on the location of the
particle at the instant of reset. Our implementation of the
time-dependent reset protocol is inspired by the framework
proposed in Ref. [17], wherein the system, which is a paradig-
matic quantum model of interacting spins, undergoes a reset
based on the measured magnetization of the system at the
instant of reset. In the context of the TBM, a recent work [18]
has addressed the issue of the dynamics undergoing unitary
evolution and continuous monitoring, studying in particular
the probability distribution of the expectation value of a given
observable over the possible quantum trajectories.

Two remarks are in order. First, it is important to recognize
that the aforementioned resetting protocol deviates from the
conventional approach of time-independent single-shot reset
studied in the literature, which involves resetting the system
at random times to a predetermined configuration with a
probability that is constant and independent of the underly-
ing dynamics (unconditional resetting). By contrast, in our
studied protocol, the reset probability being a function of
the current location of the particle is explicitly dependent on
the underlying reset-free dynamics of the system and is thus
explicitly time dependent. Second, time-dependent resetting,
albeit of a very different sort, has been explored in the con-
text of classical systems in Ref. [19], in which the authors
have derived a sufficient condition on the rate of the resetting
process for the existence of a stationary state. This reference,
however, serves to show that existence of a stationary state
under time-dependent resetting is not always guaranteed, and
one has to stipulate conditions on the resetting protocol so that
a stationary state exists.

Let us note what new aspects are to be expected in imple-
menting conditional resetting in quantum systems as opposed
to classical systems. The classical equivalent of the tight-
binding dynamics will be a classical random walk, albeit in
continuous time. In the classical setting, the particle or the
random walker in one realization of the dynamics may be
found at a given time instant on one and only one site with
probability one. Of course, the site label changes from one
realization to another of the dynamics. In contrast, in the
quantum setting, the particle at a given instant and in one
realization of the dynamics may be found simultaneously on
many different sites with probabilities that are not equal in

general. Therefore, in the latter setting, we may implement at
any time instant t a reset to different sites conditioned on the
probability at time t for the particle to be found in different
subsets of the lattice sites. A protocol constructed in the same
vein and when implemented in the classical setting cannot
render the resetting move a conditional one of the sort we are
considering. This is because the probability for the particle to
be found in different subsets of the lattice sites is zero for all
but one site, with the probability being unity for this one site.

In the setting proposed within the TBM for studying condi-
tional resetting, we address the following question in a variety
of dynamical scenarios: what is the probability of finding the
particle at site m at time t > 0, given that the particle was
initially at site n0? In regard to the dynamical scenarios, we
will first consider the time intervals between successive reset
events to be random variables chosen independently from an
exponential distribution. In the course of this paper, we will
show how the choice of the initial position of the particle and
reset site locations will play important roles in illustrating the
nature of the site-occupation probability. The main results that
emerge are (1) that the dynamics at long times relaxes to a
stationary state with the particle localized around the reset
sites, which is characterized by time-independent values of the
site-occupation probability, and (2) that the site-occupation
probability around the two reset sites may or may not be equal
to one another, depending on how the reset sites are distributed
in space; in the case when the probabilities are unequal, the
particle is more likely to be found around one set of reset
sites than the rest, implying thereby a reset-induced effective
drift in the particle motion despite the fact that the underlying
TBM dynamics takes place in the absence of any bias on the
particle motion. Our aforementioned analysis of exponential
resetting extends even to the case in which the TBM system
is subject to a periodic forcing, which renders the underlying
Hamiltonian time dependent. Our analytical approach is ver-
satile enough in tacking efficiently and allowing us to derive
exact results for the case of both the time-independent and
the time-dependent TBM system. To provide a counter to the
naive expectation that our protocol of conditional resetting
always leads to a stationary state, we next study the case of the
time intervals between successive resets chosen from a power-
law distribution. In this case, for low values of the exponent
characterizing the power law, we show that resetting is unable
to arrest the ever-spreading site-occupation probability of the
TBM particle in time, thereby preventing the system to relax
to a stationary state with the particle localized around the reset
sites. The mentioned example thus provides an antithesis to
the expectation that resetting inherently leads to stationary
states.

We now come to a discussion of why a conditional reset-
ting of the sort we are exploring here may prove useful in
developing a better understanding of open quantum systems,
and what new physics we may hope to learn from the study. To
this end, we first recognize that the TBM undergoing unitary
dynamics that is repeatedly interrupted at random times with
stochastic resetting is an example of a more general setup of a
quantum system whose unitary evolution is interspersed with
nonunitary interactions (modeled in our case by stochastic
resetting) at random times. From the protocol of stochastic
resetting, it is evident that the information content of the
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system, which would otherwise have been preserved had the
dynamics been purely unitary, gets lost each time a reset
happens: unitary dynamics leads to coherence, while reset
events result in decoherence. Indeed, the information on the
site-occupation probability of the TBM particle gets lost every
time a reset takes place, such that at just the following time
instant, the particle is to be found only at the reset locations
and not at any other locations. In this sense, the dynamics
models an open quantum system, namely, a system that is not
isolated and thus evolving according to a unitary dynamics,
but rather one which is coupled to an external environment
(namely, the apparatus that implements the stochastic resets).
From the foregoing, it is evident that our dynamical setup of
the TBM subject to stochastic resetting involves an interplay
of coherence and decoherence, and hence, we may already
expect nontrivial consequences arising from this interplay.

The time evolution of the density operator of an isolated
quantum system follows the unitary dynamics dictated by the
well-known quantum Liouville equation or the von Neumann
equation (in this work, we will set the Planck’s constant to
unity),

dρ(t )

dt
= −iL (t )ρ(t ), (1)

with L (t ) being the Liouville operator defined as L (t )ρ(t ) =
[H (t ), ρ(t )], and H (t ) being the Hamiltonian (in general, time
dependent) of the system. By contrast, the density operator
of an open quantum system, under the assumption of being
weakly coupled to a Markovian environment, evolves accord-
ing to a nonunitary dynamics given by the so-called Lindblad
equation [20],

dρ(t )

dt
= −iL (t )ρ(t ) + γ

(
Oρ(t )O† − 1

2
{O†O, ρ(t )}

)
,

(2)

where for two operators A, B, we have {A, B} ≡ AB + BA, and
where the operator O, called the jump operator, describes the
dynamics of interaction of the system with the environment,
and the constant γ � 0 describes the rate at which the system
interacts with the environment. For the case of stochastic
resetting of the TBM that is unconditional and happens at a
constant rate λ, it has been shown in Ref. [21] (and which
will be elaborated further in Sec. II) that resetting at a given
instant of time is implemented by the action of a superoperator
T on the instantaneous density operator of the system, with
T being time independent. In this case, the density operator
of the system at any time t , when averaged over different
realizations of the unitary dynamics of the TBM interspersed
with stochastic resets at random times, evolves as [21]

dρ(t )

dt
= −iL (t )ρ(t ) + λT ρ(t ) − λρ(t ), (3)

so that comparing with Eq. (2), one obtains γ = λ and
OρO† = T ρ. As is evident from the dynamics (3), knowing
the average density operator at time t suffices to know its form
at a later time t + dt , thus implying Markovian evolution of
the average density operator. As shown in Refs. [21,22] and
will be further demonstrated in this paper, it is this average
density operator which contains all the relevant informa-
tion on the site-occupation probability of the TBM particle.

The consequences of the dynamics in dictating the form of
this probability of the TBM particle have been explored in
Refs. [21,22]. In implementing the conditional reset explored
in this work, we have a time-dependent T , that is, T = T (t ).
We will show in Sec. II and Appendix A that in contrast to
the Markovian evolution (3), the average density operator has
an evolution that is explicitly non-Markovian and hence more
general: we have

d

dt
ρ(t ) = −iL (t )ρ(t ) + λ

∞∑
α=1

Hα (t ) − λρ(t ), (4)

with

H1(t ) ≡ T (t ) e−λt e
−i

∫ t
0 dt ′ L (t ′ )

+ ρ(0), (5)

Hα (t ) ≡ λ

∫ t

0
dtα−1T (t − tα−1)e−λ(t−tα−1 )

× e
−i

∫ t
tα−1

dt ′ L (t ′ )
+ Hα−1(tα−1); α � 2. (6)

Indeed, the presence of the term λ
∑∞

α=1 Hα (t ) in Eq. (4)
implies that knowing ρ(t ) does not suffice to know the average
density operator at a later instant, and in fact, one has to know
the full evolution of the system up to time t (history-dependent
evolution) to obtain the behavior at a later time. Thus, our pro-
tocol of conditional resetting arms us with a framework in the
domain of open quantum systems to explore the consequences
of a non-Markovian evolution of the density operator, beyond
the more usual Markovian evolution studied in the literature.
A non-Markovian evolution, being dependent on the history
of evolution, is evidently more nontrivial than Markovian
evolution. Yet it is remarkable that we are able to derive in
this paper exact and explicit analytical results for quantities of
direct physical relevance such as the site-occupation probabil-
ity of the TBM particle. The new physics that we may hope
to learn from our study is explicit demonstration of the effects
of non-Markovian evolution in the context of open quantum
systems.

The paper is organized as follows. In Sec. II we provide a
general framework to study quantum evolution interspersed
with instantaneous yet time-dependent nonunitary interac-
tions at random time intervals. The nonunitary interactions
are modeled in terms of a time-dependent interaction su-
peroperator acting on the density operator of the system.
The developed formalism is next applied to the tight-binding
model, a brief summary of whose salient dynamical features
is presented in Sec. III. Section IV forms the core of the
paper, wherein we present analytical results, suitably validated
by numerical results, on how exponential resetting alters the
behavior of the TBM. We discuss in turn our computation
of the site-occupation probability of the TBM particle for
various choices of reset sites and initial location of the TBM
particle, highlighting in particular how and why such choices
manifest in the stationary behavior of the site-occupation
probability. We also discuss the effects of turning on an
external periodic forcing that acts on the TBM particle. Sec-
tion V discusses the drastic change in the behavior of the
site-occupation probability when the resetting time intervals
are sampled from a power-law distribution, emphasizing, in
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FIG. 1. For a generic quantum system undergoing unitary evolu-
tion interspersed at random times with instantaneous and nonunitary
time-dependent interactions, the figure shows a schematic represen-
tation of the dynamical evolution of the density operator for the case
of a time-independent Hamiltonian. Here ρ(0) is the initial density
operator, ρ(t ) is the density operator at the time instant t of interest,
the tα’s are the instances of nonunitary interactions modeled by the
interaction operator T (tα − tα−1), while L is the Liouville operator
describing the unitary evolution.

particular, the conditions required for the emergence of a sta-
tionary state under our protocol of conditional resetting. The
paper ends with conclusions in Sec. VI. Some of the technical
details of our analytic computation are collected in the three
Appendixes.

II. THE GENERAL FRAMEWORK

Consider a generic quantum system described by a time-
dependent Hamiltonian H (t ). The dynamics of the system
involves unitary evolution dictated by H (t ), which is inter-
spersed at random times with instantaneous interactions of the
system with the external environment or a measuring device.
These instantaneous interactions induce nonunitarity in the
evolution of the system. We take these interactions to be time
dependent. Thus, our present setup is a nontrivial generaliza-
tion of the one introduced and studied in Refs. [22,21].

The evolution of the density operator of the system for a
fixed time-duration [0, t] involves the following (see Fig. 1): A
unitary evolution for a random time interval [0, t1] is followed
by an instantaneous nonunitary interaction at the time instant
t1 modeled by a time-dependent interaction superoperator
T (t1). As compared to an ordinary operator that acts on a
state vector to yield a state vector, a superoperator acts on an
ordinary operator to give another ordinary operator [22]. The
instantaneous interaction at time instant t1 is followed by a
unitary evolution for a random time interval [t1, t2], which is
followed by a second instantaneous nonunitary interaction at
t2 described by the superoperator T (t2 − t1), and so on. The in-
teraction superoperator at any instant of time is thus a function
of the time elapsed since the previous interaction. Over the
time interval [0, t], a realization of the evolution of the system
involves a certain α � 0 number of nonunitary interactions
at random time instants t1, t2, . . . , tα , with unitary evolution
for the intermediate time intervals t1 − 0, t2 − t1, t3 − t2, t4 −
t3, . . . , tα − tα−1, t − tα . We take the time intervals τα′+1 ≡
tα′+1 − tα′ ; α′ = 0, 1, 2, . . . , α − 1; t0 = 0 between successive
interactions to be independent and identically distributed
(i.i.d.) random variables sampled from a common distribution
p(τ ). Averaging over different realizations of the dynamics,
the average density operator at time t is evidently given

by [21]

ρ(t ) = U (t )ρ(0);

U (t ) ≡
∞∑

α=0

∫ t

0
dtα

∫ tα

0
dtα−1 · · ·

∫ t3

0
dt2

∫ t2

0
dt1F (t − tα )

× e
−i

∫ t
tα

dt ′L (t ′ )
+ T (tα − tα−1) p(tα − tα−1)

× e
−i

∫ tα
tα−1

dt ′L (t ′ )
+ · · · T (t2 − t1) p(t2 − t1)

× e
−i

∫ t2
t1

dt ′L (t ′ )
+ T (t1) p(t1) e

−i
∫ t1

0 dt ′L (t ′ )
+ , (7)

where ρ(0) is the initial density operator and U (t ) denotes the
nonunitary time-evolution superoperator. Moreover, because
H (t ) at two different times may not commute with each other,
we have invoked time ordering in writing the exponential
factors in the above equation; the minus and plus subscripts
on the exponential indicate negative (i.e., the latest time to
the right) and positive (i.e., the latest time to the left) time

ordering, respectively [21]. The operator e
−i

∫ t
t ′ dτL (τ )

+ , with L
being the Liouville operator, describes unitary evolution and
is defined by its operation on a density operator as [21]

ρ(t ) = e
−i

∫ t
t ′ dτ L (τ )

+ ρ(t ′ < t )

= e
−i

∫ t
t ′ dτ H (τ )

+ ρ(t ′ < t ) e
i
∫ t

t ′ dτ H (τ )
− . (8)

Note that for the case of a time-independent H , no time
ordering is required; consequently, the above equation takes a
simplified form: ρ(t ) = e−iL (t−t ′ )ρ(t ′ < t ) = e−iH (t−t ′ )ρ(t ′ <

t ) eiH (t−t ′ ). The quantity F (t ) in Eq. (7) denotes the probability
for no interaction during time duration t ; given the distribution
p(τ ), one obtains F (t ) as F (t ) = ∫ ∞

t dτ p(τ ). Figure 1 shows
a schematic depiction of the time evolution of the density
operator for one realization of the dynamics and for the case
of a time-independent Hamiltonian.

Although at first glance the expression for ρ(t ) in Eq. (7)
appears formidable for analysis, it does take a simpler form
in the Laplace-transformed space. Given the Laplace convo-
lution theorem that the Laplace transform (denoted by the
operator L ) of a convolution f (t ) ∗ g(t ) ≡ ∫ t

0 dt ′ f (t ′)g(t −
t ′) of two functions f (t ) and g(t ) equals L [ f (t ) ∗ g(t )] =
L [ f (t )]L [g(t )], Eq. (7) in the Laplace domain s writes as

ρ̃(s) = Ũ (s)ρ(0), (9)

where we have

Ũ (s) = L [F (t ) e
−i

∫ t
0 dt ′L (t ′ )

+ ]
∞∑

α=0

(
L

[
T (t )p(t ) e

−i
∫ t

0 dt ′L (t ′ )
+

])α

= L
[
F (t )e

−i
∫ t

0 dt ′L (t ′ )
+

]
I − L

[
T (t )p(t ) e

−i
∫ t

0 dt ′L (t ′ )
+

] , (10)

with Ũ (s) being the Laplace transform of the superoperator
U (t ) and I denoting the identity operator. Before proceed-
ing further, let us remark that Eq. (10) is very general in
that it applies to any Hamiltonian (time-dependent or time-
independent), to any form of the interaction operator T (t )
(time-dependent or time-independent), and to any distribution
p(τ ) of the time interval between successive interactions.
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Let us now specialize to exponential p(τ ), namely,

p(τ ) = λe−λτ , (11)

yielding

F (t ) = e−λt . (12)

Here the parameter λ > 0 denotes the interaction rate or the
probability of interaction per unit time. The quantity 1/λ

yields the average time between two successive interactions.
In this case, we show in Appendix A how differentiating
Eq. (7) with respect to time yields the Lindblad-like equa-
tion for the time evolution of the average density operator as
given by Eq. (4).

Now, for the case of exponential p(τ ), using Eqs. (11)
and (12), the numerator and the denominator of Eq. (10) are,
respectively, given by

L
[
F (t ) e

−i
∫ t

0 dt ′L (t ′ )
+

] =
∫ ∞

0
dt e−(s+λ)t e

−i
∫ t

0 dt ′L (t ′ )
+

≡ Ũ0(s) (13)

and

L
[
T (t )p(t ) e

−i
∫ t

0 dt ′L (t ′ )
+

] = λ

∫ ∞

0
dt e−(s+λ)t T (t ) e

−i
∫ t

0 dt ′L (t ′ )
+

= λ

∫ ∞

0
dt e−s′t T ′(t )

= λ T̃ ′(s′), (14)

where we have defined s′ ≡ (s + λ) and T ′(t ) ≡
T (t ) e

−i
∫ t

0 dt ′L (t ′ )
+ . Equation (10) may therefore be

written as

Ũ (s) = Ũ0(s)

I − λT̃ ′(s′)
; (15)

expanding the right-hand side as a series in λ by using the
operator identity (A − B)−1 = A−1 + A−1B(A − B)−1 leads to
the result

Ũ (s) = Ũ0(s)
∞∑

α=0

λα[T̃ ′(s′)]α. (16)

Note that the operator Ũ0(s) is the Laplace transform of
the product of the interaction-free unitary-evolution operator

U0(t ) ≡ e
−i

∫ t
0 dt ′L (t ′ )

+ and the factor F (t ) = e−λt . In contrast
to the series expansion outlined in Ref. [22], the present ex-
pansion (16) offers a greater degree of generality by factoring
in the time dependence of the interaction operator. In the
following, we will apply the developed formalism, first to
the case of a time-independent Hamiltonian and then to the
time-dependent case. As mentioned previously, the model we
will consider is the so-called tight-binding model, which plays
a paradigmatic role in studies in solid-state physics, e.g., in
modeling nanowires [23,24].

III. THE TIGHT-BINDING MODEL (TBM)

The tight-binding model (TBM) in one dimension is a sim-
ple and representative model for studying quantum dynamics.

The model involves a single quantum particle hopping be-
tween the nearest-neighbor sites of a one-dimensional lattice
with open boundaries. We take the lattice to be extending from
−∞ to ∞, with sites labeled by the index n and the site n = 0
being the origin. The dynamics of the system is described by
the time-independent Hamiltonian

H = −γ

2

∞∑
n=−∞

(|n〉〈n + 1| + |n + 1〉〈n|), (17)

where γ > 0 is the strength of nearest-neighbor hopping, and
the Wannier states |n〉 stand for the state of the particle located
on site n. In terms of the operators

K ≡
∞∑

n=−∞
|n〉〈n + 1|, K† ≡

∞∑
n=−∞

|n + 1〉〈n|, (18)

the Hamiltonian may be expressed as

H = −γ

2
(K + K†), (19)

the advantage being that [K, K†] = 0 allows diagonalization
of the Hamiltonian in terms of the basis formed by the simul-
taneous eigenstates of K and K† called the Bloch states. The
latter states are defined in the momentum space reciprocal to
the space spanned by the Wannier states and obey

K|k〉 = e−ik|k〉, (20)

where we have

|k〉 ≡ 1√
2π

∞∑
n=−∞

e−ink|n〉, |n〉 ≡ 1√
2π

∫ π

−π

dk eink|k〉.

(21)

Let us now ask the question: Given that the particle at
the initial instant t = 0 was on site n0, what is the prob-
ability Pm(t ) of finding it on an arbitrary site m at a later
time t > 0? In terms of the Wannier states, we have Pm(t ) =
|〈m|e−iHt |n0〉|2. A straightforward calculation of this proba-
bility involving the Bloch states can be carried out in terms
of the density operator ρ(t ) of the system, which evolves in
time as ρ(t ) = e−iHtρ(0)eiHt . Here the initial density opera-
tor is given by ρ(0) = |n0〉〈n0|, while in terms of ρ(t ), the
probability Pm(t ) is evidently given by Pm(t ) = 〈m|ρ(t )|m〉 =
〈m|e−iHt |n0〉〈n0|eiHt |m〉. Using Eq. (21), one obtains

eiHt |n〉 = 1√
2π

∫ π

−π

dk eink−iγ t cos k|k〉, (22)

which finally yields [22]

Pm(t ) = 1

(2π )2

∫ π

−π

∫ π

−π

dk dk′ ei(m−n0 )(k−k′ )−i�kk′ t

= J2
|m−n0|(γ t ), (23)

where we have

�kk′ ≡ γ (cos k′ − cos k), (24)

and Jm(x) is the Bessel function of the first kind of order
m with the property J−m(x) = (−1)mJm(x) [25]. Using the
identity

∑∞
m=−∞ J2

m(x) = 1 ∀ x [25], it is checked that as
desired, the probability Pm(t ) is properly normalized to unity:
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FIG. 2. For the bare TBM undergoing unitary evolution accord-
ing to the Hamiltonian (17), the figure shows the site-occupation
probability Pm(t ), given by Eq. (23), at four time instances. The
particle is taken to be initially located on site n0 = 0, while the
parameter γ has the value γ = 1. One may observe the spreading
of the probability with the passage of time, implying the absence of
any stationary state with the particle localized in space.

∑∞
m=−∞ Pm(t ) = 1. From its very definition, it follows that

the quantity Pm(t ) may be interpreted as the propagator of
the TBM, with the quantity 1/γ evidently being the inherent
dynamical timescale of the system.

Having obtained the site-occupation probability in
Eq. (23), one may obtain the mean displacement from the
initial location as 〈m − n0〉 = ∑∞

m=−∞(m − n0)Pm(t ) = 0,
where we have used the fact that Pm(t ) = P−m(t ). The next
quantity of interest is the mean-square displacement (MSD)
from the initial location, obtained as

S(t ) ≡
∞∑

m=−∞
(m − n0)2 Pm(t ) = γ 2t2

2
, (25)

where we have used the result
∑∞

m=−∞ m2J2
m(x) = x2/2 [26].

Some features are evident from the results (23) and (25).
The bare TBM dynamics does not have a stationary state,
see Fig. 2, which is owing to the fact that the TBM particle
moves on an open lattice, and so spreads out to a larger
number of lattice sites with respect to its initial location n0 as
time progresses. Concomitantly, the MSD grows forever as a
function of time. The quadratic growth of the MSD with time
may be contrasted with the corresponding result in classical
diffusion in which the MSD grows linearly with time. In the
following section, we will unveil how these features get dras-
tically modified when the TBM is subject to time-dependent
interactions of a particular sort, namely, that modeling condi-
tional stochastic resetting.

IV. TBM SUBJECT TO CONDITIONAL RESETTING
AT EXPONENTIALLY DISTRIBUTED TIMES

In this work we will choose a particular form of interaction
that implements an instantaneous reset of the TBM particle to
a specific set of sites. Specifically, the system evolves via the
repetitive occurrence of the following pair of events: unitary

FIG. 3. Illustration of the conditional resetting of the TBM parti-
cle. The figure shows the evolution of the system as time progresses
while starting with the TBM particle on site n0 on the lattice at
time t = 0. The system evolves unitarily in time for a random time
duration t1, which is indicated by the dashed lines; at time instant
t1, the particle has different probabilities to be found on different
sites on the lattice; subsequently (i.e., after a random time interval
τ1 with respect to the initial time t = 0), the system undergoes an
instantaneous conditional reset to sites nr and nl with probabilities
given by Eq. (27). Namely, the probability to reset to site nr (respec-
tively, to site nl ) is given by the probability at time t1 for the particle
to be found on any site to the right (respectively, to the left) of the
origin (n = 0) and half the probability for the particle to be at the
origin at time t1. These reset events are shown by the red curves.
Subsequent to the first reset at time instant t1, the system undergoes
unitary evolution for the random time interval τ2 = t2 − t1, following
which there is the second reset to sites nr and nl (not shown) with
probabilities given by Eq. (29). The evolution proceeds through such
alternating events of unitary evolution and instantaneous conditional
resetting.

evolution for a random time governed by the Hamiltonian
(17), followed by an instantaneous relocation of the particle
to two possible reset locations with a probability that depends
on the current location of the particle at the time instant of
reset. Thus, our setup deviates significantly from earlier work
on stochastic resets in quantum systems, specifically, in the
context of the TBM, in which relocation to a fixed site with
a rate that is constant and independent of the current location
of the particle has been pursued [21,22]. The TBM (and re-
lated systems) subjected to projective measurements has been
extensively pursued while addressing the issue of detection
problems corresponding to a quantum particle arriving at a
chosen set of sites [27–36]. Our work is distinct in that it deals
with a theme that has not been considered in the above refer-
ences, namely, the protocol of conditional stochastic resetting
that we now define.

While starting with the particle on a given site n0 at time
t = 0, our protocol of conditional reset conditioned on the
current location of the particle is as follows (see Fig. 3). The
particle evolves unitarily for a random time τ1 distributed
according to the exponential (11) and then undergoes an in-
stantaneous reset. The location the particle resets to depends
on its location just prior to the reset, namely, the location
at time instant t1 = τ1. Specifically, on being located to the
right (respectively, to the left) of the origin n = 0, the particle
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resets to a given site nr to the right (respectively, to a given
site nl to the left) of the origin. On the other hand, if the
particle at time t1 = τ1 is located at the origin, it resets with
an equal probability of 1/2 to the sites nr and nl , respectively.
Let us denote the probability to reset to the sites nr and nl

by 	n0
nr

(γ τ1) and 	n0
nl

(γ τ1), respectively. Noting that at time
t1 = τ1 the probability for the particle to be located to the
right and to the left of the origin is respectively given by∑∞

j=1 |〈 j|e−iHτ1 |n0〉|2 and
∑−∞

j=−1 |〈 j|e−iHτ1 |n0〉|2, while that
for the particle to be located at the origin is |〈0|e−iHτ1 |n0〉|2,
we obtain

	n0
nr

(γ τ1) =
∞∑
j=1

|〈 j|e−iHτ1 |n0〉|2 + 1

2
|〈0|e−iHτ1 |n0〉|2,

	n0
nl

(γ τ1) =
−∞∑
j=−1

|〈 j|e−iHτ1 |n0〉|2 + 1

2
|〈0|e−iHτ1 |n0〉|2. (26)

Employing Eq. (23), the above expressions of probabilities
rewrite as

	n0
nr

(γ τ1) =
∞∑
j=1

J2
| j−n0|(γ τ1) + 1

2
J2
|n0|(γ τ1),

	n0
nl

(γ τ1) =
−∞∑
j=−1

J2
| j−n0|(γ τ1) + 1

2
J2
|n0|(γ τ1). (27)

Note that using
∑∞

m=−∞ J2
m(x) = 1 ∀ x, we obtain for arbitrary

t the normalization

	n0
nr

(γ t ) + 	n0
nl

(γ t ) = 1 ∀ n0. (28)

The first reset at time t1 is followed by unitary evolution
for a random time interval τ2 distributed according to the
distribution (11), which is followed by an instantaneous reset
at time t2 = t1 + τ2. In accordance with our protocol, the reset
may happen to either the site nr or the site nl , depending
on whether the particle at time t2 is located, respectively, to
the right and to the left of the origin. In other words, the
reset at time t2 to sites nr and nl takes place with respective
probabilities 
nr (γ τ1, γ τ2) and 
nl (γ τ1, γ τ2), with


nr (γ τ1, γ τ2) = 	nl
nr

(γ τ2)	n0
nl

(γ τ1) + 	nr
nr

(γ τ2)	n0
nr

(γ τ1),


nl (γ τ1, γ τ2) = 	nl
nl

(γ τ2)	n0
nl

(γ τ1) + 	nr
nl

(γ τ2)	n0
nr

(γ τ1).

(29)

Continuing it this way, the probabilities for the next reset after
a random interval τ3 (i.e., at time instant t3 = t2 + τ3) are
given by


nr (γ τ1, γ τ2, γ τ3) = 	nl
nr

(γ τ3)
nl (γ τ1, γ τ2)

+ 	nr
nr

(γ τ3)
nr (γ τ1, γ τ2),


nl (γ τ1, γ τ2, γ τ3) = 	nl
nl

(γ τ3)
nl (γ τ1, γ τ2)

+ 	nr
nl

(γ τ3)
nr (γ τ1, γ τ2). (30)

Proceeding in this manner, we obtain the iterative and condi-
tional structure of the reset probabilities. Note that we have

the conservation of probability:


nr ({γ τα}) + 
nl ({γ τα}) = 1,


nr (γ τ1) = 	n0
nr

(γ τ1), 
nl (γ τ1) = 	n0
nl

(γ τ1). (31)

A realization of the dynamics for a fixed time t comprises the
aforementioned alternating sequence of unitary evolution for
a random time, which is followed by an instantaneous reset to
sites nl and nr with probabilities that depend on the full history
of time evolution up to the instant of reset; see Eqs. (29)
and (30).

We would like now to study our model by employing the
general framework developed in Sec. II. Our object of study
is the probability

Pm(t ) = 〈m|ρ(t )|m〉 (32)

for the TBM particle to be found on site m at time t , given
that it was on site n0 at time t = 0; the overbar denotes av-
eraging over different realizations of the dynamics of unitary
evolution interspersed with instantaneous conditional resets at
random times. Working in the Laplace space s, the mentioned
probability reads as

P̃m(s) = 〈m|̃ρ(s)|m〉, (33)

whose evaluation requires that of the quantity ρ̃(s) given by
Eqs. (9) and (16).

In order to compute ρ̃(s), we need to first write an explicit
expression of the time-dependent interaction superoperator
T (t ) that implements our protocol of conditional resetting.
In this respect, we note that the superoperator T (t ) projects
the density operator prior to a reset into a density operator
characterizing a mixed state. Let ρ∓(τ1) denote the den-
sity operator just before and just after the first reset taking
place at time instant t1 = τ1. We evidently have ρ+(τ1) =
	n0

nr
(γ τ1)|nr〉〈nr | + 	n0

nl
(γ τ1)|nl〉〈nl |, while by definition, we

have ρ+(τ1) = T (τ1)ρ−(τ1), with Tr(ρ±(τ1)) = 1. That the
density operator just before a reset has a trace equal to unity
follows from the fact that the trace of the density operator just
after the previous reset has trace equal to unity and the fact that
the time evolution between two resets is unitary and thus trace
preserving. Consequently, we must have T (τ1) of the form

(n1n2|T (τ1)|n3n4)

= δn3n4

[
δn1nr δn2nr 	

n0
nr

(γ τ1) + δn1nl δn2nl 	
n0
nl

(γ τ1)
]
; (34)

indeed, we have

〈n1|T (τ1)ρ−(τ1)|n2〉
=

∑
n3n4

(n1n2|T (τ1)|n3n4)〈n3|ρ−(τ1)|n4〉

=
∑
n3n4

δn3n4

[
δn1nr δn2nr 	

n0
nr

(γ τ1) + δn1nl δn2nl 	
n0
nl

(γ τ1)
]

× 〈n3|ρ−(τ1)|n4〉
= δn1nr δn2nr 	

n0
nr

(γ τ1) + δn1nl δn2nl 	
n0
nl

(γ τ1)

= 〈n1|ρ+(τ1)|n2〉, (35)

where in arriving at the first step, we have used Eq. (B1),
while to obtain the second last step, we have used

064125-7



ANISH ACHARYA AND SHAMIK GUPTA PHYSICAL REVIEW E 108, 064125 (2023)

∑
n1n2

δn1n2〈n1|ρ−(τ1)|n2〉 = Tr[ρ−(τ1)] = 1. Proceeding as
above, one may straightforwardly check that the superoperator
T (τ2) for the second reset at time t2 = t1 + τ2 must satisfy

(n1n2|T (τ2)|n3n4) = δn3n4

[
δn1nr δn2nr 
nr (γ τ1, γ τ2)

+ δn1nl δn2nl 
nl (γ τ1, γ τ2)
]
, (36)

ensuring that

ρ+(τ2) = T (τ2)ρ−(τ2)

= 
nr (γ τ1, γ τ2)|nr〉〈nr | + 
nl (γ τ1, γ τ2)|nl〉〈nl |,
(37)

and that

(n1n2|T (τ3)|n3n4) = δn3n4

[
δn1nr δn2nr 
nr (γ τ1, γ τ2, γ τ3)

+ δn1nl δn2nl 
nl (γ τ1, γ τ2, γ τ3)
]
, (38)

so that

ρ+(τ3) = T (τ3)ρ−(τ3)

= 
nr (γ τ1, γ τ2, γ τ3)|nr〉〈nr |
+ 
nl (γ τ1, γ τ2, γ τ3)|nl〉〈nl |. (39)

Armed with the knowledge that we now have of the form of
the interaction superoperator T (τ ) for any τ , we now proceed
to obtain explicit results for the probability Pm(t ) for the TBM
particle to be on site m at time t , given its initial location n0.

A. Computation of site-occupation probability

In order to compute the site-occupation probability Pm(t ),
we start with the corresponding expression in the Laplace
domain s, obtained combining Eqs. (9) and (16) as

P̃m(s) = 〈m|Ũ0(s)
∞∑

α=0

λα[T̃ ′(s′)]αρ(0)|m〉

=
∞∑

α=0

P̃
(α)

m (s), (40)

where P̃
(α)

m (s) ≡ 〈m|Ũ0(s)λα[T̃ ′(s′)]αρ(0)|m〉 is the contribu-

tion involving α number of resets to the quantity P̃m(s). The
corresponding equation in the time domain has the obvious
form

Pm(t ) =
∞∑

α=0

P
(α)
m (t ). (41)

The TBM Hamiltonian (17) being time independent guar-
antees the commutativity of the Hamiltonian at distinct times,
and so no time ordering is required to be invoked in our analy-
sis. Consequently, the quantities Ũ0(s) and T̃ ′(s′) in Eqs. (13)
and (14), respectively, are modified to

Ũ0(s) ≡
∫ ∞

0
dt e−(s+λ)t e−iL t ,

T̃ ′(s′) =
∫ ∞

0
dt e−(s+λ)t T (t ) e−iL t . (42)

To proceed requires calculation of the matrix elements
of Ũ0(s) and T̃ ′(s′); the former computation has been

previously presented in Ref. [22] and is recalled here for use in
subsequent analysis. We have

(n′
1n′

2|Ũ0(s)|n1n2)

=
∫ ∞

0
dτ e−(s+λ)τ 〈n′

1|e−iHτ |n1〉〈n2|eiHτ |n′
2〉

= 1

(2π )2

∫ π

−π

∫ π

−π

dk dk′ eik(n′
1−n1 )−ik′(n′

2−n2 )

(s + λ)I + i�kk′
. (43)

Here, in the first step, we have used Eq. (B6), while the second
step is obtained on use of Eqs. (22) and (21). Moreover, we
have used the result that one has L (e−αt ) = 1/(s + α). Let
us then evaluate the first term of the series given by Eq. (40);
we have

P̃
(0)

m (s) = 〈m|Ũ0(s)ρ(0)|m〉
=

∑
n1,n2

(mm|Ũ0(s)|n1n2)〈n1|ρ(0)|n2〉

= (mm|Ũ0(s)|n0n0), (44)

where we have used ρ(0) = |n0〉〈n0| and Eq. (B1). Using
Eq. (43), we get

P̃
(0)

m (s) = 1

(2π )2

∫ π

−π

∫ π

−π

dk dk′ ei(k−k′ )(m−n0 )

(s + λ)I + i�kk′
, (45)

which using the Laplace convolution theorem leads to the
corresponding result in the time domain, as

P
(0)
m (t ) = e−λt

(2π )2

∫ π

−π

∫ π

−π

dk dk′ei(m−n0 )(k−k′ )e−i�kk′ t

= e−λt J2
|m−n0|(γ t ), (46)

where in the second line we have used Eq. (23).
Next, we may calculate the second term of the series in

Eq. (40) by using the matrix element of the superoperator T
given by Eq. (34). Relegating the details of the derivation to
Appendix C, we mention here the final result that reads

P
(1)
m (t ) = λe−λt

∫ t

0
dt1

{
J2
|m−nr |[γ (t − t1)]	n0

nr
(γ t1)

+ J2
|m−nl |[γ (t − t1)]	n0

nl
(γ t1)

}
. (47)

In a similar manner, the third term of the series in Eq. (40)
may be evaluated to obtain in the time domain that (see
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Appendix D):

P
(2)
m (t ) = λ2e−λt

∫ t

0
dt2

∫ t2

0
dt1

[
J2
|m−nr |[γ (t − t2)]

{
	nr

nr
[γ (t2 − t1)]	n0

nr
(γ t1) + 	nl

nr
[γ (t2 − t1)]	n0

nl
(γ t1)

}
+ J2

|m−nl |[γ (t − t2)]
{
	nr

nl
[γ (t2 − t1)]	n0

nr
(γ t1) + 	nl

nl
[γ (t2 − t1)]	n0

nl
(γ t1)

}]
, (48)

and the αth (α � 1) term of the series in Eq. (40) turns out to be

P
(α)
m (t ) = λαe−λt

[
t
∫
0

dtα
tα∫
0

dtα−1 · · ·
t3∫
0

dt2
t2∫
0

dt1

[
J2
|m−nr |[γ (t − tα )]

∑
μ1,μ2,...,μα

	μα

nr
[γ (tα − tα−1)] · · · 	μ1

μ2
[γ (t2 − t1)]	n0

μ1
(γ t1)

+ J2
|m−nl |[γ (t − tα )]

∑
μ1,μ2,...,μα

	μα

nl
[γ (tα − tα−1)] · · · 	μ1

μ2
[γ (t2 − t1)]	n0

μ1
(γ t1)

]
, (49)

where the μα’s can be either nr or nl . We see from the above
expression that P

(α)
m (t ) is obtained from contributions of all

possible trajectories connecting the initial site n0 and the site
m of interest, via the reset sites nr and nl , with resetting taking
place at times t1, t2, . . . , tα .

Thus far we have been very general as regards the choice of
the initial location n0. From Eq. (49), it is evident that for the
number of resets α � 2, the complexity of the nested integral
in the expression of P

(α)
m (t ) continues to grow with α owing

to the iterative structure of the interaction superoperator T .
This feature renders the resulting analytical expression more
challenging to handle in the time domain. Nevertheless, we
will particularly be interested in the stationary-state properties
of the dynamics, and, in particular, in the behavior of Pm(t ) as
t → ∞. We show below that despite the mentioned analytical
complexity, explicit results may be derived for the stationary
state for arbitrary choice of n0. We treat first the simpler case
of reset sites equidistant with respect to the initial location at
origin, and then move on to discuss the more general case.

1. Reset sites equidistant from the initial location taken
to be at the origin

Let us consider a special case: the reset sites are equidistant
from the initial location of the TBM particle that we take to be
at the origin n0 = 0; thus, we have nl = −nr . From Eq. (27),
we note on setting n0 = 0 that 	n0

nr
(γ τ1) = 	n0

nl
(γ τ1), so

that Eq. (28) implies then that 	n0
nr

(γ τ1) = 	n0
nl

(γ τ1) = 1/2.
Moreover, we have 	nr

nr
(γ τ2) = 	nl

nl
(γ τ2) and 	nr

nl
(γ τ2) =

	nl
nr

(γ τ2), so that Eq. (29), together with Eq. (31), implies that

nl (γ τ1, γ τ2) = 
nr (γ τ1, γ τ2) = 1/2. Arguing in a similar
manner leads to the result 
nl ({γ τα}) = 
nr ({γ τα}) = 1/2.
From Eq. (47), we have

P
(1)
m (t ) = λ

2
e−λt

∫ t

0
dt1

{
J2
|m−nr |[γ (t − t1)]

+ J2
|m−nl |[γ (t − t1)]

}
. (50)

On the other hand, the αth (α � 2) term, Eq. (49), involv-
ing α number of resetting events is obtained as

P
(α)
m (t ) = λα

2
e−λt

∫ t

0
dt ′ (t ′)α−1

(α − 1)!

{
J2
|m−nr |[γ (t − t ′)]

+ J2
|m−nl |[γ (t − t ′)]

}
. (51)

Consequently, we obtain on using the above results and
Eq. (46) with n0 = 0 in Eq. (41) the desired probability of
finding the particle at site m at time t as

Pm(t ) = e−λt J2
|m|(γ t ) + λ

2
e−λt

∫ t

0
dt1

{
J2
|m−nr |[γ (t − t1)]

+ J2
|m−nl |[γ (t − t1)]

}
+ λ

2
e−λt

∫ t

0
dt ′(e−λt ′ − 1)

{
J2
|m−nr |[γ (t − t ′)]

+ J2
|m−nl |[γ (t − t ′)]

}
, (52)

where the third term is obtained by summing the contribution
of P

(α)
m (t ) from α = 2 to α = ∞. The above equation can be

further simplified, yielding finally that

Pm(t ) = e−λt J2
|m|(γ t )

+ λ

2

∫ t

0
dt ′ e−λ(t−t ′ ){J2

|m−nr |[γ (t − t ′)]

+ J2
|m+nr |[γ (t − t ′)]

}
, (53)

where we have used nl = −nr . Using
∑∞

m=−∞ J2
m(x) = 1, it

may be easily checked from the above equation that Pm(t ) is
normalized to unity. The site-occupation probability given by
(53) is symmetric under nr → −nr , which is a manifestation
of the reset sites being equidistant from the origin. An im-
plication is that the TBM particle has equal probability to be
found on the two reset sites nr and −nr .

Equation (53) may be explained physically as follows: The
first term on the right-hand side arises from those realizations
of evolution for time t that did not undergo a single reset
since t = 0 [the probability for which is exp(−λt )], and con-
sequently, the corresponding contribution to Pm(t ) is given
by the probability of no reset for time t multiplied by the
probability J2

|m|(γ t ) to be on site m at time t in the absence
of any reset and while starting from site n0 = 0 at time t = 0.
In order to understand the second term on the right-hand side,
we note that every reset collapses the state of the system to
either | − nr〉 or |nr〉 with an equal probability of 1/2, and its
evolution starts afresh from either the site −nr or the site nr .
Consequently, at time t , what matters is when the last reset
took place, and the corresponding contribution to Pm(t ) is
given by the product of the probability λdt ′ exp[−λ(t − t ′)] at
time t of the last reset to take place in the interval [t ′, t ′ − dt ′],
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with t ′ ∈ [0, t], with the probability in the absence of any
reset for the particle to be on site m resulting from evolution
for time duration (t − t ′) while starting from site −nr or
site nr . The latter probabilities are given by J2

|m+nr |[γ (t − t ′)]
and J2

|m−nr |[γ (t − t ′)], respectively. We thus see that although
our resetting protocol has an explicit memory of time evolu-
tion up to the instant of reset, as implied by Eqs. (29) and
(30), for the specific case of the initial location of the TBM
particle to be at the origin and the two reset locations being
equidistant from the origin, what matters in determining the
probability Pm(t ) is the evolution since the last reset and all
memories of time evolution previous to the last reset become
irrelevant. Equation (53) has an exact correspondence with
the last-renewal-equation approach discussed in Refs. [1,22]
to determine reset-induced probability distributions for cases
in which the reset protocol is such as not having any memory
dependence, that is, the reset at any time instant takes place
with a constant probability that is independent of the time
evolution up to the instant of reset.

Next, we obtain the mean displacement from the initial
location n0 = 0, given by [m − n0](t ) = ∑∞

m=−∞ mPm(t ), as

m(t ) = 0, (54)

using
∑∞

m=−∞ mJ2
m(t ) = 0. Let us remark that the mean dis-

placement from the initial location being zero is also observed
in the bare TBM dynamics. The reason is the presence of
symmetry in the site-occupation probability about the origin
in both the cases under consideration.

On the other hand, the MSD of the TBM particle from its
initial location, defined as

S(t ) ≡
∞∑

m=−∞
(m − n0)2 Pm(t ), (55)

may be evaluated by using Eqs. (53) and (25) as

S(t ) = γ 2

λ2
[1 − e−λt (1 + λt )] + (1 − e−λt )n2

r . (56)

Considering Eq. (53) in the large-t limit yields the
stationary-state probability P

st
m. Clearly, the first term in

Eq. (53) decays to zero at large times, and we obtain

P
st
m = λ

2

∫ ∞

0
dt ′ e−λt ′[

J2
|m−nr |(γ t ′) + J2

|m+nr |(γ t ′)
]
. (57)

We now use the identity [37]∫ ∞

0
dt e−at Jν (bt )Jν (ct ) = 1

π (bc)
1
2

Qν− 1
2

(
a2 + b2 + c2

2bc

)
,

(58)

with the conditions Re[a ± i(b + c)] > 0, c > 0 and Re[ν] >

− 1
2 . Here Qν (θ ) is the Legendre function of the second kind,

obtained by putting μ = 0 in the associated Legendre function
of the second kind denoted by Qμ

ν (θ ), with μ and ν being
real numbers. The latter function may be related to the Olver’s

hypergeometric function 2F1(a, b; c; z) as [25]

Qμ
ν (θ ) = √

π eiπμ �(μ + ν + 1)(θ2 − 1)μ/2

2ν+1 θμ+ν+1

× 2F1

(
μ

2
+ ν

2
+ 1,

μ

2
+ ν

2
+ 1

2
; ν + 3

2
;

1

θ2

)
,

(59)

with μ + ν �= −1,−2,−3, . . .. Here �(z) is the Gamma func-
tion. Using Eq. (58) in Eq. (57), we obtain

P
st
m = λ

2πγ

(
Q|m−nr |− 1

2
(θ ) + Q|m+nr |− 1

2
(θ )

)
, (60)

with

θ ≡ 1 + λ2

2γ 2
. (61)

The stationary-state probability (60) offers a stark contrast
when viewed against the result obtained in Ref. [22] due to the
presence of two terms accounting for the reset to the sites nr

and −nr , while in the mentioned reference, the TBM particle
was considered to be resetting to a single site N .

As is well known, quantum measurements lead to non-
negligible and irreversible interaction between the measuring
apparatus and the system of interest, quite unlike classi-
cal measurement processes. Indeed, one of the postulates of
quantum mechanics is that every measurement involves in-
stantaneous projection of the state of the system onto the
quantum state dictated by the measuring apparatus [38]. It was
shown by Misra and Sudarshan that when such measurements
that project the system to the initial state are carried out at reg-
ular intervals of time, the system remains frozen in the initial
state in the limit in which the measurements are sufficiently
frequent. This is called the quantum Zeno effect [39,40]. The
Zeno effect has been explored extensively in the literature in
a variety of contexts, e.g., in solving optimization problems
with multiple arbitrary constraints including inequalities [41],
in discussing noise correlations in photon polarization [42],
in addressing universal control between noninteracting qubits
[43], and many others. To investigate the Zeno-limit behavior
of Eq. (60), let us consider the limit λ/γ → ∞. This limit
may be achieved by considering at a fixed γ the limit λ → ∞,
which corresponds to making measurements at very frequent
time intervals (recall that 1/λ is the average time interval be-
tween two successive resetting), thus conforming to the Zeno
setup. Using the series expression of Olver’s hypergeometric
function given by [25]

2F1(a, b; c; z) = 1

�(a)�(b)

∞∑
l=0

�(a + l )�(b + l )

l! �(c + l )
zl , (62)

with |z| < 1, one obtains limz→0 2F1(a, b; c; z) = 1. Using this
result in Eq. (60) yields

P
st
m = 1

2 (δm,nr + δm,−nr ). (63)

In the Zeno limit, the Zeno effect that involves projective
measurements to the initial state implies that the system re-
mains frozen in the initial state. By contrast, under conditional
resetting of the TBM particle to predefined reset locations that
are equidistant from the initial location at the origin, Eq. (63)

064125-10



TIGHT-BINDING MODEL SUBJECT TO CONDITIONAL … PHYSICAL REVIEW E 108, 064125 (2023)

implies that the system in the same limit localizes perfectly at
these locations, and one has equal probability of finding the
particle in the two locations.

In the stationary state, while the mean displacement from
the initial location is zero,

mst = 0, (64)

Eq. (56) yields the stationary-state MSD as

S
st = γ 2

λ2
+ n2

r . (65)

We now move on to discuss the case in which the reset sites
are not equidistant from the initial location, with the latter
taken to be arbitrary.

2. Arbitrary initial location with reset sites not
equidistant from the latter

We now consider the general case of arbitrary initial lo-
cation and arbitrary reset sites, namely, ones that are not
necessarily equidistant with respect to the initial location. As
we will unveil, the consequent memory dependence of the
reset probabilities will have a nontrivial effect on the site-
occupation probabilities Pm(t ). To this end, we have on using
Eqs. (41) and (46) that

Pm(t ) = e−λt J2
|m−n0|(γ t ) +

∞∑
α=1

P
(α)
m (t ). (66)

To proceed, we use Eq. (49) to write P
(α)
m (t ) in a form similar

to Eq. (47), as

P
α+1
m (t ) =

∫ t

0
dtα+1

{
J2
|m−nr |[γ (t − tα+1)]Rnr (γ tα+1)

+ J2
|m−nl |[γ (t − tα+1)]Rnl (γ tα+1)

}
; α � 1, (67)

with

Rμ(γ tα+1) ≡
∫ tα+1

0
dtα

(
	nr

μ [γ (tα+1 − tα )]Rnr (γ tα )

+ 	nl
μ [γ (tα+1 − tα )]Rnl (γ tα )

)
; α � 1, (68)

and Rμ(γ tα ) denoting the effective reset probability for re-
setting to site μ (with μ = nl or nr) at time instant t = tα .
Equation (68), with the initial condition

Rμ(γ t1) = 	n0
μ (γ t1), (69)

when used in Eq. (67) provides a recursive structure for the
quantity P

(α)
m (t ). This structure allows us to obtain numerically

the quantities P
α+1
m (t ) for α � 1 and hence the desired proba-

bility Pm(t ). Once the latter is known, the mean displacement
[m − n0](t ) and the MSD S(t ) can also be computed numeri-
cally.

It turns out that unlike the case treated in Sec. IV A 1, a
closed-form expression for Pm(t ) cannot be obtained in the
present case of general initial location n0 and general reset
locations nl and nr . Yet, for the latter scenario, one obtains
quite remarkably exact results for the stationary state P

st
m, a

calculation we turn to in the following.

Obtaining the stationary state requires evaluating P
(α)
m (t )

and hence Pm(t ) in the limit t → ∞. Owing to the com-
plicated and nested structure of the integral determining the
quantity P

(α)
m (t ), see Eq. (49) or Eqs. (67) and (68), the station-

ary state may be more easily obtained by considering P
(α)
m (t )

in the Laplace domain s. In this case, Eq. (66) along with
Eq. (49) gives

P̃m(s) = 1

πγ

{
Q|m−n0|− 1

2
+ λ Q|m−nr |− 1

2

[(
1 + λ	̃nr

nr
+ . . .

)
	̃n0

nr

+ (
λ	̃nl

nr
+ . . .

)
	̃n0

nl

] + λ Q|m−nl |− 1
2

× [(
1 + λ	̃nl

nl
+ . . .

)
	̃n0

nl
+ (

λ	̃nr
nl

+ . . .
)
	̃n0

nr

]}
,

(70)

where we have used

L
[
e−λt J2

|m−n′ |(γ t )
] = 1

πγ
Q|m−n′ |− 1

2
(θ ′) (71)

that follows from Eq. (58). We have also used Eq. (27) to
imply that

L
[
e−λt	

j
k (γ t )

] = 	̃
j
k (θ ′), (72)

where we have defined

θ ′ ≡ 1 + (λ + s)2

2γ 2
. (73)

In Eq. (70) we have used 	̃
j
k ≡ 	̃

j
k (θ ′) and Q ≡ Q(θ ′),

wherein we have suppressed the argument θ ′. Next, consider
Eq. (28): multiplying both sides of the equation by e−(s+λ)t ,
integrating over t from 0 to ∞ and then using Eq. (72), one
gets

	̃n0
nl

(θ ′) + 	̃n0
nr

(θ ′) = 1

λ + s
∀ n0. (74)

Now, 	
j
k (γ t ) being a probability is smaller than unity, and

so we have

λe−λt	
j
k (γ t ) < λe−λt . (75)

It then follows that we have

L
[
λe−λt	

j
k (γ t )

]
< L [λe−λt ] = λ

λ + s
< 1, (76)

which implies on using Eq. (72) that λ	̃
j
k (θ ′) < 1.

Let us define a matrix 	̃ as

	̃ ≡
[
	̃nr

nr
	̃nr

nl

	̃nl
nr

	̃nl
nl

]
, (77)

where the ( jk)-th element of the matrix 	̃ is given by

[	̃] jk = 	̃
j
k . (78)
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Using the matrix (77), Eq. (70) may now be written as

P̃m(s) = 1

πγ

{
Q|m−n0|− 1

2
+ λ Q|m−nr |− 1

2

[ ∞∑
r=0

(λ)r (	̃r )nr
nr

	̃n0
nr

+
∞∑

r=1

(λ)r (	̃r )nl
nr

	̃n0
nl

]

+ λ Q|m−nl |− 1
2

[ ∞∑
r=0

(λ)r (	̃r )nl
nl
	̃n0

nl
+

∞∑
r=1

(λ)r (	̃r )nr
nl

	̃n0
nr

]}

= 1

πγ

{
Q|m−n0|− 1

2
+ λ Q|m−nr |− 1

2

[
((I − λ	̃)

−1
)nr nr 	̃

n0
nr

+ ([(λ	̃)−1 − I]
−1

)nl nr 	̃
n0
nl

]
+ λ Q|m−nl |− 1

2

[
((I − λ	̃)

−1
)nl nl 	̃

n0
nl

+ ([(λ	̃)−1 − I]
−1

)nr nl 	̃
n0
nr

]}
, (79)

where the respective matrix elements of the matrices
(I − λ	̃)

−1
and [(λ	̃)−1 − I]

−1
are given by

((I − λ	̃)
−1

)nr nr = 1 − λ	̃nl
nl(

1 − λ	̃
nr
nr

)(
1 − λ	̃

nl
nl

) − λ2	̃
nl
nr 	̃

nr
nl

,

(80)

((I − λ	̃)
−1

)nl nl = 1 − λ	̃nr
nr(

1 − λ	̃
nr
nr

)(
1 − λ	̃

nl
nl

) − λ2	̃
nl
nr 	̃

nr
nl

,

(81)

([(λ	̃)−1 − I]
−1

)nl nr = λ	̃nl
nr(

1 − λ	̃
nr
nr

)(
1 − λ	̃

nl
nl

) − λ2	̃
nl
nr 	̃

nr
nl

,

(82)(
[(λ	̃)−1 − I]

−1
)

nr nl

= λ	̃nr
nl(

1 − λ	̃
nr
nl

)(
1 − λ	̃

nl
nl

) − λ2	̃
nl
nr 	̃

nr
nl

.

(83)

Using the well-known final value theorem, limt→∞ f (t ) =
lims→0 sF (s); F (s) ≡ L ( f (t )), yields the stationary-state
value from Eq. (79) as

P
st
m ≡ lim

t→∞ Pm(t ) = lim
s→0

s P̃m(s). (84)

To proceed, let us consider evaluating the matrix element
((I − λ	̃)

−1
)nr nr , which on using Eqs. (80) together with

Eq. (74) with n0 = nr and also with n0 = nl , reads as

((I − λ	̃)
−1

)nr nr = (s + λ)2
(
1 − λ	̃nl

nl

)
s
[
s + 2λ − λ(s + λ)

(
	̃

nl
nl + 	̃

nr
nr

)] ,

(85)

so that

lim
s→0

s((I − λ	̃)
−1

)nr nr Q|m−nr |− 1
2

= λ
[
1 − λ	̃nl

nl
(θ )

]
2 − λ

[
	̃

nl
nl (θ ) + 	̃

nr
nr (θ )

]Q|m−nr |− 1
2
(θ ), (86)

where note that Q|m−nr |− 1
2

and 	̃
j
k’s are functions of θ ′ defined

in Eq. (73), and so after taking the limit s → 0 become func-
tions of θ defined in Eq. (61).

In a similar manner, the matrix elements in Eqs. (81),
(82), (83) may be evaluated. Equation (79) then yields the
stationary-state probability of finding the TBM particle on site

m, given an arbitrary initial location n0 and arbitrary reset sites
nr and nl , as

P
st
m = λ2

πγ

([
1 − λ	̃nl

nl
(θ )

][
	̃n0

nr
(θ ) + 	̃n0

nl
(θ )

]
2 − λ

[
	̃

nl
nl (θ ) + 	̃

nr
nr (θ )

] Q|m−nr |− 1
2
(θ )

+
[
1 − λ	̃nr

nr
(θ )

][
	̃n0

nr
(θ ) + 	̃n0

nl
(θ )

]
2 − λ

[
	̃

nl
nl (θ ) + 	̃

nr
nr (θ )

] Q|m−nl |− 1
2
(θ )

)
,

(87)

where we have used the fact that the first term in Eq. (79)
vanishes upon taking the limit s → 0. On using Eq. (74) with
s = 0 for n0, n0 = nr and n0 = nl , we finally get

P
st
m = λ

πγ

(
	̃nl

nr
(θ )

	̃
nl
nr (θ ) + 	̃

nr
nl (θ )

Q|m−nr |− 1
2
(θ )

+ 	̃nr
nl

(θ )

	̃
nl
nr (θ ) + 	̃

nr
nl (θ )

Q|m−nl |− 1
2
(θ )

)
, (88)

where 	̃
j
μ(θ ) (with μ = nr or nl ) is given from Eqs. (27) and

(71) as

	̃ j
nr

(θ ) = 1

πγ

∞∑
k=1

Q|k− j|− 1
2
(θ ) + 1

2πγ
Q| j|− 1

2
(θ ),

	̃ j
nl

(θ ) = 1

πγ

−∞∑
k=−1

Q|k− j|− 1
2
(θ ) + 1

2πγ
Q| j|− 1

2
(θ ). (89)

Note that, as desired, the stationary-state probability in
Eq. (88) does not depend on the choice of the initial site
n0. However, Eq. (66) along with Eq. (49) imply that the
time-dependent probability Pm(t ) quite expectedly does de-
pend on n0. We remark that on putting nl = −nr in Eq. (88),
together with the associated equality 	̃nr

nl
(θ ) = 	̃nl

nr
(θ ) [which

follows from the fact that we have 	nr
nl

(t ) = 	nl
nr

(t )], correctly
recovers Eq. (60). A result similar in structure to Eq. (88) has
been obtained in Ref. [17] in the context of the transverse-field
quantum Ising chain.

We may wish to obtain the first two moments of the prob-
ability given by Eq. (88). The mean displacement from the
initial location n0 in the stationary state, given by [m − n0]

st =∑∞
m=−∞(m − n0)P

st
m, may be calculated from Eq. (88) on
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using Eq. (58) and
∑∞

m=−∞ mJ2
m(t ) = 0, as

[m − n0]
st = 	̃nl

nr
(θ )

	̃
nl
nr (θ ) + 	̃

nr
nl (θ )

(nr − n0)

+ 	̃nr
nl

(θ )

	̃
nl
nr (θ ) + 	̃

nr
nl (θ )

(nl − n0). (90)

The stationary-state MSD is readily calculated from Eqs. (88)
by using Eq. (25) and (71), to obtain

S
st = 	̃nl

nr
(θ )

	̃
nl
nr (θ ) + 	̃

nr
nl (θ )

(
n2

r − 2n0nr + n2
0 + γ 2

λ2

)

+ 	̃nr
nl

(θ )

	̃
nl
nr (θ ) + 	̃

nr
nl (θ )

(
n2

l − 2n0nl + n2
0 + γ 2

λ2

)
. (91)

Equations (90) and (91) recover Eqs. (64) and (65), respec-
tively, upon using nl = −nr , n0 = 0, and 	̃nr

nl
(θ ) = 	̃nl

nr
(θ ).

B. Effects of an additional periodic external forcing

We now discuss the case of a time-dependent Hamiltonian
subject to our protocol of conditional resetting. To achieve
our goal, we consider the case of the TBM with the particle
being charged (with charge q) and in the presence of a pe-
riodic electric field E (t ) = E0 cos(ω0t ). The force acting on
the particle being F (x) = qE (t ), corresponding to a poten-
tial −qE (t )x; x = ∑∞

n=−∞ n|n〉〈n|, the TBM Hamiltonian is
changed from Eq. (17) to a time-dependent Hamiltonian

H (t ) = −γ

2

∞∑
n=−∞

(|n〉〈n + 1| + |n + 1〉〈n|)

+ F0 cos(ω0t )
∞∑

n=−∞
n|n〉〈n|, (92)

with F0 ≡ −qE0. In addition to the previously defined opera-
tors K and K† [see Eq. (18)], let us introduce a new operator
N ≡ ∑∞

n=−∞ n|n〉〈n|, which is diagonal in the Wannier states
|n〉. Equation (92) then rewrites as

H (t ) = H + H0(t ); H0(t ) ≡ F0 cos(ω0t )N, (93)

with the time-independent part of the Hamiltonian denoted
by H and given by Eq. (19). Since we have H (t ) =
H (t + T ), with T being the time period of the oscil-
latory forcing field, H (t ) is a Floquet-type Hamiltonian
[44]. Now, we have [K, N] = K and [K†, N] = −K†, and
hence, the two terms in the above Hamiltonian do not com-
mute with each other. Moreover, H (t ) for two different
times do not commute: [H (t ), H (t ′)] = (γ /2)F0[cos(ω0t ) −
cos(ω0t ′)](K − K†), thus necessitating the use of time order-
ing in the formalism developed in Sec. II.

We may now ask the same question as in the case of zero
forcing dealt with in Sec. III: Given that the particle at the ini-
tial instant t = 0 was on site n0, what is the probability Pm(t )
of finding it on an arbitrary site m at a later time t > 0? The
detailed calculation for finding Pm(t ) is presented in Ref [21],
which we briefly summarize here. We have, by definition, that
Pm(t ) = 〈m|ρ(t )|m〉, with the density operator ρ(t ) evolving
while starting from its initial form ρ(0) = |n0〉〈n0| as ρ(t ) =

e
−i

∫ t
0 dt ′ H (t ′ )

+ ρ(0) e
i
∫ t

0 dt ′ H (t ′ )
− . Invoking the interaction picture

of time evolution in quantum mechanics, one transforms ρ(t )
to ρ̃(t ), as

ρ̃(t ) ≡ ei
∫ t

0 dt ′ H0(t ′ )ρ(t ) e−i
∫ t

0 dt ′ H0(t ′ ), (94)

where the commutation of H0(t ) at two different times im-
plies that the exponential factors can be written without time
ordering. Since H0(t ) is diagonal in the Wannier states, we
have Pm(t ) = 〈m|ρ(t )|m〉 = 〈m|̃ρ(t )|m〉. One finds that the
transformed density operator ρ̃(t ) evolves according to the
Liouville equation [21]

∂ρ̃(t )

∂t
= −i[Hi(t ), ρ̃(t )], (95)

with Hi(t ) being the Hamiltonian H in the interaction picture,
defined by

Hi(t ) ≡ ei
∫ t

0 dt ′ H0(t ′ )H e−i
∫ t

0 dt ′ H0(t ′ ). (96)

Equation (96) when simplified using the well-known Baker-
Campbell-Hausdorff formula for 2 operators A and B, given
by eABe−A = B + [A, B] + [A, [A, B]]/2 + · · · , yields

Hi(t ) = −γ

2
(Ke−iη(t ) + K†eiη(t ) ), (97)

where we have defined η(t ) ≡ (F0/ω0) sin(ω0t ), and have
[Hi(t ), Hi(t ′)] = 0. Equation (95) has the solution

ρ̃(t ) = e−i
∫ t

0 dt ′ Hi (t ′ )ρ(0) ei
∫ t

0 dt ′ Hi (t ′ ), (98)

so that

Pm(t ) = 〈m|e−i
∫ t

0 dt ′ Hi (t ′ )|n0〉〈n0|ei
∫ t

0 dt ′ Hi (t ′ )|m〉. (99)

Next, using Eq. (97), it may be shown that [21]

ei
∫ t

0 dt ′ Hi (t ′ ) = e−i(γ /2)[Kw�(t )+K†w(t )], (100)

with

w(t ) ≡
∫ t

0
dt ′ eiη(t ′ ) = 1

ω0

∫ ωt

0
dτ

∞∑
p=−∞

Jp(F0/ω0)eipτ .

(101)

For t = nT , so that, ω0t = 2πn, with n being an integer, the
integral in Eq. (101) vanishes unless p = 0, and one obtains

w(nT ) = tJ0(F0/ω0). (102)

From Eq. (99), we get on transforming to the Bloch states
and using Eqs. (100), (20), and (23) and the result 〈k′|k〉 =
δ(k − k′) that [21]

Pm(t ) = J2
|m−n0|(γ |w(t )|). (103)

It is easily checked that in the absence of forcing, one has
w(t ) = t , and the above equation reduces to the result (23).

With the above backdrop, let us study the effect of
conditional stochastic resetting, by applying the formalism
developed in Sec. II. Comparing Eqs. (103) and (23), one
may conclude that analytical results in the presence of forcing
may be obtained from those in its absence through the mere
substitution t → |w(t )| as the argument of all occurrences of
the Bessel function in the latter analysis. With this proviso,
we present now an illustration of explicit results so obtained
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in the presence of forcing, by considering the specific scenario
of the initial location of the TBM particle being n0 = 0, and
moreover, with equidistant reset locations around the ori-
gin, namely, nl = −nr . Using Eq. (53), we thus obtain the
site-occupation probability, in the presence of forcing and
conditional resetting, for the TBM particle to be found on site
m at time t as

Pm(t ) = e−λt J2
|m−n0|(γ |w(t )|) + λ

2

∫ t

0
dt1e−λt1

× {J2
|m−nr |[γ |w(t1)|] + J2

|m+nr |[γ |w(t1)|]}. (104)

The corresponding stationary-state site-occupation probabil-
ity is obtained as

P
st
m = λ

2

∫ ∞

0
dt1 e−λt1

× {J2
|m−nr |[γ |w(t1)|] + J2

|m+nr |[γ |w(t1)|]}, (105)

which may be used to obtain numerically the MSD in the
stationary state.

In the following, we report on physical implications of our
derived analytical results for the site-occupation probability.

C. Results and discussion

This subsection is devoted to a discussion of physi-
cal implications of our derived analytical results for the
site-occupation probability and other quantities and their val-
idation via numerical implementation of the dynamics. We
start with a discussion of our scheme of numerical im-
plementation of the TBM dynamics subject to conditional
resetting at random times. We follow this up with a discus-
sion of our numerical results obtained within such a scheme.
We consider a one-dimensional open lattice with (2N + 1)
sites labeled {−N,−N + 1, . . . , 0, . . . , N − 1, N}. The den-
sity operator and the Hamiltonian operator are both given
in terms of (2N + 1) × (2N + 1) matrices, while the inter-
action superoperator T (τ ) is a matrix of dimension (2N +
1)2 × (2N + 1)2. In order to implement a particular realiza-
tion of the evolution of the system over a total duration t ,
we first enumerate the time intervals τ between successive
resets, which is done by sampling independently these num-
bers from the exponential distribution (11) [or the power-law
distribution (106); see later] by using standard techniques.
Suppose in a given realization there happens to be N num-
ber of resets, so that the τ ’s satisfy

∑N
α=1 τα < t and that

τN +1 = t − ∑N
α=1 τα . Here the quantity τα denotes the time

interval between the αth and the (α − 1)-th reset. Once
the τα’s are known, the dynamical evolution with the TBM
particle starting initially from the location n0 may be im-
plemented as follows: The initial density operator ρ(0) =
|n0〉〈n0|, which has only its (n0, n0)-th element nonzero and
equal to unity, is allowed to evolve unitarily in time for
time duration τ1 to obtain the evolved density operator as
ρ(τ1) = exp+[−i

∫ τ1

0 dt ′ H (t ′)]ρ(0) exp−[i
∫ τ1

0 dt ′ H (t ′)]. De-
pending on whether we want to study the TBM in the absence
or in the presence of the periodic forcing, the Hamiltonian
is either the time-independent Hamiltonian (17) (in which
case, no time ordering in performing unitary evolution of the
density operator has to be invoked) or the time-dependent

Hamiltonian (92), respectively. In order to now have a con-
ditional resetting of the system to the two sites nr and nl ,
we now operate on the time-evolved density operator by the
interaction operator T (τ1), whose explicit form is given by
Eq. (34). The resulting matrix is then evolved unitarily for
time τ2. Next, we operate on the matrix obtained following the
evolution by the interaction operator T (τ2) given in Eq. (36),
and so on. After an N number of resets have been performed
on the system, the final step of evolution involves unitary
evolution for time duration τN +1. The obtained final density
matrix qualifies as the density matrix in the given realization
of the dynamics of the TBM subject to conditional resetting,
and its (m, m)-th element yields the probability, in the given
dynamical realization, for the TBM particle to be found on
site m at time t . The whole process of starting with ρ(0) and
letting it undergo unitary evolution interspersed with instan-
taneous conditional resets is repeated for several realizations
of the random times τα in order to obtain the averaged site-
occupation probability Pm(t ) for the particle to be on site m at
time t .

We now move on to discuss our results. Figure 4 cor-
responds to the case of the TBM system (17) subject to
conditional resetting at exponentially distributed random time
intervals. The initial location of the particle is at the ori-
gin, while the reset sites nr and nl are equidistant from it.
Figure 4(a) shows results for the site-occupation probability
Pm(t ) vs m for different times, short and long, and at a fixed
resetting rate λ. The first thing to note is that in sharp contrast
to the bare model results in Fig. 2, the system at long times re-
laxes to a stationary state characterized by a time-independent
site-occupation probability. Moreover, in the latter state, the
TBM particle is most likely to be found at either the site nr

or the site nl with equal probability, while the further one
is from the reset sites, the lower is the probability for the
particle to be found there [see Fig. 4(b)]. We thus have an
effective localization of the particle around the reset sites. The
localization becomes more pronounced with an increase of λ,
as may be seen from the plot in Fig. 4(c) that corresponds
to the site-occupation probability at long times and for dif-
ferent values of λ. This localization is induced not by the
presence of any boundaries on the lattice that constrain the
motion of the particle, but by the act of subjecting the particle
to conditional resetting to sites nr and nl at random times.
Figure 4(b) demonstrates that the analytical results derived
by us for Pm(t ) match perfectly well with numerical results
obtained on the basis of the numerical implementation of the
dynamics. Figure 4(d) is a plot of the MSD, Eq. (56), showing,
first, a relaxation to a stationary-state behavior at long times,
and, second, a stationary-state value that decreases with in-
creasing λ. The latter feature is a manifestation of enhanced
localization with increasing λ, as evident from Fig. 4(c).

All of the aforementioned stationary-state features pertain-
ing to reset sites equidistant from the initial location of the
TBM particle also hold when the sites are not equidistant with
respect to the initial location (although they are equidistant
with respect to the origin), as illustrated in Fig. 5, which
corresponds to the initial location being n0 = 1, while the
reset sites are nr = 4, nl = −4. There are differences as well.
Since the initial site is now closer to one reset site than the
other (namely, closer to nr than to nl ), it is evident that during
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FIG. 4. For the TBM system (17) subject to conditional resetting
at exponentially distributed time intervals, the figure corresponds to
the case of the initial location of the TBM particle being at the origin,
n0 = 0, and with resetting to locations symmetrically disposed with
respect to the initial location, namely, nr = 4 and nl = −4. Thus, the
reset sites are equidistant with respect to the initial location, which
is taken to be the origin. Panel (a) shows analytical results given by
Eq. (53) for the site-occupation probability Pm(t ) plotted against m
at four different times, with λ = 0.5. As time progresses, the system
attains a stationary state characterized by localization of the particle
around the two reset sites, as evident from the data for t = 2.0
and t = 5.0. Panel (b) shows Pm(t ) vs t for two different m’s, one
being the reset site m = nr and another being a nonreset site m = 1,
with λ = 0.5. The analytical results given by Eq. (53) and plotted
with lines are compared with numerical results depicted by symbols.
The latter results are obtained via numerical implementation of the
dynamics on a lattice of 41 sites and involve averaging over 5 × 103

dynamical realizations (see Sec. IV C for details of our scheme of
numerical implementation). The horizontal red dashed lines denote
analytical stationary-state probability P

st
m given by Eq. (60). Panel

(c) shows analytical results for Pm(t ) given by Eq. (53) and plotted
as a function of m for four different values of λ and at large times
(at t = 20), exhibiting enhanced localization with increased λ. Panel
(d) shows analytical (lines) and numerical (symbols) results for the
MSD S(t ), Eq. (56), as a function of time t and for three different
values of λ, implying saturation of the MSD due to localization
at long times. The horizontal red dashed lines denote analytical
stationary-state MSD given by Eq. (65). Consistent with the results
in panel (c), one observes that the saturation value of the MSD
decreases with increased λ. In all cases γ = 1.0.

the initial stage of evolution, the particle is to be found to the
right of the origin with a higher probability than to the left [see
the data for t = 0.5 and t = 25.0 in Fig. 5(a)]. Nonetheless, in
the stationary state, the particle is equally likely to be found
at the two reset sites, similar to the equidistant-reset-site case;
this fact is consistent with our expectation that the stationary
state is independent of the choice of the initial location of the
particle. The fact of initial affinity for the sites to the right of
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FIG. 5. For the same TBM system as in Fig. 4, the figure corre-
sponds to the case of the initial location of the TBM particle being
n0 = 1, i.e., not at the origin, and with resetting to locations not
symmetrically disposed with respect to the initial location, namely,
nr = 4 and nl = −4. Thus, the reset sites are not equidistant with re-
spect to the initial location, though they are symmetric with respect to
the origin. Panel (a) shows numerical results for the site-occupation
probability Pm(t ) plotted against m at four different times, with
λ = 0.5. As time progresses, the system attains a stationary state
characterized by localization of the particle around the two reset
sites, as evident from the data for t = 50.0 and t = 80.0. The nu-
merical results are obtained via numerical implementation of the
dynamics on a lattice of 41 sites and involve averaging over 5 × 103

dynamical realizations. Panel (b) shows numerical results for Pm(t )
vs t for two different m’s, one being the reset site m = nr and another
being a nonreset site m = −2, with λ being 0.5. The inset shows
the comparison between the analytical results given by Eq. (66) and
plotted with lines and the numerical results depicted by symbols.
The horizontal red dashed lines denote the analytical stationary-state
probability P

st
m given by Eq. (88). Panel (c) shows numerical results

for Pm(t ) plotted as a function of m for four different values of λ and
at large times (namely, at t = 100), exhibiting enhanced localization
with increased λ. Panel (d) shows numerical (symbols) results for the
MSD S(t ), as a function of time t and for three different values of λ,
implying saturation of the MSD due to localization at long times.
The horizontal red dashed lines denote analytical stationary-state
MSD given by Eq. (91). Consistent with the results in panel (c),
one observes that the saturation value of the MSD decreases with
increased λ.

the origin as compared to the left affects the time of relaxation
to the stationary state. Indeed, it takes longer to reach the
stationary state in the nonequidistant case as compared to the
equidistant case (compare the data for t = 2.0 and t = 5.0 in
Fig. 4(a) and the date for t = 50.0 and t = 80.0 in Fig. 5).

Next, we turn our attention to Fig. 6, showing results for
two distinct initial locations: n0 = 0 (origin) in Fig. 6(a), and
n0 = 1 in Fig. 6(b), and with asymmetrically disposed reset
locations around the origin: nr = 8 and nl = −4. Thus, nl is
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FIG. 6. For the same TBM system as in Fig. 4, the figure cor-
responds to the resetting locations not symmetrically disposed with
respect to the origin, namely, nr = 8 and nl = −4. Thus, the reset
sites are not equidistant with respect to the origin. Panel (a) shows
numerical results for the site-occupation probability Pm(t ) plotted
against m at four different times, with λ = 0.5 and the initial location
at the origin n0 = 0. Over time, the system attains a stationary state
characterized by localization of the particle around the two reset
sites, as evident from the data for t = 100.0 and t = 120.0. Panel
(b) shows numerical results for the site-occupation probability Pm(t )
plotted against m at four different times, with λ = 0.5 and the initial
location at n0 = 1. Over time, the system reaches a stationary state
characterized by the particle localized around the two reset sites,
as clearly demonstrated by the data for t = 50.0 and t = 80.0. The
numerical results are obtained via numerical implementation of the
dynamics on a lattice of 41 sites, and involve averaging over 5 × 103

dynamical realizations.

closer to the origin than nr , and hence, in contrast to the cases
treated in Figs. 4 and 5, the reset sites are not equidistant
with respect to the origin. We find that at large times, the
site-occupation probabilities of the particle at the two reset
sites are unequal [see the data for nl and nr in Figs. 6(a)
and 6(b)], which may be contrasted with equal site-occupation
probabilities at two reset sites at large times depicted in Figs. 4
and 5. This difference may be understood as follows. The site
nl being closer to the origin, at any given time, the probability
for the TBM particle to be found right of the origin while
starting from nl is larger than the same for the TBM particle to
be found left of the origin starting from nr . Consequently, the
probability to reset to site nr is larger than the probability to
reset to nl . This results in the site-occupation probability being
higher to the right of the origin than to the left. Furthermore,
that the stationary-state site-occupation probability does not
depend on the choice of the initial location is supported by
the observation regarding the independence of long-time re-
sults with respect to the choice of n0 [as shown in Fig. 6(a)
for n0 = 0 and Fig. 6(b) for n0 = 1]. Both of the last two
features are in conformity with Eq. (88) in which one has
	̃nl

nr
(θ ) > 	̃nr

nl
(θ ). The result of the aforementioned unequal

site-occupation probability around the reset sites is quite in-
teresting as it implies that even though there is no bias in
the inherent TBM dynamics, an effective bias towards one of
the reset sites is nonetheless being induced by the protocol of
conditional resetting.

The features seen in the equidistant-reset-site case for
the time-independent Hamiltonian (17) are also observed for
the case when the system is subject to an external forcing
field, i.e., for the time-dependent Hamiltonian case given by
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FIG. 7. For the same TBM lattice as in Fig. 4 subject to con-
ditional resetting at exponentially distributed time intervals but in
the presence of a forcing field and described by the time-dependent
Hamiltonian given by Eq. (92), the figure corresponds to the case of
the initial location of the TBM particle being at the origin, n0 = 0,
with resetting to locations equidistant from the initial location, nr =
4 and nl = −4. Panel (a) shows analytical results given by Eq. (104)
for the site-occupation probability Pm(t ) plotted against m at four
different times, with λ = 0.5. Here the particle reaches a stationary
state characterized by localization around the two reset sites. Panel
(b) shows Pm(t ) vs t for two different m’s, one being the reset site
m = nr and another being a nonreset site m = −2, with λ = 0.5.
The analytical results given by Eq. (104) and plotted with lines are
compared with numerical results depicted by symbols. The latter
results are obtained via numerical implementation of the dynamics
on a lattice of 41 sites and involve averaging over 5 × 103 dynamical
realizations. The horizontal red dashed lines denote the numerically
evaluated stationary-state probability P

st
m given by Eq. (105).

Eq. (92); see Fig. 7. This is an illustration of the robust-
ness of the phenomenon of localization of the TBM particle
around the reset sites, which we have demonstrated to hold
in a setting involving either a time-independent or a time-
dependent Hamiltonian. On another note, the fact that one
has a perfect match between analytical and numerical re-
sults for both the time-independent and the time-dependent
Hamiltonian is a validation of how our general analytical
approach outlined in Sec. II is able to tackle efficiently both
the situations and enables one to derive explicit analytical
results.

V. TBM SUBJECT TO CONDITIONAL RESETTING
AT POWER-LAW-DISTRIBUTED TIMES

Until now, we have investigated the consequences of con-
ditional resetting in the TBM in both the absence and presence
of a forcing field, with the resetting taking place at time
intervals that are exponentially distributed. We have observed
in all cases a spatial localization of the TBM particle at the
two reset sites as a signature of the stationary state that the
dynamics attains at long times. We have already addressed
the robustness of such a state, by studying the TBM both in the
absence and presence of a forcing field. An imminent issue af-
fecting robustness would be to ask if a similar stationary state
emerges even when the resetting is done at time intervals that
are differently distributed than an exponential. In particular,
we would like to consider the case of a power-law distribution.
Namely, the time intervals τ between consecutive resets are
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distributed according to the distribution

p(τ ) = α

τ0(τ/τ0)1+α
, α > 0; τ ∈ [τ0,∞). (106)

Here τ0 is the cutoff timescale. Note that for α < 1, all mo-
ments of p(τ ) are infinite. For α > 1, the first moment is finite
and equals 〈τ 〉 = τ0α/(α − 1), while for α > 2, the second
moment also becomes finite: 〈τ 2〉 = τ 2

0 α/(α − 2). By con-
trast, the previously studied exponential p(τ ), Eq. (11), has
finite mean and variance for all λ > 0. As we will unveil, these
facts will have important consequences on the emergence and
properties of the stationary state in the case of power-law
vis-à-vis exponential resetting.

In the light of the results discussed in Sec. IV C and dis-
played in Figs. 4–6, one may argue that the features such
as the emergence of a stationary state and the associated
localization around the reset sites are what one would have
expected anyway, since after all the resetting moves simply
do not allow the particle to travel very far from the reset
sites. Consequently, it should be no wonder that one would
have localization in the presence of resetting, whose very
absence makes the bare TBM particle travel to farther and
farther distances with the passage of time, thereby preventing
the existence of a stationary state with a time-independent
MSD at long times. Resetting at power-law times provides a
crucial counter to such a line of reasoning. Indeed, the results
depicted in Fig. 8(a) show that when the exponent α is smaller
than unity, there is no stationary state emerging, and one has
an ever-expanding occupation probability in time despite the
resetting events trying to confine the particle. Concomitant
with such a behavior is that of the MSD depicted in Fig. 8(d),
which may be seen to grow unbounded in time for 0 < α < 1.
On the contrary, the data for α > 2 do put in evidence that
resetting is able to confine the particle, which therefore has
a localized stationary state [compare the plots in Figs. 8(c)
and 8(d)]. The case of α lying between 1 and 2 is particu-
larly interesting (and telling for the underlying interplay of
timescales; see below), in that here the site-occupation proba-
bility does have a stationary state and yet the MSD continues
to grow unbounded in time [compare the plots in Figs. 8(b)
and 8(d)]. We thus conclude that the attainment of a stationary
state in the presence of conditional resetting is not always
evident and obvious, and depends crucially on the probabil-
ity distribution of the intervals of time at which resetting is
implemented.

The reason one does not have a stationary state in the
case of power-law resetting with 0 < α < 1 may be traced
back to some crucial features of the power-law distribution
(106), namely, those related to the distribution having finite
mean and variance. Indeed, for 0 < α < 1, when the mean
is infinite, it so happens that there is a significant number
of dynamical realizations in which the TBM particle gets
very far from the initial location in time before it gets re-
set, and this is because with significant probability one may
sample reset time intervals that are very large, larger than
the timescale 1/γ for the TBM particle to traverse a finite
distance over the lattice. Such a scenario is obviously not
tenable when the mean is finite, which is really the case for
α > 1 and which accounts for the existence of a stationary
state for α > 1. What then is the reason for a diverging
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FIG. 8. For the same TBM lattice as in Fig. 4 with conditional
resetting being done instead at power-law-distributed time intervals,
the figure corresponds to the case of the initial location of the TBM
particle being at the origin, n0 = 0, and with resetting to locations
equidistant from the initial location, nr = 4 and nl = −4. The nu-
merical results of the site-occupation probability Pm(t ) vs m at four
different times are plotted in panels (a), (b), and (c). In panel (a), for
α = 0.25 (α < 1), the system does not reach a stationary state and
consequently, localization does not take place at the desired sites nr

and nl . By contrast, in panels (b) and (c), for α = 1.5 (1 < α < 2)
and α = 3.0 (α > 2), respectively, the system reaches a stationary
state at long times [compare data between t = 30 and t = 50 in panel
(b) and between t = 10 and t = 20 in panel (c)]. Panel (d) shows
numerical results for the MSD S(t ) vs t for three different values
of α. The MSD exhibits fast and slow divergence for, respectively,
α < 1 and 1 < α < 2, whereas it reaches a constant value for α > 2.
Although the MSD behaves differently for different values of α, they
behave similarly up to the cutoff timescale τ0 = 1.0 chosen here,
defined in Eq. (106), since the initial state undergoes a reset-free
evolution up to time τ0. As a further validation of the latter fact,
the inset shows the numerical results for the MSD versus time with
τ0 = 0.1. The presented numerical results are obtained via numerical
implementation of the dynamics on a lattice of 41 sites and involve
averaging over 5 × 103 dynamical realizations.

MSD for 1 < α < 2 when the site-occupation probability
becomes stationary at long times? This is attributed to a di-
verging variance of the power-law distribution (106) in this
range of values of α. Similar effects have been observed
and analyzed, albeit in the classical resetting scenario, in
Ref. [45].

VI. CONCLUSIONS

In this work we developed a time-dependent and con-
ditional resetting protocol as a model for investigating the
unitary evolution of quantum systems subjected to exter-
nal interventions at random times. Applying this protocol to
a tight-binding model (TBM) involving a quantum particle
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undergoing hopping to nearest-neighbor sites on a one-
dimensional open lattice, we provided both analytical and
numerical evidence for existence of stationary states char-
acterized by the localization of the TBM particle around
the reset sites. This is in stark contrast with the bare TBM
dynamics, which does not induce any such stationary states
characterized by localization.

In the course of our presentation, we first studied the effect
of our conditional resetting protocol on the time-independent
TBM Hamiltonian dynamics, with the resetting time inter-
vals chosen from an exponential distribution. The dynamics
comprises two recurring key events: unitary evolution for a
random time interval followed by a conditional reset of the
TBM particle to two reset locations, conditioned on the lo-
cation of the particle at the time instant of reset. The choice
of initial location and the location of the reset sites played
crucial roles in dictating the nature of the stationary-state
site-occupation probability of the TBM particle. Specifically,
reset sites equidistant from the initial location taken to be
at the origin resulted in symmetric probability profile about
the origin. Even when the initial location of the particle was
chosen to be any site other than the origin, with symmetrically
disposed reset sites around the origin, our protocol led at long
times to an eventual symmetry in the site-occupation probabil-
ity about the origin. This is in conformity with the intuition of
a stationary state being independent of the choice of the initial
condition. Nevertheless, in the second case and at small times,
an asymmetry in the occupation probability emerged because
of the memory, carried over from past events, due to the
time-dependent and conditional structure of the reset proto-
col. Considering the reset locations asymmetrically disposed
around the origin led to the result that, even at large times, the
site-occupation probability has an asymmetry about the origin
and becomes highly peaked around one reset location than the
other. Interestingly, in this case, while there was no inherent
bias in the reset-free dynamics, the protocol itself induces an
effective bias leading to enhanced localization around one of
the reset sites. We extended our approach to include the effects
of a periodic forcing within the TBM. Analytical derivation of
the resulting stationary state site-occupation probability show-
cased the versatility of our analytical approach with respect to
either time-independent or time-dependent Hamiltonians.

Further to the aforementioned analysis, we examined the
impact of the choice of the resetting interval distribution
on the emergence of the stationary state. Notably, stationary
states do not appear when the resetting intervals followed a
power-law distribution for small values of the corresponding
exponent, which implies that it is not always true that resetting
induces a stationary state. As a result, contrary to the case of
exponential resetting for which the mean-square displacement
(MSD) of the TBM particle about the initial location always
reaches a stationary value in time, the MSD may diverge
in time when the resetting time intervals are chosen from a
power-law distribution.

As stated in the Introduction, our protocol of conditional
resetting may be exploited to explore consequences emerging
in non-Markovian dynamics of open quantum systems. Here
we propose a possible experimental platform that may be
utilized efficiently to implement and observe consequences
of conditional resetting. To this end, we consider the proto-

typical atomic-physics setup of level populations under the
influence of an incident light field. As one may expect, the
light field would induce oscillations among the populations in
the various levels. One may engineer a system in which there
exist two metastable states close to two selected levels in the
system. In order to implement conditional resetting at random
times, population oscillations would be allowed to continue
for a random time after which a pair of light fields of stronger
intensity than the first light field would be turned on, which
has the frequency spectrum to excite populations around the
two selected levels to the respective metastable states. Such an
excitation would be conditional on the existing population size
of the levels prior to turning on the pair of second light fields.
The light field pair would then be turned off, following which
there would be de-excitation to the two selected levels from
the respective metastable states, thereby implying conditional
resetting to the two levels. Subsequently, effect of the first
light field (which is kept on all throughout the experiment)
would effect redistribution of the population among the dif-
ferent levels and consequent population oscillations. The latter
would continue for another random time, when again the light
field pair would be turned on, and so on. In recent times,
similar set-ups involving a radio frequency pulse and a Raman
pulse have been employed to implement experimentally pro-
jective measurements at random times using a Bose-Einstein
condensate of 87Rb produced in a magnetic micro-trap re-
alised with an atom chip [46].

In terms of future perspectives, it would be interesting
to apply our time-dependent and conditional resetting for-
malism by incorporating a bias in the bare TBM dynamics,
details of which will be reported elsewhere. Introducing
periodicity in the TBM lattice would also be interest-
ing in studying the nature of the ensuing stationary-state
properties.

ACKNOWLEDGMENTS

We thank Soumya Kanti Pal, Vaibhav Prabhudesai, and
C. L. Sriram for useful discussions. We gratefully acknowl-
edge generous allocation of computing resources by the
Department of Theoretical Physics (DTP) of the Tata Insti-
tute of Fundamental Research (TIFR), and related technical
assistance from Kapil Ghadiali and Ajay Salve. A.A. ac-
knowledges useful discussions with Shatanik Bhattacharya,
Rupak Majumder, and Mrinal Kanti Sarkar. S.G. acknowl-
edges support from the Science and Engineering Research
Board (SERB), India under SERB-CRG scheme Grant No.
CRG/2020/000596. He also thanks ICTP–Abdus Salam In-
ternational Centre for Theoretical Physics, Trieste, Italy, for
support under its Regular Associateship scheme. S.G. is
grateful to the SISSA visiting scientist program and ICTP,
Trieste for financial support towards his visit in July 2023
when this paper was being finalized. S.G. would also like to
thank the Isaac Newton Institute for Mathematical Sciences,
Cambridge, for support and hospitality during the program
“Mathematics of movement: An interdisciplinary approach to
mutual challenges in animal ecology and cell biology,” where
work on this paper was completed. This work was supported
by EPSRC grant no EP/R014604/1.

064125-18



TIGHT-BINDING MODEL SUBJECT TO CONDITIONAL … PHYSICAL REVIEW E 108, 064125 (2023)

APPENDIX A: DERIVATION OF EQ. (4)

From Eq. (7) and considering the case of exponential
p(τ ), Eq. (11), the average density operator at time t may be
written as

ρ(t ) =
∞∑

α=0

ρ (α)(t ), (A1)

with

ρ (0)(t ) ≡ F (t )e
−i

∫ t
0 dt ′L (t ′ )

+ ρ(0), (A2)

ρ (α)(t ) ≡
∫ t

0
dtα e

−i
∫ t

tα
dt ′L (t ′ )

+ F (t − tα )Gα (tα ); α � 1,

(A3)

where we have p(t ) = λe−λt = λF (t ), and

G1(t ) ≡ T (t ) p(t ) e
−i

∫ t
0 dt ′ L (t ′ )

+ ρ(0), (A4)

Gα (t ) ≡
∫ t

0
dtα−1T (t − tα−1)p(t − tα−1)

× e
−i

∫ t
tα−1

dt ′ L (t ′ )
+ Gα−1(tα−1); α � 2. (A5)

Differentiating Eq. (A1) with respect to t , one obtains on using
F (0) = 1 that

dρ (0)(t )

dt
= −iL (t )ρ (0)(t ) − λρ (0)(t ), (A6)

dρ (α)(t )

dt
= −iL (t ) ρ (α)(t ) + F (0)Gα (t )

+
∫ t

0
dtα

d

dt
F (t − tα ) e

−i
∫ t

tα
dt ′L (t ′ )

+ Gα (tα ) (A7)

= −iL (t )ρ (α)(t ) + Gα (t ) − λρ (α)(t ); α � 1. (A8)

Summing over all α terms yields

dρ(t )

dt
= −iL (t )ρ(t ) + λ

∞∑
α=1

Hα (t ) − λρ(t ), (A9)

with Hα (t ) = Gα (t )/λ; α � 1. We thus obtain Eq. (4).
For the case of a time-independent T , we get

G1(t ) = λT F (t )e
−i

∫ t
0 dt ′ L (t ′ )

+ ρ(0) = λT ρ (0)(t ), (A10)

while for α � 2, we have

Gα (t ) = λT
∫ t

0
dtα−1F (t − tα−1)e

−i
∫ t

tα−1
dt ′ L (t ′ )

+ Gα−1(tα−1)

= λT ρ (α−1)(t ). (A11)

Consequently, we have

λ

∞∑
α=1

Hα (t ) =
∞∑

α=1

Gα (t ) = λT ρ(t ), (A12)

and Eq. (A9) reduces to

dρ(t )

dt
= −iL (t )ρ(t ) + λT ρ(t ) − λρ(t ), (A13)

which is the result derived in Ref. [21] [see also the discussion
around Eq. (3) in the Introduction].

APPENDIX B: A FEW USEFUL IDENTITIES RELATED
TO SUPEROPERATORS

Here we will give a brief overview of the notion of a su-
peroperator, which we have used extensively in the main text.
The concept of a superoperator bears resemblance to that of
an operator acting on state vectors as commonly encountered
in quantum mechanics. Just as an operator acting on a state
vector yields another state vector, a superoperator acting on an
operator yields a new operator. We now discuss the notion of a
superoperator in the context of the TBM, for which a complete
set of basis states is formed by the Wannier states {|n〉}. Let
O be a superoperator, whose operation on an operator A is
defined via respective matrix elements, as [22]

〈n1|OA|n2〉 =
∑
n3n4

(n1n2|O|n3n4)〈n3|A|n4〉, (B1)

with |mn) ≡ |m〉 ⊗ |n〉, and wherein the “matrix elements” of
the superoperator have been labeled by four indices, just as
those of an ordinary operator are labeled by two indices. The
superoperator lives in a product Hilbert space, the dimension
of which is the square of the space of the associated operator.
One has the closure property for the two-indexed states as∑

m,n |mn)(mn| = I . The familiar Liouville operator L is a
superoperator. It has the well-known property that acting on
any operator A, it produces the commutation between H and
A, with H being the Hamiltonian of the system:

L A = [H, A]. (B2)

Following Eq. (B1), it is easily checked that

(n1n2|L |n3n4) = 〈n1|H |n3〉δn2n4 − 〈n4|H |n2〉δn1n3 . (B3)

Now the time evolution of a density operator ρ(t ) under a
time-independent Hamiltonian is given by

ρ(t ) = e−iHtρ(0)eiHt = e−iL tρ(0). (B4)

We may now calculate the matrix elements of ρ(t ), as

〈n1|ρ(t )|n2〉 =
∑
n3n4

(n1n2|e−iL t |n3n4)〈n3|ρ(0)|n4〉

=
∑
n3n4

〈n1|e−iHt |n3〉〈n4|eiHt |n2〉〈n3|ρ(0)|n4〉,

(B5)

yielding

(n1n2|e−iL t |n3n4) = 〈n1|e−iHt |n3〉〈n4|eiHt |n2〉. (B6)
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APPENDIX C: DERIVATION OF EQ. (41)

In this Appendix we derive Eq. (47). We start with the
second term of the series in Eq. (40), which may be evaluated
by using the matrix element of the superoperator T given by
expression (34):

P̃
(1)

m (s) = λ〈m|Ũ0(s)T̃ ′(s′)ρ(0)|m〉
= λ

∫ ∞

0
dτ e−(s+λ)τ

∑
n1,n2,n3,
n4,n5,n6

(mm|Ũ0(s)|n1n2)

× (n1n2|T (τ )|n3n4)(n3n4|e−iL τ |n5n6)〈n5|ρ(0)|n6〉
= λ

∫ ∞

0
dτ e−(s+λ)τ

∑
n1,n2,n3

(mm|Ũ0(s)|n1n2)
(
δn1nr δn2nr

× 	n0
nr

(γ τ ) + δn1nl δn2nl 	
n0
nl

(γ τ )
)
(n3n3|e−iL τ |n0n0)

= λ

∫ ∞

0
dτ e−(s+λ)τ 1

(2π )2

∫ π

−π

dk
∫ π

−π

dk

× 1

(s + λ)I + i�kk′

× [
ei(m−nr )(k−k′ )	n0

nr
(γ τ ) + ei(m−nl )(k−k′ )	n0

nl
(γ τ )

]
.

(C1)

Here, in the second step, we have used Eq. (B1), while the
fourth step uses the result

∑
n3

(n3n3|e−iL τ |n0n0) = 1, which

may be shown as follows:

∑
n3

(n3n3|e−iL τ |n0n0)

=
∑

n3

〈n3|e−iHτ |n0〉〈n0|eiHτ |n3〉

=
∑

n3

1

(2π )2

∫ π

−π

dk
∫ π

−π

dk′ ei(n3−n0 )(k−k′ )e−i�kk′ τ

=
∑

n3

J2
|n3−n0|(γ τ ) = 1, (C2)

where, in obtaining the second step, we have used Eqs. (22)
and (21), while in arriving at the third step, we have used
Eq. (23). Using the Laplace convolution theorem, we obtain
from Eq. (C1) on use of Eq. (23) the corresponding result in
the time domain:

P
(1)
m (t ) = λe−λt

∫ t

0
dt1

{
J2
|m−nr |[γ (t − t1)]	n0

nr
(γ t1)

+ J2
|m−nl |[γ (t − t1)]	n0

nl
(γ t1)

}
, (C3)

which is Eq. (47).

APPENDIX D: DERIVATION OF EQ. (42)

This Appendix is devoted to a derivation of Eq. (48). The third term of the series in Eq. (40) can be calculated by using the
matrix element of superoperator T given by the expressions (34) and (36), as

P̃
(2)

m (s) = λ2〈m|Ũ0(s)T̃ (s′)T̃ (s′)ρ(0)|m〉

= λ2
∫ ∞

0
dτ2

∫ ∞

0
dτ1 e−(s+λ)(τ1+τ2 )

∑
n′

is

(mm|Ũ0(s)|n1n2)(n1n2|T (τ2)|n3n4)(n3n4|e−iL τ2 |n5n6)

× (n5n6|T (τ1)|n7n8)(n7n8|e−iL τ1 |n9n10)〈n9|ρ(0)|n10〉

= λ2
∫ ∞

0
dτ2

∫ ∞

0
dτ1 e−(s+λ)(τ1+τ2 )

∑
n1n2

(mm|Ũ0(s)|n1n2)
{
δn1nr δn2nr

[
	nl

nr
(γ τ2)	n0

nl
(γ τ1) + 	nr

nr
(γ τ2)	n0

nr
(γ τ1)

]
+ δn1nl δn2nl

[
	nl

nl
(γ τ2)	n0

nl
(γ τ1) + 	nr

nl
(γ τ2)	n0

nr
(γ τ1)

]}
×

[∑
n3

(n3n3|e−iL τ2 |nrnr )	n0
nr

(γ τ1) +
∑

n3

(n3n3|e−iL τ2 |nlnl )	
n0
nl

(γ τ1)

] ∑
n7

(n7n7|e−iL τ1 |n0n0)

= λ2

(2π )2

∫ ∞

0
dτ2

∫ ∞

0
dτ1 e−(s+λ)(τ1+τ2 )

∫ π

−π

dk
∫ π

−π

dk′ 1

(s + λ)I + i�kk′

{
ei(m−nr )(k−k′ )[	nl

nr
(γ τ2)	n0

nl
(γ τ1)

+ 	nr
nr

(γ τ2)	n0
nr

(γ τ1)
] + ei(m−nl )(k−k′ )[	nl

nl
(γ τ2)	n0

nl
(γ τ1) + 	nr

nl
(γ τ2)	n0

nr
(γ τ1)

]}
, (D1)

where the fourth step is obtained using the results
∑

n3
(n3n3|e−iL τ2 |n0n0) = 1,

∑
n7

(n7n7|e−iL τ1 |n0n0) = 1, and Eq. (28).

Consequently, in the time domain, on using Eq. (23) in Eq. (D1), we obtain P
(2)
m (t ) as

P
(2)
m (t ) = λ2e−λt

∫ t

0
dt2

∫ t2

0
dt1

(
J2
|m−nr |[γ (t − t2)]

{
	nr

nr
[γ (t2 − t1)]	n0

nr
(γ t1) + 	nl

nr
[γ (t2 − t1)]	n0

nl
(γ t1)

}
+ J2

|m−nl |[γ (t − t2)]
{
	nr

nl
[γ (t2 − t1)]	n0

nr
(γ t1) + 	nl

nl
[γ (t2 − t1)]	n0

nl
(γ t1)

})
, (D2)

which is Eq. (48).
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