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Synchronization in a system of Kuramoto oscillators with distributed Gaussian noise
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We consider a system of globally coupled phase-only oscillators with distributed intrinsic frequencies and
evolving in the presence of distributed Gaussian white noise, namely, a Gaussian white noise whose strength
for every oscillator is a specified function of its intrinsic frequency. In the absence of noise, the model reduces
to the celebrated Kuramoto model of spontaneous synchronization. For two specific forms of the mentioned
functional dependence and for a symmetric and unimodal distribution of the intrinsic frequencies, we unveil the
rich long-time behavior that the system exhibits, which stands in stark contrast to the case in which the noise
strength is the same for all the oscillators, namely, in the studied dynamics, the system may exist in either a
synchronized, or an incoherent, or a time-periodic state; interestingly, all these states also appear as long-time
solutions of the Kuramoto dynamics for the case of bimodal frequency distributions, but in the absence of any
noise in the dynamics.
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I. INTRODUCTION

The issue of synchronization in systems composed of a
large number of similar units characterized by oscillatory
dynamics with distributed intrinsic frequencies is enjoying in-
creasing interest. This is mainly because of the realization that
one can find many concrete examples of systems of this sort
in diverse contexts in physics, chemistry, biology, and even
in systems that can be described within an interdisciplinary
approach [1]. This ubiquity makes it plausible to guess that
the phenomenon of synchronization is related to some simple
properties that are likely to be present in all cases of relevance.
In turn, this justifies the study of synchronization through
simple models that capture the relevant features responsible
for its emergence in a many-body interacting dynamics.

The model introduced by Kuramoto [2] fits perfectly into
this strategy of studying the phenomenon of synchronization
in a minimalist framework. In fact, the model represents the
individual components as phase-only oscillators. In this way,
units that are generally complex nonlinear dissipative systems
are effectively described by just one degree of freedom for
every unit, namely, the phase of the individual oscillators, that
changes uniformly in time according to a given frequency
ω before the interaction between the units is turned on. The
frequencies of the different oscillators form a spectrum repre-
sented by a distribution g(ω), and the oscillators are globally
coupled with a common coupling constant through the sine of
the difference of phases between the oscillators [see Eq. (1)
below, with Dj = 0 ∀ j]. For symmetric and unimodal g(ω),
this relatively simple Kuramoto model is characterized by a
synchronization transition. For small values of the coupling
constant, the free uniform motion of the individual oscillators
is not affected significantly by the interaction and, because of

the different frequencies, the phases of the individual oscil-
lators get spread uniformly and independently over [−π, π ]
at long times. For sufficiently large values of the coupling
constant, the system at long times is characterized by a macro-
scopic fraction of the oscillators being locked in frequency
to a common frequency, and the system is said to be (par-
tially) synchronized [3]. The amount of synchrony increases
monotonically with the increase in the value of the coupling
constant. The system undergoes a phase transition between a
low-coupling-strength unsynchronized (incoherent) phase and
a high-coupling-strength synchronized phase.

Following the aforementioned analysis, investigation of
the Kuramoto model has been pursued over the years along
several directions: (i) the study of the effects of replacing the
symmetric and unimodal g(ω) with more general functions
[4,5]; (ii) the introduction of noise in the equations of mo-
tion determining the time evolution of the phases [1,6]; (iii)
the introduction of inertia in the dynamics, transforming the
first-order-in-time equations of motion to second-order equa-
tions [7–9]; (iv) the consideration of more general interaction
functions beyond the simple sine function (although this last
point has been comparatively less treated) [10,11]; and (v)
the introduction of randomness in the coupling strength, al-
though in a population of oscillators with identical intrinsic
frequencies [12,13]. All these developments have had the
purpose of capturing further characteristics of realistic syn-
chronizing systems while remaining in the framework of the
Kuramoto model. The present paper may be placed in class
(ii) of investigations of the Kuramoto dynamics, albeit with an
hitherto-unexplored point of view. Thus, it is useful to provide
a brief summary of the results obtained in previous studies
in noisy Kuramoto systems, to see the relationship with the
present paper.
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From the mathematical point of view, the introduction of
noise transforms the deterministic equations of motion for the
oscillator phases to stochastic equations. The main motiva-
tion for the introduction of noise was to build a model that,
while retaining the simplifying feature of describing each unit
with only one degree of freedom (namely, its phase), could
nevertheless take into account other relevant features, such
as the possible variation of the intrinsic frequencies of the
oscillators [6]. Of course, once introduced, the noise could
also be seen, as is usual in statistical mechanics, as a way
to model the interaction of the system of oscillators with
the external environment. This results in a perturbation of
the dynamics of the phases. On physical grounds, it is not
surprising that synchronization is more difficult to obtain in
a noisy system than in a noiseless system, i.e., given the
frequency distribution g(ω), to synchronize the oscillators, the
coupling strength, in general, has to be larger with respect
to that which is able to synchronize a noiseless system [6,9].
The effect of noise on a system of Kuramoto oscillators may
be studied with the aim to determine the possible change in
the nature of asymptotic states as the noise intensity is varied.
One may represent the asymptotic states, for any given noise
intensity, in a phase diagram, and study how the structure
of this phase diagram depends on the noise intensity. As ex-
plained in somewhat more detail later, the changes occurring
on varying the noise intensity can depend, in turn, on the
distribution function g(ω). With a simple unimodal g(ω), the
noiseless phase diagram is very simple and has been described
above. Introducing noise and progressively increasing its in-
tensity, the only relevant thing that occurs is the increase of
the threshold value of the coupling strength necessary for
synchronization [6]. On the other hand, the noiseless phase
diagram when g(ω) is bimodal has a very rich structure [5].
By introducing noise and gradually increasing its intensity, the
structure changes qualitatively, tending to become simplified
at large noise intensity [14]. Another important issue is the
influence of the noise on the approach of the oscillator system
to the asymptotic state. This topic lies outside the scope of the
paper, but it can be useful to give some details on this. For
noiseless systems, it has been found that the dynamics of the
order parameter can be effectively described in some cases
in a phase space with a few degrees of freedom, replacing
the phase space of the dynamics of all the oscillators [15].
By contrast, the introduction of noise forbids this simplifying
approach. However, considerable progress has also been made
in the direction of obtaining a low-dimensional dynamics in
spite of the presence of noise [16–18].

The above summary concerns systems in which the noise
intensity is the same for all the oscillators. However, we stress
again that the reason for introducing noise in the original
Kuramoto model was not only to model its interaction with
the external environment, as is usual in statistical mechan-
ics, but also to mimic an inherent variability of the intrinsic
frequencies of the individual oscillators [6]. In fact, the in-
trinsic frequency of an oscillator is the result of reducing the
dynamics of a complex nonlinear dissipative unit to that of a
phase-only oscillator and, therefore, the intrinsic frequency is,
in general, the combined effect of several internal dynamical
processes. Viewed from this point of view, it is reasonable to
assume that different oscillators can be subjected to different

noise levels that model the variability of individual intrinsic
frequencies about an average. As already remarked, in the Ku-
ramoto model and in its extensions, each phase-only oscillator
is an effective way to model with just one degree of freedom
a complex unit, i.e., a nonlinear dissipative dynamical system
generally made of a large number of degrees of freedom. This
reduction is based on the assumption that the dynamics of the
unit quickly reaches a limit cycle in course of the dynamical
evolution and, subsequently, its dynamics can be described
by the evolution of the phase representing the position along
the limit cycle [1,19]. The coupling of units described in this
way is therefore a coupling between their phases. Adding a
noise of uniform intensity to the original Kuramoto model
is a relatively simple procedure, as noted, to describe the
variability of the intrinsic frequencies. If one assumes, as we
do in this paper, that different oscillators can have different
sensitivity to disturbances in their intrinsic frequency (since
we consider different noise levels among the oscillators), in
principle, one could consider the possibility that the coupling
strength also depends on the particular pair of oscillators that
are coupled. Obviously, this would be an even more general
model, with a variability of the sensitivity of each oscillator to
disturbances in its frequency and a variability of the sensitivity
of the phases to the coupling with other oscillators. We remark
that, in this case, the relatively simple mean-field approach for
the computation of the order parameter would not be possible
(one would probably need to invoke a computation taking
into account a sort of quenched disorder for the couplings).
Therefore, in this paper, we confine ourselves to the case
where only the noise intensity varies among the oscillators.
The results show that, already in this way, interesting features
emerge in the observable properties of the system.

Summarizing, the purpose of this paper is to analyze the
behavior of Kuramoto oscillators under an inhomogeneous
noise that is different for different oscillators. Thus, we study
a system of oscillators with distributed noise intensity; the aim
is to find if, given a frequency distribution g(ω), the different
intensities of the noise produce qualitatively different results
with respect to studies that have considered the uniform-noise
case. We would like to stress that we work in the framework of
Gaussian, white, additive noise, although of different intensi-
ties, on a system of phase-only oscillators; a different direction
of research would be to take as the basic unit a limit-cycle
oscillator subjected to non-Gaussian and colored noise [20],
and considering a population comprising such units that are
weakly coupled to one another.

As a representative case study, we consider the situation
in which a Gaussian, white noise acting on the individual
oscillators has a strength that for every oscillator is a spec-
ified function of its intrinsic frequency. In the absence of
noise, the model reduces to the Kuramoto model discussed
in the foregoing. We consider two distinct classes of the
mentioned functional dependence and for a symmetric and
unimodal distribution of the intrinsic frequencies. Our main
finding is that the long-time dynamics exhibits a rich behavior,
and may exist in either a synchronized or an incoherent or
a time-periodic state. Such a behavior is at variance with
the case in which the noise strength is the same for all the
oscillators, but which has resemblance with long-time so-
lutions of the Kuramoto dynamics for the case of bimodal
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frequency distributions, but in the absence of any noise in the
dynamics.

The paper is structured in the following way. In Sec. II,
we introduce our model of Kuramoto oscillators under inho-
mogeneous noise, and give a few simple technical features
of previous results that have been obtained with the usual
homogeneous noise. Section III, which is the core of our
paper, is divided, after an introductory part, into four subsec-
tions. In the first two subsections, we explain how to obtain
the bifurcation threshold and the instability threshold of the
incoherent state, while in the third and fourth subsections,
we consider explicitly two different functional forms of the
inhomogeneous noise. Section IV discusses the results and
draws some conclusions. Two appendices contain some tech-
nical details.

II. MODEL

Our model of study comprises a system of N globally cou-
pled phase-only oscillators, with the phase θ j ∈ [−π, π ] of
the jth oscillator evolving in time according to the dynamics

θ̇ j = ω j + K

N

N∑
k=1

sin(θk − θ j ) + √
2Djη j (t ), (1)

where the dot denotes the derivative with respect to time, and
where η j is a Gaussian white noise with the properties

〈η j (t )〉 = 0, 〈η j (t )ηk (t ′)〉 = δ j,kδ(t − t ′). (2)

The angular brackets denote averaging with respect to noise
realizations. In Eq. (1), K > 0 is the coupling constant, while
the diffusion coefficients Dj setting the strength of noise
on individual oscillators and the intrinsic frequencies ω j are
both quenched-disordered random variables sampled indepen-
dently for every oscillator from given distributions P(D) and
g(ω), respectively. Note that while we have ω j ∈ (−∞,∞),
we have Dj > 0 ∀ j. The original Kuramoto model does
not include any noise (Dj = 0 ∀ j) and, correspondingly, the
Langevin equations (1) reduce to deterministic equations of
motion.

With respect to discussing possible synchronization among
the oscillators, one is interested in the dynamical properties
and synchronization behavior that the system exhibits in the
long-time limit or, more practically, after a transient that is
quite often of short duration (the study of the approach to
time-asymptotic states is of interest in its own right). This is
the framework of our paper. The asymptotic states can some-
times be summarized collectively in a phase diagram, i.e.,
a diagram with coordinates given by the relevant dynamical
parameters of the system of study. These parameters could be
the coupling constant K , the noise strength, the parameters
of the frequency distribution g(ω), etc. In this paper, devoted
to the behavior of the system (1) under the condition of in-
homogeneous noise (Dj different for different oscillators), we
have adopted a strategy to present our detailed results obtained
for several representative range of values of these parameters,
both analytically and through numerical simulations involving
numerical integration of the dynamics (1).

Several limits of the model (1) have been studied in the
past [19]. When the constant Dj’s are the same for all the
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FIG. 1. For the model (1) with homogeneous noise (Dj = D =
1.0 ∀ j), the figure shows the stationary order parameter r as a
function of K . The frequency distribution is a Gaussian with zero
mean and unit variance.

oscillators (homogeneous-noise case), i.e., P(D) = δ(D −
D0), with D0 > 0, we have the following known results. (a)
With g(ω) = δ(ω − ω0), choosing a frame rotating uniformly
with frequency ω0 with respect to an inertial frame, the system
can be thought of as being in contact with a heat bath at a
temperature ∝ D0; it thus relaxes to a canonical equilibrium
stationary state at a temperature ∝ D0. (b) With any other
form of g(ω), we have to distinguish between the simpler
case in which this function is symmetric and unimodal with
respect to the peak frequency, and the more general case in
which it does not have these properties. In the first case, the
system relaxes to a nonequilibrium stationary state (NESS). In
such a stationary state as well as in the canonical equilibrium
stationary state achieved with g(ω) = δ(ω − ω0), the system
in the limit N → ∞ shows qualitatively similar behavior,
namely, a phase transition between a synchronized and an
unsynchronized (incoherent) phase as one tunes the value of
the coupling constant K at a fixed D0 (or, of D0 at a fixed K).
The amount of synchrony in the system is characterized by the
synchronization order parameter [3]

reiψ ≡ 1

N

N∑
j=1

eiθ j t ; 0 � r � 1, ψ ∈ [−π, π ], (3)

such that r = 0 (respectively, r �= 0) stands for an unsynchro-
nized (respectively, a synchronized) phase. In this case, the
stationary r as a function of K is zero for K less than a critical
value Kc, and increases monotonically as a function of K
for K larger than this critical value [3,19]. A representative
plot of r versus K , which we will refer back to later in the
paper, is given in Fig. 1. The more general case of g(ω) not
being unimodal, in particular, when it is bimodal and is the
superposition of two symmetric and unimodal distributions
centered at two different frequencies, has received less atten-
tion overall, but for which several interesting results have been
obtained [5,14]. In this case, in fact, the long-time state of
the system, besides being unsynchronized and synchronized
stationary states, can also be a nonstationary periodic state
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depending on K and the parameters characterizing the dis-
tribution g(ω). We have to emphasize that in this paper, we
refer to nonstationary time-asymptotic states as periodic states
using the latter qualification in a loose sense. In fact, we have
no proof of an exact periodicity for the infinite-dimensional
system (i.e., in the limit N → ∞, when the dynamics is
described by a Fokker-Planck equation, see later), not even
for the particular observable r(t ); however, since numerical
simulations show quite a regular and repetitive behavior of
r(t ) at long times, we take the liberty to refer to such states as
periodic.

In the above backdrop, we study in this paper the issue of
what happens when every oscillator has a different associated
noise strength Dj (heterogeneous-noise case), i.e., when P(D)
is not a delta function. In particular, we study the case in
which every oscillator has a different intrinsic frequency ω j

sampled independently from a given distribution g(ω) and
also has a different noise strength Dj , but the randomness in
the latter comes from its explicit dependence on ω j , i.e., we
have

P(D) = g(ω)
dω

dD
, (4)

where the derivative on the right-hand side is determined from
the given dependence of D on ω, expressed symbolically
as D = D(ω). We may now ask: What is the nature of the
stationary state in such a setting? Distributed Dj’s imply that,
formally, we have many heat baths at different temperatures
with all of which the system is in simultaneous contact, and
so the stationary state will be a NESS. However, as remarked
in the preceding section, the physical meaning of different
diffusion coefficients Dj is related to the original purpose of
the introduction of such coefficients: they represent both a
thermal noise and a variability of the intrinsic frequencies. It is
of immediate relevance to address the question: How different
is the structure of the time-asymptotic states from the ones
observed when all the Dj’s are equal? These are the issues
that we take up for a detailed investigation in this paper.

III. ANALYSIS AND RESULTS

In the limit N → ∞, our system of study (1) may
be characterized by a single-oscillator distribution function
f (θ, ω, t ), defined such that among all oscillators with the
same intrinsic frequency ω [and, consequently, the same noise
parameter D = D(ω)], the quantity f (θ, ω, t )dθ gives the
fraction that have their phase in [θ, θ + dθ ] at time t . This
function is normalized as∫ π

−π

dθ f (θ, ω, t ) = 1 ∀ ω, t, (5)

and is also periodic: f (θ + 2π,ω, t ) = f (θ, ω, t ). We re-
call that in the usual case when the diffusion coefficient
has the same value D for all oscillators, the function
f (θ, ω, t ) evolves in time according to the Fokker-Planck
equation [19]

∂ f

∂t
= − ∂

∂θ
[(ω + Kr sin(ψ − θ )) f ] + D

∂2 f

∂θ2
, (6)

with

reiψ =
∫

dθdω eiθ f (θ, ω, t )g(ω). (7)

In a stationary state, when r and ψ become time indepen-
dent, measuring all θ ’s with respect to the stationary ψ leads
to the stationary distribution fst (θ, ω), satisfying

0 = − ∂

∂θ
[(ω − Kr sin θ ) fst] + D

∂2 fst

∂θ2
, (8)

r =
∫

dθdω cos θ fst (θ, ω)g(ω), (9)

0 =
∫

dθdω sin θ fst (θ, ω)g(ω). (10)

Equation (8) has the solution [19]

fst (θ, ω) =Ce
Kr cos θ+ωθ

D

×
[

1 + (e− 2πω
D − 1)

∫ θ

0 dθ ′e− Kr cos θ ′+ωθ ′
D∫ 2π

0 dθ ′e− Kr cos θ ′+ωθ ′
D

]
,

(11)

with C = fst (0, ω)e−Kr/D being the normalization constant
to fix the condition (5), and in which r is to be deter-
mined self-consistently by inserting Eq. (11) in Eq. (9).
Note that fst (θ, ω, D) = fst (−θ,−ω, D) automatically satis-
fies Eq. (10).

One of the main purposes of this paper is to show that
the inhomogeneity of the diffusion coefficient D among the
different oscillators can give rise to a richness of possibilities
in the long-time state of the dynamics (1). In fact, we will
show that with an inhomogeneous diffusion coefficient and a
unimodal g(ω), the behavior can be, in some cases, similar to
the noiseless system with a bimodal g(ω). To unveil this fact,
we take g(ω) to be a standard Gaussian with zero mean and
unit variance in the rest of the paper.

To proceed with our analysis with the inhomogeneous-D
case, we note first that the Fokker-Planck Eq. (6) and hence
Eq. (11) for the stationary solution have the same form even
when D is ω dependent, D = D(ω). We will use this fact in
our subsequent analysis, in which we will study two different
and representative forms of the function D(ω). We reproduce
here the equations for convenience:

∂ f

∂t
= − ∂

∂θ
[(ω + Kr sin(ψ − θ )) f ] + D(ω)

∂2 f

∂θ2
(12)

and

fst (θ, ω) =Ce
Kr cos θ+ωθ

D(ω)

×
⎡⎣1 + (e− 2πω

D(ω) − 1)

∫ θ

0 dθ ′e− Kr cos θ ′+ωθ ′
D(ω)∫ 2π

0 dθ ′e− Kr cos θ ′+ωθ ′
D(ω)

⎤⎦. (13)

We will study one case in which D(ω) is a simple two-valued
function, and also a case in which D(ω) is a smooth func-
tion. However, before specializing to these choices of D(ω),
we derive some general expressions that will be used in our
analysis. We will in the following two subsections derive (i)
the bifurcation threshold Kc, namely, the value of K where
a synchronized stationary state, a solution with positive r of

064124-4



SYNCHRONIZATION IN A SYSTEM OF KURAMOTO … PHYSICAL REVIEW E 108, 064124 (2023)

Eq. (12), bifurcates from the incoherent stationary state with
r = 0 (see, e.g., the beginning of the curve at r = 0 in Fig. 1)
and (ii) the instability threshold Ki, namely, the value of K
beyond which the incoherent stationary state is no longer
linearly stable under evolution according to Eq. (12).

A. The bifurcation threshold

From Eqs. (12) and (13), we see that r = 0 and, corre-
spondingly, fst = 1/(2π ), is always an acceptable stationary
solution for all values of K . Thus, the incoherent state is
always a stationary solution of the dynamics (1) for all K ,
but its stability is an issue that has to be checked, which we
will address shortly. As with the homogeneous-noise case, it
will so turn out that the incoherent state is unstable beyond a
critical value of K .

Equations (12) and (13) can also admit a nonzero stationary
solution r > 0, corresponding to a synchronized state, and we
want to now study when as a function of K such a nonzero
solution bifurcates from the r = 0 stationary solution. To find
the value Kc of K at which such a bifurcation occurs, we
substitute Eq. (13) into Eq. (9) and expand the right-hand side
of the latter equation as a power series in r in the limit r → 0.
Keeping only the first two terms of the series, one arrives at
the following expression [19]:

r = Kr

2

∫
dω g(ω)

D(ω)

ω2 + (D(ω))2

− K3r3

4

∫
dω

g(ω)

D(ω)

×
[

1

ω2 + 4(D(ω))2
− ω2

(ω2 + (D(ω))2)2

]
. (14)

The desired bifurcation threshold Kc is the value of K for
which the coefficient of r on the right-hand side of Eq. (14) is
equal to 1. We thus get

Kc = 2

[∫
dω g(ω)

D(ω)

ω2 + (D(ω))2

]−1

. (15)

B. The instability threshold

As promised, we now perform the linear stability analysis
of the incoherent stationary state fst (θ, ω) = 1/(2π ). To this
end, expanding f (θ, ω, t ) as

f (θ, ω, t ) = 1

2π
+ δ f (θ, ω, t ), (16)

with δ f � 1, we see on account of the normalization (5)
that

∫ π

−π
dθδ f (θ, ω, t ) = 0∀ω, t . Substituting the above ex-

pansion in Eq. (12), and keeping only terms that are at most
linear in δ f , we obtain the linear equation

∂

∂t
δ f (θ, ω, t ) = − ω

∂

∂θ
δ f (θ, ω, t ) + D(ω)

∂2

∂θ2
δ f (θ, ω, t )

+ K

2π

∫
dω′g(ω′)

∫
dθ ′ cos(θ − θ ′)

× δ f (θ ′, ω′, t ). (17)

Effecting a Fourier expansion, δ f (θ, ω, t ) =∑+∞
k=−∞ δ̂ f k (ω, t )eikθ , and then substituting in Eq. (17),

we get for the kth Fourier component that

∂

∂t
δ̂ f k (ω, t ) = − ikωδ̂ f k (ω, t ) − D(ω)k2δ̂ f k (ω, t )

+ K

2
(δk,1 + δk,−1)

∫
dω′g(ω′)δ̂ f k (ω′, t ).

(18)

For k �= ±1, one has an exponential decay of δ̂ f k (ω, t ) with
time, with rate equal to D(ω)k2. For k = ±1, using

δ̂ f ±1(ω, t ) = δ̃ f ±1(ω, λ)eλt (19)

in Eq. (18) yields

(λ ± iω + D(ω))δ̃ f ±1(ω, λ) = K

2

∫
dω′g(ω′)δ̃ f ±1(ω′, λ).

(20)

It then follows that one has a continuous spectrum of stable
modes, one for each ω value in the support of g(ω). If ω0 is
one such value, the corresponding stable mode for δ̃ f ±1 has
λ = −D(ω0) ∓ iω0 [19]. On the other hand, there is also a dis-
crete spectrum, with the corresponding λ found by rewriting
Eq. (20) as

δ̃ f ±1(ω, λ) = K

2(λ ± iω + D(ω))

∫
dω′g(ω′)δ̃ f ±1(ω′, λ).

(21)

Multiplying both sides by g(ω), integrating with respect to
ω and using

∫
dω′g(ω′)δ̃ f ±1(ω′, λ) �= 0 [21], we obtain the

dispersion relation:

K

2

∫
dω

g(ω)

λ ± iω + D(ω)
= 1. (22)

If λr and λi are the real and imaginary parts of λ, then the real
and imaginary parts of Eq. (22) give

K

2

∫
dω g(ω)

λr + D(ω)

(λr + D(ω))2 + (λi ± ω)2 = 1, (23)∫
dω g(ω)

λi ± ω

(λr + D(ω))2 + (λi ± ω)2 = 0. (24)

For the usual case of an ω-independent D and a symmetric
and unimodal g(ω) centered at ω = 0, one can prove [19]
that Eq. (24) can be satisfied only for real values of λ and,
furthermore, for λi = 0, it is trivially satisfied. Therefore, one
is left with the search of the solution λr of Eq. (23) after posing
λi = 0 in it. The instability threshold Ki of the incoherent state
is obtained by further posing λr = 0. Following this proce-
dure, one finds that, in this case, we have Ki = Kc [19]. This
simple situation does not arise when g(ω) is not symmetric
and unimodal. However, and this is what concerns us in this
paper, when D(ω) is ω dependent, this coincidence of Ki with
Kc is also not verified with a symmetric and unimodal g(ω),
such as the standard Gaussian we are considering. Then, one
can proceed with the following strategy. It is still the case
that the instability threshold Ki is characterized by being a
solution of Eqs. (23) and (24) for λr = 0. Since K does not
appear in the second equation, one can numerically look for
its solution λi after posing λr = 0; then plugging this value of
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λi in the first equation with λr = 0, one obtains directly the
value of Ki.

C. The choice of D = D(ω) as a step function

Here, we consider the choice of D = D(ω) as a step func-
tion, namely, D = D1 for |ω| < ω0 and D = D2 for |ω| > ω0,
where D1, D2, and ω0 are given constants. This choice will
prove useful in having an analytical characterization of the
consequences of an inhomogeneous diffusion coefficient and
will allow for the bifurcation threshold associated with the
synchronization transition to be analytically derived.

Let us then begin with the determination of the bifurcation
threshold Kc. We have to insert our step function D(ω) given
above in Eq. (15), obtaining, after writing explicitly the stan-
dard Gaussian for g(ω), that

Kc =
√

8π

[∫
|ω|�ω0

dω e− ω2

2
D1

ω2 + D2
1

+
∫

|ω|�ω0

dω e− ω2

2
D2

ω2 + D2
2

]−1

. (25)

The computation of the integrals is given in Appendix A, and
we get

Kc =
√

8

π

[
erfc

(
D1√

2

)
e

D2
1

2 − 2

π

∫ π
2

arctan
(

ω0
D1

) dφ e− D2
1

2 tan2 φ

+ 2

π

∫ π
2

arctan
(

ω0
D2

) dφ e− D2
2

2 tan2 φ

]−1

, (26)

where erfc(x) is the complementary error function.
With the above background, we now present numerical

results on r as a function K for representative values of the
parameters ω0, D1, D2. We will establish consistency of our
results with those obtained from numerical integration of the
dynamics (1). For numerical computation of r versus K , we
employ the method discussed in Ref. [19] and summarized in
Appendix B. For parameter values, we consider two represen-
tative cases: (i) ω0 = 0.1, D1 = 1.0, D2 = 0.05, and (ii) ω0 =
0.1, D1 = 0.05, D2 = 1.0. Clearly, these two choices com-
plement each other. While in the first choice, low-frequency
oscillators have larger noise in their dynamics than the high-
frequency oscillators, the reverse is true for the second choice.
For case (i), using the method detailed in the preceding
subsection, one obtains the bifurcation threshold and the in-
stability threshold given, respectively, by Kc ≈ 4.978, Ki ≈
1.697. For the second choice, we have instead that Kc = Ki ≈
1.371. The fact that Kc and Ki are unequal in one case and
equal in the other case already hints at the system behaving
very differently in as far as the long-time behavior of the order
parameter r as a function of K is concerned. In Fig. 2, we
show the numerically computed r as a function of K for the
aforementioned two choices of the parameters D1 and D2. We
observe for case (i) of decreasing D with ω [respectively, for
case (ii) of increasing D with ω] a subcritical (respectively, a
supercritical) bifurcation of the synchronized state from the
incoherent state. The thresholds Kc and Ki for case (i) are
explicitly indicated with arrows in the figure, unlike for case
(ii), for which both these thresholds are at the beginning of
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FIG. 2. For the model (1), the figure shows for the case studied
in Sec. III C of the particular dependence of the diffusion coefficient
D on ω the numerically computed order parameter r as a function
K . The frequency distribution is a Gaussian with zero mean and unit
variance. One may observe for case (i): ω0 = 0.1, D1 = 1.0, D2 =
0.05 [respectively, for case (ii): ω0 = 0.1, D1 = 0.05, D2 = 1.0] a
subcritical (respectively, a supercritical) bifurcation of the synchro-
nized state from the incoherent state [the tangent of the curve at Kc

for case (i) is vertical as it is for case (ii), although the scale of
the figure does not allow to have a clear visualization of this fact
for case (i)]. The results are obtained by solving numerically the
self-consistent equation for r as detailed in the text. Here, Ki and
K (sync)

i are the instability threshold, respectively, of the incoherent
and the synchronized state. On the other hand, Kc is the bifurca-
tion threshold between the incoherent and synchronized states. For
case (i), these values are explicitly denoted with arrows, and the
figure shows that Ki �= K (sync)

i �= Kc; for case (ii), we have Ki =
K (sync)

i = Kc. For case (i), K (sync)
i is given by the leftmost K value of

the curve.

the blue line on the K axis. We have checked that the values
of the bifurcation threshold Kc for the two cases, obtained
from the curves r(K ) shown in the figure, match with the
aforementioned theoretical values for these quantities. More-
over, for case (i), we have indicated another relevant value of
K , i.e., K (sync)

i ≈ 1.995, which is defined as the leftmost K
value of the curve r(K ). This value is nothing but the instabil-
ity threshold of the synchronized state (this state exists only
for K � K (sync)

i ). We thus see that there is a range of K values
between the instability thresholds Ki ≈ 1.697 and K (sync)

i ≈
1.995 of the incoherent and the synchronized stationary state,
respectively, in which the system does not exhibit any station-
ary state at long times. We note that case (ii) of increasing D
with ω shows a behavior of r versus K that is not very differ-
ent from the behavior observed with the homogeneous-noise
case, see Fig. 1. For case (ii), one has Ki = K (sync)

i = Kc, and
the system always has a well-defined stationary state at long
times. The plot of Fig. 3, showing the order parameter r as a
function of time from numerical integration of the dynamics
(1) for case (i) above, is consistent with the predictions of
Fig. 2, namely, for K between Ki and K (sync)

i , the system
relaxes to a nonstationary state [which is a time-periodic state,
as seen in the upper panel of Fig. 3]. On the other hand, for
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FIG. 3. For the model (1), the figure shows for the case (i) studied
in Sec. III C of the particular dependence of the diffusion coefficient
D on ω the order parameter r versus time and for two values of
K : Upper panel: K = 1.88 is chosen to be between Ki and K (sync)

i ,
in which case the dynamics relaxes to a time-periodic state. Lower
panel: K = 2.75 is chosen to be larger than K (sync)

i , in which case the
dynamics relaxes to a synchronized stationary state. The frequency
distribution is a Gaussian with zero mean and unit variance. For
both panels, the initial state has the θ ’s uniformly and independently
distributed in [−π, π ], while the number of oscillators is N = 105.
The data are obtained from numerical integration of the equations of
motion (1).

K > K (sync)
i , the system relaxes to a synchronized stationary

state. For K < Ki, the system relaxes to an incoherent station-
ary state (data not shown).

In light of the above, one may wonder whether the nonex-
istence of a stationary state and the observed subcritical
bifurcation for case (i), results that are very different from
those for the homogeneous-noise case, are a consequence of
the underlying D versus ω dependence being a step and not a
smooth function. To explore further this point, we are thus led
in the following subsection to study the case in which D(ω)
decreases as a function of ω, but does so in the form of a
smooth functional dependence.

D. The choice D(ω) = 1 − γ|ω|/√1 + γ2ω2

Here, we consider D = D(ω) to be monotonically decreas-
ing as a function of |ω|, so oscillators with large intrinsic
frequencies are the ones with small noise strengths. We choose
to study the behavior of our system when the function D(ω)

has the following form:

D(ω) = 1 − γ |ω|√
1 + γ 2ω2

. (27)

The parameter γ > 0 sets the rate of decrease of D(ω) with
increasing |ω|. Apart from the cusp in ω = 0, the above is a
smooth function for all values of ω �= 0.

In Fig. 4, we show the plots of r(K ) for four representative
values of γ . We now discuss the implications of these curves.
Let us begin with the two large values of γ , i.e., γ = 2.0 and
γ = 4.0, for which the corresponding curves r(K ) are given,
respectively, in Figs. 4(c) and 4(d). A comparison with the red
curve of Fig. 2 shows that the qualitative situation is the same
as that of case (i) of Sec. III C: there is a subcritical bifurcation
of the synchronized state from the incoherent state at K = Kc;
furthermore, the instability thresholds Ki of the incoherent
stationary state and K (sync)

i of the synchronized stationary state
are in the order Ki < K (sync)

i < Kc. This demonstrates that for
smooth D(ω), we find the same qualitative behavior as was
reported in the preceding subsection for D(ω) given as a step
function. By increasing K beyond Ki, the incoherent stationary
state becomes unstable. However, since for Ki < K < K (sync)

i ,
there is no stable stationary state, the system settles into a
periodic time-asymptotic state in this range of K values. We
do not show plots of r(t ) as in Fig. 3, since these plots would
present the same feature, i.e., a nonstationary time-asymptotic
periodic state for a value of K between Ki and K (sync)

i , and
a stationary synchronized state for a value of K larger than
K (sync)

i . For reference, we give the values of the various thresh-
olds. For γ = 2.0, we have Ki ≈ 2.403, K (sync)

i ≈ 2.479, and
Kc ≈ 3.259, while for γ = 4.0, the values are Ki ≈ 1.843,
K (sync)

i ≈ 2.186, and Kc ≈ 3.493. Our results indicate that for
these two cases, as well for case (i) of Sec. III C, the value Ki

marks a Hopf bifurcation.
We now move on to discuss the other cases in Fig. 4,

which correspond to smaller values of γ , and which present
different and interesting characteristics. For γ = 1.0, we see
from Fig. 4(a) that the instability threshold Ki of the in-
coherent state coincides with the bifurcation threshold Kc

(we have Kc = Ki ≈ 3.099). However, since this bifurcation
is subcritical, and the instability threshold K (sync)

i is smaller
than Ki (K (sync)

i ≈ 2.839), one is led to deduce that we have
now a first-order transition between the incoherent and the
synchronized stationary state, with an associated hysteresis
behavior. This means that we have a case of bistability: in the
range K (sync)

i < K < Ki, depending on the initial condition,
the system can settle asymptotically into either an incoherent
or a synchronized state. On the other hand, by adiabatically
tuning the coupling constant K , the system with increasing K
remains in the incoherent state all the way up to K = Ki, when
it jumps to the synchronized state; following the hysteresis
cycle, but now with decreasing K , the system remains in
the synchronized state all the way up to K = K (sync)

i , when
it jumps back to the incoherent state. This picture has been
confirmed by our numerical integration results.

The situation for γ = 1.5 is again different and probably
more unusual. We see from from Fig. 4(b) that now the in-
stability threshold Ki of the incoherent state does not coincide
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FIG. 4. For the model (1), the figure shows for the case studied in Sec. III D of the particular dependence of the diffusion coefficient D on
ω the numerically computed order parameter r as a function of K . The values of the parameter γ are γ = 1.0 (a), γ = 1.5 (b), γ = 2.0 (c),
and γ = 4.0 (d). The frequency distribution is a Gaussian with zero mean and unit variance. The instability thresholds Ki and K (sync)

i and the
bifurcation threshold Kc are shown in the figure.

with the bifurcation threshold Kc (Ki ≈ 2.784, Kc ≈ 3.182);
however, contrary to what we saw for larger values of γ , we
have Ki larger than the instability threshold K (sync)

i ≈ 2.625 of
the synchronized state. First, one may guess that, similar to
what happens for γ = 1.0, there is a hysteresis behavior in
the range K (sync)

i < K < Ki. However, numerical integration
results show that by adiabatically increasing K beyond Ki, the
system does not jump to the synchronized state, but it settles
into a nonstationary periodic state. We have not determined
the value of K between Ki and Kc at which this nonstationary
asymptotic state ceases to exist; however, in our opinion,
the interesting thing is that there is a range of K for which
we have another kind of bistability, namely, that between a
nonstationary periodic state and a synchronized state. To show
this fact, in Fig. 5, we plot r(t ) obtained from two simulations
at K = 2.83, a value between Ki and Kc. In one simulation,
the initial configuration is given by all phases equal to one
another, and the system goes to the synchronized stationary
state; in the other simulation, the initial configuration has the
phases uniformly and independently distributed in [−π, π ],
and we see that the system relaxes to a nonstationary state.

Thus, also for this case with γ = 1.5 the value Ki marks a
Hopf bifurcation. However, contrary to the cases with higher
values of γ , the periodic state for K > Ki coexists, for a
certain K range, with a stationary synchronized state.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the synchronization proper-
ties of a system of Kuramoto oscillators subjected to a noise
strength that is not the same for all the oscillators. This is
at variance with the usual statistical mechanical treatment of
many-body systems subjected to thermal noise. In this latter
case, all the components of the system being subjected to the
same temperature, the strength of the noise, in an analysis
through Langevin equations or a Fokker-Planck equation, is
uniform. We emphasize that in our studied system, the noise
represents not only the thermal fluctuations induced by the
interaction with a heat bath (i.e., the external environment)
but also the variability of the intrinsic frequencies of the
individual components.
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FIG. 5. For the model (1), the figure shows for the case studied
in Sec. III D of the particular dependence of the diffusion coefficient
D on ω the order parameter r versus time and for γ = 1.5, K = 2.83,
such that Ki < K < Kc. Upper panel: Initial state has all the θ ’s hav-
ing the same value. Lower panel: Initial state has the θ ’s uniformly
and independently distributed in [−π, π ]. The frequency distribution
is a Gaussian with zero mean and unit variance. The data are obtained
from numerical integration of the equations of motion (1), with the
number of oscillators N = 105. The figure suggests bistability, i.e.,
coexistence of stable periodic and synchronized states.

Our paper has revealed an interesting feature about the role
of noise in a system of interacting oscillators. In fact, it has
generally been found in systems with homogeneous (uniform)
noise that noise tends to simplify the overall behavior. This is
not so much evident when the frequency distribution g(ω) is
symmetric and unimodal [in this case, the noise simply causes
from a practical point of view a shift of the curve r(K ) versus
K along the K direction], but which becomes clearer with
more structured forms of g(ω). For example, the rich phase
diagram found with a symmetric and bimodal g(ω) without
noise [5], while being qualitatively of the same structure at
small noise, is progressively simplified with increasing noise
levels [14]. This can be understood by noting that increasing
noise tends to smoothen the structure of g(ω) [in particular,
it tends to merge the two peaks of bimodal g(ω)], making
the effects of this distribution similar to those of a unimodal
one. Instead, we have seen in the current paper that the

introduction of a noise with inhomogeneous strength (inten-
sity), in particular, a noise which is more intense for small
frequencies and less so for large frequencies, can transform
the simple behavior occurring in a system of oscillators with
symmetric and unimodal g(ω) into a richer structure, includ-
ing (nonequilibrium) first-order phase transitions, hysteresis
behavior, and nonstationary asymptotic states.

Trying to rationalize qualitatively our observed behavior
while going beyond the results of our analytic computation
and numerical simulations, one can argue as follows. First,
one may note that in the homogeneous-noise case, the stabil-
ity of the incoherent state is increased by increasing noise,
while the existence and stability of the synchronized state
is a much more difficult affair. In fact, noise facilitates the
spreading of oscillator phases over the range [−π, π ]. This
is why, by adding noise to a system with symmetric and
unimodal g(ω), the curve of r(K ) versus K is progressively
shifted to larger K while maintaining the same simple form.
To give more quantitative information on this, we can refer
to Fig. 1, which shows the curve r(K ) for the homogeneous-
noise strength equal to D = 1.0: in this case, the bifurcation
threshold is Kc = Ki ≈ 3.050; if we study the same system
with D = 0, the curve r(K ) versus K will be similar, but
with the bifurcation threshold at Kc = Ki ≈ 1.596. Let us
now compare the values of Ki and K (sync)

i for the following
four cases: D = 0, case (i) of Sec. III C, case γ = 4.0 of
Sec. III D, and the homogeneous-noise case with D = 1.0;
we stress that, in the last three cases, the noise strength at
small frequencies is always D → 1. The values of Ki are
Ki = 1.596 for D = 0, Ki = 1.697 for case (i) of Sec. III C,
Ki = 1.843 for the case γ = 4.0 of Sec. III D, and Ki = 3.050
for the homogeneous-noise case with D = 1.0. We note that
the second and the third values are much closer to the first one
than to the last one. One infers from this that the stability of
the incoherent state is not increased much when the noise is
mainly concentrated on small frequencies. On the other hand,
let us consider the values of K (sync)

i , which for the first and last
of the mentioned four cases coincide with Ki: K (sync)

i = 1.596
for D = 0, K (sync)

i = 1.995 for case (i) of Sec. III C, K (sync)
i =

2.186 for case γ = 4.0 of Sec. III D, and K (sync)
i = 3.050 for

the homogeneous-noise case with D = 1.0. The values of the
second and third cases suggest that the noise, although not
able to stabilize the incoherent state much, is nevertheless suf-
ficient to prevent the existence, for a certain K range beyond
Ki, of the synchronized state. This can be explained by the
fact that the existence of the synchronized state requires that
oscillators of all frequencies, in particular, the small ones, are
not too much affected by the noise. This is only a heuristic
argument, which we believe grasps the real physical reason of
the phenomenon that we have found.

In this paper, we have considered the noise strength D to
be a function of frequency ω, so oscillators with the same
ω share the same noise strength. Mathematically, this can be
represented by a joint quenched frequency-noise distribution
of the form F (ω, D) = g(ω)δ(D − D(ω)). A more general
situation would be the one with a general form for F (ω, D),
including the case of independent frequencies and noise, i.e.,
F (ω, D) = g(ω)P(D). We have not studied this more general
case, which would be more elaborate from the analytical point
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of view, but which above all would require simulations with
much larger system sizes to have statistically-meaningful re-
sults. On the other hand, if we consider our starting motivation
for introducing inhomogeneous noise, i.e., different intrinsic
frequency variability among the oscillators, it is sensible to
assume that oscillators with the same intrinsic frequency are
subjected to the same noise. It is also sensible to assume, as
for the cases where we have found the interesting and complex
behavior of our system, that oscillators with small frequencies
are more prone to be affected by the environment [22], and so
in the model, one has to take for them a larger noise strength.

Even staying within our choice of F (ω, D) = g(ω)δ(D −
D(ω)), it is clear that each choice of the form of D(ω) would
produce quantitatively a different structure for the possible
asymptotic states [which, as previously noted, can be repre-
sented for a given g(ω) in a phase diagram with coordinates
given by K and the parameters of D(ω)]. It is then more useful
to try to determine the qualitative features of these different
phase diagrams that would be preserved going from one form
of D(ω) to another one, at least within a class of functions with
a given property, i.e., D(ω) being a decreasing function of |ω|
as we have mostly considered in this paper. In this paper, we
have studied only a couple of different forms of the function
D(ω), the step function in Sec. III C [case (i)] and the smooth
function of the form analyzed in Sec. III D. We feel that the
qualitative features that we found for these choices of D(ω)
would be present in most cases in which the function D(ω)
has the mentioned property, but clearly this assumption should
be supported by an extensive investigation that is left to future
studies.
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APPENDIX A: THE BIFURCATION THRESHOLD

We begin by explicitly writing Eq. (25), determining the
bifurcation threshold Kc:

Kc =
√

8π

[∫
|ω|�ω0

dω e− ω2

2
D1

ω2 + D2
1

+
∫

|ω|�ω0

dω e− ω2

2
D2

ω2 + D2
2

]−1

. (A1)

We see that to compute this threshold, it is necessary to eval-
uate an integral of the type

I (a, b, α) ≡
∫ +α

−α

dx
e−ax2

x2 + b2
. (A2)

The usual case in which D is a constant for all ω’s requires
the value of the above integral for α = ∞, and we know

that

I (a, b,∞) =
∫ +∞

−∞
dx

e−ax2

x2 + b2
= π

b
erfc(

√
ab2)eab2

, (A3)

where erfc(x) is the complementary error function, defined in
terms of the error function erf (x) as

erf (x) ≡ 2√
π

∫ x

0
dt e−t2

; erfc(x) ≡ 1 − erf (x). (A4)

The evaluation of the integral (A2) can be performed with
a procedure similar to that for the computation of (A3). Com-
puting the partial derivative of I (a, b, α) with respect to a, we
easily obtain

∂

∂a
I (a, b, α) = b2I (a, b, α) −

∫ +α

−α

dx e−ax2

= b2I (a, b, α) −
√

π

a
erf (α

√
a). (A5)

The above is a differential equation for I (a, b, α), whose so-
lution, knowing the value for a = 0 given by

I (0, b, α) =
∫ +α

−α

dx
1

x2 + b2
= 2

b
arctan

(α

b

)
, (A6)

is

I (a, b, α)

=
{

2

b
arctan

(α

b

)
− 2

√
π

∫ √
a

0
dt e−b2t2

erf (αt )

}
eab2

.

(A7)

To proceed, let us define

J (α, b, a) ≡
∫ √

a

0
dt e−b2t2

erf (αt ). (A8)

We note that this integral can be expressed in closed form
when α = b. In fact, the definition of the error function
implies that (d/dt )erf (bt ) = (2b)/

√
π e−b2t2

, which in turn
implies that the integrand in Eq. (A8) is

√
π

4b
d
dt [erf2(bt )], so

J (b, b, a) =
√

π

4b erf2(b
√

a). For α �= b, we can write, using

(d/dt )erf (t ) = 2/
√

π e−t2
, that

J (α, b, a) =
√

π

4b
erf2(b

√
a)

+ 2

b
√

π

∫ b
√

a

0
dv

∫ α
b v

v

du e−(v2+u2 ). (A9)

This is valid for both α > b and α < b. In the double integral
on the right-hand side, we can go to polar coordinates, defined
by v ≡ w cos φ, u ≡ w sin φ, to obtain∫ b

√
a

0
dv

∫ α
b v

v

du e−(v2+u2 )

= 1

2

∫ arctan ( α
b )

π
4

dφ (1 − e−r2(φ) ). (A10)
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From trigonometric considerations, we have r2(φ) = ab2(1 +
tan2 φ) = ab2

cos2 φ
. We therefore have

J (α, b, a) =
√

π

4b
erf2(b

√
a)

+ 1

b
√

π

∫ arctan ( α
b )

π
4

dφ
(
1 − e

− ab2

cos2 φ

)
. (A11)

We can further transform this expression to get rid of the
square of the error function. For this purpose, we note that

J (∞, b, a) =
∫ √

a

0
dt e−b2t2 =

√
π

2b
erf (b

√
a). (A12)

This implies that

1

b
√

π

∫ π
2

π
4

dφ
(
1 − e

− ab2

cos2 φ

)
=

√
π

2b
erf (b

√
a) −

√
π

4b
erf2(b

√
a). (A13)

Then, Eq. (A11) can be transformed to

J (α, b, a) =
√

π

4b
erf2(b

√
a) + 1

b
√

π

∫ π
2

π
4

dφ
(
1 − e

− ab2

cos2 φ

)
− 1

b
√

π

∫ π
2

arctan ( α
b )

dφ
(
1 − e

− ab2

cos2 φ

)
= −

√
π

2b
erfc(b

√
a) + 1

b
√

π
arctan

(α

b

)
+ 1

b
√

π

∫ π
2

arctan ( α
b )

dφ e
− ab2

cos2 φ . (A14)

Now, inserting the above result on the right-hand side of
Eq. (A7), we obtain for I (a, b, α) the expression

I (a, b, α) = π

b
erfc(b

√
a)eab2 − 2

b

∫ π
2

arctan ( α
b )

dφ e−ab2 tan2 φ.

(A15)

We note that for α = ∞, we obtain the correct expression
(A3). Using Eq. (A15) in Eq. (A1), we finally have

Kc =
√

8

π

[
D1I

(
1

2
, D1, α

)
+ D2I

(
1

2
, D2,∞

)

− D2I

(
1

2
, D2, α

)]−1

=
√

8

π

[
erfc

(
D1√

2

)
e

D2
1

2 − 2

π

∫ π
2

arctan
(

α
D1

) dφ e− D2
1

2 tan2 φ

+ 2

π

∫ π
2

arctan
(

α
D2

) dφ e− D2
2

2 tan2 φ

]−1

, (A16)

which is Eq. (26) of the main text with the substitution α =
ω0. Since from the definition (A2) we have that I (a, b, 0) = 0,
from Eq. (A15), we obtain

erfc(b
√

a)eab2 = 2

π

∫ π
2

0
dφ e−ab2 tan2 φ. (A17)

Then, we see from Eq. (A16) that, as desired, the limit α →
∞ yields the threshold for the case of constant D equal to
D1, while the limit α → 0 yields the threshold for the case
of constant D equal to D2. We also obtain the threshold for
constant D when D1 = D2 = D.

APPENDIX B: THE NUMERICAL SOLUTION
OF EQ. (9) WITH fst GIVEN BY EQ. (13)

We discuss here the numerical solution of Eq. (9) with
fst given by Eq. (13). Let us then start from the stationary
Fokker-Planck Eq. (8) with D = D(ω), given in the equivalent
form by

(ω − Kr sin θ ) fst (θ, ω) − D(ω)
∂

∂θ
fst (θ, ω) = S(ω), (B1)

where S(ω) is the constant and uniform probability current in
the stationary state and fst (θ, ω) is the normalized stationary
distribution function given by Eq. (13). We need to use the
expression ∫ 2π

0
dθ eipθ fst (θ, ω) = 〈eipθ 〉(ω; r) (B2)

of the expectation value (which depends on ω and r) of the
function eipθ with respect to the distribution fst (θ, ω), where p
is any positive integer. Then, multiplying Eq. (B1) by eipθ and
integrating over θ , we obtain for any given ω the following
system of equations:

(ω + iD(ω))〈eiθ 〉(ω; r) + i
Kr

2
〈ei2θ 〉(ω; r)

= i
Kr

2
, (ω + ipD(ω))〈eipθ 〉(ω; r) + i

Kr

2
〈ei(p+1)θ 〉(ω; r)

− i
Kr

2
〈ei(p−1)θ 〉(ω; r) = 0; p = 2, 3, . . . (B3)

Solving the above system of equations by truncating them at
a large value of p, one obtains 〈eipθ 〉(ω; r) for each p. Using
the result for p = 1 in the self-consistent Eq. (9), which may
be written as

r =
∫

dω g(ω)Re[〈eiθ 〉(ω; r)], (B4)

one has to next solve numerically the above self-consistent
equation for r, finally obtaining the desired dependence of r
on K .
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