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We study time-reversal symmetry breaking in non-Hermitian fluctuating field theories with conserved dy-
namics, comprising the mesoscopic descriptions of a wide range of nonequilibrium phenomena. They exhibit
continuous parity-time (PT ) symmetry-breaking phase transitions to dynamical phases. For two concrete tran-
sition scenarios, exclusive to non-Hermitian dynamics, namely, oscillatory instabilities and critical exceptional
points, a low-noise expansion exposes a pretransitional surge of the mesoscale (informatic) entropy production
rate, inside the static phases. Its scaling in the susceptibility contrasts conventional critical points (such as
second-order phase transitions), where the susceptibility also diverges, but the entropy production generally
remains finite. The difference can be attributed to active fluctuations in the wavelengths that become unstable.
For critical exceptional points, we identify the coupling of eigenmodes as the entropy-generating mechanism,
causing a drastic noise amplification in the Goldstone mode.

DOI: 10.1103/PhysRevE.108.064123

I. INTRODUCTION

Field theories are a powerful framework to study the
mesoscale behavior of spatially extended many-body sys-
tems. They provide analytical access to their salient universal
characteristics such as phase transitions, pattern formation,
and the associated breaking of global symmetries, without
resorting to the underlying molecular statistical mechan-
ics. In thermal equilibrium, this approach is simplified by
profound constraints that prestabilze the possible physical
outcomes and their classification. Their breakdown far from
equilibrium still poses formidable theoretical challenges. A
particularly strong manifestation of nonequilibrium occurs
in non-Hermitian field theories, which break the meso-
scopic reciprocity principle—a rampart of equilibrium coarse
graining—already at linear order. The non-Hermitian prop-
erty suggests regarding them as a special subclass of active
field theories [1]. Mesoscopic models for a wide range of
very different physical systems share this property, includ-
ing examples from active matter [2–9], biological systems
[10–15], chemical systems [16–19], and, generically, systems
with nonreciprocal interactions [20–23]. Non-Hermitian field
theories thus provide a strongly unifying framework for a
broad class of nonequilibrium systems.

One of the most striking implications of non-Hermitian
dynamics, which has recently gained renewed interest, is
the emergence of dynamical phases via parity-time (PT )
symmetry-breaking phase transitions. In this scenario, a static
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stationary phase with parity symmetry (e.g., a static, mirror-
symmetric pattern), becomes dynamical upon loosing this
symmetry. If the dynamical equations are parity symmetric
(meaning that there is no external parity breaking, e.g., by
an external field acting on the system), such dynamical states
are manifestations of spontaneous symmetry breaking. They
must then, by symmetry, always occur as pairs with opposite
parity. A paradigmatic example are pairs of traveling waves
that run in opposite directions and are equally likely to appear.
These dynamical system states can be transformed into each
other by the action of the PT operator (combined parity
and time inversion). Such PT symmetry-breaking transitions
generate a variety of dissipative structures, such as wave
trains [24–29], traveling domains [30–32] or states [33–35], or
emergent chiral patterns [36–38]. Important instances of PT
symmetry-breaking, static-dynamic phase transitions, exclu-
sive to non-Hermitian dynamics, are oscillatory instabilities
[39,40], (which may also lead to standing oscillatory pat-
terns [17,40]), and the recently uncovered critical exceptional
points (CEP). While all these concepts are defined mathe-
matically in Secs. II B, III C 4, III C 5, and IV A, we aim to
briefly explain here in words their characteristics. Oscillatory
instabilities are characterized by an oscillatory component
of their dynamics even before the transition, reflected in a
nonvanishing imaginary parts of the associated eigenvalues of
the linearized dynamical operator [see Fig. 1(b) for an illus-
tration]. This oscillatory component becomes apparent when
the system is perturbed, and, after crossing the transition,
may stabilize into stable periodic motion. Critical exceptional
points are secondary transitions occurring in phases of bro-
ken continuous symmetry, such that there exists a Goldstone
mode. At the CEP, a critical eigenmode coalesces with the
Goldstone mode, as illustrated in Fig. 1(c).

Beyond this rich phenomenology, one should expect that
the breaking of reciprocity, at linear order, also has cru-
cial implications at the level of small perturbations and
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FIG. 1. Characteristic behavior of eigenvalues and eigenvectors at three types of linear instabilities in the non-Hermitian field theories,
Eqs. (1) and (2); here illustrated with the paradigmatic example of the nonreciprocal Cahn-Hilliard model: φ̇A = ∇[(α + φ2

A − γ∇2)∇φA +
(κ − δ)∇φB + √

2ε�A], φ̇B = ∇[β∇φB + (κ + δ)∇φA + √
2ε�B], which we discuss in detail in the companion articles [56,57]. The first

column (a), (d) depicts a conventional critical (CCP) point (at α = αc, dashed line); the middle column (b), (e) depicts an oscillatory instability
(OI) (at α = αc, dashed line); the third column (c), (f) shows a critical exceptional point (CEP) (at δ = δc, dashed line). Whereas a CCP marks
a static-static transition as familiar from equilibrium second-order phase transitions, the OI and CEP are continuous, PT symmetry-breaking,
static-dynamic phase transitions. The top row (a)–(c), depicts the characteristic behavior of the two eigenvalues with the largest real parts, the
second row (d)–(f) depicts the relative orientation of the corresponding eigenvectors of the first Fourier component of the linearized operator
J . For the conventional critical point (a), (d), the eigenvalue λ0 of the unstable eigenmode ê0 is real and the eigenvectors ê0 and ê1 remain
linearly independent at the transition. Panels (a) and (b) also feature a noncritical exceptional point (EP) at λ0 = λ1, α ≈ 0.7αc, preceding
the CCP. At the oscillatory instability (b), (e), the eigenvectors ê+ and ê− form a complex conjugate pair that becomes unstable, while their
eigenvalues λ− and λ+ retain a nonzero imaginary part. At the CEP (c), (f), a formerly stable eigenmode (Reλ1 < 0) becomes unstable, when
it merges with Goldstone mode ê0 with λ0 = 0. Since the formerly linearly independent eigenmodes ê0 and ê1 coalesce, the dimensionality
of the eigenspace drops by one. For all panels, the model parameters are β = 0.05, γ = 0.015, κ = 0.01, and for (a), (d) δ = 0.03, (b), (e)
δ = 0.06, (c), (f) α = −0.07.

fluctuations. In the context of open quantum systems, it was
indeed recently shown that non-Hermitian dynamics can en-
tail a drastic mode-selective amplification of thermal noise
[41,42]. Similar mechanisms have also been observed in the
context of shear flows [43], fluctuation-induced pattern for-
mation [44] and optical resonators [45]. This motivated us
to take a closer look at the fluctuations in a general class of
classical non-Hermitian field theories. Our investigation was
mainly guided by the following two questions.

First, in contrast to (equilibrium or equilibrium-like) static
phases, the above-mentioned dynamical phases exhibit a sys-
tematic mass flow associated with a spontaneously broken
PT symmetry. One may naturally wonder whether this qual-
itatively affects also the fluctuations. In this respect, it is
important to distinguish between two completely different
types of symmetry breaking and to understand their connec-
tion: PT and time-reversal symmetry breaking (TRSB), the
first affecting the systematic dynamics, the second a genuine
feature of nonequilibrium fluctuations. In order to characterize
PT , we employ a small noise approximation that allows us to
resort to bifurcation theory. To characterize TRSB, we bring
to bear the concept of informatic entropy production for field
theories, established in Ref. [46].

Second, we would like to contribute to the general debate
whether and to what extent entropy production has universal
properties in the vicinity of phase transitions, which can help
to classify phase transitions far from equilibrium. In recent

years, this question has been addressed from various angles
in different models [47–55], but not yet from the general
perspective of non-Hermitian field theories. Recalling that
the very essence and nontrivial features of equilibrium phase
transitions can be pinned down to fluctuations of “static”
observables (measured at a single time) becoming systematic,
one may naturally ask, to what extent this picture extends
to dynamical observables (such as the entropy production) in
nonequilibrium systems.

In the following, we uncover generic characteristics of
TRSB fluctuations for different types of phase transitions
in a broad class of physical systems that can be addressed
by non-Hermitian field theories, independent of their spe-
cific molecular details. Our approach enables us to establish
rigorous connections between TRSB and the spectrum and ge-
ometry of the eigenmodes of the dynamical operators. We pay
special attention to the fluctuations associated with the forma-
tion of dissipative structures, and consider in detail the two
most common static-dynamic transition scenarios, namely,
oscillatory instabilities and CEPs. We cover certain key as-
pects of this program in the two companion papers [56,57].
In Ref. [56], we provide a compact and accessible bird’s
eye perspective on the most striking results. In Ref. [57], we
specifically analyze TRSB in the nonreciprocal Cahn-Hilliard
model, which is a prototypical example for the abstract class
of non-Hermitian field theories studied here. The explicit
analytical findings and numerical results presented there are
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FIG. 2. Strength and time-reversal symmetry breaking (TRSB) of fluctuations in the vicinity of a conventional critical point (a), (d), an
oscillatory instability (OI) (b), (e) and a critical exceptional point (CEP) (c), (f); demonstrated using the exemplary model defined in Fig. 1 (with
the same parameter values). The entropy production rate S, defined in Eq. (5), quantifies the TRSB, while ε−1trCov(φ), defined in Eq. (36),
quantifies the typical strength of the fluctuations. In the limit of vanishing noise intensity, limε→0 ε−1trCov(φ) = χ approaches the statistic
susceptibility defined in Eq. (37). To approximate it, a sufficiently small noise intensity of ε = 10−10 was chosen here. While ε−1trCov(φ)
peaks at all three types of transitions, S displays regular behavior at the conventional critical point (a), as we analytically show on general
grounds in Sec. III C 3. In contrast, for the OI and the CEP (b), (c), Eq. (17) predicts S ∼ ε−1 inside the dynamical phase (α > αc, or δ > δc,
respectively), such that it increases unboundedly for ε → 0. In the static phase, both transitions are heralded by a surging entropy production,
(for α < αc, or δ < δc, respectively). Specifically, Eqs. (44) and (71) predict S∗ ∼ χ = limε→0 ε−1trCov(φ). The ratio of entropy production
and fluctuation strength shown in (e), (f) confirms that both quantities grow at the same rate.

in perfect agreement with the general theory developed below
and selectively employed for illustrative purpose in Figs. 1
and 2.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the concept of non-Hermitian field theo-
ries, the types of studied phase transitions, and the employed
measure for TRSB. In Sec. III, we provide a detailed charac-
terization of the entropy production in various possible phases
and across their transitions, with a focus on the low noise
regime. Our most important result is an explicit representation
of the informatic entropy production rate S for fields in terms
of the eigensystem of the associated linearized dynamical
operator (Sec. III C). From this expression, we can infer the
relevant characteristics of S , and show that the entropy pro-
duction surges within static phases close to transitions to a
dynamical phase. In Sec. IV, we shed light onto the underlying
dissipative mechanism around CEPs. To improve readability,
some of the technical aspects were relegated to Appendixes.

II. FRAMEWORK

A. Class of studied field theories

We consider nonequilibrium field theories for N scalar field
components φi(r, t ), i = 1, . . . , N , where t ∈ R denotes time
and the continuous spatial coordinates r reside on a bounded
d-dimensional domain of volume V with periodic boundary
conditions. We assume conserved stochastic dynamics of the
form

φ̇i = −∇ · (Jd
i +

√
2ε�i

)
, Jd

i = −∇μi, (1)

where we used the compact notation φ̇ ≡ ∂tφ. The space-time
Gaussian white noise �(r, t ) satisfies

〈�in(r, t )� jm(r′, t ′)〉 = δi jδnmδ(r − r′)δ(t − t ′), (2)

with n, m = 1, . . . , N , and k, l = 1, . . . , d , and ε denoting the
noise intensity.

We explicitly allow the Jacobian J ≡ −δ∇ · Jd/δφ of the
dynamical operator, represented in an appropriate basis (see
Sec. II B) to be non-Hermitian, which can occur only in the
presence of a nonequilibrium deterministic current Jd

i (r, t ),
i.e., if the chemical potential μi[φ] cannot be represented as
gradient of a scalar potential. We aim to study systems that are
intrinsically out of equilibrium, which should be contrasted to
boundary-driven systems that are subject to a form of global
energy injection, associated with an explicit external sym-
metry breaking. A common example for the latter involves
a current Jd = f φ due to a constant external force f acting
uniformly on φ. To exclude such more “conventional” setups
from our discussion, we assume that Eq. (1) is symmetric with
respect to a parity inversion, P : r → −r.

We focus on the regime of low noise intensity ε, where
we can build on concepts of bifurcation theory, familiar from
deterministic nonlinear dynamics.

B. Types of studied continuous phase transitions

We consider transition scenarios of the dynamics (1) that
are caused by a linear instability of its dynamical operator
F ≡ −∇ · Jd. From a nonlinear-dynamics perspective, these
transitions are bifurcation points of F [58,59]. By φ∗ we
denote fixed points of F , which are at the same time solutions
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of Eq. (1) for ε = 0. Based on the properties of the spectrum
of the linerarized dynamical operator, i.e., the Jacobian

J ≡ δF

δφ∗ , (3)

we can distinguish two types of bifurcations. Primary bifur-
cations arise from solutions that have the full symmetry of
Eq. (1). According to the Goldstone theorem [60], all real
parts of the eigenvalues of J are negative before the transi-
tion. A bifurcation occurs where the real part of one or more
eigenvalues vanishes. Secondary bifurcations emanate from
solutions that already spontaneously break a native continuous
symmetry of Eq. (1). Here the Goldstone theorem ensures
the existence of at least one eigenvector (eigenmode) with
eigenvalue zero, which is called a Goldstone mode, while the
real parts of all other eigenvalues remain negative away from
the transition. Based on the signs of the real parts of their
eigenvalues, we refer to eigenmodes as stable or unstable.
When applying the above notions, we assume that F and J
have representations in a countable Fourier basis. Since par-
ity inversion corresponds to complex conjugation in Fourier
space, the presumed P symmetry of Eq. (1) then implies that
J has a real Fourier representation [61].

We address three transition scenarios, which are briefly
introduced here and schematically illustrated in Fig. 1. As a
useful reference point, first we consider conventional critical
transitions that are characterized by the vanishing of a single
real eigenvalue of the Jacobian in Eq. (3), while its eigen-
vectors form a complete set, i.e., an eigenbasis [Figs. 1(a)
and 1(d)]. This scenario is familiar from second-order phase
transitions in equilibrium systems. The same type of instabil-
ity can however also be encountered in non-Hermitian field
theories. Next, we consider two transition scenarios that are
exclusive to non-Hermitian systems, namely, oscillatory insta-
bilities and critical exceptional points (CEPs). Both of these
instabilities may lead into dynamical phases and are then as-
sociated with a breaking of PT symmetry (with PT : r, t →
−r,−t) [26,36,56]. The characteristic feature of an oscilla-
tory instability, illustrated in Fig. 1(b), is that the real parts of
the eigenvalues of the pertinent eigenmodes vanish, while the
imaginary parts remain nonzero (as in the well-known case of
the Hopf bifurcation). Here we consider only primary insta-
bilities of this type. In contrast, CEPs are exceptional points,
meaning points where two (or more) eigenmodes merge, that
also are, at the same time, critical points. Thus, at CEPs, the
directions of two eigenmodes become aligned, while the real
parts of their eigenvalues vanish, as illustrated in Figs. 1(c)
and 1(f). Consequently, the eigenvectors form a basis in the
vicinity of the CEP, but not at the CEP itself. A particu-
larly interesting PT symmetry-breaking scenario can then
arise when the CEP is a secondary bifurcation point, and a
formerly stable eigenmode coaligns with a Goldstone mode
[26,36,62]. In Sec. IV, we give a more rigorous mathematical
description of CEPs and discuss the characteristic associated
eigenmode dynamics. As long as only one pair of eigenvectors
converges in the CEP, not only the real parts but also the
imaginary parts of the corresponding eigenvalues vanish at
the critical point, as implied by the complex conjugate root
theorem [63].

C. Irreversibility measure

To quantify the time-reversal symmetry breaking (TRSB)
of the fluctuating field dynamics, we need an irreversibility
measure for the field dynamics. We follow Refs. [46,64,65]
and employ what can be regarded as a generalization of
the standard definition for the entropy production rate from
stochastic thermodynamics [66], and will henceforth be re-
ferred to as the (mesoscopic informatic) entropy production
rate S .

First, one generalizes the notion of entropy production
associated with a “trajectory” {φ(t )t∈[0,T ]} to the space of field
configurations as

s[φ, 0, T ] ≡ log
P [{φ(t )t∈[0,T ]}]
P [{φR(t )t∈[0,T ]}] , (4)

where P [{φ(t )t∈[0,T ]}] and P [{φR(t )t∈[0,T ]}] are the path prob-
abilities of the trajectory and of it’s time-reversed realization,
respectively. To be well-defined, the probabilities are to be
interpreted in terms of the Onsager-Machlup formalism [67].
We consider fields that represent conserved position-like de-
grees of freedom, and therefore treat them as even under
time-reversal. Throughout, we employ Itô calculus for all
stochastic dynamical equations. The average entropy produc-
tion rate is then defined as

S (t ) ≡ lim
dt→0

〈s[φ, t, t + dt]〉
dt

, (5)

where 〈·〉 denotes the noise average and dt ∈ R+ is the time
increment. A direct connection to the overall thermodynamic
entropy production and total heat dissipation in any underly-
ing particle system is, by construction, elusive, since we here
consider a coarse-grained formulation of the dynamics that
does not include information about all underlying microscopic
degrees of freedom; see Ref. [65] for an in-depth discus-
sion. Nevertheless, S can serve as a useful measure for the
strength of the average TRSB at the mesoscopic level. We are
specifically interested in the asymptotics, t → ∞. Particularly
informative is the behavior of the limit

S∗ := lim
ε→0

S, (6)

which reveals the TRSB at leading order in ε.

III. IRREVERSIBILE FLUCTUATIONS IN
NON-HERMITIAN FIELD THEORIES

In this section, we prove general statements for the TRSB
of field theories of the type of Eq. (1), with a special focus on
the behavior at phase transitions. First, we derive an explicit
representation for the informatic entropy production rate S
for fields in terms of the statistics of the deterministic current
(Sec. III A). Using this expression, we can deduce the general
scaling of S with the noise intensity in a generic dynamical
phase (see Sec. III B). To tackle the behavior around the phase
transitions, we derive in Sec. III C an expression for S in
terms of the eigenvalues and eigenvectors of the associated
linearized dynamical operator. From that, we can infer the
general properties of S in the vicinity of the different phase
transition scenarios. Thereby, we focus on the regime of small
noise intensities ε � 1 and derive asymptotic expressions
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for the steady-state entropy production rate S in dynamical
phases and at and near transitions from static to dynami-
cal phases. The limit ε → 0 is especially informative. Most
importantly, it turns out that the leading order contribution
in ε exhibits universal behavior, unveiling the characteristic
properties of the entropy production at and near the transition.
In contrast, field theories with strong noise are dominated
by their nonlinearities and exhibit nonuniversal behavior that
cannot generally be treated by analytical means. The limit
moreover reflects the leading TRSB contribution that domi-
nates the whole regime of small noise intensities. Last, only
in this regime are the bifurcation-analytic viewpoint and the
concepts of linear stability and critical phenomena applicable
on the coarse-grained field level.

A. TRSB and statistics of deterministic current

We now derive a general expression that relates S with the
statistical properties of the deterministic current, starting from
a recently derived expression for the entropy production

s[φ, t, t + T ] = −1

ε

∫
V

dr
∫ t+T

t
dt

∑
i

φ̇i(r, t )μi(r, t ) (7)

in field theories of the type of Eq. (1) [46,68]. Applying
Itô’s formula for functionals, as introduced in Ref. [69], to
this integral and using integration by parts, we find that the
stochastic entropy production along a field trajectory can be
expressed via the following Itô stochastic integral:

s[φ, t, t + T ] = 1

ε

∫
V

dr
∫ t+T

t
dt

∑
i

[
Jd

i (r, t ) +
√

2ε�i(r, t )
] · Jd

i (r, t )

+
∫

V
dr

∫
V

dr′
∫ t+T

t
dt

∑
i j

[∇r · �i(r, t ),∇r′ · � j (r′, t )]
δ

δφi(r)
μ j (r′, t ), (8)

where [·, ·] in the second line denotes the total variation [70].
Next, we take the noise average of this equation and simplify
it using the following identities:

[∇ · �i(r, t ),∇ · � j (r′, t )] = −δi j∇2
r δ(r − r′), (9)

δ

δφi(r)
μ j (r′) = ∂μ j

∂φi
(r′)δ(r − r′), (10)

δ

δφi(r)
∇r′ · Jd

j (r
′) = δ

δφi(r)
∇2

r′μ j (r′)

= ∂μ j

∂φi
(r′)∇2

r′δ(r − r′). (11)

This gives rise to the following expression:

S (t ) =
∫

V
dr

∑
i

〈∣∣Jd
i (r, t )

∣∣2〉
ε

+
∫

V
dr

∑
i

〈
δ

δφi(r, t )
∇ · Jd

i (r, t )

〉
, (12)

which is understood to be regularized by a UV cutoff to sup-
press unphysical field degrees of freedom [56]. Otherwise, the
entropy production in Eq. (12) would contain an infinite num-
ber of contributions from the small wavelength regime, where
field theories loose their predictive power. Thus, introducing
the UV cutoff is a possibility to obtain a physically pertinent
measure of irreversibility, respecting the limited resolution of
the model.

We note that a common type of models within the general
class defined in Eq. (1) are those where the chemical potential
can be decomposed into an equilibrium part, derived from
a free energy functional F , and a generic nonequilibrium
part μa:

μi = δF
δφi

+ μa
i . (13)

In the context of active field theories, μa is denoted “active
part.” It has been proposed in Refs. [1,71] that this construc-
tion of the chemical potential yields a method for generating
mesoscopic minimal models for various forms of nonequi-
librium. Substituting this form of the chemical potential in
Eq. (7), we find that the entropy production along a trajectory
also decomposes into an “active part” that takes the same
form as in Eq. (7), with μ replaced by μa, and an additional
boundary term F (t + T ) − F (t ) which does not contribute
in the steady state. Hence, along similar lines as above, we
find that the general expression for the steady-state entropy
production rate then reads

S =
∫

V
dr

∑
i

〈
Jd

i ∇μa
i

〉
ε

−
∫

V
dr

∑
i

〈
δ

δφi
∇2μa

i

〉
. (14)

Throughout this paper, however, we will retain the more gen-
eral form of non-Hermitian field theories given in Eq. (1). The
representation in terms of the total deterministic current in
Eq. (1) allows a general connection with bifurcation theory to
be established, as we demonstrate in the following sections.

B. Entropy production in dynamical phases

First, we consider the steady-state entropy production asso-
ciated with a dynamical (i.e., time-dependent) state. Making
use of the standard procedure of the small noise expansion
[70], we express the steady-state dynamical solution as

φ = φ∗ + √
εφ + O(ε), (15)

where φ∗(t ) ≡ φ(t )|ε=0 corresponds to the deterministic
steady-state solution of the zero-noise case and φ is the
linear response to the Gaussian noise. We similarly expand
the deterministic current up to its leading O(

√
ε) fluctuations

064123-5



SUCHANEK, KROY, AND LOOS PHYSICAL REVIEW E 108, 064123 (2023)

due to the field fluctuations φ as

Jd
i [φ(r, t )] = Jd

i [φ∗(r, t )]

+ √
ε
∑

j

∫
V

dr′ δJd
i (r, t )

δφ j
∗(r′, t )

φ j (r′, t ). (16)

Within the scheme of the small noise expansion, the determin-
istic solution as well as the statistics of φ are independent
of the noise intensity ε. Further, φ is Gaussian with zero
mean [70,72] so that 〈 f (φ∗)φ〉 = 0. Hence, by combining
Eqs. (16) and (12), we find the asymptotic expression

S = ε−1
∑

i

∫
V

dr
∣∣Jd

i [φ∗(r, t )]
∣∣2 + O(ε0), (17)

which shows that the dominant contribution to S in the dy-
namical phase scales like S ∼ ε−1. It thus grows unboundedly
in the zero-noise limit, thereby denouncing the dissipative
character of the dynamical state. Our analysis of a paradig-
matic nonreciprocal model in the two companion papers
[56,57], recovers this scaling. It is further consistent with the
findings from Ref. [72] for a polar flocking model, which
reported S ∼ ε−1 in the state of collective motion.

We now consider, as two typical representatives of dynami-
cal phases, traveling waves and oscillating patterns. In the first
case φ∗

i (r, t ) ≡ ϕi(r − vt ), and Eq. (1) yields Jd(ϕ) = vϕ for
ε → 0. Hence, Eq. (17) implies

S = ε−1|v|2
∑

i

∫
V

dr|ϕi|2 + O(ε0). (18)

Similarly, for an oscillating state of the form φ∗
i (r, t ) =

sin(t/τ ∗ + θi )ϕi(r) the time-averaged entropy production is

S = ε−1

(
1√
2τ ∗

)2 ∑
i

∫
V

dr|∇−1ϕi|2 + O(ε0), (19)

with ∇−1 ≡ ∇∇−2 [73].
We conclude that, in both cases, the entropy production rate

is related to the squared inverse of the characteristic timescale
of the deterministic motion.

Recalling the probabilistic interpretation of S in Eq. (4),
it measures the uncertainty about the direction of time, given
a stochastic trajectory. The dynamical phase exhibits a deter-
ministic flux with a direction encoded in the average system
configurations, which means that, on the average level, each
piece of a trajectory expresses the arrow of time. The remain-
ing uncertainty comes from the fact that the noise current,√

2ε�, can transiently invert the deterministic mass cur-
rent (which is vϕ or ∇−1ϕi/τ

∗, respectively). According to
Eqs. (18) and (19), this uncertainty is then simply given by
the ratio of the squared mass and noise currents, integrated
over the observed spatial volume.

C. TRSB at phase transitions

Next, we study the general behavior of S in the vicinity
of phase transitions. In particular, we want to address the
question, which types of singularities of S∗ can occur and how
they are related to the nature of the transition.

1. The squared deterministic current

As an important first step, we derive an expression for the
entropy production rate that allows to draw a connection to
the notion of bifurcations (introduced in Sec. II B). Again, we
aim to calculate the averages in Eq. (12) within the small noise
expansion [70]. First, we consider the second term, which is
the contribution from the functional derivative of ∇ · Jd and
find

S =
∫

V
dr

∑
i

〈∣∣Jd
i (r, t )

∣∣2〉
ε

+
∫

V
dr

∑
i

〈
δ

δφ∗
i (r, t )

∇ · Jd
i (r, t )

〉
+ O(ε). (20)

Inserting the definition of the Jacobian J of F from Eq. (3),
we obtain for the asymptotic form S∗ ≡ limε→0 S of S ,

S∗ = SCNR + trJ , (21)

where

SCNR ≡ lim
ε→0

∫
V

dr

∑
i

〈∣∣Jd
i (r, t )

∣∣2〉
ε

(22)

is the average of the integrated squared-deterministic current-
to-noise ratio.

To analyze the qualitative behavior of S∗ at a transition,
we inspect both terms in Eq. (21), separately. Denoting the
eigenvalues of J by {λi}, the trace of the Jacobian can be
expressed as

trJ =
∑

i

Reλi < 0, (23)

where we have used that J is a real operator and φ∗ is a
linearly stable fixed point. Therefore, this term will, in any
case, remain finite toward the transition. As implied by the
inequality (23), the SCNR defined in Eq. (22) is, in general, an
upper bound to S∗ (S∗ < SCNR), and the decisive contribu-
tion when approaching the transitions. Concretely, expanding
the average in Eq. (22) to lowest order in ε, we can deduce
from Eq. (21) the behavior of S∗.

2. TRSB and characteristic eigenvalues

To fully unravel the asymptotic form of S∗ as a transi-
tion is approached, we now derive an equation that expresses
the SCNR [defined in Eq. (22)] exclusively in terms of the
eigenvalues and eigenvectors of the Jacobian, or linearized
dynamical operator, J from Eq. (3). As a first step, we define
the d-dimensional Fourier components of the deterministic
current [

Jd
i (t )

]k ≡ V −1
∫

V
drJd

i (r, t ) exp{−iqkr}, (24)

with qk = (2π )dV −1(qk
1, . . . , qk

d ). In Fourier space, the inte-
gral over the average squared deterministic current in Eq. (22)
can then be expressed as the sum∫

V
dr
∑

i

〈∣∣Jd
i (r, t )

∣∣2〉 =
∑

k

V
∑

i

〈∣∣[Jd
i (t )

]
k
∣∣2〉. (25)

To proceed further, we will first consider only the case where
J is diagonal in Fourier space. The case of nondiagonal
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J is considered separately below, in Sec. III C 6. Given this
assumption, the Fourier representation of the small noise ex-
pansion [70] of the deterministic current in Eq. (16) reads(

Jd
i

)k = −i
√

εqk
∑

j

J k
i jφk

j + O(ε), (26)

which involves the Fourier representations of the O(
√

ε) co-
efficient of the expansions in Eq. (15),

φk
i ≡ V −1

∫
V

drφi exp{−iqkr} (27)

and the Jacobian

J k
i j ≡ V −1

∫
V

dr′
∫

V
dr

δJd
i (r, t )

δφ j
∗(r′, t )

exp{iqk (r′ − r)}. (28)

Due to the diagonal form of J , the fluctuations in each Fourier
wave number can be treated independently. Hence, all wave
numbers affected by an arising instability can be treated sep-
arately, too, so that we can assume, without loss of generality,
that the considered instability occurs in a single wave number
l only. Importantly, if J k is real and non-Hermitian, J k is
automatically not normal, which implies that the set of its
eigenvectors is not orthogonal [74]. However, we assume that
for all considered types of transition scenarios, the eigenvec-
tors still form a basis away from the instability. Thus, J k has
the diagonal representation

(J k )′i j =
∑
nm

(T k )−1
in J k

nmT k
m j = λk

i δi j . (29)

Here we introduced the transformation matrix T k , given by
the column matrix of right eigenvectors. The transformation
to the eigenbasis coordinates reads

ψk
i =

∑
j

(T k )−1
i j φk

j . (30)

Combining Eqs. (30) and (29) and inserting the identity
T −1T = T T −1 = id, we find that the average value of the
squared deterministic current can be expressed as

∑
i

〈∣∣∣∣∑
j

J k
i jφk

j

∣∣∣∣
2〉

=
∑
i jn

λ̄k
i T̄ k

niT
k

n jλ
k
j

〈
ψ−k

i ψk
j

〉
, (31)

where the overbars indicate element-wise complex conjuga-
tion. Next, we evaluate the cross-correlations appearing in
Eq. (31), using the dynamical equation for φ, which is given
by the linearization of Eq. (1) and reads

∂tφk
i (t ) =

∑
j

J k
i jφk

j + iqk ·
√

2�k
i (t ), (32)

with 〈�k
i (t )�k′

j (t ′)〉 = V −1δi jδk,k′δ(t − t ′). We apply the Itô
formula to obtain the dynamical equation for ψ−k

i ψk
j and

take the noise average, which reads

∂t
〈
ψ−k

i ψk
j

〉 = (
λ̄k

i + λk
j

)〈
ψ−k

i ψk
j

〉
+ 2|qk|2

V

∑
n

(T̄ k )−1
in (T k )−1

jn . (33)

Imposing the stationarity condition ∂t 〈ψ−k
i ψk

j 〉 = 0, we
find

〈
ψ−k

i ψk
j

〉 = 2|qk|2
V

∑
n

(T̄ k )−1
in (T k )−1

jn(
λ̄k

i + λk
j

) . (34)

Combining Eqs. (25), (26), (31), and (34), we arrive at the
central result of this paper,

SNCR =
∑

k

ζ k, (35a)

with

ζ k = −
∑

i j

2
λ̄k

i λ
k
j

λ̄k
i + λk

j

Ck
i j

| det T k|2 , (35b)

Ck
i j =

∑
nm

T̄ k
miT

k
m j

[
(T̄ k )−1

in

]
(T k )−1

jn | det T k|2

=
∑
nm

T̄ k
miT

k
m j[adj(T̄ k )T ]ni[adj(T k )T ]n j

= [(T̄ k )T T k]i j[adjT̄ kadj(T k )T ]i j . (35c)

Recalling Eqs. (21) and (23), the entropy production rate in
the zero-noise limit can hence be expressed as

S∗ =
∑

k

ζ k +
∑

i

Reλi. (35d)

The above formulas (35) express the SCNR [defined in
Eq. (22)] and thus S∗ exclusively in terms of properties of
the eigensystem of J . We note that the value of ζ k is deter-
mined by the spectrum and the geometry of the eigenvectors
of J . This provides insight into the fundamental connection
between global symmetries, dynamical properties, and the
fluctuations at phase transitions of systems of the type of
Eq. (1).

A first implication is that the contributions ζ k of all wave
numbers k �= l to the SCNR and S∗ generally remain finite.
The only possible exception is the contribution from the unsta-
ble eigenmode l , for which the denominator of Eq. (35b) can,
in principle, become zero. This wave number thus deserves
special attention.

As a reference, let us now first explicitly consider the sit-
uation for systems for which J k is Hermitian. This holds for
models of the type of Eq. (1) if μ has a gradient representation,
thus, in particular, for any system in thermal equilibrium.
Then T k is orthogonal, resulting in Ck

i j = δi j . Hence, ζ k =
−∑

i λ
k
i for all k, including k = l . Equations (35a) and (35d)

then imply that, for Hermitian systems of the type of Eq. (1),
the SCNR remains strictly finite, even at a phase transition, so
that, in general, S∗ ≡ 0.

In contrast, for systems with a non-Hermitian J k , the
SCNR can, in principle, become singular at the transition,
as can be already anticipated from the form of the ζ k in
Eq. (35b). With regard to this aspect, we now examine the
three different transition scenarios presented in Sec. II B. To
study them, we consider paths in the parameter space of
Eq. (1) that end at the respective transition points. Naturally,
the latter are parameterized by the real part w = Re(λl

i ) of the
eigenvalue of J l that vanishes at the transition. Accordingly,
in the following, T k (w) and {λk

n(w)} are always assumed to
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depend on this single parameter w. For sake of readability, we
explicitly state the argument w in the following only when we
evaluate a quantity at the transition point w = 0.

3. TRSB near conventional critical points

Let us first consider transitions where a single eigenmode
êl

0 with eigenvalue λl
0 becomes unstable at the transition, while

the eigenvectors form a basis, yielding | det T l (0)| �= 0. We
refer to these transitions as “conventional” critical points.
Examples of this type of transition are the second-order tran-
sitions that commonly occur in thermal equilibrium, and also
their nonequilibrium analogues. We assume that the deter-
ministic solution φ∗ has the full symmetry of the system,
thus, away from any transition all eigenvalues of the Jacobian
have strictly negative real parts [60]. From the structure of
Eq. (35b), it is directly apparent that in this case, also the
contribution from the unstable eigenmode with wave number l
to the entropy production must remain finite at the transition.
Thus, S is in general regular across such critical transitions.
We emphasize that this is the case even though the typical
strength of φ fluctuations in response to the noise, measured
by

trCov(φ) ≡
∑

i

∫
V

dr〈|φi − φ∗
i |2〉, (36)

surges dramatically and the static susceptibility

χ ≡ lim
ε→0

ε−1trCov(φ), (37)

which measures the response in the low-noise regime, di-
verges. In analogy to equilibrium phase transitions, the
divergence of χ serves as an indicator of the phase transition.
This entirely different behavior of S and χ is exemplified in
Figs. 2(a) and 2(d) for a conventional critical transition in the
paradigmatic nonreciprocal Cahn-Hilliard model [57].

We note that the divergence of the susceptibility can be
formally seen from

χ = V
∑

k

∑
i

〈
φ−k

i φk
i

〉

= −
∑

k

2|qk|2
∑
i jnm

T̄ k
niT

k
n j (T̄

k )−1
im (T k )−1

jm

λ̄k
i + λk

j

, (38)

which is dominated by

χ l ∼ − |ql |2
λl

0

∑
nm

T̄ l
n0(0)T l

n0(0)(T̄ l )−1
0m (0)(T l )−1

0m (0)

= −|ql |2
λl

0

Cl
00(0)

| det T l (0)|2 , as Reλl
0 → 0. (39)

Since Eq. (35c) implies that Ck
ii > 0, the numerator in the

above expression is strictly positive, causing the divergence
of χ when the eigenvalue λ0 in the denominator vanishes.

4. TRSB near oscillatory instabilities

Now we address oscillatory instabilities, which are char-
acterized by the occurrence of unstable eigenmodes whose
eigenvalues retain a nonzero imaginary part across the tran-
sition. These can occur only in non-Hermitian dynamics, as

the spectrum of Hermitian operators is completely real. Since
J is real, according to our assumption of a P-symmetric
dynamical operator, the eigenmodes involved in the transition
come, even in the non-Hermitian case, as pairs with complex
conjugate eigenvalues [75]. Thus, at the oscillatory instability,
there is always a conjugate pair of unstable monochro-
matic eigenmodes of wave number l , whose eigenvalues we
denote by

λl
i± = −σ ± iω. (40)

Furthermore, all eigenmodes are assumed to remain linearly
independent across the transition, resulting in | det T (0)| �= 0
[76]. We further assume that the instability is a primary one,
i.e., the real parts of all eigenvalues are nonzero and negative,
away from the transition.

Splitting the sum in Eq. (35b) into a diagonal and an off-
diagonal part, we find

ζ l = −
∑

i

(
Reλl

i

)2 + (
Imλl

i

)2

Reλl
i

Cl
ii

| det T l |2

−
∑
i �= j

2λ̄l
iλ

l
j

Reλl
i + Reλl

j + i
(
Imλl

j − Imλl
i

) Cl
i j

| det T l |2 . (41)

Therefore, according to Eqs. (21) and (35a), close to such a
transition, the asymptotic form of S∗ is given by

S∗ ∼ ω2

σ

Cl
i+i+ (0) + Cl

i−i− (0)

| det T l (0)|2 , as σ → 0. (42)

Again, since Eq. (35c) implies Ck
ii > 0, the numerator in the

above expression is strictly positive. Hence, S∗ diverges, as
the transition at σ = 0 is approached.

The last expression can further be transformed using the
susceptibility χ defined in Eq. (37). The explicit expression
for χ given in Eq. (38) now has the scaling

χ ∼ |ql |2
σ

∑
nm

T l
ni+ (0)T l

ni+ (0)(T l )−1
i+m(0)(T l )−1

i+m(0)

+ |ql |2
σ

∑
nm

T l
ni− (0)T l

ni− (0)(T l )−1
i−m(0)(T l )−1

i−m(0)

= |ql |2
σ

Cl
i+i+ (0) + Cl

i−i− (0)

| det T (0)|2 , as σ → 0. (43)

In combination with Eq. (42), we conclude that

S∗ ∼ ω2

|ql |2 χ, as σ → 0. (44)

Hence, as the transition is approached, the entropy production
rate is proportional to the susceptibility χ and therefore scales
with the strength of the fluctuations. This is confirmed by the
numerical data for an oscillatory instability in the nonrecipro-
cal Cahn-Hilliard model [57], presented in Figs. 2(b) and 2(e).
The scaling ∼ω2, further reveals the transient cyclic currents
with characteristic frequency ω, found within a static phase in
the vicinity of an oscillatory instability [39,40], as the culprit
of surging entropy production. The divergence of S∗ mirrors
the fact that the amplitude of these cyclic currents becomes
systematically positive as the transition is approached.
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In Ref. [56], we show a kymograph of the fluctuations
in a paradigmatic model close to an oscillatory instability,
providing striking visual evidence for the oscillatory character
of the fluctuating dynamics.

5. TRSB near critical exceptional points

We finally turn to critical exceptional points. Recall that
this scenario involves the co-aligning of two eigenvectors.
This immediately implies that det T l [appearing in Eq. (35b)]
vanishes. Therefore, for the wave number of the unstable
eigenmode l , we need to carefully evaluate the limit of the ra-
tio Cl

i j/| det T l |2 in Eq. (35b), as the transition is approached.
Its denominator generally vanishes, at every exceptional point,
regardless of whether it coincides with a critical point, or
not. For this reason, we evaluate Eq. (35b) also for the more
general case of an exceptional point that does not coincide
with an instability.

First, notice that the term (λ̄l
iλ

l
j )/(λ̄l

i + λl
j ) appearing in

Eq. (35b) in general remains finite, even at the excep-
tional point where λl

i , λ
l
j → 0. This can be seen by applying

L’Hôpital’s rule [77] to the real and imaginary parts of the
expression and taking into account that, away from the ex-
ceptional point, Reλl

i < 0 for all i. Next, we investigate the
behavior of det T l , close to an exceptional point. We choose
an ordering of the eigenbasis {êl

0, . . . , êl
N−1} such that λl

0 and
λl

1 denote the eigenvalues of the merging eigenvectors. For
ease of notation, we will in the following partially suppress
the index l . We further define

λ = λ0 − λ1, (45)

λ∗ = lim
λ→0

λ0 + λ1

2
, (46)

and denote by

ê∗ = ê0|λ=0 = ê1|λ=0 (47)

the eigenmode into which the two eigenmodes ê1 and ê1

merge at the exceptional point. We further parametrize the
path that ends at the exceptional point by w = Reλ, such
that

T (w = 0) = (ê∗, ê∗, ê2(0), . . . , êN−1(0)). (48)

Note that the reduced set of N − 1 eigenvectors
{ê∗, ê2(0), . . . , êN−1(0)} is still linearly independent at
the exceptional point.

Now, in order to investigate the properties of det T close
to the exceptional point, we aim to expand it in orders of λ.
For this purpose, it is convenient to define

êc = ê0 + ê1, (49)

ê = ê0 − ê1, (50)

L = J l , (51)

and to employ the Laplace expansion for determinants [78],
from which we find

det T = det
(

êc + ê

2
, êc − ê

2
, ê2, . . . , êN−1

)
= det(ê, êc, ê2, . . . , êN−1). (52)

Accordingly, we obtain for the linear-order coefficient of the
expansion of det T in λ,

∂λ det T |λ=0 = det(∂λê(0), ê∗, ê2(0), . . . , êN−1(0)).

(53)

This coefficient is nonzero, as long as ∂λê(0) is nonzero
and does not lie in the (N − 1)-dimensional subspace spanned
by (ê∗, ê2(0), . . . , êN−1(0)). In the following lines, we prove
by contradiction that both conditions are satisfied.

First, combining the characteristic equations for ê0 and ê1,
we find

Lê = (λ)êc + (λ0 + λ1)ê. (54)

Taking the derivative with respect to λ and the limit λ →
0, we obtain

[L(0) − λ∗]∂λê(0) = ê∗. (55)

This already yields ∂λê(0) �= 0. Further, assum-
ing that ∂λê(0) lies in the subspace spanned by
{ê∗, ê2(0), . . . , êN−1(0)} implies that there would exist a
tuple of complex numbers (a0, a2, . . . , aN−1) �= 0 such
that ∂λê(0) = a0ê∗ + ∑N−1

i=2 aiêi(0). Inserting this into
Eq. (55), yields

N−1∑
i=2

(λi(0) − λ∗)aiêi(0) = ê∗, (56)

which implies, as a contradiction, the linear dependence of
{ê∗, ê2(0), . . . , êN−1(0)}. Therefore, it must hold that

|∂λ det T
∣∣
λ=0| �= 0. (57)

Further, we can bring the left-hand side of Eq. (53) into a more
convenient form, by defining

(ê⊥)i = (−1)iM0,i(0)√∑
i |M0,i(0)|2 , (58)

where M denotes the set of minors of T [78]. This unit vector
has the unique property of being perpendicular to the (N − 1)-
dimensional subspace spanned by the eigenbasis at the CEP.
This property is inferred from

ê⊥·êi = det(êi(0), ê0, ê2(0), . . . , êN−1(0)) = 0. (59)

Using this property, we find

| det(∂λê(0), ê∗, ê2(0), . . . , êN−1(0))|2

= |ê⊥·∂λê(0)|2| det(ê⊥, ê∗, ê2(0), . . . , êN−1(0))|2

= |ê⊥·∂λê(0)|2
∑

i

|M0,i(0)|2. (60)

Taken together, we conclude that the relevant term in the
denominator of Eq. (35b) can be expanded as

| det T |2 = |ê⊥·∂λê(0)|2
∑

i

|M0,i(0)|2|λ0 − λ1|2

+ O[(λ0 − λ1)3]. (61)

Finally, the remaining term in Eq. (35b), which is C, can also
be expanded to lowest order in λ, using similar arguments
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as for the derivation of Eq. (61). As we explicitly show in
Appendix A, this yields an expansion of the form

C = C(0) + (λ0 − λ1)D + (λ̄0 − λ̄1)(D̄)T

+ O[(λ0 − λ1)2], (62)

with C(0) and the matrix D given in Appendix A. Inserting
these expansions into Eq. (35b), we find that the summands ζ l

generally obey

ζ l ∼ |λ0|2Reλ1 + |λ1|2Reλ0

Reλ0Reλ1|λ0 + λ̄1|
1

|λ0 + λ̄1|
X

+ Re

(
λ2

0

Reλ0(λ0 + λ̄1)
Y0

)

+ Re

(
λ2

1

Reλ1(λ1 + λ̄0)
Y1

)

+
∑
i>1

Re

(
λ2

i

(λi + λ̄0)(λ̄i + λ1)
Zi

)
, (63)

as |λ| → 0, where X,Yi, Zi are real, finite constants given in
(A13)–(A15).

Close inspection of the denominators in Eq. (63) reveals
that, as long as the coaligning pair of eigenmodes remains
stable, Re(λ∗) < 0 [see Figs. 1(a) and 1(d)], ζ l remains finite
at the exceptional point, and, consequently, S∗ remains finite,
too [recall Eq. (35d)]. Otherwise, for λ∗ = 0, i.e., when the
exceptional point is at the same time a critical point, a diver-
gence occurs due to the term in the first line of Eq. (63). In
this case, S∗ diverges as

S∗ ∼ K

|λ0 + λ̄1|
, as λ0, λ1 → 0, (64)

where

K ≡ 1

|ê⊥·∂λê(0)|2 lim
Re(λ)→0

|λ0|2Reλ1 + |λ1|2Reλ0

Reλ0Reλ1|λ0 + λ̄1|
(65)

is a model-specific, path-dependent finite constant [79]. We
now return to the particularly interesting case where the
eigenvector ê0 is the Goldstone mode, such that the CEP
corresponds to a secondary PT symmetry-breaking transition
where a dynamical phase emerges. Then, also in the vicinity
of the CEP, it holds that λ0 = 0 and λ1 ∈ R. Hence, in this
case,

S∗ ∼ 1

λ1

1

|ê⊥·∂λ1 ê1(0)|2 , as λ1 → 0. (66)

The divergent component of S thus depends only on proper-
ties of the eigenmode that co-aligns with the Goldstone mode;
specifically, on the value of λ1 and the orientation of ê1 with
respect to the eigenbasis. Interestingly, as for the oscillatory
instability and the conventional critical point, λ1 controls the
susceptibility, also around the CEP. Differently from Eq. (38),
the susceptibility χ is now defined as [80]

χ ≡ lim
ε→0

ε−1tr Cov(�0φ), (67)

where

�0x ≡ x − (x·ê0)ê0 (68)

is the projector onto the subspace that is orthogonal to the
Goldstone mode ê0. The singular part of the susceptibility
stems from the unstable eigenmode, which has a well-defined
wave number l . Therefore,

χ ∼ lim
ε→0

ε−1tr Cov(�0φ
l ), as λ1 → 0. (69)

According to our derivation in Appendix B, the susceptibility
asymptotically scales like

χ ∼ |ql |2 |∂λ1 ê1(0)|2
|ê⊥·∂λ1 ê1(0)|2

1

λ1
, as λ1 → 0. (70)

Hence, by comparison with Eq. (66), we find

S∗ ∼ 1

|∂λ1 ê1(0)|2
χ

|ql |2 , as λ1 → 0. (71)

We conclude that, as in the case of the oscillatory instability
in Eq. (44), S∗ scales as the susceptibility, i.e., as the strength
of the fluctuations measured relative to the noise intensity. We
find this prediction confirmed by the numerical data for an
CEP in the nonreciprocal Cahn-Hilliard model [57], presented
in Figs. 2(c) and 2(f). The origin of this connection will be
discussed in detail in Sec. IV A.

6. Nondiagonal Jacobian

As the final step of this investigation, we address the gen-
eral case that J is not diagonal in Fourier space, such that the
unstable eigenmode can have components of multiple Fourier
wave numbers, which cannot be treated separately from each
other. The analysis is nevertheless very similar to the case of
diagonal J .

However, since we relied on theorems from finite-
dimensional linear algebra, we will now have to additionally
assume that the operator F (and hence also J ) is effectively
finite-dimensional. This can always be guaranteed by a UV
cutoff. Furthermore, independently of such regularization,
mechanisms of wave number selection often naturally concen-
trate the dynamics to a characteristic scale [39,81] and thereby
ensure that phase transitions may already be captured by a
finite number of Fourier modes [82]. This is, for example, the
case for the nonreciprocal Cahn-Hilliard model, analyzed in
the two companion papers [56,57].

Expanding the squared deterministic current in the same
way as in Sec. III C 2, we find that [83]

SNCR =
∑
i jn

λ̄i(∇̄−1
T ) jiλ̄u(∇−1T ) jn〈ψ̄iψn〉 (72)

and

〈ψ̄iψ j〉 = 2
∑
nmu

(
T̄ −1

im

)
(∇̄mn)T −1

ju ∇un

λ̄i + λ j
. (73)

Further, defining T̃ = ∇−1T , we can rephrase Eq. (72) as

SNCR =
∑

i j

2
λ̄iλ j

λ̄i + λ j

C̃i j

| det T̃ |2 , (74)

where C̃ is defined according to Eq. (35c), with T substituted
by T̃ . From this point onward, the analysis is completely
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analogous to the above. For oscillatory instabilities, we then
find

S∗ ∼ ω2
∑

k

χ k

|qk|2 , as σ → 0, (75)

with

χ k ≡ lim
ε→0

ε−1tr Cov(φk ), (76)

which generalizes the result (44). Analogously, for CEPs we
find

S∗ ∼ 1

|∂λ1 ê1(0)|2
∑

k

χ k

|qk|2 , as λ1 → 0, (77)

which generalizes Eq. (71).
We conclude that, also under the general condition, that the

Fourier modes do not decouple, both transition scenarios, os-
cillatory instabilities and CEPs, exhibit a divergence of S∗, as
the transition is approached. We note that the same approach
also applies if the conserved noise

√
2ε∇ · �i is replaced by

a more general one. In particular, this includes the simpler
case of nonconserved (i.e., scalar) noise, which corresponds
to qk → 1 in Eqs. (75) and (77), and the case of a noise source
with distinct temperatures for each field component.

IV. EXCEPTIONAL POINTS, NON-HERMITIAN
DYNAMICS, AND PT SYMMETRY BREAKING

To deepen our understanding of the mechanisms that cause
the surging entropy production toward the static-dynamic
phase transition at a CEP, we examine in this section the
dynamics caused by a small perturbation in the vicinity of this
type of instability. Specifically, we discuss the general con-
nection between the coalescence of eigenmodes at CEPs and
the coupling of damped eigenmodes to Goldstone modes of
the broken symmetries. The general mechanism of the eigen-
mode coupling has already been described in Refs. [36,41]
for two-dimensional systems for the classical and the quantum
case. Here we provide a rigorous mathematical description for
systems of arbitrary finite dimension.

A. Eigenmode coupling and noise amplification

We consider some N-dimensional dynamical system ẋ =
H (x), characterized by a nonlinear dynamical operator H ,
which is assumed to admit a CEP. We denote fixed points of H
by x∗, i.e., H (x∗) = 0. Recalling our parametrization through-
out, the CEP x∗(w) is then located at w = 0. Any steady
state of this system corresponds to a stable fixed point of H .
The linearized dynamics of small perturbations x = x − x∗
around such a steady state x∗ is then determined by

∂txi =
∑

j

Li jx j, (78)

with

Li j = ∂Hi

∂x j

∣∣∣∣
x=x∗

. (79)

We further assume that the system has a continuous symmetry.
This means, there are symmetry operations x → Xsx, forming

a one-parameter Lie group, under the action of which the
form of Eq. (78) is preserved. For a given fixed point x∗
that is not preserved under the action of Xs and thus breaks
the symmetry, the Goldstone theorem [60] ensures that the
corresponding Lie algebra contains a single tangent vector
ê0, which is an eigenvector of L with eigenvalue 0. Since,
to linear order, a shift in this direction does not evoke any
restoring dynamics, this defines the “direction of the symme-
try operation.” Conventionally, this eigenvector is called the
Goldstone mode. The remaining eigenvectors will be denoted
by {ê1, ê2, . . . , êN−1}, where the ordering is chosen such that
ê1 is the direction that becomes unstable at the CEP and
coalesces with the Goldstone mode ê0. Consequently, the cor-
responding eigenvalue λ1 vanishes at the CEP.

The usual approach to uncovering the effects of perturba-
tions near an instability, would be to represent the dynamics
(78) in the eigenbasis of the linearized dynamical operator L.
At the CEP, this approach fails, since the eigenvectors do not
form a complete basis set anymore. As an alternative choice,
the set {ê0, ê⊥, ê′

2, . . . , ê′
N−1} has turned out to be particularly

suitable, for this purpose. Here, for i > 1, ê′
i is the orthogonal

projection of êi on the orthogonal complement of ê0, i.e.,

ê′
i ≡ êi − (êi·ê0)ê0√

1 − |êi·ê0|2
, (80)

and ê⊥ is the unit vector defined in Eq. (59). Since ê⊥ is per-
pendicular to the (N − 1)-dimensional subspace spanned by
the set of eigenvectors at the CEP, the above set indeed forms
a basis. Further, this basis allows studying how perturbations,
which reside in the orthogonal complement of the Goldstone
mode, couple to the Goldstone mode. In Appendix C 2, we
show that the representation of the linearized dynamical oper-
ator L in this new basis reads

L′ ∼

⎛
⎜⎜⎜⎜⎝

0 m1 m2 m3 . . . mN−1

0 λ1 0 0 . . . 0
0 o2 λ2 0 . . . 0
: : . . . : :
0 oN−1 . . . 0 . . . λN−1

⎞
⎟⎟⎟⎟⎠, as λ1 → 0,

(81)

with

oi = (−1)i−1 êi(0)·∂λ1 ê1(0)

ê⊥(0)·∂λ1 ê1(0)
ê′

i(0)·êi(0) (82)

and

m1 = 1 + ∑
i>1(−1)i−1λi(0)êi(0)·∂λ1 ê1(0)êi(0)·ê0(0)

ê⊥(0)·∂λ1 ê1(0)
, (83)

mi = λi
êi(0)·ê0(0)√

1 − |êi(0)·ê0|2
, ı > 1. (84)

Note that in the matrix given in Eq. (81) all zero entries are
identically zero up to all orders in λ1. Moreover, according to
the derivation in Sec. III C 5, |ê⊥·∂λ1 ê1(0)| �= 0, which appears
in the off-diagonal entries.

From this representation, it is apparent that there is a
unidirectional (nonreciprocal) coupling from the damped
eigenmodes {ê⊥, ê′

2, . . . , ê′
N−1} to the Goldstone mode ê0 in

the vicinity of the CEP [84]. Concerning the dynamics of x,
this has two major implications: First, the one-way coupling
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to the Goldstone mode implies that excitations pointing in
directions perpendicular to ê0 are unidirectionally transmitted
to ê0, and thereby drastically amplified. This can be seen
as follows. Consider an excitation by white noise ê⊥ξ⊥(t )
with 〈ξ⊥(t )ξ⊥(t ′)〉 = 2εδ(t − t ′) and, for sake of illustration,
assume êi·ê0 = 0 for i > 1. This implies mi = 0 for i > 1 in
Eq. (81). Hence, this noise in the perpendicular direction ê⊥
evokes a flow F0 = m1x⊥ê0 in the direction of the Goldstone
mode ê0 with an average intensity of

〈|F0|2〉 ∝ ελ−1
1 . (85)

Close to the transition, where λ1 → 0, the intensity of this
noise-induced flow is thus heavily amplified. As we show in
Sec. IV B, the noise amplification in the Goldstone mode also
appears for the general case, where êi·ê0 �= 0. Second, the rep-
resentation Eq. (81) elucidates the connection between CEPs
and the continuous emergence of dynamical phases. In case of
a continuous transition scenario, the qualitative properties of a
solution that arises after the formerly stable fixed point x∗ has
become linearly unstable can be deduced via the central man-
ifold approach [82]. First, according to Eq. (81), the solution
must have a component |x⊥| �= 0 in direction ê⊥. Hence, it
lies outside the manifold of the formerly stable fixed points x∗.
The exact form of x⊥ is determined by the nonlinear terms
of the full dynamical operator H . For the remaining directions,
perpendicular to ê⊥, we use the representation of L in the
basis {ê0, ê⊥, ê2, . . . , êN−1}, given in Appendix C [Eq. (C5)],
to expand the solution around the CEP. This leads to a solution
that satisfies

ẏ ≈ x⊥
ê⊥·∂λ1 ê1(0)

ê0, (86)

close to the transition. Hence, the solution represents a time-
dependent state evolving within the manifold of degenerate
steady states. For the case that x∗ represents a static pattern
emerging from a parity-symmetric dynamics, this scenario
corresponds to a transition to a phase of traveling patterns,
implying a breaking of PT symmetry [56].

Notably, these features crucially rely on the eigenmode
coalescence, ê1(0) = ê0(0), at the CEP. To see this, we con-
sider, for comparison, again a conventional critical transition,
where a single eigenmode becomes unstable while there
is no coaligning of eigenmodes. We define a transforma-
tion {ê0, ê1, ê2, . . . , êN−1} → {ê0, ê⊥, ê′

2, . . . , ê′
N−1}, where

this time, ê⊥ is the unique unit vector that lies in the plane
spanned by ê0 and ê1 and is perpendicular to ê0. Following
the same procedure as for the CEP above, we find that, up to
leading order in λ1, the transformed linear operator takes the
form

L′ ∼

⎛
⎜⎜⎜⎜⎝

0 k0 m1 m2 . . . mN−1

0 λ1 0 0 . . . 0
0 0 λ2 0 . . . 0
: : . . . : :
0 0 . . . 0 . . . λN−1

⎞
⎟⎟⎟⎟⎠, as λ1 → 0,

(87)

with

k0 = λ1
ê1(0)·ê0(0)

ê1(0)·ê⊥(0)
. (88)

Hence, also in this case, there is in general a coupling
between unstable eigenmodes and the Goldstone mode. How-
ever, in sharp contrast to the above results for the CEP, the
coupling coefficient k0 vanishes at the transition, for a con-
ventional critical point. Hence, there is no noise amplification
and no PT symmetry breaking in this case.

B. Connection between coupling of eigenmodes
and irreversibility

Finally, we show how the coupling between damped eigen-
modes and the Goldstone mode at a CEP is closely connected
to the TRSB measured by S . To this end, we consider
a stochastic version of the linearized dynamics given in
Eq. (78),

∂txi =
∑

j

Li jx j +
√

2ε
∑

j

ηi jξ j, (89)

with Gaussian noise satisfying 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′).
We show that the basis {ê0, ê⊥, ê′

2, . . . , ê′
N−1} introduced in

Sec. IV A can be used to achieve a decomposition of S into a
regular and a singular contribution. The coordinate represen-
tation in this basis is given by

x′
i =

∑
j

U −1
i j x, (90)

where U denotes the column matrix of basis vectors. We apply
the transformation to Eq. (89) and consider

∂tx′
i = Fi(x′) +

√
2ε

∑
j

(U −1η)i jξ j (91)

for i > 0, with Fi(x) ≡ ∑
j L′

i jx j , which represents the
part of the dynamics lying outside the manifold of degenerate
fixed points of L. Separately, we consider the dynamics of
x0 with

∂tx0(t ) = F0(x′) +
√

2ε
∑

i

(U −1η)0iξi, (92)

which represents a fluctuating motion within this manifold.
The transformation matrix U is given in Appendix C. Note
that for the case of Hermitian L, the coupling between the
Goldstone mode and its orthogonal subspace automatically
vanishes and thus F0 ≡ 0. For conventional critical points of
non-Hermitian L, a coupling may be present but vanishes at
the transition, as demonstrated in Sec. IV A.

To evaluate S , we can make use of our general expres-
sion (21) for field theories. Concretely, we can utilize the
discretized version of Eq. (21), which reads

S = ε−1
∑

i j

[U T (ηηT )−1U ]i j〈(Fi(x′)Fj (x′)〉 +
∑

i

λi.

(93)

First, we consider the case of diagonal uniform noise, i.e.,
ηi j = ηδi j . In this case, using (U T U )0i = δ0i, we can separate
the entropy production into a contribution

S0 = 1

ε
〈|η−1F0(x)|2〉 (94)

from the dynamics of x0 and a contribution from the dy-
namics xi>0 in the perpendicular subspace. From Eq. (81)
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it can be inferred that L′, when restricted to the subspace
perpendicular to ê0, has negative eigenvalues {λi}i>0 and that
the eigenvectors are given by {ê′

2, . . . , ê′
N−1} and

ê′
1 ∝ ê⊥ +

∑
i

oi

λi − λ1
ê′

i. (95)

Since the set {ê′
2, . . . , ê′

N−1} is linearly independent and
ê⊥·ê′

i = ê⊥·êi = 0, the eigenbasis has dimension N − 1.
Therefore, this dynamics exhibits a conventional critical phase
transition. Hence, as discussed in Sec. III C, it contributes a
regular, finite amount to the entropy production.

This, in turn, means that the divergence of S∗ at the CEP,
proven in Sec. III C 5, must be originating from the remaining
contribution, Eq. (94). The corresponding dynamics is due to
flow

F0 =
∑

j

L′
0 jx′

j =
∑

j

(U −1L)0 jx j (96)

along ê0, which is driven by fluctuations in all perpendicular
directions. In particular, taking into account the scaling of S∗
in Eq. (66), we find again, as in Eq. (85),

〈|F0|2〉 ∝ ελ−1
1 , (97)

where λ1 denotes the eigenvalue that becomes unstable at
the CEP. Hence, as already described for the special case
of an effectively two-dimensional system in Sec. IV A, we
find that the nonvanishing nonreciprocal eigenmode coupling
in Eq. (81) leads to a drastic amplification of noise also in
the general case. Further, we can conclude that this noise
amplification mechanism leads to singular entropy production
at the CEP.

As a final remark, we aim to explicitly show the con-
nection between the reasoning presented here, which started
with a generic dynamical system with discrete phase space
[Eq. (89)], and the non-Hermitian field theories with con-
served dynamics, given in Eq. (1). Recall the results of
Sec. III C, where we showed that the linearized dynamics of
a single Fourier mode φl is described by a dynamical equa-
tion of the form of Eq. (78). In this case, we have to choose
η = |ql |V −1/2, x = φl and L = J l .

Consequentially, close to an CEP, we can identify the cur-
rent Jd

0 (r) ≡ P̂0∇−1J lφl eiql r, with the projection operator

P̂0x ≡ (U −1x)0ê0 = (x·ê0)ê0, (98)

as the origin of the entropy-producing flow F0 and the diver-
gence of S∗, such that, according to Eq. (94), the asymptotic
form of S∗ can be represented as

S∗ ∼ lim
ε→0

ε−1
∫

V
dr
〈∣∣Jd

0

∣∣2〉, as λ1 → 0. (99)

In Appendix D, we show that this, in fact, also holds in the
more general case, where η is nondiagonal and L and K do not
commute. The main difference, however, is that the projector
P̂0 then takes the slightly more complicated form given in
Eq. (D4).

V. CONCLUSIONS

We have studied the connection between time-reversal and
parity-time symmetry breaking in non-Hermitian field theo-

ries with space-time white noise, in the limit of low noise
intensity. To quantify the mesoscopically accessible TRSB,
we considered the informatic entropy production rate, S , near
two types of PT symmetry-breaking phase transitions, specif-
ically, oscillatory instabilities and CEPs. As a reference point,
we also discussed the behavior of S at conventional critical
transitions.

Our first main result concerns the scaling of S with respect
to the noise intensity ε, in the different phases. We have
derived a general expression for S in terms of the statistical
properties of the deterministic current [Eq. (12)]. From it,
we find that, in a dynamical phase, S ∼ ε−1. The diverging
entropy production rate for vanishing noise (independently
of UV regularization) reflects the presence of systematic dis-
sipative transport. Conversely, in a static phase, we showed
that, to leading order, S ∼ ε0, and thus remains nonzero but
finite in the zero-noise limit. These general predictions are
corroborated and illustrated for the static phases as well as the
dynamical phase of the nonreciprocal Cahn-Hilliard model
in two companion papers [56,57], as illustrated in Fig. 2.
Our general theory is also in agreement with earlier literature
results for φ4 active field theories that admit activity-driven
phase transitions. Specifically, Ref. [72] studied the entropy
production in a polar flocking model, and found S ∼ ε−1 in
the state of collective motion. For Active Model B, Ref. [46]
reported S ∼ ε0 for the phase-separated state, and S ∼ ε1 for
the homogeneous phase. This is consistent with our predic-
tion, as this model falls into the category of non-Hermitian
field theories only in its demixed phase [85].

Our second main result concerns the behavior of S in the
vicinity of phase transitions, which we obtained by examining
the connection between TRSB and the eigensystem of the
dynamical operator. We have derived a general formula for
S in terms of the spectrum and geometry of the eigenvectors
of the linearized dynamical operator [presented in Eqs. (21),
(35a), and (35b)]. For the PT -breaking transitions, we could
show that the entropy production rate S∗ ≡ limε→0 S in the
low-noise limit is proportional to the susceptibility. This
demonstrates that entropy-generating fluctuations reside in
the unstable wavelength(s) characterizing emerging dynami-
cal order, while all other contributions remain finite, thereby
testifying the active character of the emerging patterns. This
should be contrasted to a conventional critical point, where
the susceptibility diverges too, yet S∗ remains regular. The
analytical expressions we derived give further insights into
the underlying mechanisms that cause the singular contribu-
tion to S . For oscillatory instabilities, Eq. (44) suggests that
the main source of TRSB are (transient) cyclic currents with
characteristic frequency ω that herald the emerging dynamical
phase. In the vicinity of CEPs, we found that the coupling of
eigenmodes leads to an entropy-generating fluctuating current
with diverging intensity along the direction of a Goldstone
mode, resulting in gigantically amplified fluctuations. This
may justify the notion of a “pumped” or “active” Goldstone
mode. In contrast, the TRSB fluctuations in the perpendicu-
lar space remain regular, throughout. The same mechanism
also ultimately causes the emergence of a PT symmetry-
breaking phase transition featuring a deterministic entropy
producing current, associated with the emergent dissipative
dynamical structure. Thereby, we uncovered a common origin
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and systematic connection between PT symmetry breaking,
dissipative pattern formation, and TRSB fluctuations.

The nonreciprocal Cahn-Hilliard model provides an illus-
trative example of a non-Hermitian field theory to make these
abstract mechanisms more tangible. As we show in Ref. [56],
the TRSB excitations of its Goldstone mode give rise to
a persistent interface dynamics that is formally identical to
the stochastic motion of an active particle. This active inter-
face dynamics is “driven” by the (unidirectionally coupled)
fluctuating phase shift, which itself exhibits time-symmetric
dynamics. Independent and consistent results specifically on
TRSB in the nonreciprocal Cahn-Hilliard model were re-
ported in Ref. [86], but without explicit consideration of
the scaling of entropy production in the vicinity of phase
transitions.

We have studied field theories with conserved dynamics,
but we aim to point out that our results are also valid for
the cases of nonconserved or partially conserved dynamics.
Beyond field-theoretical models, it would be interesting to
apply our results to particle-based models. Specifically, af-
ter discretizing the here derived formulas, they also hold
for systems with a discrete phase space, such as a collec-
tion of (nonreciprocally) coupled, overdamped particles in a
thermal heat bath [87–89]. In such models, the connection
between TRSB and the underlying friction and dissipation are
already well-understood within the framework of stochastic
thermodynamics [66]. In this context, it would be particularly
interesting to investigate the relationship between the entropy
production of a particle-based model and the mesoscopic en-
tropy production at the field level.

Another broad perspective for future research is the gen-
eral role of TRSB at nonequilibrium phase transitions. In
thermal equilibrium, phase transitions are events of global
symmetry breaking that are largely independent of the details
of the underlying dynamics. Consequentially, many of their
fundamental features can be universally characterized solely
based on single-time (or “structural”) observables, such as the
susceptibility or specific heat. In nonequilbrium, dynamical
features and global symmetries are more tightly intertwined.
Whether and to what extent the entropy production, which

is a dynamical (path-dependent) observable, may serve as
a suitable tool to classify nonequilibrium phase transitions
remains elusive [48]. In this regard, it might be interesting
to remark that, similar to the here observed proportional-
ity to the susceptibility, previous numerical studies on spin
systems have hinted at a connection between the entropy
production rate and the specific heat at continuous phase
transitions [52,90–92], but the mechanistic origin of this con-
nection is unknown. To address these very general questions,
it seems to be worthwhile to revisit non-Hermitian field theo-
ries from the perspective of the renormalization group (RG) as
in Refs. [48,53]. This would be particularly interesting, since
unlike in the models studied so far, the nonequilibrium driving
in non-Hermitian field theories (which appears at the linear
level) is not “irrelevant in the RG sense.”
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APPENDIX A: EXPANSION OF C

Here we provide the explicit expansion of the term C in
Eq. (35b) with respect to λ = λ0 − λ1. First, we tackle the
expansion of adj T . We find

adj T T (0) = (d̂0(0),−d̂0(0), 0, . . . , 0), (A1)

with

d̂i j = (−1)i+ jMi, j (T ). (A2)

Note that for i > 1 all minors are zero at the CEP because
of the linear dependence of the first two columns of T . This
results in

[(T̄ )T T ](0) =

⎛
⎜⎜⎜⎜⎜⎝

1 1 ¯̂e∗·ê2(0) . . . ¯̂e∗·êN−1(0)
1 1 ¯̂e∗·ê2(0) . . . ¯̂e∗·êN−1(0)

¯̂e2(0)·ê∗ ¯̂e2(0)·ê∗ 1 . . . ¯̂e2(0)·êN−1(0)
: : : . . . :

¯̂eN−1(0)·ê∗ ¯̂eN−1(0)·ê∗ ¯̂eN−1(0)·ê2(0) . . . 1

⎞
⎟⎟⎟⎟⎟⎠, (A3)

and therefore,

C(0) = (adjT̄ adjT T )(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
i |M0,i(0)|2 −∑

i |M0,i(0)|2 0 . . . 0

−∑
i |M0,i(0)|2 ∑

i |M0,i(0)|2 0 . . . 0

0 0 0 . . . 0

: : : . . . :

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A4)

Further, we denote the derivative of the adjugate of T by

∂λadj T T (0) = (p0, p1, p2, . . . , pN−1), (A5)
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with pi = ∂λd̂i(0). Therefore,

C = C(0) + (λ0 − λ1)D + (λ̄0 − λ̄1)(D̄)T + O[(λ0 − λ1)2] (A6)

with

D =

⎛
⎜⎜⎜⎜⎜⎝

d̄0(0)·p0 d̄0(0)·p1 d̄0(0)·p2 ¯̂e∗·ê2(0) . . . d̄1(0)·pn ¯̂e∗·êN−1(0)
−d̄0(0)·p0 −d̄0(0)·p1 −d̄0(0)·p2 ¯̂e∗·ê2(0) . . . −d̄0(0)·pn ¯̂e∗·êN−1(0)

0 0 0 . . . 0
: : : . . . :
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠. (A7)

Note that here we have used

∂λ[(T̄ )T T ]ii = 0 (A8)
and

∂λ[(T̄ )T T ]01 + ∂λ[(T̄ )T T ]10 = ∂λ|ê0|2|λ=0 + ∂λ|ê1|2|λ=0 = 0. (A9)

1. Expansion of summands in Eq. (35b)

Inserting the expansions given in Eqs. (61) and (62) into Eq. (35a), we find

ζ l ∼ 1

|ê⊥·∂λê(0)|2
1

|λ0 − λ1|2
( |λ0|2

Reλ0
+ |λ1|2

Reλ1
− 2

λ̄0λ1

λ̄0 + λ1
− 2

λ0λ̄1

λ0 + λ̄1

)
+ 2

|ê⊥·∂λê(0)|2 ∑i |M0,i(0)|2

× 1

|λ0 − λ1|2 Re

[
d̄0·p0(λ0 − λ1)

( |λ0|2
Reλ0

− 2
λ̄0λ1

λ̄0 + λ1

)
− d̄0·p1(λ0 − λ1)

( |λ1|2
Reλ1

− 2
λ0λ̄1

λ0 + λ̄1

)]
(A10)

+ 4

|ê⊥·∂λê(0)|2 ∑i |M0,i(0)|2

× 1

|λ0 − λ1|2 Re

[∑
i>1

d̄0·pi ¯̂e
∗·êi(λ0 − λ1)

(
λiλ̄0

λi + λ0
− λiλ̄1

λl + λ̄1

)]
, as |λ1 − λ0| → 0. (A11)

This cumbersome expression can be further simplified to

ζ l ∼ |λ0|2Reλ1 + |λ1|2Reλ0

Reλ0Reλ1|λ0 + λ̄1|
1

|λ0 + λ̄1|
X + Re

(
λ2

0

Reλ0(λ0 + λ̄1)
Y0

)
+ Re

(
λ2

1

Reλ1(λ1 + λ̄0)
Y1

)

+
∑
i>1

Re

(
λ2

i

(λi + λ̄0)(λ̄i + λ1)
Zi

)
, (A12)

as |λ1 − λ0| → 0, with the constants

X = 1

|ê⊥·∂λê(0)|2 , (A13)

Y0 = 2p0d̄0

|ê⊥·∂λê(0)|2 ∑i |M0,i(0)|2 ,

Y1 = 2p1d̄0

|ê⊥·∂λê(0)|2 ∑i |M0,i(0)|2 , (A14)

Zi = 4d0 pi ¯̂e∗êi

|ê⊥·∂λê(0)|2 ∑i |M0,i(0)|2 . (A15)

APPENDIX B: SUSCEPTIBILITY CLOSE TO A CRITICAL EXCEPTIONAL POINT

The singular part of the susceptibility is obtained as follows: expanding the definition of the susceptibility in Eq. (67) as

lim
ε→0

ε−1|ql |−2tr Cov(�0φ
l ) = |ql |−2V

∑
i

〈 (�0φ̄l )i(�0φl )i〉 = |ql |−2V
∑
i jnmu

〈
(�0)i jTjnψ̄ l

n(�0)imTmuψ l
u

〉

= |ql |−2V
∑
i jn

(�0 ¯̂ei ) j (�0ên) j
〈
ψ l

i ψ l
n

〉

= 2
∑
i, j>0

�0 ¯̂ei · �0ê j

| det T |2
(adjT̄ T adjT T )i j

λ̄i + λ j
, (B1)
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and expanding further expanding the sum in the last line, we find

lim
ε→0

ε−1|ql |−2tr Cov(�0φ
l ) = |�0ê1|2

| det T |2
(adjT̄ T adjT T )11

λ1
+ 2ε

[∑
i>1

�0 ¯̂e1 · �0êi

| det T |2
(adjT̄ t adjT T )1i

λ̄1 + λi

+
∑
i, j>1

�0 ¯̂ei · �0ê j

| det T |2
(adjT̄ T adjT T )i j

λ̄i + λ j
+ c.c.

]
. (B2)

Using that

|�0ê1| ∼ |∂λ1 ê1(0)||λ1|, as λ1 → 0, (B3)

and taking also into account the precise asymptotic scaling of the entries of adjT̄ T adjT T and det T in λ1, given in Eq. (A5) and
Eq. (61), which results in

(adjT̄ T adjT T )11

| det T |2 ∼ 1

|ê⊥·∂λ1 ê1(0)|2
1

λ1
, as λ1 → 0, (B4)

we find that only the first term in the last line of Eq. (B1) generates the divergence, and the asymptotic form of the susceptibility
is given by

χ ∼ |ql |2 |∂λ1 ê1(0)|2
|ê⊥·∂λ1 ê1(0)|2

1

λ1
, as λ1 → 0. (B5)

APPENDIX C: ORTHOGONAL BASIS AT AN EXCEPTIONAL POINT

Here we show how to obtain the representation of the operator L in the basis introduced in Sec. IV A. We denote by D the
diagonal matrix of eigenvalues of L, i.e., Di j = λiδi j , and by O the matrix representation of the orthogonal projection. Again,
T is the matrix of eigenvectors of L and T̃ = (ê0, ê⊥, ê2, . . . , êN−1) the matrix after ê1 was substituted by ê⊥. Accordingly, the
matrix representation for the full transformation is given by

U −1 = (T̃ O)−1. (C1)

The representation of the linearized dynamical operator L in this new basis is obtained from the expression

L′ = U −1LU = O−1T̃ −1T D T −1T̃ O, (C2)

which we evaluate in two steps. First, the explicit expressions for the transformation matrices matrix products in Eq. (C2) are
given by

T −1T̃ = 1

det T

⎛
⎜⎜⎜⎜⎝

det T det(ê⊥, ê1, . . . , êN−1) 0 0 . . . 0
0 det T̃ 0 0 . . . 0
0 det(ê0, ê1, ê⊥, ê3, . . . , êN−1) det T̃ 0 . . . 0
: : . . . : :
0 det(ê0, ê1, . . . , êN−2, ê⊥) . . . 0 . . . det T̃

⎞
⎟⎟⎟⎟⎠ (C3)

and

T̃ −1T = 1

det T̃

⎛
⎜⎜⎜⎜⎝

det T̃ det(ê1, ê⊥, . . . , êN−1) 0 0 . . . 0
0 det T 0 0 . . . 0
0 det(ê0, ê⊥, ê1, ê3, . . . , êN−1) det T 0 . . . 0
: : . . . : :
0 det(ê0, ê⊥, . . . , êN−2, ê1) . . . 0 . . . det T

⎞
⎟⎟⎟⎟⎠, (C4)
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To obtain these, the adjugate representation of the Matrix inverse [78] and the the Laplace expansion rule were used. Now, using
the explicit expressions for the scaling of determinants in the limit λ1 → 0, derived in Sec. III C, we find up to lowest order in
λ1

T̃ −1T D T −1T̃ ∼

⎛
⎜⎜⎜⎜⎝

0 l0 0 0 . . . 0
0 λ1 0 0 . . . 0
0 l2 λ2 0 . . . 0
: : . . . : :
0 lN−1 . . . 0 . . . λN−1

⎞
⎟⎟⎟⎟⎠, (C5)

as λ1 → 0, where the off-diagonal elements are given by

li =
⎧⎨
⎩

1
ê⊥·∂λ1 ê1(0) i = 0

λi(0)
det(ê0,∂λ1 ê1(0),ê2(0),...,êi−1(0),ê⊥,êi+1(0),...,êN−1(0))

det(ê0,∂λ1 ê1(0),ê2(0),...,êN−1(0)) = (−1)i−1λi(0)
êi (0)·∂λ1 ê1(0)
ê⊥·∂λ1 ê1(0) i > 1

. (C6)

Note that in Eq. (C5) all zero matrix entries are identically zero up to all orders in λ1. Moreover, according to the derivation in
Sec. III C 5, |ê⊥∂λ1 ê1(0)| �= 0. This already shows that, at the CEP, the unstable eigenmode ê⊥ couples to the Goldstone mode
ê0. Now, applying the orthogonal projection,

O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 − ê2·ê0√
1−|ê2·ê0|2

. . . − êN−1·ê0√
1−|êN−1·ê0|2

0 1 0 . . . 0
0 0 1√

1−|ê2·ê0|2
. . . 0

: : : : :
0 0 0 . . . 1√

1−|êN−1·ê0 )|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C7)

we arrive at the expressions (81)–(83).

APPENDIX D: ENTROPY PRODUCTION AT CEPS FOR
NONDIAGONAL NOISE

Here we generalize the result (96) for the flow that causes
the singular contribution to S∗ at a CEP to the case where
η is a general matrix operator and does not commute with
L. In this case, it does not automatically hold that the noise
in the Goldstone mode along ê0 is statistically independent
of the noise in the perpendicular directions, after performing
the transformation in Sec. IV A. For nontrivial (nondiagonal)
L, this problem already arises, e.g., if the noise intensity for
diverse degrees of freedom does not coincide [93].

To obtain a decomposition of S equivalent to the one in
Sec. IV B, we first have to define the transformation

G =

⎛
⎜⎜⎝

g0 g1 g2 . . . gN−1

0 1 0 . . . 0
: : : : :
0 0 0 1

⎞
⎟⎟⎠

−1

, (D1)

where the wi are implicitly determined through the orthogo-
nality condition

δi0 = 〈(G−1U −1ηξ )i(G
−1U −1ηξ )0〉, (D2)

so that the noise in the ê0 direction becomes disentangled
from noise in the perpendicular directions. Note that the
transformation also preserves the direction of ê0, as well as
the coordinate representations of vectors and operators in its
orthogonal complement. Now the same arguments as used in
the main text apply. Again, we can identify a flow generating
the divergent part of S , which now takes the slightly more
complicated form

F0 ≡ (G−1U −1Lx)0. (D3)

Again considering the case η = ∇, the projector for the cur-
rent that generates F0 is then given by

P̂0x ≡ (G−1U −1∇x)0 ĵ0, (D4)

with ĵ0 ≡ ∇−1ê0.
As a concrete example, we refer to the equations of motion

for the center-of-mass phase θc and the phase shift θπ given
in the companion paper [56], where a noise term with differing
intensities arises as a result of the chosen nonorthonormal
basis transformation.
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