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Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget
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We consider the nonlinear-cost random-walk model in discrete time introduced in Phys. Rev. Lett. 130, 237102
(2023), where a fee is charged for each jump of the walker. The nonlinear cost function is such that slow or
short jumps incur a flat fee, while for fast or long jumps the cost is proportional to the distance covered. In
this paper we compute analytically the average and variance of the distance covered in n steps when the total
budget C is fixed, as well as the statistics of the number of long or short jumps in a trajectory of length n, for
the exponential jump distribution. These observables exhibit a very rich and nonmonotonic scaling behavior as
a function of the variable C/n, which is traced back to the makeup of a typical trajectory in terms of long or
short jumps, and the resulting entropy thereof. As a by-product, we compute the asymptotic behavior of ratios
of Kummer hypergeometric functions when both the first and last arguments are large. All our analytical results
are corroborated by numerical simulations.
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I. INTRODUCTION

Stochastic processes have long been indispensable tools
for modeling diverse phenomena spanning a multitude of
disciplines, encompassing the realms of biology, finance, en-
gineering, and beyond [1–4]. These processes, whose simplest
incarnation is the classical random walk in discrete time, are
useful to model systems undergoing transitions between vari-
ous states, guided by probabilistic rules. Over the past century,
scientists have harnessed the power of stochastic modeling to
gain insights into complex dynamical systems, where random-
ness and uncertainty play a major role.

A. Motivating examples

Intriguingly, many of these systems admit a quite natural
description in terms of costs (or rewards) associated with the
transitions between different states. These cost functions are
often governed by nonlinear functions, as argued below. This
coupling of stochastic dynamics with nonlinear cost structures
has revealed unexpected and even paradoxical behaviors, giv-
ing rise to fascinating questions and practical applications.

Consider, for instance, the motion of animals in space in
the presence of environmental noise. Several animals employ
intermittent strategies [5], switching between periods of rapid
locomotion and phases of deliberate slow-paced movement,
during which they search locally for food or correct their
direction [4,6]. The reduced distance covered during these
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slower intervals can be characterized as an effective nonlinear
cost [7].

In the realm of wireless communication, devices can oper-
ate in different activity and inactivity states (off, idle, transmit,
or receive) with different levels of energy consumption (costs)
when they undergo transitions between these states [8,9].
Even in the complex domain of biochemical reactions, which
take place sequentially through a series of intermediate (sec-
ondary) states (reactions), it is often convenient to associate
a total cost with the primary reaction (e.g., the energy or
heat produced or consumed overall) being the sum of the
intermediate costs generated by the secondary reactions [10].
In the world of finance and risk management, consider, for
instance, a car driver’s insurance premium: In the so-called
bonus-malus regime, the number of car accidents caused by
the driver within a given insurance window will determine
a jump in how much money they will be asked to pay (pre-
mium) to ensure their vehicle in the future. The premium
typically follows a highly nonlinear pattern, characterized by
a steep increase for reckless drivers, and a long recoil period
to get back to a more convenient insurance class after an
accident [11]. In the context of software development, time-
pressured programmers often face a difficult choice between
implementing robust designs and safeguards in their code (a
preferable but more expensive long-term solution) or adopting
an expedient and patchy fix to rush the project forward but
incurring the so-called technical debt [12]. In all the examples
above, the total cost or reward of different trajectories (i.e.,
sequences of transitions) between the same initial and final
states may depend on the precise microscopic arrangement
of cheap vs costly jumps due to the nonlinear nature of the
cost function involved. Additionally, in all these examples it
is quite interesting and natural to ask how a global budget
constraint (for example, fixing the total energy of a foraging
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animal or a wireless device, or the total amount of resources to
dedicate to a task) will impact the number and type (cheap vs
costly) of allowed transitions that make up a typical trajectory.
In this paper we provide an analytical answer to this question
in the context of a model of diffusion in discrete time and
continuous space that we introduced in [13].

In the fields of mathematics and engineering, the study of
stochastic processes entwined with costs has been looked at
through the lens of so-called Markov reward models [14–16],
where a cost or reward is associated with each jump between
the states of a Markov process. In [17] a random walk within
a Lévy random environment to a first-passage event was in-
vestigated. Considering a nonlinear cost associated with each
step, the joint distribution of displacement and total cost was
derived. In Refs. [18,19] stochastic systems with resetting
where a cost is associated with each restart were investigated.
In particular, in Ref. [18] optimal control theory was applied
to identify the optimal resetting strategy to minimize a given
cost function. In [19] a random walk with constant resetting
rate was considered with a space-dependent cost for each
resetting event. The statistics of the total cost was computed
analytically for a variety of cost functions. In spite of these
interesting works, a more thorough exploration of how non-
linear cost functions influence cost fluctuations, within both
the typical and large-deviation regimes, remains an interesting
frontier ripe for further investigation.

In a recent Letter [13] we introduced the nonlinear-cost
random-walk (NCRW) model in discrete time and we used
the everyday occurrence of taxi rides and associated fares as
a prominent motivation for its study. Taxi journeys through
bustling cities often entail a mixture of rapid progress and
sluggish segments, dictated by factors such as traffic con-
gestion and traffic lights. The fare charged to passengers is
algorithmically determined on the fly by a device, the taxi
meter, that adheres to a rather universal and straightforward
recipe [20]. Each municipality prescribes a threshold speed
ηc derived from statistical analyses of local traffic patterns. If
the taxi surpasses ηc, the meter tallies the fare based on the
distance covered, while a slower pace results in time-based
fare computation. This seemingly fair approach ensures that
drivers are compensated even when they face prolonged pe-
riods of slow progress. For example, London’s Tariff I rate
dictates that the meter should charge 20 pence for every
105.4 m covered or 22.7 s elapsed, whichever is reached
first [21]. The seemingly innocuous structure of the taxi fare
calculation conceals a fascinating phenomenon known as the
taxi paradox [20]. This paradox materializes when two taxis
commence their journey together from point A and arrive
simultaneously at point B, yet levy substantially different
fares due to their unique sequences of slow and fast segments
during their trajectories.

B. Model

The NCRW model is a Markov process, where a one-
dimensional walker’s position Xn at discrete time n is a
positive random variable evolving according to

Xn = Xn−1 + ηn, (1)

FIG. 1. Typical realization of the the nonlinear-cost random walk
with nonlinearity h(η) = 1 + b(η − ηc )θ (η − ηc ) with b = 2 and
ηc = 0.7. The cost Ck up to step k is a nonlinear function of the po-
sition Xk of the random walk. Slow (fast) steps with η < ηc (η > ηc)
are highlighted with a green (red) background.

starting from the origin X0 = 0. The jumps ηn are positive
random variables, drawn independently from an exponential
distribution with the probability density function (PDF) given
by p(η) = exp(−η). As shown below, this choice of PDF will
allow us to make analytical progress. We expect our results
to qualitatively extend to other jump distributions with finite
variance. Each jump incurs a positive cost Cn, which also
evolves via a Markov jump process described by

Cn = Cn−1 + h(ηn), (2)

where h(η) is a nonlinear cost function, which we take in the
form

h(η) = 1 + b(η − ηc)θ (η − ηc), (3)

where θ (x) is the Heaviside step function. This function h(η)
mimics the way taxi meters work, since jumps shorter than
the critical size ηc in one unit of time (slower jumps) incur a
unit fee, whereas longer (faster) jumps are more costly, with
the fee being proportional to the length (velocity) of the jump.
For a typical trajectory of the system, see Fig. 1. Our model
therefore has two parameters: b, the cost per unit distance
covered at high speed, and ηc, the critical jump length (or
speed) separating timelike and spacelike charges. The position
X = ∑n

i=1 ηi and the cost C = ∑n
i=1 h(ηi ) after n steps are

therefore correlated random variables, whose statistics are of
interest.

The kind of nonlinearity encoded in the cost function h(η)
has many other interesting incarnations in physics. Consider,
for instance, the force needed to move a block in contact
with a surface. One first has to overcome a threshold force
ηc due to static friction. Then, applying a force η for a fixed
time interval �t , the velocity of the block is given by h(η) =
b(η − ηc)θ (η − ηc), where b now depends on the block mass
and �t [22]. Assume now that we repeat this experiment many
times, drawing the applied force from, say, an exponential
PDF p(η) = exp(−η). What would be the average response
of the block? It turns out that the mean force per sample
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(1/n)
∑

i ηi over n experiments has the same expression as
the final position reached by the taxi in n steps, and the mean
velocity of the block per sample precisely corresponds to
the average fare for a taxi ride [13]. Another context where
our results could be applied almost directly is the pinning-
depinning transition occurring when an extended object or
manifold such as an elastic string or a polymer is driven
by a random force η in a spatially inhomogeneous medium
[23–25]. Below the depinning threshold ηc, the manifold is
pinned by the disorder and its velocity vanishes, while above
the threshold, the velocity-force relation follows a power-law
scaling h(η) ∝ (η − ηc)β , with the depinning exponent β > 0
[23–25]. Examples include DNA chains through nanopores
[26], type-II superconductors [27], and colloidal crystals [28].

C. Summary of our previous work

In our Letter [13] we considered two different ensembles
of trajectories of a NCRW. In ensemble (i) we fixed the total
distance X covered by the walker as well as the number n of
steps and studied the average 〈C〉X,n and variance Var(C|X, n)
of the total cost charged. In ensemble (ii) we instead allowed
the number of steps n to reach the target destination X = L to
fluctuate and we focused on the hitting cost C, i.e. the price to
pay to reach the destination for the first time, and its distribu-
tion P(C|L) for large L. In the former setting [ensemble (i)]
we found a strongly nonmonotonic behavior of the variance
Var(C|X, n) as a function of the scaling variable y = X/nηc,
with a maximum attained at the value y� = 1.727 24 . . .. This
nonmonotonic behavior was found to reflect a crossover be-
tween different phases: (a) a pure phase for small y = X/nηc,
where a typical trajectory is mostly made up of small or
slow jumps; (b) a mixed phase for intermediate values of y =
X/nηc, characterized by a large entropy, i.e., a large number
of possible arrangements of the slow and fast jumps to reach
the destination X , which leads to the strongest fluctuations
in the price of the ride; and (c) again a pure phase for large
y = X/nηc, where a typical trajectory is mostly made up of
large or fast jumps, and cost fluctuations from one trajectory
to another are suppressed. In ensemble (ii), where the number
of jumps to reach the destination is allowed to fluctuate, we
found that the typical fluctuations of hitting cost C are Gaus-
sian but with left and right large deviation tails that can be
characterized analytically. The variance of the hitting cost in
the typical regime displays a very rich behavior as a function
of b, the cost per unit distance, and ηc, the critical changeover
speed, with a freezing transition in the large deviation regime
for bηc = 1. The resulting giant fluctuations of the hitting
cost are once again related to the entropic makeup of typical
trajectories, in terms of the arrangement of short or slow and
long or fast jumps to reach the target, and the associated total
cost C.

D. Summary and outline of the paper

In this paper we consider the NCRW model defined in
Eqs. (1)–(3) from a completely different but quite natural
perspective, namely, by considering global constraints on the
total budget available C and the total number of jumps n to
reach a random destination X . Stochastic processes with a

global constraint have been investigated in the past and were
shown to lead to interesting effects. In [29,30] the distribution
of linear statistics of otherwise independent and identically
distributed random variables, subject to a global constraint
on the total mass, was shown to undergo an interesting con-
densation transition, where one of the variables acquires a
macroscopic fraction of the total mass. In the context of
the pinning-depinning transition described above [23–25],
fixing C allows one to investigate fluctuations of the total
force X at fixed velocity C. Moreover, stochastic processes
with global nonlinear constraint arise in the context of the
discrete nonlinear Schrödinger equation [31] as well, where
unexpected localization transitions are observed. In this case,
the global constraint enforces the conservation of energy in
the system. More generally, random models with global con-
straints are very useful in a wide range of applications where
budget constraints are present. This applies, for instance, to
macroeconomics [32,33], where governments have to allocate
resources within a total budget, and supply chain management
[34], where storage space, time, and budget constraints play a
crucial role.

We study the average and variance of the distance covered
in n steps, as well as the statistics of the number of long or
short jumps in a typical trajectory of size n, for the exponential
jump distribution and assuming that the total budget C for
the trajectory is fixed. These quantities display an interest-
ing scaling behavior as a function of the cost per step C/n,
which we are able to characterize analytically. Furthermore,
we find two different regimes, depending on whether bηc > 1
or bηc < 1. In the former case, when bηc > 1, the behavior of
the average distance covered as a function of the number of
steps n is strongly nonmonotonic, which means that actually
more steps are needed to cover a shorter distance with the
given budget. In the latter case, when bηc < 1, the curves
are instead monotonically decreasing. We give later a detailed
and intuitive explanation for the crossover between the two
regimes in terms of the makeup of typical trajectories. In
addition, as a by-product of our derivations, we determine
the asymptotic behavior of ratios of Kummer hypergeomet-
ric functions when the first and last arguments are both
large. Our results are verified by Monte Carlo Markov chain
simulations with a constraint implementing the fixed total
budget.

The structure of the paper is as follows. In Sec. II we con-
sider the statistics of the total distance traveled by the walker
in n steps and subject to a budget constraint (total cost equal
to C). In Sec. II A we first compute the PDF P(C|n) of the
total cost of a trajectory of n steps (irrespective of the landing
spot). This ingredient is needed to compute the constrained
average and variance of the final position after n steps, which
are tackled in Secs. II B and II C, respectively. In Sec. III we
consider the scaling laws obeyed by the constrained average
and variance of the final position in the limit n,C → ∞
with their ratio fixed. In Sec. IV we consider the statistics
of long (fast) vs short (slow) jumps that make up a typical
trajectory, still under the budget constraint. In Sec. V we
provide the details of the Monte Carlo scheme we employed
to simulate trajectories under the fixed-budget constraint. In
Sec. VI we summarize and offer some concluding remarks.
The Appendixes are devoted to technical details.

064122-3



MAJUMDAR, MORI, AND VIVO PHYSICAL REVIEW E 108, 064122 (2023)

II. STATISTICS OF DISTANCE TRAVELED
WITH FIXED BUDGET

In this section we consider the model presented in Eqs. (1)–
(3) and focus on 〈X k〉C,n, the kth moment of the position
reached by the walker after n steps, conditioned on paying a
total fare equal to C. This quantity represents the total distance
traveled by the random walker when both the total budget and
the number of steps are fixed.

Consider first the joint PDF of the position X reached
after n jumps and the associated cost C, in the case of the
exponential jump distribution

P(X,C|n) =
∫ ∞

0
dη1

∫ ∞

0
dη2 · · ·

∫ ∞

0
dηn

× exp

(
−

n∑
i=1

ηi

)
δ

(
X −

∑
i

ηi

)

× δ

(
C −

∑
i

h(ηi )

)
, (4)

where the nonlinear cost function h(η) is given in Eq. (3).
Taking the double Laplace transform and performing the de-
coupled η integrals, we get∫ ∞

0

∫ ∞

0
dX dC P(X,C|n)e−λX−sC = G(λ, s) = [g(λ, s)]n,

(5)

with

g(λ, s) = e−s

λ + 1

(
1 − bs

λ + 1 + bs
e−(λ+1)ηc

)
. (6)

Taking the kth derivative of (5) with respect to λ and setting
λ = 0, we get the Laplace transform (in cost space) of the kth
moment of the final position as∫ ∞

0
dCe−sC

(∫ ∞

0
dX X kP(X,C|n)

)
= (−1)k ∂k

∂λk
G(λ, s)|λ=0.

(7)

For convenience, let us also define

gk (s) = ∂k

∂λk
g(λ, s)|λ=0, (8)

with g0(s) = g(0, s) and g(λ, s) given explicitly in (6).
Now, from the Bayes theorem, the kth moment of the final

position X after n steps, conditioned on a fixed budget C, is
given by

〈X k〉C,n =
∫ ∞

0 X kP(X,C|n)dX∫ ∞
0 P(X,C|n)dX

, (9)

where the denominator is simply the marginal PDF of the cost
alone after n steps

P(C|n) =
∫ ∞

0
P(X,C|n)dX = L−1

s [G(0, s)](C) (10)

from (5). The numerator of (9) follows by taking the inverse
Laplace transform with respect to s of Eq. (7), which reads,

using the Bromwich formula,∫ ∞

0
X kP(X,C|n)dX = (−1)k

∫



ds

2π i
esCgk (s), (11)

with gk (s) defined in (8) and 
 a vertical line in the complex
plane to the right of all the singularities of the integrand. So
explicitly

〈X k〉C,n = (−1)k
∫



ds
2π i e

sC ∂k

∂λk G(λ, s)|λ=0∫



ds
2π i e

sCG(0, s)
, (12)

with G(λ, s) = [g(λ, s)]n and g(λ, s) given in (6). Let us now
specialize (12) to the first two moments k = 1 and 2, after
computing the marginal distribution of the total cost alone in
the next section.

A. Calculation of P(C|n)

From (10) we need to compute the inverse Laplace trans-
form (over the variable s) of G(0, s) = [g(0, s)]n = e−ns[1 −
e−ηc + e−ηc/(1 + bs)]n. We can rewrite

G(0, s) = (1 − e−ηc )ne−ns

(
1 + A

1 + bs

)n

= (1 − e−ηc )ne−ns

[
1 +

n∑
k=1

(
n

k

)
Ak

(1 + bs)k

]
, (13)

where

A = (eηc − 1)−1. (14)

The function G(0, s) can then be easily Laplace inverted term
by term using

L−1
s (e−ns)(C) = δ(C − n), (15)

L−1
s

(
e−ns

(1 + bs)k

)
(C) = e−(C−n)/bθ (C − n)(C−n

b )k−1

b
(k)
, (16)

with θ (x) the Heaviside step function. Using next the identity

n∑
k=1

(
n

k

)
Ak

(
C−n

b

)k−1


(k)
= An 1F1

(
1 − n; 2;

−A(C − n)

b

)
(17)

in terms of a Kummer hypergeometric function

1F1(a; b; z) = 1 + a

b
z + a(a + 1)

b(b + 1)

z2

2!
+ · · · , (18)

we eventually get

P(C|n) = (1 − e−ηc )nδ(C − n) + n

b
e−(C−n)/bθ (C − n)

× e−ηc (1 − e−ηc )n−1
1F1

(
1 − n; 2;

−A(C − n)

b

)
.

(19)

The first delta term is easy to understand: A total cost exactly
equal to n can be realized by a sequence of n timelike steps,
each of which is charged one unit of cost. A trajectory of
n timelike steps occurs with probability (1 − e−ηc )n. A plot
of the continuous part of P(C|n) for C > n is included in
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FIG. 2. Probability density function P(C|n) of the total cost after
n steps for C > n. The blue line corresponds to the theoretical result
in Eq. (19) with n = 30, b = 1, and ηc = 2.2. The red crosses are
obtained from numerical simulations.

Fig. 2. Normalization of P(C|n) over C ∈ [n,+∞) can be
easily checked using the integral formula∫ ∞

0
dx e−x

1F1(1 − n; 2; −Ax) = (1 + A)n − 1

An
, (20)

after making the change of variables (C − n)/b = x.

B. Average of the position reached after n steps on a fixed
budget (finite n)

Having computed the denominator of (9), we now turn to
the calculation of the numerator for k = 1. For convenience,
let us define as

T1(C) = 〈X 〉 =
∫ ∞

0
XP(X,C|n)dX (21)

the unconstrained average of the final position of the walker
after n steps. The calculation from the Laplace transform
in Eq. (7) for k = 1 is reported in Appendix B and yields
eventually

T1(C) = 1

b
e−C/bT̂1(C/b)

= A(n, b, ηc)δ(C − n) + θ (C − n)e−(C−n)/b

×
[
B(n, b, ηc) 1F1

(
2 − n; 2; −A(C − n)

b

)

+ C(n, b, ηc) 1F1

(
1 − n; 1; −A(C − n)

b

)

+D(n, b, ηc)(C − n) 1F1

(
1 − n; 2; −A(C − n)

b

)]
,

(22)

where A is given in Eq. (14) and

A(n, b, ηc) = n[1 − (ηc + 1)e−ηc ](1 − e−ηc )n−1, (23)

B(n, b, ηc) = n(n − 1)

b
(1 − e−ηc )n−2e−ηc [1 − e−ηc (1 + ηc)],

(24)

FIG. 3. Average distance 〈X 〉C,n covered as a function of the
number of jumps n for a fixed total budget C = 250. The critical
changeover speed is set at ηc = 2. The blue squares are for b = 4,
the red triangles are for b = 1, and the green stars are for b = 1

3 . We
observe that the first two curves are nonmonotonic as a function of
n, whereas the green curve is monotonically decreasing as bηc < 1.
In the region where 〈X 〉C,n is decreasing with n, more steps lead to
a shorter total distance covered. This effect is a consequence of the
nonlinearity of the cost function, as explained in the text.

C(n, b, ηc) = n

b
(1 − e−ηc )n−1ηce−ηc , (25)

D(n, b, ηc) = n

b2
e−ηc (1 − e−ηc )n−1. (26)

Taking the ratio between T1(C) in (22) and the PDF in (19)
gives the average final position after n steps constrained on a
fixed cost C [see Eq. (9) for k = 1],

〈X 〉C,n =K1(n, b, ηc)δ(C − n) + θ (C − n)

×
[
K2(n, b, ηc)R

(
2, n, 2,

A(C/n − 1)

b

)

+ K3(n, b, ηc)R

(
1, n, 1,

A(C/n − 1)

b

)

+ K4(n, b, ηc)R

(
1, n, 2,

A(C/n − 1)

b

)]
, (27)

where A is given in Eq. (14),

R(k, n, m, u) = 1F1(k − n, m,−nu)

1F1(1 − n, 2,−nu)
, (28)

and the constants K j can be easily reconstructed. This con-
strained average is plotted as a function of n in Fig. 3 for
C = 250 and three different values of b, the cost per unit
distance in the high-speed regime. Quite counterintuitively,
there are parameter choices for which the behavior of the
constrained average is strongly nonmonotonic as a function of
the number of steps n; this means that the walker may actually
perform more jumps to cover a shorter distance (on average).
The reason is that, at fixed budget C, and with too many jumps
to perform, the walker is forced to slow its pace down and burn
money on short (timelike) jumps; otherwise the budget would
be all spent on too few (but large) excursions.
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FIG. 4. Average distance 〈X 〉C,n covered as a function of the
number of jumps n for a fixed total budget C = 250. The cost per unit
distance in the high-speed regime is set at b = 2. The blue squares
are for ηc = 10, the red triangles are for ηc = 1, and the green stars
are for ηc = 1

4 . The curve with ηc = 1 displays the nonmonotonic
effect described in Fig. 3. In the case ηc = 10, the probability of
a high-speed step (η > ηc ) is extremely low and hence most steps
have a unit cost, leading to the observed linear behavior. The green
curve is for bηc < 1 and is therefore monotonically decreasing, as
explained in the text.

In Fig. 4 we plot 〈X 〉C,n for different values of ηc and b =
2. It is easy to understand the initial growth of the red and
blue curves as a function of n from the following very simple
argument, which also shows that there should be a transition at
bηc = 1, with the curve for 〈X 〉C,n growing with n if bηc > 1
and decreasing if bηc < 1.

Consider increasing n for fixed but large budget C. We
recall that the cost function is given by

C =
n∑

k=1

h(ηk ), (29)

where

h(η) = 1 + b(η − ηc)θ (η − ηc). (30)

When n = 1, we have only one spacelike step; hence
C = h(η1) = 1 + b(η1 − ηc) (assuming η1 > ηc). However,
the final destination in this case is X = η1; hence X =
C/b + (bηc − 1)/b. Now suppose we have n = 2 and imagine
both jumps are spacelike. Then C = 1 + b(η1 − ηc) + 1 +
b(η2 − ηc), implying X = η1 + η2 = C/b + 2(bηc − 1)/b. In
general, if we have n spacelike steps, then given a large
budget C,

X = η1 + η2 + · · · + ηn = C/b + n(bηc − 1)/b. (31)

Thus, we see that if bηc > 1, X will increase with n initially, as
long as the jumps are spacelike. Beyond the maximum (when
bηc > 1), timelike steps start to kick in and clearly X then has
to decrease. This argument explains the nonmonotonicity of
〈X 〉C,n for bηc > 1. For bηc < 1, when the slope in Eq. (31)
becomes negative, the curve decreases monotonically instead,
since whether the jumps are space or timelike, X always
decreases with increasing n for fixed large C.

C. Variance of the position reached after n steps on a fixed
budget (finite n)

We now turn to the calculation of the numerator of (9) for
k = 2. For convenience, let us define as

T2(C) = 〈X 2〉 =
∫ ∞

0
X 2P(X,C|n)dX (32)

the unconstrained second moment of the final position of
the walker after n steps. The calculation is reported in
Appendix C, with the final (long) expression given in
Eqs. (C18) and (C15).

The second moment of X , constrained on a fixed budget C,
can then be computed by taking the ratio of T2(C) in Eq. (C18)
to the PDF P(C|n) in Eq. (19). We obtain

〈X 2〉C,n

= e−C/b

1 − e−ηc
M(n, b, ηc)δ(C − n)

+ θ (C − n)e−C/bT̂2(C/b)

ne−(C−n)/be−ηc (1 − e−ηc )n−1
1F1

(
1 − n; 2; −A(C−n)

b

) ,

(33)

where A and T̂2(Ĉ) are given in Eqs. (14) and (C15), respec-
tively, and we defined

M(n, b, ηc) = n(n − 1)en/b(1 − e−ηc )n−2[e−ηc (1 + ηc) − 1]2.

(34)

Here we are using the convention δ(C − n)θ (C − n) = 0. Fi-
nally, we obtain

Var(X )C,n = 〈X 2〉C,n − 〈X 〉2
C,n, (35)

where 〈X 〉C,n and 〈X 2〉C,n are given in Eqs. (27) and (33).
The variance of X is shown in Fig. 5 as a function of n/C
for b = 1, ηc = 2.1, and different values of C. Our analytical
result is in good agreement with numerical simulations (see
the inset in Fig. 5). The variance reaches a maximum value
at some intermediate value of y = n/C and then decreases
for increasing n/C. The origin of this nonmonotonic behavior
is similar to that described in Ref. [13] and is the result of
an entropic effect. When n � C, the cost is concentrated in
a few spacelike fast steps and hence the variance is low. In
the opposite limit n ≈ C, most steps are timelike (η < ηc). At
intermediate values of n, a mixture of the two type of steps is
present, leading to a maximum in the variance.

III. SCALING LAWS

In this section we show (analytically and numerically) that
the finite n,C results in the previous sections admit nice
scaling laws for large n and large C, keeping their ratio n/C
fixed. There are two ways to perform this asymptotics. In
Sec. III A we work directly in Laplace space and perform
a saddle-point analysis of the ratio of Bromwich integrals in
(12) for k = 1. Otherwise, in Appendix D we directly compute
the asymptotics of Eq. (27), which in turn involves computing
the asymptotics of the ratio of Kummer functions in (28) when
two of the arguments are large. This asymptotic calculation is
a nice by-product of our work.
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FIG. 5. Scaling behavior of the variance of the final position
Var(X )C,n after n steps conditioned on the total cost of the ride. On
the vertical axis, we have the quantity Var(X )C,n/C from Eq. (35).
On the horizontal axis, we put y = n/C. We use b = 1, ηc = 2.1, and
C = 250 (red triangles, joined with a solid line) or C = 100 (blue
squares). We can see that the finite n,C curves nicely collapse onto
a scaling function, which would be too cumbersome to determine
explicitly. The inset shows the scaled variance Var(X )C,n/C as a func-
tion of n/C. The red crosses are the result of numerical simulations
with C = 30, ηc = 2, and b = 1. The blue line corresponds to the
exact result in Eq. (35).

A. Average of the position reached after n steps on a fixed
budget (scaling formula for large n)

We start from Eq. (12). For k = 1, we therefore need to
compute

∂

∂λ
[g(λ, s)]n = n[g(λ, s)]n−1 ∂

∂λ
g(λ, s), (36)

and setting λ = 0,

∂

∂λ
[g(λ, s)]n|λ=0 = n[g0(s)]n−1g1(s) = n[g0(s)]n g1(s)

g0(s)
,

(37)

with gk (s) defined in (8). Hence, from (12) we have, for
k = 1,

〈X 〉C,n = n

∫



ds
2π i e

sC[g0(s)]n −g1(s)
g0(s)∫



ds

2π i e
sC[g0(s)]n

. (38)

Both the denominator and the numerator can be evaluated
by the saddle-point method for large n. Consider first the
denominator and rewrite it as∫




ds

2π i
esC[g0(s)]n =

∫



ds

2π i
en[sC/n+ln g0(s)]. (39)

Setting C/n = z (fixed for large n), the action in the exponent
reads

A(s, z) = sz + ln g0(s). (40)

The stationary point of the action is determined by

∂A(s, z)

∂s
= 0 ⇒ z + g′

0(s)

g0(s)
= 0, (41)

whose solution implicitly provides the critical value s = s�(z).

Consequently, from (39)1∫



ds

2π i
esC[g0(s)]n ≈ exp[n�(z)] (42)

for n → ∞ and C → ∞ such that z = C/n is fixed, with

�(z) = max
s

[sz + ln g0(s)] = s�(z)z + ln g0(s�(z)). (43)

Looking back at (38), since g1(s)/g0(s) is independent of
n, to leading order for large n the numerator will be dominated
by the behavior in the vicinity of the very same saddle point
as the denominator, namely, s�(z). Therefore, the leading ex-
ponential terms will cancel out and what remains is

〈X 〉C=nz,n ∼ −n

(
g1(s�(z))
g0(s�(z))

)
(44)

for large n.
Now defining r(s) = 1 + bs, we have that g0(s) is given by

(6) as

g0(s) = e−s

(
1 − e−ηc + e−ηc

r(s)

)
, (45)

while

g1(s) = e−s

[
bse−ηc

(
1

r(s)2
+ ηc + 1

r(s)

)
− 1

]
. (46)

For the saddle-point condition (41) we get

−z = g′
0(s�)

g0(s�)
= −1 −

e−ηc b
r(s� )2

1 − e−ηc + e−ηc

r(s� )

, (47)

which gives the following quadratic equation for r� = r(s�):

(eηc − 1)r�2 + r� − b

z − 1
= 0. (48)

Its positive root2 r� reads

r�(z) =
−1 +

√
1 + 4(eηc − 1) b

z−1

2(eηc − 1)
. (49)

Summarizing, from (44) it follows that the average position
reached after n steps and constrained on a fixed total budget
C has the following scaling form for large n (and noting that
y = 1/z):

〈X 〉C,n ∼ C f
(

y = n

C

)
. (50)

Here the scaling function

f (y) = 1 − y

b
[r̃(y)2(eηc − ηc − 1) + ηcr̃(y) + 1], (51)

with

r̃(y) = A

2

⎛
⎝

√
4by

A(1 − y)
+ 1 − 1

⎞
⎠ (52)

1The symbol ≈ denotes asymptotic equality on logarithmic scales.
2Since s > 0, r > 0 as well.
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and 0 � y � 1 (as the budget for a ride of n steps can never be smaller than n). We recall that A is defined in Eq. (14). The
asymptotic behaviors are as follows:

f (y) ∼
{

1/b for y → 0+
A(−ηc + eηc − 1) for y → 1−.

(53)

The scaling function has an interesting nonmonotonic behavior (unless ηc < 1/b) as a function of y, with a maximum at the
value

y∗ =
2b(eηc − 1) − 1 + b[−1+2b(eηc −1)(eηc −ηc−1)+eηc (3−2eηc +ηc )]√

eηc (eηc −ηc−1)+b2(eηc −ηc−1)2+b[−2−ηc+eηc (4−2eηc +ηc+η2
c )]

4b(eηc − 1)
. (54)

The value y� is plotted as a function of ηc for b = 3 in Fig. 6,
while in Fig. 7 we plot two instances of the scaling curve
f (y) (for bηc > 1 and bηc < 1), compared with the finite
n,C behavior from Eq. (27). We clearly observe once again
a different behavior of the curves if bηc > 1 or bηc < 1, as
argued at the end of Sec. II B. This is reflected in the fact
that for bηc < 1, the maximum y� of the curve is reached
at the lower edge y = 0. In the inset of Fig. 7 we compare
our theoretical result in Eq. (50) with numerical simulations,
finding excellent agreement.

B. Variance of the position reached after n steps
on a fixed budget

Similarly, we could compute the second moment (and thus
the variance) of the position reached after n steps on a fixed
budget C by setting k = 2 in (12). First, taking a further
derivative with respect to λ of (36), we get

∂2

∂λ2
[g(λ, s)]n = n(n − 1)[g(λ, s)]n−2

×
(

∂g

∂λ

)2

+ n[g(λ, s)]n−1 ∂2g

∂λ2
. (55)

Setting λ = 0 and using (8), we get

∂2

∂λ2
[g(λ, s)]n|λ=0 = n(n − 1)[g0(s)]n

(
g1(s)

g0(s)

)2

+ n[g0(s)]n g2(s)

g0(s)
. (56)

FIG. 6. Behavior of y� = arg max f (y) in Eq. (54) as a function
of ηc for b = 3. For ηc < 1/b, the maximum is reached at the lower
edge y = 0.

Hence, from (12),

〈X 2〉C,n =
(∫




ds

2π i
esC[g0(s)]n

)−1 ∫



ds

2π i
esC[g0(s)]n

×
[

n(n − 1)

(
g1(s)

g0(s)

)2

+ n
g2(s)

g0(s)

]
. (57)

While we could again use a saddle-point evaluation of both
the numerator and denominator for large n, it turns out that it
would not be enough to confine the analysis to the leading
∼n2 term to extract the leading term of the constrained vari-
ance. Extracting the sub-leading term ∼n requires a careful
and very laborious calculation, which would not be rewarded
by a particularly illuminating final result. For these reasons,
we decided to show the scaling behavior of the constrained
variance only numerically in Fig. 5.

FIG. 7. Scaling behavior of the average final position 〈X 〉C,n after
n steps conditioned on the total cost of the ride. On the vertical axis,
we have the quantity 〈X 〉C,n/C from Eq. (27). On the horizontal axis,
we put y = n/C. We use b = 1, ηc = 2, and C = 250 (red trian-
gles) or C = 100 (blue squares). We use instead b = 1, ηc = 1

2 , and
C = 250 (green stars) or C = 100 (magenta circles). We can see that
the finite n,C curves nicely collapse onto the scaling function f (y)
given in Eq. (51). The scaling curves show a nonmonotonic behavior
for bηc > 1 and a monotonic (decreasing) behavior for bηc < 1, as
explained in the text. The inset shows the average displacement
〈X 〉C,n/C as a function of n/C for ηc = 2, b = 1, and C = 100. The
red crosses correspond to the results of numerical simulations (see
Sec. V for the details), while the blue solid line corresponds to the
scaling form in Eq. (51).
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IV. STATISTICS OF THE NUMBER OF SHORT
OR LONG JUMPS

In this section we consider the statistics of the random
variable

nt =
n∑

i=1

θ (ηc − ηi ), (58)

where θ (x) is the Heaviside step function. The random vari-
able nt counts the number of timelike jumps in a trajectory of
length n. The joint PDF of nt , the final position X , and the total
cost (budget) C for a trajectory of length n and exponential
jump distribution is given by

P(nt , X,C|n) =
∫

(0,∞)n

dη1 · · · dηn exp

(
−

n∑
i=1

ηi

)

× δ

(
X −

∑
i

ηi

)
δ

(
C −

∑
i

h(ηi )

)

× δ

(
nt −

n∑
i=1

θ (ηc − ηi )

)
. (59)

Taking the triple Laplace transform,

∫
dnt dX dC P(nt , X,C|n)e−λX−sC−ξnt = [χ (λ, s, ξ )]n,

(60)

where

χ (λ, s, ξ ) =
∫ ∞

0
dη e−η−λη−sh(η)−ξθ (ηc−η)

= e−s

λ + 1

(
e−ξ (1 − e−ηc (1+λ) )

+ e−ηc (1+λ) − bs

λ + 1 + bs
e−ηc (1+λ)

)
. (61)

As for the final position, the kth moment of nt after n steps,
conditioned on the total budget C, is given by

〈
nk

t

〉
C,n =

∫
dnt dX nk

t P(nt , X,C|n)∫
dnt dX P(nt , X,C|n)

, (62)

where the denominator is simply P(C|n), the marginal PDF
of the total cost alone after n jumps, which we computed in
Eq. (19).

For the numerator, it is again convenient to take the Laplace
transform with respect to the total cost and observe from
Eq. (60) that∫

dC e−sC

(∫
dnt dX nk

t P(nt , X,C|n)

)

= (−1)k ∂k

∂ξ k
[χ (λ, s, ξ )]n|λ,ξ=0. (63)

Limiting ourselves to the first moment (k = 1), we obtain for
the Laplace transform of the numerator∫

dC e−sC

(∫
dnt dX nt P(nt , X,C|n)

)

= ne−ns[1 − cosh(ηc) + sinh(ηc)]

(
1 − bse−ηc

1 + bs

)n−1

.

(64)

Using now(
1 − bse−ηc

1 + bs

)n−1

= (1 − e−ηc )n−1

(
1 + A

1 + bs

)n−1

, (65)

where A is defined in Eq. (14), and expanding using the
binomial theorem, we get∫

dC e−sC

(∫
dnt dX nt P(nt , X,C|n)

)

= n[1 − cosh(ηc) + sinh(ηc)](1 − e−ηc )n−1

×
[

e−ns +
n−1∑
k=1

(
n − 1

k

)
Ak e−ns

(1 + bs)k

]
. (66)

Using the inverse Laplace transform in Eq. (B12), we get for
the numerator

∫
dnt dX nt P(nt , X,C|n)

= n[1 − cosh(ηc) + sinh(ηc)](1 − e−ηc )n−1

[
δ(C − n) + e−(C−n)/b

b
θ (C − n)

n−1∑
k=1

(
n − 1

k

)
Ak (C−n

b )k−1


(k)

]

= n[1 − cosh(ηc) + sinh(ηc)](1 − e−ηc )n−1

(
δ(C − n) + e−(C−n)/b

b
θ (C − n)A(n − 1) 1F1(2 − n, 2; −A(C − n)/b)

)
, (67)

where we used the identity Eq. (B14) in the last step. Putting everything together, we get

〈nt 〉C,n = nδ(C − n) + θ (C − n)(n − 1)
1F1

(
2 − n, 2; −A

b (C − n)
)

1F1
(
1 − n, 2; −A

b (C − n)
) . (68)
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FIG. 8. Scaling behavior of the number of timelike steps 〈nt 〉C,n

after n steps conditioned on the total cost of the ride. On the vertical
axis, we have the quantity 〈nt 〉C,n/C from Eq. (68). On the horizontal
axis, we put y = n/C. We use b = 1, ηc = 2, and C = 250 (red
triangles) or C = 100 (blue squares). We can see that the finite n,C
curves nicely collapse onto the scaling function L(y) (solid black
line) from Eq. (71). The monotonically increasing nature of the curve
here does not depend on whether bηc > 1 or bηc < 1.

The delta contribution is easy to understand: If the total budget
C is exactly equal to n, then a trajectory made up of n timelike
steps meets all the constraints. Interestingly, the continuous
part (C > n) admits a scaling form for n,C → ∞ such that
y = n/C is fixed, namely,

〈nt 〉C,n ∼ CL(n/C), (69)

where the scaling function

L(y) = y{1 + u(y)/2 + [u(y)/2]
√

1 + 4/u(y)}−1 (70)

u(y) = A

b

(
1

y
− 1

)
(71)

for 0 < y < 1 simply follows from the asymptotics in
Eq. (D1) for k = m = 2. We recall that the constant A is
defined in Eq. (14). The scaling function L(y) has asymptotic
behaviors

L(y) ≈
⎧⎨
⎩

b(eηc − 1)y2 for y → 0+

1 −
√

A(1−y)
b for y → 1−.

(72)

A plot of the scaling function is provided in Fig. 8. The num-
ber of timelike steps increases monotonically with n at fixed
C. Indeed, for all values of b and ηc, the scaling function L(y)
grows from L(y = 0) = 0 to L(y = 1) = 1. This observation
agrees with the intuition that increasing the total number of
steps at fixed cost leads to more timelike steps.

V. NUMERICAL SIMULATIONS

In this section we describe the constrained Monte Carlo
Markov chain (MCMC) algorithm used to investigate the
statistics of the total displacement X with a fixed number of
steps n and fixed total cost C. We adapt the technique used in
Refs. [35–38] to our problem. For a given initial cost C �
n, we consider an n-dimensional vector �η = {η1, . . . , ηn},
where ηi is the displacement at the ith step. We initialize

the vector choosing η1 = η2 = · · · = ηn = ηc + (C/n − 1)/b
such that

∑
i h(ηi ) = C. We then implement a MCMC algo-

rithm accepting only moves that do not violate the constraint
C(1 − ε) � Cnew � C(1 + ε), where Cnew is the cost after the
proposed move and we set ε = 0.01. In other words, at each
iteration, we perform the following steps.

(i) We choose a random integer 1 � i � n.
(ii) We propose a move ηi → ηnew

i = ηi + z, where z is a
uniform random variable in [−δ, δ]. We choose δ so that the
acceptance rate is close to 1/2.

(iii) We evaluate the new cost Cnew. If Cnew does not satisfy
C(1 − ε) � Cnew � C(1 + ε), we reject the move.

(iv) Otherwise, we accept the move with probability α =
min[1, e−ηnew

i +ηi ]. This step makes sure that the variables η are
drawn from the correct exponential distribution.

We let the system thermalize for 104n steps and then we
sample the position X = ∑

i ηi every 103n steps to avoid
sample correlations. The results of numerical simulations are
shown in the insets of Figs. 7 and 5 and are in good agreement
with our theoretical predictions.

VI. CONCLUSION

In this paper we have computed the exact statistics of the
distance covered by a one-dimensional random walk subject
to a nonlinear cost function: Slow or short jumps of size
less than ηc incur a flat fee (equal to one unit), while long
or fast jumps of size greater than ηc are charged an amount
proportional to the size of the jump, according to the cost
function h(η) defined in Eq. (3). The nonlinear-cost random
walk with exponential jump distribution was introduced in our
recent Letter [13], where we focused on random walks with
a constraint on the total distance X and/or the total number
of steps n. Here we instead studied random walks that are
constrained to be realized with a fixed budget C. We found
that the average and variance of the total distance covered
exhibit a rich nonmonotonic behavior as a function of the
scaling variable y = n/C < 1. We also computed the statistics
of the number of long or short jumps making up a trajectory
of size n. All the analytical results have been corroborated
with careful numerical simulations, obtained via a constrained
Monte Carlo method that implemented the fixed-budget
constraint.

There are several possible extensions of this work. First of
all, it would be interesting to generalize our model to consider
other nonlinear cost functions and distributions of the steps of
the random walk. For instance, it would be relevant to extend
our framework to Lévy walks, where condensation transitions
where a single step dominates the whole trajectory can be
observed [39]. Moreover, to investigate the large-deviation
properties of the displacement X it would be interesting to
consider the setting where the total cost C is fixed but the num-
ber n of steps can fluctuate. Furthermore, while our present
paper exclusively addresses random walks characterized by
positive steps, it would be worth exploring scenarios where
both positive and negative step increments are permitted. This
would allow us to investigate the statistics of extremes and
records [40].
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APPENDIX A: VARIANCE CALCULATION

It is convenient to first rewrite

g(λ, s) = e−s[ f1(λ + 1) + f2(λ + 1) + f3(λ + 1)], (A1)

where

f1(x) = 1

x
, (A2)

f2(x) = −e−ηcx

x
, (A3)

f3(x) = e−ηcx

x + bs
, (A4)

from which we can compute derivatives quite easily:

f (1)
1 (x) = − 1

x2
, (A5)

f (1)
2 (x) = e−ηcx

x

(
1

x
+ ηc

)
, (A6)

f (1)
3 (x) = − e−ηcx

x + bs

(
1

x + bs
+ ηc

)
(A7)

and

f (2)
1 (x) = 2

x3
, (A8)

f (2)
2 (x) = −e−ηcx

x

(
2

x2
+ 2ηc

x
+ η2

c

)
, (A9)

f (2)
3 (x) = e−ηcx

x + bs

(
2

(x + bs)2
+ 2ηc

x + bs
+ η2

c

)
. (A10)

We can now evaluate the ratios of gk (s) appearing in (57) as

g2(s)

g0(s)
= f (2)

1 (1) + f (2)
2 (1) + f (2)

3 (1)

f1(1) + f2(1) + f3(1)

= 2 − e−ηc
(
2 + 2ηc + η2

c

)+ e−ηc

r

(
2/r2 + 2ηc/r + η2

c

)
1 − e−ηc + e−ηc/r

,

(A11)

g1(s)

g0(s)
= f (1)

1 (1) + f (1)
2 (1) + f (1)

3 (1)

f1(1) + f2(1) + f3(1)

= −1 + e−ηc (1 + ηc) − e−ηc

r (1/r + ηc)

1 − e−ηc + e−ηc/r
. (A12)

Multiplying up and down by reηc , we get

g2(s)

g0(s)
= 2eηc r − r

(
2 + 2ηc + η2

c

) + (
2/r2 + 2ηc/r + η2

c

)
1 − r + reηc

,

(A13)
g1(s)

g0(s)
= −reηc + r(1 + ηc) − 1/r − ηc

1 − r + reηc
. (A14)

APPENDIX B: CALCULATION OF T1(C) IN EQ. (21)

We define as

T1(C) = 〈X 〉 =
∫ ∞

0
XP(X,C|n)dX (B1)

the unconstrained average of the final position of the walker
after n steps.

Let us start from the Laplace transform (7) for k = 1,∫ ∞

0
T1(C)e−sCdC = −n[g(0, s)]n−1g1(s), (B2)

where the gk (s) are defined in (8). Computing −g1(s) (see
Appendix A), we eventually get∫ ∞

0
T1(C)e−sCdC = ϕ(1 + bs), (B3)

where

ϕ(r) = ne−n(r−1)/b

(
1 − e−ηc + e−ηc

r

)n−1

×
(

1 − e−ηc (1 + ηc) + e−ηc

r
(1/r + ηc)

)
. (B4)

Setting 1 + bs = r on the left-hand side of (B3) and setting
Ĉ = C/b, we get ∫ ∞

0
T̂1(Ĉ)e−rĈdĈ = ϕ(r), (B5)

where

T̂1(Ĉ) = bT1(bĈ)eĈ . (B6)

Therefore, it is convenient to inverse Laplace transform (B5)
with respect to r and then use the relation (B6) to reconstruct
T1(C).

In order to inverse Laplace transform (B5) with respect to
r, we first rewrite ϕ(r) as

ϕ(r) = nen/b(1 − e−ηc )n−1[1 − e−ηc (1 + ηc)]

× e−(n/b)r

(
1 + A

r

)n−1(
1 + y

r
+ z

r2

)

=C(n, b, ηc)e−(n/b)r
(

1 + y

r
+ z

r2

)

×
[

1 +
n−1∑
k=1

(
n − 1

k

)
Ak

rk

]
, (B7)

where

A = e−ηc

1 − e−ηc
, (B8)

y = ηce−ηc

1 − e−ηc (1 + ηc)
, (B9)

z = e−ηc

1 − e−ηc (1 + ηc)
, (B10)

C(n, b, ηc) = nen/b(1 − e−ηc )n−1[1 − e−ηc (1 + ηc)].
(B11)
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Using now the elementary inverse Laplace transform for k � 1,

Ha,k (Ĉ) = L−1
r

(
e−ar

rk

)
(Ĉ) = θ (Ĉ − a)(Ĉ − a)k−1


(k)
, (B12)

we have that

T̂1(Ĉ) =C(n, b, ηc)

[
δ
(
Ĉ − n

b

)
+

n−1∑
k=1

(
n − 1

k

)
AkHn/b,k (Ĉ) + y

n−1∑
k=1

(
n − 1

k

)
AkHn/b,k+1(Ĉ)

+yHn/b,1(Ĉ) + z
n−1∑
k=1

(
n − 1

k

)
AkHn/b,k+2(Ĉ) + zHn/b,2(Ĉ)

]
. (B13)

The finite sums can be further computed in closed form using

n−1∑
k=1

(
n − 1

k

)
Ak


(k)
= A(n − 1) 1F1(2 − n; 2; −A), (B14)

n−1∑
k=1

(
n − 1

k

)
Ak


(k + 1)
= 1F1(1 − n; 1; −A) − 1, (B15)

n−1∑
k=1

(
n − 1

k

)
Ak


(k + 2)
= 1F1(1 − n; 2; −A) − 1, (B16)

leading to

T̂1(Ĉ) =C(n, b, ηc)

{
δ

(
Ĉ − n

b

)
+ θ

(
Ĉ − n

b

)[
(n − 1)A 1F1

(
(2 − n; 2; −A

(
Ĉ − n

b

))

+ y 1F1

(
1 − n; 1; −A

(
Ĉ − n

b

))
+ z(Ĉ − a) 1F1

(
1 − n; 2; −A

(
Ĉ − n

b

))]}
. (B17)

Using the relation (B6), we eventually obtain Eq. (22) of the main text.

APPENDIX C: CALCULATION OF T2(C) IN EQ. (32)

We define as

T2(C) = 〈X 2〉 =
∫ ∞

0
X 2P(X,C|n)dX (C1)

the unconstrained second moment of the final position of the walker after n steps.
Let us start again from the Laplace transform (7) for k = 2,∫ ∞

0
T2(C)e−sCdC = n(n − 1)g0(s)n−2g2

1(s) + ng0(s)n−1g2(s), (C2)

where gk (s) are defined in (8). Computing g0(s), g1(s), and g2(s) (see Appendix A), we eventually get∫ ∞

0
T2(C)e−sCdC = �(1 + bs), (C3)

where

�(r) = n(n − 1)en/be−(n/b)r (1 − e−ηc )n−2[e−ηc (1 + ηc) − 1]2

(
1 + A

r

)n−2(
1 − y

r
− z

r2

)2

+ nen/be−(n/b)r (1 − e−ηc )n−1
[
2 − e−ηc

(
2 + 2ηc + η2

c

)](
1 + A

r

)n−1(
1 + t

r3
+ φ

r2
+ ξ

r

)
, (C4)

with

A = exp(−ηc)

1 − exp(−ηc)
, (C5)

y = ηc exp(−ηc)

(ηc + 1) exp(−ηc) − 1
, (C6)
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z = exp(−ηc)

(ηc + 1) exp(−ηc) − 1
, (C7)

t = 2e−ηc

2 − e−ηc
(
2 + 2ηc + η2

c

) , (C8)

φ = 2ηce−ηc

2 − e−ηc
(
2 + 2ηc + η2

c

) , (C9)

ξ = η2
c e−ηc

2 − e−ηc
(
2 + 2ηc + η2

c

) . (C10)

[Note the different definitions of A, y, and z here with respect to Eqs. (B8), (B9) and (B10), respectively.]
Setting 1 + bs = r on the left-hand side of (B3) and setting Ĉ = C/b, we get∫ ∞

0
T̂2(Ĉ)e−rĈdĈ = �(r), (C11)

where

T̂2(Ĉ) = bT2(bĈ)eĈ . (C12)

Therefore, it is convenient to inverse Laplace transform Eq. (C4) with respect to r and then use the relation (C12) to reconstruct
T2(C).

We now define for convenience (for k > 0)

Ha,m,k (Ĉ) = L−1

[
e−ar

(
1 + A

r

)m 1

rk

]
(Ĉ) = θ (Ĉ − a)(Ĉ − a)k−1

1F1( − m, k; −A(Ĉ − a))

(k)

(C13)

and for k = 0,

Ha,m,0(Ĉ) = L−1

[
e−ar

(
1 + A

r

)m]
(Ĉ) = δ(Ĉ − a) + mA 1F1(1 − m, 2; −A(Ĉ − a))θ (Ĉ − a). (C14)

In terms of these auxiliary functions, the inverse Laplace transform reads

T̂2(Ĉ) = M(n, b, ηc)[Hn/b,n−2,0(Ĉ) − 2yHn/b,n−2,1(Ĉ) + (y2 − 2z)Hn/b,n−2,2(Ĉ) + 2yzHn/b,n−2,3(Ĉ) + z2Hn/b,n−2,4(Ĉ)]

+ �(n, b, ηc)[Hn/b,n−1,0(Ĉ) + tHn/b,n−1,3(Ĉ) + φHn/b,n−1,2(Ĉ) + ξHn/b,n−1,1(Ĉ)], (C15)

where

M(n, b, ηc) = n(n − 1)en/b(1 − e−ηc )n−2[e−ηc (1 + ηc) − 1]2, (C16)

�(n, b, ηc) = nen/b(1 − e−ηc )n−1[2 − e−ηc
(
2 + 2ηc + η2

c

)]
. (C17)

Finally, we find from (C12)

T2(C) = 1

b
e−C/bT̂2(C/b) , (C18)

where T̂2(Ĉ) is given in Eq. (C15).

APPENDIX D: ASYMPTOTICS OF RATIO OF HYPERGEOMETRIC FUNCTIONS

We compute here the asymptotic behavior for large n of the ratio of Kummer hypergeometric functions appearing in the
definition of R(k, n, m, u) [see Eq. (28)], where both the first and last arguments depend on n:

�m,k (u) = lim
n→∞

(
nm−2 1F1(k − n, m,−nu)

1F1(1 − n, 2,−nu)

)
= 
(m)u1−m/2[1 + u/2 + (u/2)

√
1 + 4/u]m/2−k . (D1)

We need the identities

0F1(m, z) = 
(m)Im−1(2
√

z)/z(m−1)/2, (D2)

where Im(z) is a Bessel function, and [for Re(a) > 0]

1F1(a, b; z) = 1


(a)

∫ ∞

0
dt e−t t a−1

0F1(b, zt ), (D3)
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as well as

1F1(a, b; −z) = e−z
1F1(b − a, b; z). (D4)

Therefore,

1F1(k − n, m,−nu) = e−nu
1F1(m − k + n, m, nu)

= e−nu 
(m)


(m − k + n)n(m−1)/2

∫ ∞

0
dt e−t tm−k+n−1 Im−1(2

√
ntu)

u(m−1)/2t (m−1)/2
. (D5)

Using the asymptotic behavior of the Bessel function for large argument

Iα (z) ∼ ez

√
2πz

, (D6)

combined with the change of variable t = nτ , we get

1F1(k − n, m,−nu) ∼ e−nu

2
√

π um/2−1/4


(m)


(m − k + n)
nn−k+1/2

∫ ∞

0
dτ τm/2−k−3/4e−nW (τ,u), (D7)

with

W (τ, u) = τ − ln τ − 2
√

τu. (D8)

The integral in (D7) can be evaluated using a saddle-point approximation for large n. The only critical value inside the integration
interval is at

dW

dτ

∣∣∣∣
τ �

= 0 ⇒ τ � − √
u
√

τ � − 1 = 0 ⇒ τ �(u) = u

2
+ 1 + u

2

√
1 + 4

u
. (D9)

Therefore, ∫ ∞

0
dτ τm/2−k−3/4e−nW (τ,u) ∼

√
2π

n|W ′′(τ �(u), u)| [τ �(u)]m/2−k−3/4e−nW (τ �(u),u), (D10)

from which it follows that the ratio of Kummer hypergeometric functions in (D1) (where for the denominator we simply set
k = 1 and m = 2) simplifies dramatically for large n as

1F1(k − n, m,−nu)

1F1(1 − n, 2,−nu)
∼ 
(m)u1−m/2n1−k 
(1 + n)


(m − k + n)
(2)
[τ �(u)]m/2−k . (D11)

The result in (D1) then follows by noting that 
(2) = 1 and 
(1 + n)/
(a + n) ∼ n1−a for large n. Starting from Eq. (27) and
replacing every occurrence of R with its corresponding asymptotic behavior in (D1) yields, after simplification, the same scaling
relation found in (50) with the inverse Laplace method.
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