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Metamagnetic fluctuation characteristics near dynamic phase transitions
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We experimentally explore the magnetization dynamics of thin ferromagnetic Co films with uniaxial in-plane
anisotropy near the dynamic phase transition (DPT) and, in particular, we study the temporal characteristics
of anomalous metamagnetic fluctuations that occur in its vicinity, and for which no thermodynamic equivalent
exists. For this purpose, we measure the real-time evolution of magnetization trajectories in the relevant dynamic
phase space, conduct a Fourier analysis of these experimental results and compare it to a model, in which the
fluctuating metamagnetic behavior occurs in a purely random manner, following individual state probability
distributions. We find excellent quantitative agreement in between our experimental results and the random
state model, clearly indicating that multiperiod time-correlations of magnetic states are not relevant in our DPT
system, not even for the occurrence of the anomalous metamagnetic fluctuations that are nonetheless associated
with nonperiodic magnetic state evolutions.
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I. INTRODUCTION

Many-body physical systems are known to exhibit collec-
tive nonequilibrium behaviors and associated dynamical order
states in response to the action of time-dependent external
forces [1–5]. Some of these dynamically ordered systems
can furthermore exhibit abrupt qualitative changes in their
dynamic behavior upon changing the controlling driving force
by even very small amounts, hereby exhibiting characteris-
tics equivalent to phase transitions, but for the dynamic state
evolution of such systems [6]. Relevant examples of such
dynamic phase transitions (DPT) can be found in supercon-
ducting materials [7] or charge-density waves [8] but they
are also observable in social influence [9] or information
traffic flows [10]. The phase-space behavior of such collective
dynamic systems near DPTs is of upmost importance in the
context of nonequilibrium physics, particularly in terms of
understanding critical and scaling properties, as well as the
classification of universality classes [11].

The DPT is known to happen in ferromagnetic materials at
temperatures below the Curie temperature TC [12], and it has
arisen as a very relevant example for the detailed exploration
of dynamically ordered states and their phase-space behavior
[13]. The understanding of the magnetic DPT phenomenon
has been relevantly driven by theoretical works, both in the
context of Ising and Heisenberg mean-field theories [14–17]
and Monte Carlo simulations [18–23], which has resulted
in many insights about the dynamic phase-space behav-
ior. Contrarily, the experimental verification of the magnetic
DPT phenomena has been available only recently by means
of specifically designed experimental samples and setups
[24–27], which nonetheless has contributed very relevantly
through observations and characterizations of previously un-
explored effects, such as the metamagnetic anomalies, for
instance [28].

The DPT in ferromagnetic systems specifically is asso-
ciated with an abrupt change in the dynamic magnetization

behavior M(t ) in the presence of a periodic external field
H(t) of amplitude H0 and period P = 1/ f0 with f0 being
its excitation frequency. This abrupt change in the M(t ) be-
havior is characterized by the dynamic order parameter [12],
defined as

Q = 1

P

∫ t+P

t
M(t ′) dt ′. (1)

Hereby, Q undergoes a second-order phase transition at
a unique critical period Pc, which separates a dynamic
ferromagnetic (FM) phase, with Q �= 0 for P < Pc, from a
paramagnetic (PM) phase, with Q = 0 for P > Pc. In previ-
ous works, we have experimentally characterized such abrupt
changes in the dynamic M(t ) behavior in epitaxially grown Co
(1010) thin films by utilizing real-time transverse magneto-
optical Kerr effect (T-MOKE) measurements, whose details
will be explained in Sec. II in conjunction with Fig. 1 [25–28].
To visualize the qualitative dynamic state changes that occur
at the DPT we show three exemplary experimental M(t ) se-
quences for different field conditions in Fig. 1(b), measured on
a 20-nm-thick Co (1010) film. The first two cases correspond
to the M(t ) behavior, in green, for sinusoidal H(t) sequences
with H0 = 315 ± 1 Oe and 275 ± 1 Oe, respectively. In the
first case, one identifies a periodic M(t ) reversal, which leads
to a Q = 0 value, and corresponds to the behavior in the
dynamic PM phase. Contrarily, in the second case, there is
no longer a periodic M reversal, leading to a Q �= 0 behavior,
which corresponds to the dynamic FM phase.

The magnitude of Pc separating these two phases is asso-
ciated with the material-specific metastable lifetime τ with
which a new equilibrium state is obtained upon changing the
magnetic field abruptly [29]. Correspondingly, τ also depends
on the magnitude of H0 because larger field amplitudes lead
to faster magnetization reversals. This, in turn, leads to larger
H0 requiring shorter periods Pc for the observation of the
second-order phase transition [13]. Indeed, this monotonic
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FIG. 1. (a) Schematic of the T-MOKE setup employed for the
measurement of the M(t ) signals, showing the laser source, with
the light path shown in red, a first polarizer P1, the sample located
inside the gap of an electromagnet, a quarter-wave plate QWP and a
second polarizer P2, and a photodetector. The inset of (a) shows the
multilayer sequence of our epitaxial Co (1010) thin films. (b) Exper-
imental M(t ) signals (green), shown on the right y-axis, in the pres-
ence of an external H(t) (black), shown on the left y-axis, for three
distinct points in the dynamic phase space, namely (H0 = 315 Oe,
Hb = 0 Oe), (H0 = 275 Oe, Hb = 0 Oe), and (H0 = 315 Oe, Hb =
26 Oe), respectively. (c), (d) Color-coded maps of Q(H0, Hb) and
σQ(H0, Hb) in the same phase space in the vicinity of the critical
point with the corresponding color scales appearing on top of (c),
(d). The solid-black line and red dot in (c) correspond to the first-
and second-order phase transitions, respectively.

Pc(H0) relation has allowed for an alternative experimental
exploration of the dynamic phase space near the critical point
by monitoring the dynamical state of the magnetic system as a
function of H0 while leaving P constant, rather than the orig-
inally proposed P-dependent measurements of the dynamic
phase and phase transition for constant H0 [26,27].

In recent studies, the conjugate field of Q was demon-
strated to be a constant bias field Hb, that is superimposed to
the field oscillations [30,31]. Correspondingly, Q undergoes
a first-order phase transition upon crossing the Hb = 0 line
in the dynamic FM phase. The subsequent (P, Hb) phase
space or, equivalently, the (H0, Hb) phase space [26,27],

exhibit second- and first-order phase transitions that have
been shown to share fundamental similarities with the con-
ventional thermodynamic equilibrium M(T, H) phase space
[13,32,33]. In Fig. 1(c), we show as a color-coded map
the experimentally obtained phase-space behavior of Q(H0,
Hb). Here, we observe the aforementioned aspects of the
dynamic phase-space behavior near the DPT. Specifically,
the red dot identifies the critical point, at which the second-
order phase transition occurs, whereas the black-solid line
corresponds to the first-order phase transition, that separates
the two equivalent dynamic FM states characterized by high
positive (yellow) and high negative (blue) values of Q in
the map. One key difference in between the equilibrium and
dynamic phase transitions consists of the appearance of large
dynamic fluctuations σQ as,

σQ =
√

〈Q2〉 − 〈Q〉2, (2)

in the dynamic PM phase that take the form of two side-
bands [28]. Figure 1(d) shows the dynamic fluctuations
that are quantified simultaneously with the order parame-
ter Q in the exact same phase space as in Fig. 1(c). Here,
one observes anomalously large fluctuations in the regions
of the PM phase were Q changes from rather modest to
near saturation values. These dynamic fluctuations are as-
sociated with incomplete magnetization reversals that lead
to large fluctuations of Q, as we will explain in Sec. II.
These so-called metamagnetic anomalies do not have an
analog in the corresponding equilibrium PM phase and
thus, they constitute a fundamental difference between both
phenomena.

The existence and behavior of these metamagnetic anoma-
lies have been explored recently both experimentally [26–28]
and by means of Monte Carlo simulations [18,34]. However,
in these works, merely their existence is reported and, thus,
many aspects and details of their occurrence have not been
explored so far. For example, a crucial question that has not
been addressed yet is whether these metamagnetic anoma-
lies represent purely random fluctuations or if they exhibit
other time correlations associated with the spatial dynamics
of magnetization reversal. The relevance behind this question
is also connected with the similarities of the DPT with Floquet
states in discrete time crystals [35,36]. In fact, the DPT is
a nonequilibrium thermodynamic phenomenon in which the
system is exposed to a periodic H (t ) = H (t + P) driving
force and the existence of anomalous fluctuations is associ-
ated with broken-time symmetry [37]. Given the broken-time
periodicity of the driving Hamiltonian, it is reasonable to
expect subharmonic temporal responses, as well as long-range
spatiotemporal correlations in our system [38], which is the
aspect we are investigating in this work, particularly in the
context of the metamagnetic anomalies, where pseudorandom
behavior is indeed observed.

Therefore, our objective in this work is to conduct a de-
tailed experimental investigation of the M(t ) signals in the
vicinity of the DPT and investigate the possible existence
of time correlations in phase-space points that correspond to
metamagnetic fluctuation anomalies. In Sec. II of this work,
we describe key experimental methods of the present work,
including the sample fabrication and the magneto-optical

064121-2



METAMAGNETIC FLUCTUATION CHARACTERISTICS … PHYSICAL REVIEW E 108, 064121 (2023)

detection of the M(t ) trajectories. In Sec. III, the key aspects
of our Fourier signal analysis are discussed and, in Sec. IV,
we compare our results with a theoretical model based on
random signal sequences. Finally, in Sec. V, we draw general
conclusions from the present work and give a further outlook
on the understanding of DPTs and associated metamagnetic
anomalies.

II. EXPERIMENTAL METHODS

As mentioned in Sec. I, the experimental observation of
DPTs has been previously achieved on epitaxial Co (1010)
thin films, exhibiting in-plane uniaxial magnetic anisotropy
along the crystallographic [0001] direction [26,27]. This in-
plane geometry leads to a minimization of demagnetizing
fields that would otherwise smear out sharp field responses
associated with phase transitions. This suppression of demag-
netizing fields leads, in turn, to a very simple magnetization
behavior dominated only by exchange energy, Zeeman energy,
and magnetic anisotropy, which allows us to experimentally
mimic the theoretical behavior of the Ising model [33]. In
Fig. 1(a), we show schematically the specific multilayer se-
quence that we employed for the epitaxial growth of our films,
which reproduces the expected in-plane uniaxial anisotropy
in agreement with our prior studies [39,40]. Specifically, onto
hydrofluoric-acid-etched Si (110) single crystal substrates, we
grow by means of sputter deposition 75 nm of Ag (110) and
20 nm of Cr (211) as template layers, for the epitaxial growth
of the ferromagnetic 20-nm-thick Co (1010) layer. We then
deposit 10 nm of amorphous SiO2 as a capping layer for
oxidation protection.

The experimental observation of DPTs in such films
has been achieved by means of T-MOKE measurements,
conducted at room temperature, and exhibiting excellent real-
time sensitivity. It is worthwhile mentioning that, while our
T-MOKE setup is limited to room temperature measurements,
the temperature dependence of the DPT and subsequent meta-
magnetic anomalies has been investigated experimentally in
Co1−xRux (1010) films exhibiting different Curie tempera-
tures and, thus, different T/TC ratios [26]. The key aspects
of our T-MOKE setup are shown schematically in Fig. 1(a)
[41,42]. Our particular tool measures the ellipticity changes
in the reflected light upon magnetization reversal with very
high sensitivity due to an effective polarization measurement
scheme [43,44]. These ellipticity changes are proportional to
the transverse magnetization component, only, which allows
us to trace the M(t ) behavior quantitatively for our thin films.
An electromagnet above the sample sets a transversal field
H(t) that drives the magnetization reversal. In this particular
work, for each (H0, Hb) point in the dynamic phase space, the
M(t ) behavior is analyzed for 500 periods of H(t) oscillations.
Further details regarding this T-MOKE setup can be found
elsewhere [41–44].

In Fig. 1(b), we show three exemplary M(t ) trajectories
measured in real-time with our T-MOKE setup in the pres-
ence of a periodic magnetic field H(t) with f0 = 50 Hz, and
different field conditions, representing three relevant points in
the (H0, Hb) phase space for illustration purposes. The mea-
surements were conducted with the easy magnetization axis
being parallel to the field direction. Under these conditions,

M remains parallel to H and undergoes abrupt reversals, which
is exactly the behavior expected for anisotropic Heisenberg
or Ising models, at least under quasistatic conditions. The
signals are normalized to saturation by means of reference
measurements, in which sinusoidal fields of sufficiently large
amplitudes are applied to fully saturate the magnetization in
both directions. The sampling frequency of both H(t) and
M(t ) is fs = 15 kHz. The first example in Fig. 1(b) corre-
sponds to a point in the dynamic PM phase with H0 = 315 ±
1 Oe and Hb = 0 ± 1 Oe. Here, M(t ) exhibits squarelike
signals with a periodic full magnetization reversal, leading
to an average value of Q = 0 as expected for the dynamic
PM phase. The second case, shown in the middle panel of
Fig. 1(b), consists of an external field with smaller H0 =
275 ± 1 Oe and Hb = 0 ± 1 Oe. Here, M(t ) cannot switch
to opposite magnetization values, leading instead to a time
independent magnetization value and Q �= 0, which is exactly
the behavior expected in the dynamic FM phase. From these
two examples, we clearly identify the fundamental differ-
ences in the dynamic magnetization behavior expected in the
vicinity of the critical point. The last example, shown in the
bottom of Fig. 1(b), corresponds to a point in the dynamic PM
phase, at which metamagnetic anomalies occur, with H0 =
315 ± 1 Oe and Hb = 26 ± 1 Oe. In this regime, the M(t )
trajectories follow a nonperiodic behavior and, instead of
reaching a negative saturation value upon field reversal to a
negative value, the magnetization populates an intermediate
and near constant state for the remainder of the H(t) half-
cycle before switching back to positive saturation. Hereby,
the populated intermediate state changes from cycle to cycle,
leading to large fluctuation values σQ.

In Fig. 1(c), we represent as a color-coded map, the subse-
quent Q(H0, Hb) phase-space behavior, in the vicinity of the
critical point, already mentioned in Sec. I. Here, we clearly
observe the expected features within the dynamic phase space
[13]. For field values H0 < 295 Oe, two equivalent stable ±Q
states are identified, which are the yellow and blue regions
in the map. In the PM phase, for H0 > 295 Oe, one observes
that Q = 0 along the Hb = 0 line, as expected. As Hb becomes
larger within the PM phase, moderate, but nonvanishing val-
ues of Q are observed until for sufficiently large |Hb| values,
Q increases strongly and approaches its saturation value in
a fairly small Hb range without exhibiting an actual phase
transition. The similarity to metamagnetic behavior, observed
for certain magnetic equilibrium systems, motivated us to
refer to these effects here as metamagnetic anomalies and
metamagnetic fluctuations, even if they do not constitute a
phase transition of the dynamic system.

In Fig. 1(d) we show σQ(H0, Hb) as a color-coded map
in the same phase space as Fig. 1(c). Here, we observed the
so-called metamagnetic anomalies as two sidebands in the
PM phase. Likewise, we observe that the existence of meta-
magnetic anomalies in the PM phase is associated with the
regions where Q changes rather sharply from small values to
near saturation. Therefore, the observation of the nonperiodic
M(t ) behaviors in Fig. 1(b), associated with large dynamic
fluctuations in the PM phase, defines the anomalous regime
that only occurs in the DPT and not in its thermodynamic
equivalent and, thus, it represents the phase-space regime in
which we will study time correlations in detail.
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III. FOURIER ANALYSIS OF EXPERIMENTAL DATA

In order to analyze the appearance and behavior of the
metamagnetic anomalies, as well as the possible existence
of time-correlations, we will employ a Fourier analysis of
the experimentally measured M(t ) signal sequences in the
complete (H0, Hb) phase space [45]. For this purpose, we
calculate M̃ f as,

M̃ f =
∫

tS

M(t )e−i 2π f t dt, (3)

with f being the frequency and tS being the time integration
range. Hereby, the Fourier spectra M f = |M̃ f | of each M(t )
signal in the entire (H0, Hb) phase space is analyzed by means
of the fast Fourier transform method. Likewise, for our discus-
sion, it will be relevant to define the distribution D(M) as the
probability to find the system at a certain magnetization value
M. Such a D(M) function can be defined in the continuum
limit, considering a meaningful M value resolution of δM, as

D(M ) = 1

T

∫
tS

θ

(
M − M ′(t ) − δM

2

)

− θ

(
M − M ′(t ) + δM

2

)
dt, (4)

with θ (x) being the Heaviside step function. In our quanti-
tative analysis here, we have utilized δM = 0.01 Ms for our
experimental data sets. In the left column of Fig. 2, i.e.,
Figs. 2(a), 2(c), 2(e), we show exemplarily the experimen-
tally determined D(M) for the three M(t ) trajectories shown
in Fig. 1(b).1 Figure 2(a) shows the probability distribution
of the signal in the PM phase. Here, we clearly see two
sharp maxima of D(M) centered around M = ±Ms, which is
the behavior expected for an experimental squarelike signal
trace. In Fig. 2(b), we represent the absolute values of the
corresponding Fourier spectrum M f . Here, we observe the
existence of sharp peaks at the multiples of the fundamen-
tal frequency f0 = 50 Hz, superimposed to a white noise
background that is three orders of magnitude smaller than
each peak in the here analyzed frequency range. A perfect
square signal would have no components corresponding to
odd multiples of f0. Nonetheless, we observe the existence of
odd multiples in Fig. 1(b), which are, however, two orders of
magnitude smaller than the even components. These odd har-
monics corresponds to a small asymmetry in the M(t ) signal
traces, which are caused by the experimentally unavoidable
presence of a small but nonzero Hb values at the Hb resolution
limit of ±1 Oe.

In Fig. 2(c), the D(M) of a M(t ) trajectory in the FM phase
is shown, exhibiting only one maximum centered at M = Ms

as expected for the FM phase sufficiently far away from the
critical point. The subsequent Fourier spectrum is shown in
Fig. 2(d). Here, we identify a strong maximum at f = 0, cor-
responding to Q = M0, followed by a white noise background.
Such background is also of the same magnitude as in the case

1The actual M(t) sequence and subsequent analysis is conducted
over 500 periods, for which only 10 are shown exemplarily in
Fig. 1(b).

FIG. 2. (a) Experimentally determined D(M) distribution of a
M(t ) trajectory and (b) corresponding Fourier spectrum Mf vs f
for an exemplary phase-space point in the dynamic PM phase with
(H0 = 315 Oe, Hb = 0 Oe). (c), (d) D(M) distribution and Fourier
spectrum corresponding to a M(t ) trajectory in the FM phase with
(H0 = 275 Oe, Hb = 0 Oe). (e), (f) D(M) distribution and Fourier
spectrum corresponding to a M(t ) trajectory in the metamagnetic
anomaly region with (H0 = 315 Oe, Hb = 26 Oe). The insets in (a),
(c), (e) show zoomed in representations of the corresponding D(M),
showing gaussian-like distributions of the different peaks.

of Fig. 2(b). At the same time, no peaks associated with the
field frequency, or its harmonics are observed, which allows
us to discard the possible existence of direct electromagnetic
coupling of the field driving with the light detection circuit
in our device. The small peak at f = 283 Hz appears in all
our measurements in the entire phase space and is associated
with mechanical vibrations of our system that do not impact
the underlying measurement procedure, but merely represent
a slightly increased noise floor in a fairly narrow intermediate
frequency range.

Figure 2(e) shows the D(M) probability of a trajectory in
a (H0, Hb) point of the dynamic phase space where metamag-
netic fluctuations occur. Here, contrary to the previous cases,
we do not only have sharp D(M) peaks but instead, we observe
a broad Gaussian-like probability of having intermediate M
values, together with the positive saturation peak associated
with the first half-cycle of the signal. Such a broad D(M)
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FIG. 3. Color-coded maps of Mf (H0, Hb) in the vicinity of the critical point for several selected frequencies f , displayed in each subfigure.
(c), (h), (m) show the color maps of Mf at several frequencies that are multiples of f0 = 50 Hz. The remaining subfigures show then maps of
Mf at frequencies that are � f = ±1, ±2 Hz away from these harmonic frequencies. The color bars in the top of figures (a)–(e) apply to each
entire column.

distribution, however, is not sufficient to confirm the presence
or absence of time-correlations in our dynamic system and
thus more detailed analysis steps are necessary.

In the corresponding M f spectrum, shown in Fig. 2(f),
we first identify several peaks at multiples of f0 that have,
however, a significantly smaller amplitude as compared to the
spectra in Fig. 2(b). This is expected, because the signal trace
exhibits on average smaller magnetization switch amplitudes
as already suggested by the D(M) peaks. More relevantly
though, the M f spectrum in Fig. 2(f) shows a background
that does not correspond to white noise, but instead has an
oscillatory behavior resulting in several maxima and minima
that seem to occur in a periodic manner. Furthermore, these
maxima and minima are not visibly correlated with the pe-
riodicity of the f0 harmonics and, thus, they point towards a
different type of dynamics in our system associated with the
metamagnetic fluctuation regime.

This anomalous background, shown exemplarily in
Fig. 2(f), is observed in the M(t ) traces corresponding to
metamagnetic anomalies only. To verify this, we plot as color-
coded maps the M f (H0, Hb) phase-space characteristics for
selected frequencies in Fig. 3. In this figure, the central col-
umn, i.e., Figs. 3(c), 3(h), 3(m), corresponds to multiples
of the fundamental frequency f0, i.e., f = 50, 100, 150 Hz.
Each of these maps show nonzero M f values only in the
conventional PM phase, which corresponds to the harmonic

frequencies occurring in near squarelike M(t ) trajectories
in this phase-space range. Also, in Fig. 3(h), we observe a
continuous change of M f in the conventional PM phase. In
absence of Hb, the M(t ) sequence is rectangular, with the
periodic reversal occurring at t and t + P/2 specifically. Such
M(t ) sequence is then purely antisymmetric, leading to null
odd Fourier M f . Experimentally, these odd M f components
are at least two orders of magnitude smaller than the even
components, as explained in conjunction with Fig. 2(b). In
contrast to this symmetric scenario, a nonzero Hb > 0 bias
field causes an earlier positive reversal and a delayed nega-
tive reversal, which leads to an asymmetric rectangular M(t )
sequence. In the Fourier spectra, such asymmetric M(t ) trajec-
tories correspond to increasingly large odd M f components, as
we indeed observe in Fig. 3(h).

In the other subfigures, we show in a zoomed color scale
range the phase-space behavior of M f (H0, Hb) at frequencies
that are at � f = ±1, ±2 Hz different from the multiples
of f0. Each of these maps exhibits relevant M f values only
in those portions of the PM phase that corresponds to the
metamagnetic fluctuation regime. The conventional PM phase
exhibits negligible M f values less than 1 Hz away from the
corresponding harmonic frequency, which is another good
indicator of the excellent signal-to-noise ratio of our ex-
periment, as well as the accuracy of our Fourier analysis.
Regarding the different maps, M f is observed to be larger
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FIG. 4. (a) Color-coded map of σQ(H0, Hb) showing in red the specific region in the dynamic phase space to be analyzed further. The
corresponding color scale is shown inside the subfigure. (b)–(d) experimentally determined D(M) distributions for the three selected points in
the dynamic phase space with constant H0 = 306 Oe and Hb = 17, 14, 12 Oe, respectively. (e)–(g) Fourier spectra Mf vs f of the selected
M(t ) trajectories in the same points of the dynamic phase space as (b)–(d).

at smaller frequencies, shown in Figs. 3(a), 3(b), 3(d), and
3(e), while it becomes more modest in size for the maps
representing higher frequencies. These data demonstrate that
the anomalous background spectrum in Fig. 2(f) corresponds
to the M(t ) behavior of the metamagnetic anomalies only and,
more specifically, to an incomplete magnetization reversal that
exhibits cycle-to-cycle variations, a characteristic that occurs
only in the magnetization trajectories corresponding to meta-
magnetic anomalies.

In order to understand the appearance and behavior of
this anomalous background, namely the amplitude and pe-
riod of the oscillations in the Fourier spectrum background,
we have analyzed its phase-space position dependence. For
that, we choose different neighboring points of one branch
of the metamagnetic anomaly regime with fixed H0 and var-
ious Hb values, as depicted in the red square of Fig. 4(a).
Figures 4(b)–4(d) show D(M) for three points in the phase
space representing three different Hb values of decreasing
positive size, namely Hb = 17, 14, 12 ± 1 Oe, respectively.
Here, we can see that as Hb becomes smaller, the associated
D(M) distribution changes relevantly and, for even smaller Hb,
metamagnetic fluctuations cease to occur and we obtain the
two state D(M) distribution corresponding to the conventional
PM phase, depicted in Fig. 2(a). Figures 4(e)–4(g) show the
Fourier spectra corresponding to the metamagnetic anomalies
in Figs. 4(b)–4(d). Here, the anomalous background oscilla-
tions occur in all the cases and exhibit similar periodicity, even
if small changes seem to be observed in between data sets.
However, their amplitude seems to decrease monotonously
for decreasing Hb. This is because for decreasing Hb, the
system approaches the conventional PM phase where no
metamagnetic anomalies occur and, therefore, the anomalous
background is getting successively weaker. This aspect is also
observed in the harmonic frequencies of f0, that become suc-
cessively larger as the system approaches the conventional PM
phase with lower Hb.

With this particular analysis, we have quantitatively an-
alyzed the metamagnetic behavior in substantial detail by
determining D(M) distributions and M f Fourier spectra

and we have monitored these quantitative characteristics in
their evolution within the relevant phase space. In the PM
phase, we observe that all the Fourier components change
in a continuous manner, including the f = 0 case, which
corresponds to the dynamic order parameter Q itself. Nonethe-
less, we demonstrate that the observed periodic background is
uniquely related to the metamagnetic fluctuations and, thus, it
is an excellent quantitative tool to develop an understanding of
their intrinsic dynamics, including possible long-range time-
correlations.

IV. RANDOM STATE MODEL OF METAMAGNETIC
FLUCTUATIONS

To explore the possible existence of time correlations in our
dynamic system in the realm of metamagnetic fluctuations,
we investigate here if a purely distributions-based random se-
quence can explain the experimentally observed behavior. For
this purpose, we developed a model based on the observation
that the M vs t evolution for metamagnetic fluctuations states
is characterized by a magnetization level probability distribu-
tion D(M). In Figs. 5(a) and 5(b), we show the key aspects
of our model. Here, the red-colored M(t ) signal mimics the
metamagnetic behavior, whereas the blue signal corresponds
to a pure-square M(t ) signal of the conventional PM phase
at Hb = 0. For the M(t ) signal corresponding to the meta-
magnetic behavior, the magnetization trace consists of the
positively saturated state for a relevant portion of each period,
while it switches to a single random value for the remainder
of each period. The probability of this random magnetization
value is given by a Gaussian distribution, whose center has a
distance of Mmeta to saturation2 and a standard deviation �M,
as shown schematically in Fig. 5(b).

In our model, the reversal is triggered by nucleation and the
subsequent domain-wall expansion, which occurs at the times

2The points in the phase space with Hb < 0 have M(t) traces with
negative saturation.
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FIG. 5. (a), (b) Schematic of the theoretical model employed for
the characterization of the metamagnetic fluctuations; (a) exemplary
M(t ) signals with the behavior in the conventional PM phase (blue)
and the behavior displaying metamagnetic anomalies (red) exhibiting
certain random metastable states and a δt delay time characterizing
the point by which negative nucleation is delayed from t = P/2. (b)
Corresponding D(M) distributions of both theoretical signals, show-
ing the Gaussian-like probability of the metamagnetic M(t ) signal
exhibiting certain intermediate magnetization states. The probability
distribution D(M) is defined by the average Mmeta value and the
standard deviation �M. (c)–(h) Comparison between experimental
Fourier spectra (black dots) and theoretical model fits to them (red
lines) at several phase-space points, for which metamagnetic fluctu-
ations are relevant, namely (H0, Hb) value pairs with H0 = 311 Oe
and Hb = 10, −8 Oe for (c),(d), H0 = 325 Oe and Hb = 26, −20 Oe
for (e),(f), H0 = 340 Oe and Hb = 40, −36 Oe for (g),(h).

when H(t) becomes comparable to a sample specific nonzero
nucleation field Hn. The presence of a nonzero Hb that is being
superimposed to the field oscillations now causes a relative
shift between positive and negative nucleation, as mentioned
in conjunction with Fig. 3(h). Therefore, to account for this
relative time delay, we allow our model M(t ) signal to have
a timing bias in between the two alternating states, char-
acterized by a delay time δt . This delay time describes a
relative shift in between the positive and negative nucleation
occurring in the presence of Hb as compared to the Hb = 0
case as depicted in Fig. 5(a) [37]. In Fig. 5(b), we show the
D(M) probability density of an exemplary constructed M(t )
signal, as compared with a pure square-signal, shown in blue,
which exhibits only two δ−function peaks at M/Ms = ±1. We
now compare this model to our experimental data. For this

purpose, we conduct least-squares fits of model generated
Fourier spectra to our experimental Fourier spectra at each
point of the metamagnetic regime, using as fit parameters δt ,
Mmeta, and �M.

Figures 5(c)–5(h) show Fourier spectra of various phase-
space points for different H0 and Hb values, which all exhibit
relevant levels of metamagnetic fluctuations. The experimen-
tal data are displayed as black points while the red lines
correspond to the results of the respective least-squares model
fits, all of which show excellent agreement with the exper-
imental data. Figure 5(c) shows our results in the Fourier
analysis for a M signal with small Hb. Here, the background
oscillations are clearly observed, both in the experimental
data and the model. Furthermore, our model clearly over-
laps very well with the experimental data, not only in the
background oscillations, but also in terms of the harmonic
frequency amplitudes in the entire analyzed frequency range.
One clear difference is the fact that the amplitudes at the
metamagnetic oscillation minima decrease to M f = 0 for our
model, while the experimental data only reduce to the white
background noise level. However, this is to be expected, given
that our experimental data have a small, but not vanishing
noise level that is not replicated in the model. Nonetheless, the
agreement between model and experimental data in Fig. 5(c)
is excellent.

Figures 5(c)–5(h) show the results of the same analysis
conducted on the Fourier spectra corresponding to several
exemplary points along the metamagnetic anomaly region
representing different Hb values. In all the here explored cases,
our model results clearly follow the experimental data very
accurately. These results lead to R2 values larger than 0.98 in
all the here explored cases, which is an excellent indicator of
the quality and relevance of our model.

In both the experiments and model fits we note that the
periodicities of the background oscillations vary as a func-
tion of H0 and Hb. For example, in Fig. 5(c), the fourth
minimum is located at 447 Hz, whereas in Fig. 5(g) the fourth
minimum is found at 508 Hz. In our fit results, we observe
that the magnitude of �M is similar in all the explored (H0,
Hb) points in the phase space corresponding to metamag-
netic anomalies, with �M ≈ 0.16. Consequently, the reason
behind this variation in the background periodicity must be
due to a change in δt with increasing Hb. Indeed, larger Hb

values lead to more asymmetric M(t ) sequences in terms of
the relative time between transitions. This delayed negative
nucleation in turn influences the background oscillations in
the Fourier signals. It is worthwhile mentioning that, while
�M does not vary substantially in the entire analyzed phase
space, having a �M �= 0 is fundamental for the observation
of the metamagnetic tendencies and the anomalous Fourier
background.

In Fig. 6(a) we show as black dots the δt values obtained
from our least-squares fit procedure, normalized to P, and
represented as a function of the relative field Hb/H0. Here,
δt follows a monotonous behavior and becomes larger for
points of the phase space that are further away from the critical
point. These results are in agreement with our physical picture
that magnetic nucleation is triggered at the specific times, at
which H(t) is comparable to Hn, even in the dynamic meta-
magnetic anomaly states where the magnetization reversal is
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FIG. 6. (a) Numerically extracted δt/P values as a function of
Hb/H0 for all points in the dynamic phase space that allowed for a
quantitative analysis of metamagnetic fluctuations. The black dots
represent the result from the least-squares fittings to the random state
model, shown in Fig. 5. The solid-red line represents a least-squares
fitting of the data to δt ∝ |Hb/H0|η. (b) Color-coded map showing
Mmeta values for the points that exhibit metamagnetic anomalies only.
The corresponding color scale is shown on the right-hand side of (b).
The inset of (b) represents δt/P vs Mmeta for the same set of data.

incomplete. Therefore, δt increases monotonously with Hb.
As seen from the red line in Fig. 6(a), our data are consistent
with a power-law behavior, such that δt ∝ |Hb/H0|η. Further-
more, such least-squares fitting seems to indicate an exponent
η = 0.51 ± 0.04 along the line in the phase space correspond-
ing to the metamagnetic anomalies.

In Fig. 6(b) we represent as a color-coded map the Mmeta
values obtained by our model for the points of the phase
space that correspond to the metamagnetic anomalies only.
Here, we observe that Mmeta changes continuously from 0
for the points of the anomalous PM phase corresponding
to higher |Hb|, to −2 for the points of the PM phase with
small |Hb|. These results are in full agreement with the
observations of Fig. 4, where we represented the D(M)
distributions along one specific H0 line in the phase space. We
note that these sharp (but still continuous) changes of Mmeta
only seem to affect the amplitude of the Fourier background
oscillations, as seen in Fig. 4, and do not significantly affect
their periodicity. Thus, given the different behavior that Mmeta
and δt exhibit in the dynamic PM phase, it seems sensible
to check if both quantities are correlated with each other
and, accordingly, reveal additional aspects about the inner
dynamics of metamagnetic fluctuations. For this purpose, we
represent in the inset of Fig. 6(b) δt/P vs Mmeta. Here, we
observe negligible correlation between both quantities, even
if the data seem to span an ellipse with few data points inside
the ellipse, and with the Pearson coefficient being r = −0.25.
Therefore, given the negligible correlations between δt and
Mmeta, and �M being nearly constant along the metamagnetic
anomalies, we verify that they represent uncorrelated aspects
of the M(t ) trajectories. Furthermore, we confirm that M f = 0
minima are only due to the relative nucleation shift in the
M(t ) signals. Thus, our least-squares model results are
fully consistent with the experimental behavior in the entire
phase space, which in turn means that the M(t ) signals of
the metamagnetic anomalies and thus the metamagnetic
fluctuations are explained in their entirety by our simple
model based upon pure random fluctuation behavior.

Most relevantly, our model considers purely random
metastable states, meaning that the occurrence of a M level

in each half-period is not at all influenced by the previously
occurring states. Therefore, given the ability of our random
state model to describe our experimental data and all its de-
tails very accurately, we can conclude that the magnetization
states leading to meta-magnetic fluctuations are populated in
a purely random sequence representing a given D(M) distribu-
tion and therefore, no time-correlation seems to be present in
the metamagnetic fluctuations of our experimental system in
the vicinity of the DPT.

While our study here is conducted at room temperature,
one can expect similar results for different temperatures.
Previous experimental works have shown very similar phase-
space behavior for Q(H0, Hb) in strongly varying relative
temperatures T/TC , while at the same time observing an in-
creased strengths of the metamagnetic fluctuations for higher
T/TC-values [26]. We believe that, while the magnitude and
periodicity of the Fourier background might vary significantly,
the overall reversal mechanism should be similar, specifically
the randomness of the fluctuations. Thus, in general, increas-
ing the temperature would increase the fluctuations in the
system, which would probably induce a broadening of the
D(M) distribution and, therefore, �M, but without impacting
the here-observed lack of time correlations for subsequent
metamagnetic fluctuations.

V. CONCLUSIONS

In this work, we experimentally explored the occurrence
and temporal nature of anomalous metamagnetic fluctuation
in the vicinity of the DPT with particular attention paid to
possible long-term correlations, which, in principle, could
occur in hysteretic magnetic systems that exhibit dynamic
states that are more complex than exhibiting simple periodic
solutions only.

Our study here reveals that the large dynamic fluctua-
tions that occur in the anomalous metamagnetic phase-space
region within the paramagnetic dynamic state are indeed
associated with M(t ) traces that exhibit nonperiodic behavior.
We employ Fourier analysis of our experimental time traces
in the entire dynamic phase space and compare the resulting
Fourier spectra to random sequence model results following
a Gaussian state distribution. Following this procedure, we
show that our experimental M(t ) traces are fully consistent
with such a random state model in a precise quantitative
manner and do not show any indication of additional time cor-
relations in between subsequent metamagnetic fluctuations.
Furthermore, we observe this random nature of the metam-
agnetic fluctuations anywhere in the phase space, where they
occur and can be measured by us.

Therefore, our results show key insights regarding the
physical properties and associated origin of the large dy-
namic fluctuations occurring near metamagnetic anomalies,
which only exist near DPTs and do not have any thermody-
namic equivalent. Furthermore, the here proposed and utilized
Fourier analysis of M(t ) traces for the purpose of classifying
the true nature of dynamic state phenomena in nonequi-
librium systems can provide an interesting methodological
example for the exploration and characterization of complex
dynamic behaviors in the context of DPTs and related physical
phenomena.
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