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Improving the Cramér-Rao bound with the detailed fluctuation theorem
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In some nonequilibrium systems, the distribution of entropy production p(�) satisfies the detailed fluctuation
theorem (DFT) p(�)/p(−�) = exp(�). When the distribution p(�) shows a time dependence, the celebrated
Cramér-Rao (CR) bound asserts that the mean entropy production rate is upper bounded in terms of the variance
of � and the Fisher information with respect to time. In this paper we employ the DFT to derive an upper bound
for the mean entropy production rate that improves the CR bound. We show that this new bound serves as an
accurate approximation for the entropy production rate in the heat exchange problem mediated by a weakly
coupled bosonic mode. The bound is saturated for the same setup when mediated by a weakly coupled qubit.

DOI: 10.1103/PhysRevE.108.064118

I. INTRODUCTION

In small-scale thermodynamics, the entropy production �

is usually regarded as a fluctuating quantity [1–12]. Every
time a thermodynamic process is repeated, quantities such
as heat, work, and entropy production might output different
random values. For that reason, it is natural to represent the
randomness of the entropy production in a time-dependent
probability distribution pt (�), where the subscript refers to
time, t ∈ [0,∞).

Depending on the class of systems, the distribution pt (�)
might display general properties. Of particular importance is
the strong detailed fluctuation theorem (DFT) [2,13], which is
a relation that constrains the asymmetry of pt (�),

pt (�)

pt (−�)
= e�, (1)

forcing positive values of entropy production to be more
likely to be observed. The strong DFT (1) arises, for in-
stance, in stochastic thermodynamics with driving protocols
that are symmetric under time reversal. In that case, the for-
ward and backward probabilities of observing a stochastic
trajectory � are the same [P(�) = PF (�) = PB(�)] and we
have �(�) := ln PF (�)/PB(�†) = ln[P(�)/P(�†)], where �†

is the inverse trajectory and we considered kB = 1. Defining
p(�) = ∫

P(�)δ(�(�) − �)d�, we obtain the relation (1). It
also appears as the Evan-Searles fluctuation theorem [14,15],
as the Gallavotti-Cohen relation [9], and in the exchange fluc-
tuation framework [16–24]. The most known consequence of
(1) is the integral fluctuation theorem 〈e−�〉t = 1, which re-
sults in the second law of thermodynamics, 〈�〉t � 0 for all t ,
from Jensen’s inequality, where 〈 f (�)〉t := ∑

i f (�i)pt (�i).
Understanding how the distribution pt (�) and the average

entropy production 〈�〉t change over time is important, for
instance, for devising optimal thermal machines that operate
in finite time. In this context, the Fisher information with
respect to time plays a relevant role,

I (t ) :=
〈(

∂

∂t
ln pt (�)

)2〉
t

, (2)

as it was recently used in stochastic thermodynamics as
the intrinsic speed of the system [25–27], in the context of
thermodynamic length [28], and in connection with the ther-
modynamic uncertainty relation [29,30]. The authors in [25]
noted that the rate of change of the average of any observable
is bounded from above by its variance and the temporal Fisher
information, evoking the famous Cramér-Rao (CR) bound
[31] from estimation theory. Here we are interested in the
entropy production as the stochastic quantity, for which the
Cramér-Rao bound reads

d〈�〉
dt

� σ�

√
I (t ), (3)

where 〈�〉 := 〈�〉t and σ� :=
√

〈�2〉t − 〈�〉2
t are both func-

tions of time. Finding upper bounds for the entropy production
rate such as (3) is a relevant topic in stochastic [32–34] and
quantum thermodynamics [35], as they are ultimately related
to speed limits [36–42].

In this paper we investigate how can the DFT (1) be
used to improve the Cramér-Rao upper bound (3) for the
entropy production rate. The idea is that, since (3) was de-
rived in the general setting of estimation theory, it might be
further improved for the entropy production rate d〈�〉/dt
in cases where pt (�) is constrained by the DFT (1). Such
improvement would have direct impact on the estimation of
the entropy production rate in physical systems arbitrarily far
from equilibrium.

We show that, in situations where the DFT (1) is valid, the
entropy production rate has an upper bound that improves the
CR bound,

d〈�〉
dt

� σh(�)

√
I (t ) � σ�

√
I (t ), (4)

which is our main result, where σh(�) :=
√

〈h(�)2〉 − 〈h(�)〉2

and h(�) := � tanh(�/2). As applications, we also show
how the bound acts as a good estimator for the entropy pro-
duction rate for the heat exchange problem mediated by a
bosonic mode with Lindblad’s dynamics in comparison with
the CR bound (3). We also show how the bound is saturated
for the same problem when mediated by a qubit. We argue that
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the behavior of the bound in those cases is not accidental: The
bound (4) is always saturated for a time-dependent maximal
distribution [43], which was originally derived as the distri-
bution that maximizes Shannon’s entropy for a given mean,
while satisfying the DFT (1). We show that the qubit case falls
in the maximal distribution family and the bosonic case is very
close to it.

II. FORMALISM

Let � ∈ S = {�1, �2, . . .} be a random variable with dis-
tribution pt (�) that depends on time t ∈ [0,∞) and satisfies
the DFT (1). Let φ(�) be any odd function

φ(−�) = −φ(�). (5)

The DFT imposes the following known property [17,19] on
the average of odd functions:

〈φ(�)〉t =
〈
φ(�) tanh

(
�

2

)〉
t

. (6)

The time derivative of (6) yields

d

dt
〈φ(�)〉t =

∑
i

φ(�i ) tanh

(
�i

2

)
∂

∂t
pt (�i ), (7)

which can be written as

d

dt
〈φ(�)〉t =

∑
i

√
pt (�i )

[
φ(�i ) tanh

(
�i

2

)
− c

]
ṗt (�i)√
pt (�i)

,

(8)

where c is any constant and ṗt (�i ) := ∂ pt (�i)/∂t . Now using
the Cauchy-Schwarz inequality, we obtain from (8)(

d

dt
〈φ(�)〉t

)2

�
〈[

φ(�i) tanh

(
�i

2

)
− c

]2
〉

t

I (t ), (9)

with the Fisher information I (t ) given by (2). Finally,
considering the special case φ(�) = � and setting c =
〈� tanh(�/2)〉t = 〈h(�)〉t , we obtain the first inequality
in (4), ∣∣∣∣d〈�〉

dt

∣∣∣∣ � σh(�)

√
I (t ). (10)

Note that we could write |d〈�〉/dt | = d〈�〉/dt by construc-
tion, since the DFT (and the second law 〈�〉t � 0) works for
all time t > 0. The second inequality in (4) follows from

tanh

(
�

2

)2

� 1 → h(�)2 � �2, (11)

which, upon taking the average of (11) over pt (�) and sub-
tracting 〈h(�)〉2, yields

〈h(�)2〉t − 〈h(�)〉2
t � 〈�2〉t − 〈�〉2

t , (12)

where we use 〈h(�)〉t = 〈�〉t from (6). Finally, we have, from
(12),

σh(�)

√
I (t ) � σ�

√
I (t ), (13)

which is the second inequality of our main result (4), showing
that it improves the CR bound. In the examples below, we start
with a dynamics that allows us to compute both d〈�〉/dt and

FIG. 1. Entropy production rate d〈�〉/dt (blue solid line) as
a function of time for the heat exchange problem mediated by a
bosonic mode (γ = 1, h̄ω/kBT1 = 1, and T2 = T1/2). The Cramér-
Rao bound σ�

√
I (t ) is depicted by a gray dashed line and σh(�)

√
I (t )

is shown by the black dotted line. In this case, the entropy production
rate is very close to the bound but does not saturate it.

pt (�) exactly. We check that pt (�) satisfies the DFT (1). Then
we use pt (�) to find σ� , σh(�), and I (t ). Finally, we show the
bounds (4) as a function of time in Figs. 1 and 2. Then we
discuss why the bound is a surprisingly good approximation
for d〈�〉/dt in both cases.

III. APPLICATION

A. Bosonic mode

We consider a bosonic mode with Hamiltonian H =
h̄ω(a†a + 1/2) weakly coupled to a thermal reservoir so that
the system satisfies a Lindblad equation [44–46]

∂tρ = −i

h̄
[H, ρ] + D(ρ) (14)

for the dissipator given by

D(ρ) = γ (n2 + 1)
[
aρa† − 1

2 {a†a, ρ}]
+ γ n2

[
a†ρa − 1

2 {aa†, ρ}], (15)

where γ is a constant, ni = [exp(h̄ω/kBTi ) − 1]−1, and βi =
1/kBTi, i ∈ {1, 2}. The system is prepared in thermal equilib-
rium with the first reservoir (temperature T1). At t = 0, an
energy measurement is performed, resulting in E0 = h̄ω(n0 +
1
2 ), n0 ∈ {0, 1, 2, . . .}. Then, for t > 0, the system is placed
in thermal equilibrium with a second reservoir (tempera-
ture T2) with dynamics (14). At a given t > 0, a second

FIG. 2. Entropy production rate d〈�〉/dt (blue solid line) as a
function of time for the heat exchange problem mediated by a qubit
(γ = 1, h̄ω/kBT1 = 1, and T2 = T1/2). The Cramér-Rao upper bound
σ�

√
I (t ) is depicted by a gray dashed line and σh(�)

√
I (t ) is shown

by the black dotted line. In this case, the entropy production rate
matches the upper bound. Actually, pt (�) is a particular case of the
maximal distribution, which always saturates the bound.

064118-2



IMPROVING THE CRAMÉR-RAO BOUND WITH THE … PHYSICAL REVIEW E 108, 064118 (2023)

measurement is performed, resulting in Et = h̄ω(nt + 1
2 ),

where nt ∈ {0, 1, 2, . . .}, where nt := tr(a†aρt ).
The time-dependent random variable � := −(β2 −

β1)(Et − E0) [18,24,47] is the entropy production in this
case. Intuitively, we could see the bosonic mode (system) in
equilibrium with the first reservoir, so the second reservoir
transfers �E to the first reservoir in the form of heat. This heat
exchange results in the entropy flux −β2�E in the second
reservoir and β1�E in the first reservoir, which results in a
total entropy flux 
 = −(β2 − β1)(Et − E0). The entropy
production is given by � = �Ssys + 
, but the system is
eventually in thermal equilibrium with the first reservoir
again (as in the initial state), which results in (�Ssys = 0) and
� = 
 = −(β2 − β1)(Et − E0).

For simplicity, let us consider h̄ω/kBT1 = 1 (hot) and T2 =
T1/2 < T1 (cold) such that �β h̄ω = 1. The average entropy
production (over all possible n0 and nt ) is given by

〈�〉t = (n1 − n2)(1 − e−γ t ) (16)

from the dynamics in (14) directly. The distribution pt (�) has
a closed form [45,46] that satisfies the DFT (1),

pt (�) = 1

A(λt )
exp

(
�

2
− λt

|�|
2

)
, (17)

with support � ∈ {±m}, m = 0, 1, 2, . . ., and the normal-
ization constant reads A(λt ) := [1 − exp(−1/2 − λt/2)]−1 +
[1 − exp(1/2 − λt/2)]−1 − 1, where λt > 1. This situation
corresponds to the heat exchange of �E from a cold (T2) to a
hot (T1) reservoir mediated by a bosonic mode, so the second
law 〈�〉t � 0 → 〈�E〉t � 0 tells us that the energy should
flow from the hot to the cold reservoir on average, as expected.
The value of λt is given implicitly by

(n1 − n2)(1 − e−γ t )

= e−1/2+λt /2

(e−1/2+λt /2 − 1)2
− e−1/2−λt /2

(e−1/2−λt /2 − 1)2
, (18)

where the right-hand side comes from the distribution (17) and
the left-hand side comes from (16). Using λt in (17), we calcu-
late the Fisher information using (2). The values σ� and σh(�)

are also given in terms of (17), using 〈�2〉t = ∑
i �

2
i pt (�i)

and 〈h(�i )2〉t = ∑
i h(�i )2 pt (�i ).

In Fig. 1 we plot the entropy production rate d〈�〉/dt from
(16) as a function of time for h̄ω/kBT1 = 1, T2 = T1/2 < T1,
and γ = 1. We also plot the Cramér-Rao upper bound (3)
and our result (4) for comparison, showing that the proposed
bound is actually a good approximation to the entropy pro-
duction rate when compared to the CR bound. In Sec. IV
we will provide some insight into the reason for such good
approximation.

B. Qubit

We consider the same measurement scheme as before, the
only difference being that the system mediating the heat ex-
change is a qubit with Hamiltonian H = h̄ωσ̂ †σ̂ , where σ̂ † =
|1〉〈0| and σ̂ = |0〉〈1|. The systems evolves with a Lindblad

dynamics (14) with dissipator

D2(ρ) = γ (1 − n2)
(
σ̂ ρσ̂ † − 1

2 {σ̂ †σ̂ , ρ})
+ γ n2

(
σ̂ †ρσ̂ − 1

2 {σ̂ σ̂ †, ρ}), (19)

where ni = 1/(1 + e−βω ) is the thermal occupation for this
case. As in the previous example, the qubit is prepared in
thermal equilibrium with the first reservoir T1 and at t = 0
the first energy measurement takes place (E0 = h̄ωn0, n0 ∈
{0, 1}); after that it is placed in thermal contact with the sec-
ond reservoir T2 for a time t > 0, modeled with the dynamics
(14), when a second measurement takes place (Et = h̄ωnt ,
nt ∈ {0, 1}). Using the same reasoning as before, the entropy
production is given by � = −h̄ω�β(nt − n0), where n0 and
nt are Bernoulli random variables. Again, for simplicity, let
us consider h̄ω/kBT1 = 1 (hot) and T2 = T1/2 < T1 (cold)
such that �β h̄ω = 1. The average entropy production over all
possible n0 and n1 yields, from the dynamics,

〈�〉t = (n1 − n2)(1 − e−γ t ), (20)

just as before (16), but now the occupation numbers ni have
different values, n1 = 1/(1 + e) and n2 = 1/(1 + e2). For
this setup, we have P(n0 = 1) = n1 and P(nt = 1|n0) = n2 +
(n0 − n2) exp(−γ t ). Considering all possibilities of n0 and nt

results in the distributions for pt (�),

pt (0) = 1 − (1 − e−γ t )(n1 + n2 − 2n1n2) (21)

for � = 0 and

pt (�) = (1 − pt (0))
e�/2

e1/2 + e−1/2
(22)

for � ∈ {±1}, which satisfy the DFT (1). Using the distri-
bution (22), we compute 〈�〉t = tanh( 1

2 )[1 − pt (0)], 〈�2〉t =
1 − pt (0), and 〈h(�)2〉t = tanh2( 1

2 )[1 − pt (0)], which allows
us to write σ� and σh(�) as functions of time. Finally, we
can use (22) and (21) to find the Fisher information (2) also
as a function of time. In this particular case, it yields I (t ) =
[∂ pt (0)/∂t]2/pt (0)[1 − pt (0)].

In Fig. 2, as in the previous example, we plot the entropy
production rate, also given by d〈�〉/dt = (n1 − n2)e−γ t , as a
function of time for h̄ω/kBT1 = 1, T2 = T1/2 < T1, and γ =
1. We also plot the Cramér-Rao bound (3) and our result (4).
In the case of the qubit, the upper bound is saturated while the
CR bound is not. This fact led us to investigate what would
be a sufficient condition for the saturation, as discussed in the
next section.

IV. DISCUSSION

We note that the bound (4) was verified in both applica-
tions, as expected from the DFT (1). However, the bound
also worked as a good estimator of the entropy production
rate in both cases, matching the exact value for the qubit.
Now we investigate the intuition behind it. First, we consider
the following a general distribution pt (�) of the exponential
family [25,28] that satisfies the DFT (1),

pt (�) = 1

Z (λt )
exp

(
�

2
− λt

2
f (�)

)
, (23)
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where f is even, f (�) = f (−�), and Z (λt ) := ∫
exp[�/2 −

(λt/2) f (�)] is a normalization constant. We also have
−∂ ln Z (λt )/∂λt = 1

2 〈 f (�)〉t and

d〈�〉
dt

= λ̇t

2
[〈�〉t 〈 f (�)〉t − 〈� f (�)〉t ]. (24)

Now using the property (6) in (24) for the odd functions
φ(�) = � and φ(�) = � f (�), we have 〈�〉t = 〈h(�)〉t and
〈� f (�)〉t = 〈h(�) f (�)〉t , which results in

d〈�〉
dt

= λ̇t

2
[〈h(�)〉t 〈 f (�)〉t − 〈h(�) f (�)〉t ]. (25)

The Fisher information (2) from (23) is given by

I (t ) = 〈[ f (�) − 〈 f (�)〉t ]
2〉t

λ̇t
2

4
= σ 2

f (�)
λ̇t

2

4
. (26)

Finally, using (25) and (26) in (10), we obtain, for λ̇t �= 0,

|〈h(�) f (�)〉t − 〈h(�)〉t 〈 f (�)〉t | � σh(�)σ f (�), (27)

which can be rearranged as

|rh(�), f (�)| := |covh(�), f (�)|
σh(�)σ f (�)

� 1. (28)

The left-hand side of (28) is the absolute value of the Pearson
correlation coefficient rh(�), f (�) between the random variables
h(�) and f (�). The saturation of the bound is thus obtained
for |rh(�), f (�)| = 1, resulting from the identity f (�) = h(�).
In this case, the probability density function (23) reads

pt (�) = 1

Z (λt )
exp

[
�

2
− λt

�

2
tanh

(
�

2

)]
, (29)

which is the maximal distribution [43], originally derived as
the distribution that maximizes Shannon’s entropy for a given
mean with the DFT (1) as a constraint.

Comparing the maximal distribution (29) with the qubit
example (22) shows that it is indeed a member of this family
(for a specific support � ∈ {−h̄ω�β, 0, h̄ω�β}). For that
reason, the entropy production rate actually matches the upper
bound in Fig. 2. Alternatively, the bosonic case (17) does not
saturate the bound in Fig. 1, but it is very close. Using the
notation in (23), the bosonic case has f (�) = |�| ≈ h(�),
which is a close approximation to the maximal distribution.
In general, for any given system in the exponential family,
the upper bound will serve as a good approximation whenever
|r f (�),h(�)| ≈ 1.

V. CONCLUSION

We used the DFT (1) improve the Cramér-Rao upper bound
for the entropy production rate. We checked the behavior of
the bound in the heat exchange problem mediated by two rel-
evant physical systems in the weak-coupling approximation:
a bosonic mode and a qubit. We found that the bound is very
close to the entropy production rate as a function of time for
the bosonic case and it saturates for the qubit. Finally, in a
more general setting, we showed that the bound is actually
saturated for a maximal distribution, which contains the qubit
example as a particular case and it approximates the bosonic
case. Due to the recent developments of the DFT outside
stochastic thermodynamics, especially in quantum correlated
systems [48], we believe this result will have an impact on
the understanding of the limiting behavior of open quantum
systems.
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