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Griffiths singularity in quasi-one-dimensional restricted ±J Ising spin glass
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We obtain the exact ground-state energy of the quasi-one-dimensional restricted ±J Ising spin glass in a
uniform magnetic field using the transfer matrix method. Magnetic field dependence allows us to derive the
magnetization as a function of concentration and magnetic field. It turns out that, in the limit of zero field,
the magnetization tends to a nonzero value with a singular dependence on the magnetic field. We derive the
explicit form of the singularity in thermodynamic quantities such as energy E � E0 + m0h + E1e−h0/h, which
is an essential singularity known as Griffiths singularity. We confirm our analytical results using the numerical
approach based on iterative equations for energy.
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I. INTRODUCTION

Spin glasses as the prototype of glassy systems are a
subject of interest for many disciplines in science. From the
fundamental point of view, the physics of these systems is
not fully understood. The question of spin glass being a new
magnetic phase of matter is somewhat open [1]. In addition
to their fundamental importance, spin glass concepts, ideas,
and mathematical tools were applied to problems in neural
networks, combinatorial optimization, biological evolution,
protein dynamics and folding, computer science, mathemat-
ics, and the social sciences [2–6].

Most of our theoretical knowledge on spin glasses is
based on the mean-field theory or infinite-range Sherrington-
Kirkpatrick model [7], whose thermodynamic behavior is
identical to the short-range model in infinite dimensions. The
theory of the short-range model in finite dimensions relies
mainly on numerical simulations except in one dimension,
where analytical proof exists. The current consensus is that
there is no transition in dimensions less than 3 at a finite
temperature. There is, however, evidence of true long-range
spin glass order at zero temperature in two dimensions [8–11].

Therefore, the exact analytical results in low-dimensional
systems can be helpful in understanding the physics of the
spin glass phase, especially the one-dimensional and quasi-
one-dimensional models, which are feasible for analytical
treatment. The ground-state energy and magnetization of a
linear chain with ±J [12–14] and continuous [15,16] distribu-
tion of couplings in the presence of a uniform magnetic field
have been investigated. For a linear chain, the magnetization
vanishes at the zero-field limit with a power-law dependence
on the magnetic field for both discrete and continuous cou-
pling distribution. For strips of a few coupled chains, it is
also possible to calculate the ground-state energy analytically.
Three coupled chains with a periodic boundary condition in
the transverse direction and ±J distribution have been inves-
tigated by Derrida et al. [13]. The linear triangular chain has
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been discussed in Refs. [17,18]. The method of Ref. [13] is
generalized to calculate the ground-state energy of strips with
larger widths in Ref. [19].

To obtain the magnetization, one needs the dependence of
the energy on the magnetic field. Including the magnetic field
makes the problem more complicated. For the cases in which
the enumeration of the spin configurations is possible, the
inclusion of the magnetic field can be done more easily. One
such example, which is investigated in Ref. [20], is the Ising
ladder with randomness only in transverse links with certain
constraints on couplings. But in general, the enumeration of
clusters that flip by increasing the magnetic field is not a
simple problem. The transfer matrix method [13] is suitable
as it allows the calculations without enumeration of spin con-
figurations. This method is implemented numerically, and the
magnetic field dependence of energy and magnetization has
been investigated for strips of various widths by one of the
authors and a collaborator [21].

In this paper, we study a simplified version of ±J Ising
spin glass on a ladder structure in the presence of a magnetic
field. We use the transfer matrix method to obtain the exact
analytical expression for zero-temperature energy and mag-
netization. In contrast with the continuous distribution [21],
where the magnetization tends to zero in zero field, in this
case we find nonzero magnetization with essential singularity
in the magnetic field dependence in the zero-field limit. This
kind of singularity was first discovered by Griffiths [22] in
diluted ferromagnets. Other studies suggest that such a singu-
larity exists also in spin glasses [23,24].

II. MODEL AND TRANSFER MATRIX FORMALISM

The Hamiltonian of the ±J Ising spin glass on the ladder
in a uniform magnetic field is given by

H = −
L−1∑
i=1

(
Jh

i,1σi,1σi+1,1 + Jh
i,2σi,2σi+1,2

+ Jv
i σi,1σi,2

) − h
L∑

i=1

(σi,1 + σi,2), (1)
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FIG. 1. (a) The Ising ladder with random ±J interactions. The
wavy lines indicate antiferromagnetic interactions (−J). Unit cells
with (b) all ferromagnetic couplings and (c) antiferromagnetic
couplings.

where σi j = ±1, couplings Jh, Jv take ±J randomly, and h
is a uniform magnetic field. As is well-known, the partition
function of this quasi-one-dimensional (quasi-1D) system can
be expressed in terms of the trace of the product of the transfer
matrices Z = Tr(ML ), where ML = ∏L−1

i=1 Mi, and L is the
length of the ladder. By increasing the length by one unit,
three couplings will be added to the ladder. There are 23 = 8
possibilities for these three couplings, and each of them can
be represented by a transfer matrix Mi. Therefore, there will
be eight matrices, and the total transfer matrix of the ladder
will be a product of a random sequence of these matrices.

To make this model tractable, we simplify it by keeping
only two of the matrices, one with probability x and the other
with probability 1 − x. We call the resulting model restricted
±J Ising spin glass. The schematic diagram of the system is
shown in Fig. 1(a), which is composed of two units shown
in Figs. 1(b) and 1(c). The corresponding transfer matrices of
these units are given by

M1 =

⎛
⎜⎜⎜⎜⎝

z3+2α z1+2α z1+2α z−1+2α

z−1 z z−3 z−1

z−1 z−3 z z−1

z−1−2α z1−2α z1−2α z3−2α

⎞
⎟⎟⎟⎟⎠,

M2 =

⎛
⎜⎜⎜⎜⎝

z−3+2α z−1+2α z−1+2α z1+2α

z z−1 z3 z

z z3 z−1 z

z1−2α z−1−2α z−1−2α z−3−2α

⎞
⎟⎟⎟⎟⎠, (2)

where z = exp(βJ ) and α = h/J .
In selecting two matrices, we have made a point to preserve

the main ingredients of the original model. As the resulting
model contains a finite concentration of frustrated plaquettes,

and the enumeration of the overturned spins is not simple even
for the zero magnetic field, we expect to capture the physics
of the ±J spin glass.

Since these matrices have positive elements, the trace in the
partition function can be replaced with any element of ML

[13]. By considering the evolution of each element of ML

under successive matrix products

ML+1 = MLML, (3)

the free energy per spin can be obtained directly.

III. ZERO-TEMPERATURE LIMIT

At the low-temperature limit, z → ∞, we can keep only
the leading term in z for each element of ML under successive
matrix products. The leading terms in the first row of ML and
ML+1 can be considered as [13]

ML �

⎛
⎜⎜⎜⎜⎜⎜⎝

y1za y2zb y3zc y4zd

. . .
...

. . .
...

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

,

ML+1 �

⎛
⎜⎜⎜⎜⎜⎜⎝

Y1zA Y2zB Y3zC Y4zD

. . .
...

. . .
...

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

Using Eq. (3), one can obtain A, B,C, D knowing a, b, c, d
and ML. The equations of evolution of these exponents are
given in Appendix A. The free energy can be expressed in
terms of these exponents and their probabilities. It turns out
that b and c remain equal along the ladder because the second
and third columns of the transfer matrices M1 and M2 have
the same set of values. Therefore, b and c remain equal as we
multiply ML with any of the transfer matrices M1 and M2.
Also, we can see that −2 � a − b � 2 and −4 � a − d � 4.
Using the equations given in Appendix A, by multiplication of
M1, A − B always remains less than 2, and by multiplication
of M2, it will remain bigger than −2. For example, in Eq. (A1)
we can see that A − B = 2 or in the third set Eq. (A3) we have
A − B = a − d + 2 + 4α and using −4 � a − d � −4α we
have A − B � 2, and so on. Similarly, it can be shown that
A − D � 4 for M1 and A − D � −4 for M2.

The number of possible values of the exponents depends
on α and can be very large, which makes the calculation
tedious. To reduce the number of values of the exponents,
for α < 1, we assume α = 1/n, where n only takes positive
integer values. To obtain the possible values of the exponents,
we start with an arbitrary set of values, and then by iteration of
equations of evolution (Appendix A), we find a closed set of
values. For α = 1

n , n = 2, 3, . . . we have the following values
for (a − b, a − d ):

(2αn, 2αi), 0 � i � 2n → pi,

( − 2α, 2α(i − 2)), 0 � i � n − 1 → qi,
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(2α(n − i),−2αi), 0 � i � n − 1 → ri,

( − 2α(i + 1),−2α(i + 2)), 0 � i � n − 1 → si,

(2α, 0), → t1,

(2α, 4α), → t2,

(−2,−4α), → t3,

(−2, 0), → t4. (5)

The corresponding probabilities for each set of values are
indicated in front of them.

Similarly, for 1 < α < 2 we obtain the possible values for
(a − b, a − d ),

(2, 4) → u1,

(−2,−4) → u2,

(−2, 2 − 2α) → u3,

(2,−4 + 4α) → u4. (6)

For 2 < α < 3, the possible values for (a − b, a − d ) are

(2, 4) → v1,

(−2,−4) → v2,

(−2, 2 − 2α) → v3. (7)

Finally, for α > 3 we obtain

(a − b, a − d ) =
{

(2, 4) → w1,

(−2,−4) → w2.
(8)

In the next section, we will derive the relations between prob-
abilities and their solutions.

IV. INVARIANT MEASURE

For a long sequence of matrices, the probabilities of occur-
rence of different values of the exponents become stationary.
According to the rules of evolution, presented in Appendix A,
for α < 1 the probabilities satisfy the following set of equa-
tions:

p0 = r0,

p1 = (1 − x)(r1 + q1),

p2 = (1 − x)(p0 + q2 + t1),

p4 = (1 − x)(p2 + q4 + t2),

pi = (1 − x)(pi−2 + qi ), 4 < i < n, (9)

pi = (1 − x)pi−2, n � i < 2n, (10)

p2n = (1 − x)(p2n−2 + p2n−1 + p2n),

qi = xri, 0 � i � n − 1, (11)

ri = (1 − x)(ri+2 + si ), 0 < i < n − 2, (12)

rn−1 = (1 − x)sn−1,

rn−2 = (1 − x)sn−2,

s0 = xr0,

si = xpi, 0 < i < n − 1, (13)

sn−1 = x
2n∑

i=n−1

pi,

t1 = (1 − x)t3,

t2 = (1 − x)t4,

t3 = x(t1 + t2),

t4 = x

(
n−1∑
i=1

si +
n−1∑
i=0

qi + t3 + t4

)
.

This set of equations allows the following closed solution:

pi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1λ
i
1 + c2λ

i
2, 0 < even i < n,

c3λ
i
1 + c4λ

i
2, 0 < odd i < n,

c5λ
i
3, n � even i < 2n,

c6λ
i
3, n � odd i < 2n,

ri =
{

c7λ
i
1 + c8λ

i
2, 0 < even i < n,

c9λ
i
1 + c10λ

i
2, 0 < odd i < n,

qi = xri,

si = xpi,

t1 = x3(1 − x)2

1 − x + x2
,

t2 = x2(1 − x),

t3 = x3(1 − x)

1 − x + x2
,

t4 = x2, (14)

where

λ1 = 1√
1 − x

(
1 − x + x3 − 1

2
x4

− 1

2
x

3
2

√
8 − 12x + 4x2 + 4x3 − 4x4 + x5

) 1
2

,

λ2 = 1√
1 − x

(
1 − x + x3 − 1

2
x4

+ 1

2
x

3
2

√
8 − 12x + 4x2 + 4x3 − 4x4 + x5

) 1
2

,

λ3 = √
1 − x.

λ1 and λ2 are the roots of the characteristic equation

((1 − x) − λ2)((1 − x)λ2 − 1) − x2(1 − x)2λ2 = 0, (15)

and λ3 is the root of

λ2 = 1 − x. (16)
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Equation (15) is obtained by replacing qi from Eq. (11)
in Eq. (9) and si from Eq. (13) in Eq. (12) and then using
the ansatz pi ∝ λi and ri ∝ λi and setting the determinant of
the coefficients of the resulting equations equal to zero. Equa-
tion (16) is obtained from Eq. (10) using the ansatz pi ∝ λi.
Since the even and odd indices are separated in Eqs. (14), the
roots with the negative signs will give the same solution.

The coefficients c1, . . . , c10 should be determined in terms
of x and n. Substituting the above solution in the correspond-
ing equations, we obtain a set of equations for ci’s which are
given in Appendix B.

For other ranges of α, the equations and their solutions are
as follows. For 1 < α < 2,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = (1 − x)(u1 + u3 + u4),

u2 = x(u1 + u4),

u3 = x(u2 + u3),

u4 = (1 − x)u2,

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = (1 − x)(1 − x + x2),

u2 = x(1 − x),

u3 = x2,

u4 = x(1 − x)2.

(17)

For 2 < α < 3,⎧⎪⎪⎨
⎪⎪⎩

v1 = (1 − x)(v1 + v2 + v3),

v2 = xv1,

v3 = x(v2 + v3),

⇒

⎧⎪⎪⎨
⎪⎪⎩

v1 = (1 − x),

v2 = x(1 − x),

v3 = x2.

(18)

For α > 3,{
w1 = (1 − x)(w1 + w2),

w2 = x(w1 + w2),
⇒

{
w1 = 1 − x,

w2 = x.
(19)

V. GROUND-STATE ENERGY AND MAGNETIZATION

Now the ground-state energy can be calculated via [13]

E/J = − 1
2 lim

L→∞
〈a〉L/L = − 1

2 lim
L→∞

(〈a〉L+1 − 〈a〉L ),

= − 1
2 lim

L→∞
〈aL+1 − aL〉, (20)

and differentiating energy with respect to the field gives
magnetization m = −∂E/∂h = −∂ (E/J )/∂α. The factor 1

2 is
included to make the energy per spin.

The infinite length limit in Eq. (20) can be replaced with an
average with respect to the stationary solution for probabilities
given in Eqs. (6), (7), (8), and (14). For α < 1, using the
equations in Appendix A, we need to calculate the average
of aL+1 − aL = A − a. We should sum up different values
of A − a multiplied with corresponding probabilities. For in-
stance, in the first set of equations (with probability 1 − x) we
can see that A − a = 3 + 2α in all cases. Therefore, from the

first set we only get the contribution (3 + 2α)(1 − x). Includ-
ing the contributions from the second set (with probability x),
we obtain

E/J = −1

2
(3 + 2α)(1 − x) − 1

2
x

[
2n∑

i=n−1

(−2αn + 1)pi

+
n−2∑
i=0

[−2α(i + 1) + 1]pi +
n−1∑
i=1

[2α(i − 1) + 1]ri

+
n−1∑
i=0

[2α(i + 1) + 1]si +
n−1∑
i=1

(2α + 1)qi

+ (1 − 2α)(t1 + t2) + 3(t3 + t4)

]
. (21)

For 1 < α < 3, using Eqs. (6), (7), (17), and (18),

E/J = − 1
2 [3(2x2 − 2x + 1) + 2α(1 − x2)], (22)

and then by differentiating with respect to α, the magnetiza-
tion is

m = 1 − x2. (23)

For α > 3, using Eqs. (8) and (19), the energy is

E/J = − 1
2 [(3 + 2α)(1 − x) + (−3 + 2α)x], (24)

and then by differentiating Eq. (24) with respect to α, one
finds that the magnetization is saturated (m = 1), as expected.

VI. NUMERICAL CALCULATIONS

To confirm our analytical results, we repeat the calculations
using a numerical method. We use the iterative approach,
which is applied to the quasi-one-dimensional random Ising
model and is based on the following set of coupled equations
[21]:

Eμ

l = min
ν

⎧⎨
⎩E ν

l−1 −
∑

j

Jh
l−1, jσ

ν
l−1, jσ

μ

l, j

⎫⎬
⎭

−
∑

j

Jv
l jσ

μ

l, jσ
μ

l, j+1 − h
∑

j

σ
μ

l, j, (25)

where Eμ

l s are the ground-state energies of the strip of length
l for a given configuration, μ, of spins in the last column.

VII. RESULTS AND DISCUSSION

The ground-state energy per spin as a function of the
concentration of antiferromagnetic bonds for different values
of the uniform magnetic field is shown in Fig. 2. For zero
magnetic field (α → 0), the curve is symmetric [19] under the
exchange of x and (1 − x), and it has a maximum at x = 1

2 .
The minimum energy corresponds to x = 0 and 1 because
there is no frustration in these cases. By applying a magnetic
field, this symmetry breaks. At x = 1 the magnetic field does
not split the energy because all bonds are antiferromagnetic
and magnetization is zero for small magnetic fields, therefore
the energy does not change by increasing the magnetic field
up to a threshold value. In the presence of the magnetic field,

064117-4



GRIFFITHS SINGULARITY IN … PHYSICAL REVIEW E 108, 064117 (2023)
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J

FIG. 2. Ground-state energy per spin as a function of the concen-
tration for different values of magnetic field (α = h/J).

the minimum energy corresponds to the ferromagnetic ladder
(x = 0), and the concentration with maximum energy shifts to
higher values of x.

In Fig. 3 we have plotted the magnetization as a function
of the concentration of antiferromagnetic bonds. At small
magnetic fields, magnetization has a nonmonotonic depen-
dence on concentration and exhibits a local minimum, but at
higher magnetic fields the behavior is different and the min-
imum disappears. Magnetization tends to zero by increasing
the concentration of antiferromagnetic bonds due to antifer-
romagnetic order at higher values of x. It is interesting to
compare Fig. 3 with the same result for the single chain
(Fig. 1 of Ref. [13]). We see that nonmonotonic behavior is
peculiar to the ladder. To see whether the nonmonotonicity
persists by changing the randomness or not, we calculated the
magnetization with all eight matrices, and it turns out that it
disappears at least for the magnetic field of the order h ∼ 0.01.

Figure 4 shows the numerical results for magnetization as
a function of the magnetic field for different values of the
concentration. The steplike behavior is observed as in the
single chain, although the jumps occur at different sets of
magnetic fields. However, the magnetization behaves differ-
ently in the zero magnetic field limit as it tends to a nonzero

α=0.02

α=0.05

α=0.1

0.5<α<1

1<α<3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

m

FIG. 3. Magnetization per spin as a function of the concentration
for different values of magnetic field (α = h/J).

x=0.3

x=0.5

x=0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

h

m

FIG. 4. Numerical results for magnetization as a function of the
magnetic field for different values of concentration.

value depending on the concentration. We have plotted the
analytical result for small magnetic fields in Fig. 5. It can
be seen that the limiting values for h → 0 agree in Figs. 4
and 5. The precise functional form of magnetization in the
zero-field limit can be revealed using our analytical result. As
we explained in Sec. IV, we obtain the probabilities in terms
of x and n. Then we insert them in Eq. (20), and by doing the
summations and keeping the leading terms as n → ∞, we find
that the energy has an essential singularity known as Griffiths
singularity,

E � E0 + m0h + E1e−h0/h, h → 0, (26)

from which we obtain

m � m0 + m1
e−h0/h

h2
, h → 0, (27)

where m1 = E1h0, and m0 is the zero-field magnetization.
Similar singularity is known to exist in a diluted Ising
ferromagnet [25,26] and the higher-dimensional random tem-
perature Ginzburg-Landau Hamiltonian [27]. The existence of
the Griffiths phase in the spin glass is also suggested by study-
ing the dynamics [23] and distribution of Lee-Yang zeros in
equilibrium [24]. It is argued in Refs. [23,24] that a common

x=0.3

x=0.5

x=0.8

0.02 0.04 0.06 0.08 0.10
0.0

0.1

0.2

0.3

0.4

h

m

FIG. 5. Magnetization as a function of the magnetic field for
different values of concentration.
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0.0 0.2 0.4 0.6 0.8 1.0
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0.8

1.0
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m

FIG. 6. Magnetization as a function of the concentration for α =
0.05. The solid curve is the analytical result, and circles show the
numerical result.

physics underlies the singularity as in the diluted ferromag-
nets, namely the large-sized connected clusters, although the
connected clusters are not trivially defined in the spin glass.
We believe the singularity that we have found here has the
same cause. In our case, the magnetic field dependence of the
magnetization is governed by the large ferromagnetic clusters
that occur with an exponentially small probability. Our model
allows an estimation of this effect as follows. The probability
of the ferromagnetic cluster of length � is of order (1 − x)�.
Such a cluster will flip when the magnetic field is such that
�h ∼ J so the change in magnetization will be proportional to
(1 − x)J/h. This is, of course, a crude estimate that only shows
how the essential singularity arises, but our result in Eq. (27)
shows the true nature of the singularity.

For a comparison of analytical results with the results of
numerical computations, we have plotted magnetization as a
function of concentration in Fig. 6.

In conclusion, we presented analytical results on the zero-
temperature properties of the restricted ±J Ising spin glass
ladder in the presence of a uniform magnetic field. We found
that, in contrast to the single chain model, magnetization of
the frustrated ladder tends to a nonzero value by decreasing
the magnetic field. Another notable feature of magnetization
of the ladder is that depending on the randomness and mag-
netic field, the magnetization can be a nonmonotonic function
of concentration. We also found that thermodynamic quan-
tities are not analytic functions of magnetic field as h → 0,
which is known as Griffiths singularity. We derived the ex-
plicit functional form of the singularity. The accuracy of the
analytical results was demonstrated by performing numerical
calculations.

As we mentioned earlier, we expect to see similar be-
havior in the original ±J model because of the following
argument. The singularity results from certain large sequences
of matrices in the ladder. Adding other matrices in the ladder
does not eliminate those sequences. They can still occur, but
with different probability. Therefore, we expect the singularity
to be generated by those sequences, although with different
strength. The other feature of the magnetization is its zero-
field limit, m0. We expect that this also remains nonzero in

the case of the original eight-matrix model because there will
be a finite concentration of frustrated plaquettes, therefore the
ground state will be degenerate and a small magnetic field in-
duces a finite magnetization. We support this prediction with a
numerical calculation of the magnetization of the eight-matrix
model, which shows the same features that we obtained in the
two-matrix model.

Our solution paves the way to studying the models with
more realistic disorders and higher widths, and it can also be
used to study the accuracy of optimization algorithms to find
the spin glass ground state.

ACKNOWLEDGMENTS

We would like to acknowledge financial support from the
research council of University of Tehran. This work is based
upon research funded by Iran National Science Foundation
(INSF) under Project No. 4005950.

APPENDIX A

In this Appendix, we derive the equations of evolution for
the exponents of the two-matrix model with M1 and M2, given
in Eq. (2), with probabilities 1 − x and x, respectively, and
magnetic fields α = 1/n for n = 2, 3, . . . (α = h/J).

By keeping the leading term in the elements of the first row
of ML after being multiplied by one of the matrices, using
Eqs. (3) and (4), the new exponents can be expressed in terms
of the old ones as follows. After being multiplied by M1,

A = max(a + 3 + 2α; b − 1; c − 1; d − 1 − 2α),

B = max(a + 1 + 2α; b + 1; c − 3; d + 1 − 2α),

C = max(a + 1 + 2α; b − 3; c + 1; d + 1 − 2α),

D = max(a − 1 + 2α; b − 1; c − 1; d + 3 − 2α),

and after being multiplied by M2,

A = max(a − 3 + 2α; b + 1; c + 1; d + 1 − 2α),

B = max(a − 1 + 2α; b − 1; c + 3; d − 1 − 2α),

C = max(a − 1 + 2α; b + 3; c − 1; d − 1 − 2α),

D = max(a + 1 + 2α; b + 1; c + 1; d − 3 − 2α).

Then using b = c (as we explained in the text), we find with
probability (1 − x),

if

{−2α � a − b � 2

4 − 4α � a − d � 4
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = a + 3 + 2α

B = a + 1 + 2α

D = a − 1 + 2α

(A1)

if

{−2α � a − b � 2

−4α � a − d � 4 − 4α
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = a + 3 + 2α

B = a + 1 + 2α

D = d + 3 − 2α

(A2)

if

⎧⎨
⎩

−2α � a − b � 2

−4 � a − d � −4α
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = a + 3 + 2α

B = d + 1 − 2α

D = d + 3 − 2α

(A3)
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if

{−2 � a − b � −2α

4 − 4α � a − d � 4
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = a + 3 + 2α

B = b + 1

D = b − 1

(A4)

if

{−2 � a − b � −2α

−4α � a − d � 4 − 4α
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = a + 3 + 2α

B = b + 1

D = d + 3 − 2α

(A5)

if

⎧⎪⎪⎨
⎪⎪⎩

−2 � a − b � −2α

−4 � a − d � −4α

−2α � b − d � 2

⇒

⎧⎪⎪⎨
⎪⎪⎩

A = a + 3 + 2α

B = b + 1

D = d + 3 − 2α

(A6)

if

⎧⎪⎪⎨
⎪⎪⎩

−2 � a − b � −2α

−4 � a − d � −4α

−2 � b − d � −2α

⇒

⎧⎪⎪⎨
⎪⎪⎩

A = a + 3 + 2α

B = d + 1 − 2α

D = d + 3 − 2α

(A7)

and with probability x, we have

if

{−2α � a − b � 2

4 − 4α � a − d � 4
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = b + 1

B = b + 3

D = a + 1 + 2α

(A8)

if

⎧⎪⎪⎨
⎪⎪⎩

−2α � a − b � 2

−4α � a − d � 4 − 4α

−2α � b − d � 2

⇒

⎧⎪⎪⎨
⎪⎪⎩

A = b + 1

B = b + 3

D = a + 1 + 2α

(A9)

if

⎧⎪⎪⎨
⎪⎪⎩

−2α � a − b � 2

−4α � a − d � 4 − 4α

−2 � b − d � −2α

⇒

⎧⎪⎪⎨
⎪⎪⎩

A = d + 1 − 2α

B = b + 3

D = a + 1 + 2α

(A10)

if

{−2α � a − b � 2

−4 � a − d � −4α
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = d + 1 − 2α

B = b + 3

D = a + 1 + 2α

(A11)

if

{−2 � a − b � −2α

−4α � a − d � 4
⇒

⎧⎪⎪⎨
⎪⎪⎩

A = b + 1

B = b + 3

D = b + 1

(A12)

if

⎧⎪⎪⎨
⎪⎪⎩

−2 � a − b � −2α

−4 � a − d � −4α

−2α � b − d � 2

⇒

⎧⎪⎪⎨
⎪⎪⎩

A = b + 1

B = b + 3

D = b + 1

(A13)

if

⎧⎪⎪⎨
⎪⎪⎩

−2 � a − b � −2α

−4 � a − d � −4α

−2 � b − d � −2α

⇒

⎧⎪⎪⎨
⎪⎪⎩

A = d + 1 − 2α

B = b + 3

D = b + 1

(A14)

APPENDIX B

In this Appendix, we shall give the equations for coeffi-
cients c1, . . . , c10,

c1 = x(1 − x)λ2
1

λ2
1 − (1 − x)

c7, (B1)

c2 = x(1 − x)λ2
2

λ2
2 − (1 − x)

c8, (B2)

c3 = x(1 − x)λ2
1

λ2
1 − (1 − x)

c9, (B3)

c4 = x(1 − x)λ2
2

λ2
2 − (1 − x)

c10, (B4)

c5 =
⎧⎨
⎩

(
λ1
λ3

)n−2
c1 + (

λ2
λ3

)n−2
c2, even n,(

λ1
λ3

)n−1
c1 + (

λ2
λ3

)n−1
c2, odd n

(B5)

c6 =
⎧⎨
⎩

(
λ1
λ3

)n−1
c3 + (

λ2
λ3

)n−1
c4, even n,(

λ1
λ3

)n−2
c3 + (

λ2
λ3

)n−2
c4, odd n.

(B6)

For even n,

c1 =
(

λ2

λ1

)n−4( (1 − x) − λ2
2[1 − x2(1 − x)2]

[1 − x2(1 − x)2]λ2
1 − (1 − x)

)
c2. (B7)

For odd n,

c3 =
(

λ2

λ1

)n−4( (1 − x) − λ2
2[1 − x2(1 − x)2]

[1 − x2(1 − x)2]λ2
1 − (1 − x)

)
c4, (B8)

c3λ1 + c4λ2 = (1 − x2)(c9λ1 + c10λ2). (B9)

For even n,

c9λ
n−1
1 + c10λ

n−1
2 = x(1 − x)

⎛
⎝c5

n−2∑
k= n

2

λ2k
3 + c6

n−1∑
k= n

2

λ2k−1
3

⎞
⎠

+ (1 − x)
(
c5λ

2n−2
3 + c6λ

2n−1
3

)
. (B10)

For odd n,

c7λ
n−1
1 + c8λ

n−1
2 = x(1 − x)

⎛
⎜⎝c5

n−2∑
k= n−1

2

λ2k
3 + c6

n−1∑
k= n+1

2

λ2k−1
3

⎞
⎟⎠

+ (1 − x)
(
c5λ

2n−2
3 + c6λ

2n−1
3

)
. (B11)

Normalization of the probabilities,

2n∑
i=1

pi +
n−1∑
i=0

(qi + ri ) +
n−1∑
i=1

si + t1 + t2 + t3 + t4 = 1,

(B12)
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gives, for even n,

n
2 −1∑
k=2

(
λ2k

1 c1 + λ2k
2 c2 + λ2k−1

1 c3
)

+ c4

n
2 −1∑
k=2

λ2k−1
2 + c5

n−2∑
k= n

2

λ2k
3 + c6

n−1∑
k= n

2

λ2k−1
3

+ λ2n−2
3

x
(c5 + λ3c6) +

(
2 − x

(1 − x)2
−x2 + x

)(
c1λ

4
1 + c2λ

4
2

)

+
n
2 −1∑
k=2

(
λ2k

1 c7 + λ2k
2 c8

) +
n
2∑

k=2

(
λ2k−1

1 c9 + λ2k−1
2 c10

)

+
(

x

(x − 1)
+ (1 − x)2(1 − x2) − x

)(
c7λ

4
1 + c8λ

4
2

)

+
(

(2 − x2)(1 − x)

1 − x(1 − x)(1 − x2)

)(
c9λ

3
1 + c10λ

3
2

)

−
(

1 + x(1 − x) + 1

(1 − x)
+ x2(1 − x)

)
x2(1 − x)

− x3(1 − x)2

1 − x + x2
= (1 − x)2

1 − x + x2
, (B13)

and for odd n,
n−3

2∑
k=2

(
λ2k

1 c1 + λ2k
2 c2

) +
n−1

2∑
k=2

(
λ2k−1

1 c3 + λ2k−1
2 c4

)

+ c5

n−2∑
k= n−1

2

λ2k
3 + c6

n−1∑
k= n+1

2

λ2k−1
3 + 1

x
c5λ

2n−2
3

+ 1

x
c6λ

2n−1
3 +

(
1

(1 − x)2
+ 1

(1 − x)
−x2 + x

)(
c1λ

4
1+c2λ

4
2

)

+
n−1

2∑
k=2

(
λ2k

1 c7 + λ2k
2 c8 + λ2k−1

1 c9 + λ2k−1
2 c10

)

+
(

x

(x − 1)
+ (1 − x)2(1 − x2) − x

)(
c7λ

4
1 + c8λ

4
2

)

+
(

(2 − x2)(1 − x)

1 − x(1 − x)(1 − x2)

)(
c9λ

3
1 + c10λ

3
2

)

−
(

1 + x(1 − x) + 1

(1 − x)
+ x2(1 − x)

)
x2(1 − x)

− x3(1 − x)2

1 − x + x2
= (1 − x)2

1 − x + x2
. (B14)
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