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Exclusion processes on a roundabout traffic model with constrained resources
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Motivated by the vehicular traffic phenomenon at roundabouts, we examine how the limited availability of
resources affects the movement of two distinct types of particles on bidirectional lanes connected by two bridges,
with each bridge specifically designated for the transportation of one species. To provide a theoretical ground for
our findings, we employ a mean-field framework and successfully validate them through dynamic Monte Carlo
simulations. Based on the theoretical analysis, we analytically derive various stationary properties, such as the
particle densities, phase boundaries, and particle currents, for all the possible symmetric as well as asymmetric
phases. The qualitative as well as quantitative behavior of the system is significantly affected by the constraint
on the number of resources. The complexity of the phase diagram shows a nonmonotonic behavior with an
increasing number of particles in the system. Analytical arguments enable the identification of several critical
values for the total number of particles, leading to a qualitative change in the phase diagrams. The interplay
of the finite resources and the bidirectional transport yields unanticipated and unusual features such as back-
and-forth transition, the presence of two congested phases where particle movement is halted, as well as shock
phases induced by boundaries and the bulk of the system. Also, it is found that spontaneous symmetry-breaking
phenomena are induced even for very few particles in the system. Moreover, we thoroughly examine the location
of shocks by varying the parameters controlling the system’s boundaries, providing insights into possible phase
transitions.
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I. INTRODUCTION

Traffic problem poses a pervasive challenge in urban areas
across the globe, resulting in noteworthy economic, environ-
mental, and social consequences [1]. The central emphasis of
numerous researchers lies in strategizing, designing, and ex-
ecuting transportation networks and traffic control systems to
promote the seamless and effective movement of transporta-
tion and services. Statistical physicists have made valuable
contributions to the field of traffic science by creating traffic
models and deriving overarching insights about the funda-
mental principles that govern traffic phenomena. One of the
simplest nonequilibrium models that is often employed to
study traffic flow and congestion is the totally asymmetric
simple exclusion process (TASEP) [2–6]. This model provides
insights into the collective behavior of particles, analogous to
vehicles in traffic, and can help in understanding and devel-
oping strategies to mitigate traffic congestion. TASEPs have
proven to be effective in studying the dynamics of various
processes, including biopolymerization kinetics [7], protein
synthesis [8–10], molecular transport through nanopores and
channels [11], the movement of motor proteins along cy-
toskeleton filaments [12,13], and the analysis of car traffic
processes [14,15], etc. Incorporating suitable boundary con-
ditions, the model exhibits the capability to elucidate various
counterintuitive phenomena such as shock formation, sponta-
neous symmetry breaking, phase separation, etc. [16–21].

*akgupta@iitrpr.ac.in

Over the past few decades, researchers have focused their
efforts on broadening the range of TASEP from its original
single-species particle models to more complex multispecies
bidirectional models, which showcase captivating occurrences
of spontaneous symmetry breaking (SSB) [16,22]. Bidirec-
tional transport phenomena have been observed at almost all
levels, ranging from man-made structures such as vehicular
motion on road networks [14] or pedestrian movement [23],
to natural structures such as movement of dynein and ki-
nesin motors along microtubule [24]. Spontaneous symmetry
breaking refers to a phenomenon where a system initially
exhibiting symmetrical conditions undergoes a transition to
an asymmetric state without any external perturbations. The
bridge model stands out as the first model that exemplifies
spontaneous symmetry breaking in a bidirectional transport
system, despite being subject to symmetrical conditions for
both the particle species [25]. Numerous generalizations of
multispecies models have been developed including Langmuir
kinetics, restriction on the available resources, multiple lanes,
junctions, etc. [19,26–34]. Nevertheless, the exact nature of
this phenomenon and the mechanism underlying the transi-
tion to the symmetry-broken state remain topics of ongoing
discussion.

Networks play a vital role in the realm of traffic flow,
allowing for a deep understanding and effective management
of the complex interactions and dynamics among diverse
transportation components. The rising traffic demands have
led to a significant expansion in the construction of new roads
and the improvement of existing ones. An essential feature
of these road networks is the creation of numerous points

2470-0045/2023/108(6)/064116(19) 064116-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4958-9736
https://orcid.org/0000-0001-6671-6747
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.064116&domain=pdf&date_stamp=2023-12-08
https://doi.org/10.1103/PhysRevE.108.064116


ANKITA GUPTA AND ARVIND KUMAR GUPTA PHYSICAL REVIEW E 108, 064116 (2023)

where different roads meet and cross paths with one another.
In past decades, different topologies of networks have been
modelled and analyzed to enhance traffic flow optimization,
encompassing various aspects like movement at junctions,
roundabouts, shortcuts, crossroads, traffic circles, multiple
lanes, etc. [15,27,31,33,35–42]. A variant investigates the sta-
tionary behaviours of a one-dimensional lane inserted with a
double chain section in between [36,43–45]. In other words,
a single-lane road acts as a feeder segment for two diverging
branches that subsequently merge back into a single lane. In
this model, the unidirectional movement of particles is consid-
ered and the dynamics of the system are strongly characterized
by the entrance rate of particles to the first single lane and
the exit rate from the second single lane. The presence of
junctions in traffic flows enhances the efficient movement
of all the traffic participants. In biological systems, micro-
tubules form an intricate network within cells, serving as
structural elements and providing pathways for intracellular
transport. Motor proteins such as dynein and kinesin utilize
these filaments as a transportation route, traversing along
them bidirectionally and towing their cargo over substantial
distances. These large networks of microtubules constitute
of junctions leading to various diseases as a consequence of
motor protein crowding [46,47].

An extensive research has been conducted utilizing the
exclusion process to model network systems focusing on the
dynamics that assume either infinite resources or are uni-
directional [16,20,22,27,32,33,45]. However, many physical
and biological systems, such as protein synthesis, movement
of motor proteins, parking garage problems, and vehicular
traffic [48–50] involve competition for limited resources. As
a result, various variants have emerged, where the entrance
rate of the particles is regulated based on reservoir occu-
pancy [33,34,48,51,52], that leads to traffic jamlike situations
on lanes.

Given the significance of junctions and bidirectional flow
in various natural and man-made systems, we explore a
modified version of the double chain section model where
two distinct species of particles travel in opposite directions.
Simultaneously, a global constraint on the total number of
particles in the system is considered. Our aim is to explore the
novel phase transitions and nontrivial impact of the limited
particle resources on the phase plane. We exploit the idea of
defining effective entrance-exit rates through each lane and
the domain wall theory, to obtain explicit expressions for the
density profiles and determine the parameter range for which
we expect congestion and symmetry breaking. We analyze
how the choice of the boundary rates of the particles along
with the number of resources available, controls the dynam-
ics of the system. In addition, we present a comprehensive
analysis by considering suitable limiting cases to gain in-
sights into the steady-state behavior of the system. Precisely,
the dynamics of our system encourages us to answer the
following questions: (i) How does the number of available
particles regulate the overall dynamics of the system? (ii)
Does the mean-field framework possess sufficient competence
to analyze the stationary properties, such as phase diagrams
and potential phase transitions? (iii) How does the presence
of two bridges in the middle affect both the qualitative and
quantitative changes in the complexity of the phase diagram?

II. MODEL

To understand the bidirectional movement observed in var-
ious driven diffusive systems passing through roundabouts,
we present an open system that employs an exclusion process
(TASEP) and incorporates two distinct types of particles in
a constrained environment. Specifically, the setup comprises
of two distinct lanes, denoted as P and Q, which facilitate
the movement of particles in both directions. These lanes are
connected by bridges, namely B+ and B−, as clearly illus-
trated in Fig. 1. The two species of particle moving in opposite
directions are represented as (+) and (−). Lane P acts as an
input/output lane for the (+)/(−) species while lane Q acts
as an output/input lane for the (+)/(−) species. The bridge
lane B+ accommodates the (+) species, whereas B− caters
to the (−) species. Each lane is composed of fixed N sites
identified as i ∈ {1, 2, . . . , N} (Fig. 1). The sites i = 1 and
i = N describe the left and right boundary whereas the rest
N − 2 constitutes the bulk of each lane. The hard-core exclu-
sion principle is enforced to prevent more than one particle
from occupying a specific site at the same time, which mimics
the physical constraints of various transport systems. The sites
i = 1 of lane P and the site i = N of lane Q are connected
to a finite pool containing Np(t ) identical particles. The total
number of particles (Ntot) in the system remains constant and
does not vary at any given moment in time. Moreover, the pool
is considered large enough to accommodate all the particles
present in the system. The following transition rules govern
the behavior of the particles in each lane, which are also
described in Fig. 1.

(1) (+) particle: A positive particle is allowed to enter
from the pool to the lane P through the left boundary (i = 1)
with rate α∗, provided this site is empty, i.e., neither occupied
by (+) particle nor (−) particle. In the bulk, this particle
can jump at a unit rate to the adjacent site if the target site
is unoccupied. If a positive particle encounters a negative
particle on the adjacent site, then they swap their positions
with unit rate. As soon as this particle reaches the last site
(i = N ), it exits lane P to enter the first site of lane B+ with
the unit rate provided it is empty.

Then, a (+) particle continues its movement along the
bridge lane B+ from left to right following the hard-core
exclusion principle. On reaching the right boundary of lane
B+, it has a tendency to hop onto the first site of lane Q with
unit rate, provided the latter site is free from particles of both
kinds.

In lane Q, this particle jumps along the bulk to the neigh-
boring site if empty with unit rate. If the next site contains
a (−) particle, then the two species exchange their positions
with unit rate. A (+) particle finally escapes through the site
i = N of lane Q with the rate β to reenter the pool.

(2) (−) particle: A particle species of this kind follows
similar dynamic rules as that of positive species but in the
opposite direction, i.e., from right to left. However, here, the
bridge B− is utilized instead of B+.

It’s important to note that we have made the assumption
that the rates for both the forward hopping and the exchange
of positions are equal for the two different types of particles.
Moreover, all the lanes in the system are considered to be of
identical length.
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FIG. 1. Model depiction in a diagrammatic form. Arrows indicate transitions that are permitted. Prohibited transitions are indicated by red
crossed arrows. The two distinct species of particles progressing from left to right and right to left are represented by (+) and (−) symbols,
respectively.

The entrance rates for the particles of both kinds, denoted
by α∗, are controlled by the occupancy of the pool. For the
sake of simplicity, we have assumed these arrival rates to be
the same. To incorporate the effects of finite occupancy of the
pool, we define the effective entrance rate α∗ as

α∗(Np(t )) = α f (Np(t )), (1)

where α is the entry rate in case of limited resources and
f is a rate function controlling the entrance of the particles.
This function f (Np(t )) must satisfy three basic conditions:
(i) f (0) = 0, (ii) f (Np(t )) must be a monotonically increasing
function of Np(t ), and (iii) f (∞) = 1. The first condition is
self-evident and requires no elaboration. The second condition
can be explained as follows: An increase in the pool content
will result in greater flux of particles onto the lanes, so it is
reasonable to define f as an increasing function of Np(t ). The
third condition serves as a connection between the situations
of finite resources and an unlimited supply of particles. To
proceed further, we opt for the selection of f [51] as

f (Np) = Np/Ntot (2)

due to analytical amenability. When Np(t ) � Ntot, it indicates
a scarcity of supply of particles onto the lanes from the pool.
In case, Ntot → ∞, the situation of infinite particles is recov-
ered and thus Np(t ) ≈ Ntot implying that f (∞) = 1.

Now, the proposed model is characterized by α, β, N,

and Ntot which act as the controlling parameters for the
nonequilibrium steady-state properties. To reduce the number
of parameters under consideration, we define a filling factor μ

as μ = Ntot
4N which keeps track of the total number of particles

[Np(t ) + count of particles on all the lanes] in the system with
respect to the total number of sites in the system. Thus the
controlling parameters for the system reduce to entrance-exit
rates and the filling factor μ.

III. MASTER EQUATIONS AND MEAN-FIELD ANALYSIS

We characterize the occupancy status of each site for every
lane by the symbols τ+,i

j and τ−,i
j for the positive and the nega-

tive species, respectively. Here, i ∈ {1, 2, . . . , N} indicates the

site number and j ∈ {P, B±, Q} represents the corresponding
lane. The governing densities of the bulk sites (1 < i < N )
for the bidirectional lanes ( j = P, Q) employing the master
equations can be described as follows:

d
〈
τ+,i

j

〉
dt

= 〈τ+,i−1
j

(
1 − τ+,i

j − τ−,i
j

)〉+ 〈τ+,i−1
j τ−,i

j

〉
− 〈τ+,i

j

(
1 − τ+,i+1

j − τ−,i+1
j

)〉− 〈τ+,i
j τ−,i+1

j

〉
,

d
〈
τ−,i

j

〉
dt

= 〈τ−,i+1
j

(
1 − τ−,i

j − τ+,i
j

)〉+ 〈τ−,i+1
j τ+,i

j

〉
− 〈τ−,i

j

(
1 − τ−,i−1

j − τ+,i−1
j

)〉− 〈τ−,i
j τ+,i−1

j

〉
. (3)

Here, the notation 〈. . . 〉 denotes the statistical average. In the
above equations, the positive and the negative terms on the
right-hand sides correspond to the gain and loss of particles
on the lane concerning the hopping and the swapping of the
two species.

Similarly, for the bridge lanes, the particle evolution equa-
tions for the bulk can be written as

d
〈
τ+,i

B+

〉
dt

= 〈τ+,i−1
B+

(
1 − τ+,i

B+

)〉− 〈τ+,i
B+

(
1 − τ+,i+1

B+

)〉
,

d
〈
τ−,i

B−

〉
dt

= 〈τ−,i+1
B−

(
1 − τ−,i

B−

)〉− 〈τ−,i
B−

(
1 − τ−,i−1

B−

)〉
.

After simplification, the particle evolution equations for all the
lanes of the system can be written as

d
〈
τ+,i

j

〉
dt

= 〈τ+,i−1
j

(
1 − τ+,i

j

)〉− 〈τ+,i
j

(
1 − τ+,i+1

j

)〉
,

d
〈
τ−,i

j

〉
dt

= 〈τ−,i+1
j

(
1 − τ−,i

j

)〉− 〈τ−,i
j

(
1 − τ−,i−1

j

)〉
. (4)

Now, all the equations governing the evolution of particles
in each lane are decoupled, however, these equations are
intractable in their present form due to the involvement of
two-point correlators. So, we employ mean-field approxima-
tion which has worked as a vital tool to explore the behavior
of numerous many-body systems [16,17,22,34]. Mean-field in
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FIG. 2. Representation of the proposed model with the fictitious defined entrance and exit rates through each lane required for analytical
treatment.

its simplest form neglects all the spatial correlations between
neighboring particles and considers the occupancy of two
adjacent sites to be independent of each other. To obtain the
continuum limit of the model, we coarse grain the discrete
lane with constant ε = 1/N and re-scaled time as t ′ = t/N .
In the continuum limit, the variables 〈τ+,i

j 〉 and 〈τ−,i
j 〉 are

replaced with ρ+,i
j and ρ−,i

j and using the terms up to second
order in the Taylor series expression, we obtain

∂

∂t ′

[
ρ+

j
ρ−

j

]
= ∂

∂x

⎡
⎢⎢⎣

ε

2

∂ρ+
j

∂x
− ρ+

j (1 − ρ+
j )

ε

2

∂ρ−
j

∂x
+ ρ−

j (1 − ρ−
j )

⎤
⎥⎥⎦. (5)

The superscript i was dropped as the lanes are free from
in-homogeneity of any type. At steady state, the above equa-
tion reduces to

ε

2

∂2ρ+
j

∂x2
+ (2ρ+

j − 1)
∂ρ+

j

∂x
= 0,

ε

2

∂2ρ−
j

∂x2
− (2ρ−

j − 1)
∂ρ−

j

∂x
= 0.

(6)

In the limit ε → 0, this equation yields
∂J±

j

∂x = 0, where J±
j

gives us the bulk current of each species of particle as

J+
j = ρ+

j (1 − ρ+
j ), J−

j = ρ−
j (1 − ρ−

j ). (7)

In the following section, we intend to utilize mean-field
approximation to examine the stationary properties of the
proposed model. To appropriately connect lanes P and Q
with the bridge lanes, we must first define the effective en-
trance and exit rates for each lane. Further, we make use
of notations ρ+,i

j and ρ−,i
j to represent the average particle

density of the (+) and (−) particle, respectively, on site
i in the jth lane. Moreover, the average densities in the
bulk will be denoted by ρ+

j and ρ−
j . The current induced

by the (+) and (−) particles in each lane will be denoted
by J+

j and J−
j . Also, the symbol Jk,1

j and Jk,N
j is used to

describe the current at the boundary sites on each lane. Con-
sidering that lane P (Q) operates as an input(output) lane
for the positive (negative) species and lane Q (P) as an
output (input) lane for positive (negative) particles, for an-
alytical amenability we prefer to take that j ∈ {in, B, out}
for the rest of the article, where B stands for the respective
bridge lane.

A. Dynamics of lanes P and Q

For the thorough theoretical investigation, we need to de-
fine effective entrance and exit rates for lanes P and Q. Taking
into account that lane P (Q) acts as an input lane for positive
(negative) particles and lane Q (P) behaves as an output lane
for the negative (positive) species, we define the effective
exit rate of (+) and (−) particles from the lane P and Q
through the site i = N and i = 1, as β+

in and β−
in , respectively

(see Fig. 2). Similarly, the effective entrance rate of (+)/(−)
particles from bridge lane B+/B− to lane Q/P is denoted by
α+

out/α
−
out.

Following mean-field approximation and the current con-
tinuity condition, the current flowing out of lane P (Q) is
equal to the current passing from lane P(Q) to the bridge lane
B+(B−), which gives

β+
in ρ+,N

in = ρ+,N
in

(
1 − ρ+,1

B

)
,

β−
in ρ−,1

in = ρ−,1
in

(
1 − ρ−,N

B

)
,

(8)

and can be simplified to obtain

β+
in = 1 − ρ+,1

B ,

β−
in = 1 − ρ−,N

B .
(9)

Similarly, the current continuity argument suggests that the
current passing through the bridge lane to lane Q/P must
be equal to the inflow of current in lane Q/P, which can be
written as

α+
out

(
1 − ρ+,1

out − ρ−,1
in

) = ρ+,N
B

(
1 − ρ+,1

out − ρ−,1
in

)
,

(10)
α−

out

(
1 − ρ+,N

in − ρ−,N
out

) = ρ−,1
B

(
1 − ρ+,N

in − ρ−,N
out

)
,

which implies

α+
out = ρ+,N

B ,

α−
out = ρ−,1

B .
(11)

Next, we utilize the continuity of current within the bulk and
at the boundaries of each lane to further analyze lane P. Subse-
quently, we extend a similar treatment to lane Q. According to
the mean-field approximation, the bulk current of each species
of particle on lane P can be expressed as

J+
in = ρ+

in (1 − ρ+
in ), J−

out = ρ−
out (1 − ρ−

out ). (12)
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Similarly, the boundary currents are given by

J+,1
in = α∗(1 − ρ+,1

in − ρ−,1
out

)
, J+,N

in = β+
inρ+,N

in ,

J−,N
out = α−

out

(
1 − ρ+,N

in − ρ−,N
out

)
, J−,1

out = βρ−,1
out .

(13)

Since, in the stationary state, the current is continuous
throughout the lane, one can simply write that

J+,1
in = J+,2

in = · · · = J+,N
in = J+

in ,

J−,1
out = J−,2

out = · · · = J−,N
out = J−

out.
(14)

It can be easily observed from Eqs. (12) and (13), the two
bulk currents for the different species are decoupled and they
interact effectively only at the boundaries. Therefore, lane P
can be viewed as two independent single-species TASEP lanes
with are connected through the boundaries only. Under this
consideration, it is reasonable to define the modified entrance
rates [16,22] for the two species to lane P by utilizing the
current continuity condition described in Eq. (14), as

α+
ineff

= J+
in

J+
in

α∗ + J−
out
β

, α−
outeff

= J−
out

J−
out

α−
out

+ J+
in

β+
in

. (15)

As lane Q also portrays bidirectional flow, an analogous
argument can be utilized to define the modified entrance rates
for the different particle species which results in

α+
outeff

= J+
out

J+
out

α+
out

+ J−
in

β−
in

, α−
ineff

= J−
in

J−
in

α∗ + J+
out
β

. (16)

B. Dynamics of bridge lanes

We define that a positive particle can enter bridge lane B+
from the lane P with an effective entrance rate α+

B and can
leave this lane with an effective exit rate β+

B as depicted in
Fig. 2. Similarly, a negative particle from lane Q can enter the
bridge B− with rate α−

B and can exit to lane P with an effective
exit rate of β−

B .
The flow of each species of particle must remain contin-

uous, which suggests that the current passing from the lane
P/Q to B+/B− lane must be equal to the current entering the
bridge lane, and can be written as

α+
B

(
1 − ρ+,1

B

) = ρ+,N
in

(
1 − ρ+,1

B

)
,

α−
B

(
1 − ρ−,N

B

) = ρ+,1
out

(
1 − ρ−,N

B

)
.

(17)

Similarly, the exit current from the bridge lane can be equated
to the currents passing from the bridge lane to lane Q/P as

β+
B ρ+,N

B = ρ+,N
B

(
1 − ρ+,1

out − ρ−,1
in

)
,

β−
B ρ−,1

B = ρ−,1
B

(
1 − ρ+,N

in − ρ−,N
out

)
.

(18)

The above two equations can be simplified to obtain

α+
B = ρ+,N

in , α−
B = ρ−,1

out ,

β+
B = 1 − ρ+,1

out − ρ−,1
in , β−

B = 1 − ρ+,N
in − ρ−,N

out .
(19)

C. Boundary dynamics

The first site (i = 1) of lane P and the last site (i = N) of
lane Q is connected to a pool having a finite number of par-
ticles. As the total number of particles in the system remains

conserved, one can write

Ntot = Np + NP + NQ + NB+ + NB− , (20)

where Nj , j ∈ {P, Q, B+, B−} signifies the count of the num-
ber of positive and negative species on lane j. At steady state,
we can write these quantities as

NP = N

(∫ 1

0
ρ+

in dx +
∫ 1

0
ρ−

outdx

)
,

NB+ = N
∫ 1

0
ρ+

B dx,

NB− = N
∫ 1

0
ρ−

B dx,

NQ = N

(∫ 1

0
ρ+

outdx +
∫ 1

0
ρ−

in dx

)
.

(21)

Thus, Eq. (20) becomes

Ntot = Np + N

⎛
⎝∫ 1

0

∑
j∈{in,B,out}

(ρ+
j + ρ−

j )dx

⎞
⎠. (22)

To reduce the number of parameters to be investigated, the
above equation can be rewritten as

μ = r + 1

4

⎛
⎝∫ 1

0

∑
j∈{in,B,out}

(ρ+
j + ρ−

j )dx

⎞
⎠, (23)

where r = Np

4N defines the pool quotient. Thus, the effective
entrance rate is given by Eq. (1) is modified to α∗ = α r

μ
.

IV. ANALYTIC PREDICTIONS

The steady-state dynamics and properties of the most basic
version of the TASEP model on a single lane, where a particle
enters a lane with the rate α, moves along the bulk with unit
rate and leaves with rate β, are exactly known [5]. In this case,
the rates α and β act as the boundary-controlling parameters
resulting in three stationary phases: low-density phase (LD),
high-density phase (HD), and maximal current phase (MC).
However, a new type of phase called the shock (S) phase
appears in the system when a constraint on the total number of
particles is considered [51]. In the S phase, the particle density
changes from LD to the HD phase and is localized. The
shock is localized to a small region in the α − β phase plane,
depending upon the total number of particles. For the sake
of completeness, we have summarized the observed outcomes
such as the particle densities on each site, particle current
along the existential region of each phase as well as the value
of the effective entrance rate α∗ for each phase, in Table I. In
the table, the bulk density is denoted by ρbulk while the left and
right boundary density is signified as ρ1 and ρN , respectively.
J is the position-independent steady-state particle current.

In a one-dimensional system with constrained resources,
the steady-state particle densities are governed by the three
controlling parameters (α, β, μ). So, it is natural to assume
that, it is also true in our situation except that now, the density
profiles depend upon the effective entrance and exit rates of
each lane, which have to be calculated in a self-consistent
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TABLE I. Summary of the results for a one-dimensional lane with finite resources having entrance rate α∗, exit rate β, and filling factor
μ = Ntot/N . Here, LD signifies the low-density phase, HD denotes the high-density phase, MC refers to Maximal current and the variable xw

indicates the position of shock in the shock (S) phase.

Phase ρ1 ρbulk ρN Current (J ) Phase region α∗

LD α∗ α∗ α∗ (1−α∗ )
β

α∗(1 − α∗) α∗ < min{0.5, β} α( μ2

μ+α
)

HD 1 − β(1−β )
α∗ 1 − β 1 − β β(1 − β ) β < min{0.5, α} α

(
1 − 1−β

μ

)
MC 1 − 1

4α∗ 0.5 1
4β

0.25 0.5 < min{α∗, β} α(1 − 1
2μ

)

S α∗
{

α∗ if 0 < xw

1 − β if xw < 1
1 − β α∗(1 − α∗) α∗ = β β

= β(1 − β ) 0 < xw < 1

manner. By plugging the appropriate values of the densities at
the boundary sites, the values of effective and modified rates
can be calculated from Eqs. (1), (9), (11), (15), (16), (19),
and (23).

To begin, we first define the notion of labeling a pos-
sible phase in a phase diagram. Any given density profile
can be expressed as X1 − X2 − X3/Y1 − Y2 − Y3. In this no-
tation, X1, X2, and X3 represent the phases exhibited by the
positive particles in lane P, bridge B+, and lane Q, respec-
tively. Similarly, Y1, Y2, and Y3 denote the phases displayed
by the negative particles in lane Q, bridge B−, and lane P, re-
spectively. Additionally, by observing the phase exhibited by
individual particle species in each lane, we identify whether
the overall system’s phase is symmetric or asymmetric.
In the case of a symmetric phase, the bulk densities of both
the particle species in their respective lanes are equal, i.e.,
ρ+

in = ρ−
in , ρ+

B = ρ−
B , ρ+

out = ρ−
out; meanwhile for asymmet-

ric phases, the characteristics including currents and density
profiles are generally different for the two-particle species.

The two-particle species can exhibit four possible phases in
each lane, leading to a total of 46 = 4096 phases displayed by
the system. Clearly, listing all probable phases is not admis-
sible. Since a phase of the form, X1 − X2 − X3/Y1 − Y2 − Y3

is equivalent to Y1 − Y2 − Y3/X1 − X2 − X3, that is the chang-
ing the role of the two species has no impact on the phase
displayed, the number of phases gets reduced to 2080. The
majority of these cases, however, cannot exist because of
several constraints and are discussed in Appendix C. Now,
based on the observed stationary properties, including density
profiles, effective entrance rates, and particle currents, we
categorize the different phases as either symmetric or asym-
metric.

A. Symmetric phases

During a symmetric phase, the system displays identical
stationary properties for both the particle species, including
particle densities and currents in each lane. This equivalence
arises due to the consistency of the dynamical processes and
the behavior of the system which is indistinguishable between
the two particle types. Such a circumstance gives

J+
in = J−

in , J−
in = J+

out, J+
B = J−

B ,
(24)

ρ+
in = ρ−

out, ρ−
in = ρ+

out, ρ+
B = ρ−

B ,

leading to

β+
in = β−

in = βin,

α+
B = α−

B = αB,

β+
B = β−

B = βB,

α+
out = α−

out = αout. (25)

This implies that modified entrance rates described by the
Eqs. (15) and (16) alters to

α+
ineff

= α−
ineff

= Jin
Jin
α∗ + Jout

β

= αineff ,

α+
outeff

= α−
outeff

= Jout
Jout
αout

+ Jin
βin

= αouteff ,

(26)

where J+
in = J−

in = Jin and J+
out = J−

out = Jout. Therefore, uti-
lizing the above conditions, one can calculate the effective
entrance and exit rates of all the lanes and finally obtain the
stationary density profile of a symmetric phase. We’ve used
abbreviations (LD, HD, MC, SP) to indicate lane phases in
a symmetrical context- LD representing low-density, HD for
high-density, MC for maximal current phase, and SP for the
shock phase.

As a result, there are 43 = 64 possible symmetric
phases out of which there are only four achievable phases:
LD-LD-LD/LD-LD-LD, LD-SP-LD/LD-SP-LD, SP-HD-
LD/SP-HD-LD, and HD-HD-LD/HD-HD-LD. The rest of
the phases are discarded based upon either physical or math-
ematical argument for which the complete explanations is
detailed in Appendix C. For the feasible phase, we provide
the explicit expressions for the particle densities, currents, po-
sition of the shock, and the phase boundaries in Appendix A.

B. Asymmetric phases

In our model, the two species of particles interact effec-
tively at the boundaries of lane P as well as lane Q which is the
sole factor affecting the symmetry between the distinct parti-
cle species. This leads to the emergence of the asymmetrical
phases and subsequently, spontaneous symmetry breaking
phenomena. In an asymmetric phase, each species exhibits
distinctive properties in terms of current and density, and this
section examines the likelihood of the occurrence of such
phases. To simplify the analysis, it is assumed that the pos-
itive particles outnumber the negative ones. To distinguish an
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asymmetrical phase from a symmetrical phase, we have used
the notation of L for low-density, H for high-density, M for
the maximal current phase, and S for the shock phase.

Theoretical investigation of such phases reveals that there
are 11 attainable asymmetric phases for which the existence
criteria, expressions of shock position, and effective entrance
rates wherever possible are explained in Appendix B. The re-
maining phases are eliminated based on theoretical reasoning,
which is presented in Appendix C.

V. RESULTS: ANALYSIS AND IMPLICATIONS

To explore the dynamics of the system in the steady state,
we create phase diagrams in the parameter space (α, β ) based
on our theoretical investigations explained in the previous
section as well as Appendices A and B. The objective is to
examine how the system’s complex dynamics are affected
by the global constraint on the resources available which is
quantified by the variable μ. To verify our theoretical find-
ings, we conduct Monte Carlo simulations (MCs) utilizing
the Gillespie Algorithm which is detailed in Appendix E. It
has been observed that the consistency between simulation
data and analytical predictions holds true across all regimes.
Alternatively, we can employ numerical techniques (refer to
Appendix D) on the continuum version of the particle evolu-
tion equation, represented by Eq. (5), to obtain density profiles
for any given phase. There are several advantages of adopting
this approach. First, it is easier to implement compared to the
analytical methods outlined in Appendices A and B. Second,
unlike the theoretical approach, this method can be readily
adapted to more generalized models by incorporating changes
in the master equation. Last, this approach allows for obtain-
ing solutions in cases where the choice of functions in Eq. (2)
leads to analytically intractable forms.

A. Role of filling factor

Using the analytical findings presented in Secs. IV A and
IV B, we proceed to explicitly establish the mathematical
expressions for the phase boundaries, whenever feasible, that
distinguish the two phases. These phase boundaries are vital
in discerning various phase configurations.

(1) The boundary separating the LD-LD-LD/LD-LD-LD
phase from LD-SP-LD/LD-SP-LD as obtained from Eq. (A2)
is

β = α(2μ − 1)

3α(μ − 1) − 2μ
. (27)

(2) For the LD-SP-LD/LD-SP-LD phase to LD-HD-
LD/LD-HD-LD, the boundary is expressed as

β = α(3μ − 2)

3(α(3μ − 2) − μ)
, (28)

which is calculated from Eq. (A3) by solving xw = 0.
(3) For the symmetric LD-LD-LD/LD-LD-LD to L-L-

L/L-L-L, we have

α−
outeff

= β,

where α−
outeff

is given by Eq. (B1).

(4) The boundary between the L-L-S/L-L-L and L-S-
H/L-L-L phases can be identified from Eq. (B4) by setting
xw = 0 which can be realized as L-L-H/L-L-L phase.

(5) Boundary separating the L-S-H/L-L-L and S-H-
H/L-L-L phases, as determined by Eq. (B6) with xw = 0,
corresponds to the L-H-H/L-L-L phase.

(6) For the S-H-H/L-L-L and H-H-H/L-L-L phase the
boundary is represented as

α+
ineff

= β, (29)

for α+
ineff

given in Eq. (B2).
To perform a comprehensive analysis, we present phase

diagrams for specific values of μ spanning from 0 to ∞.
These diagrams exhibit significant topological changes in the
parameter space (α, β ) and are visually represented in Fig. 3.
The figures are generated using carefully selected values of μ

to highlight noteworthy modifications in the structure of the
phase diagrams.

When the system contains only a small number of particles,
approximately μ ≈ 0.001, a single symmetric phase, namely
LD-LD-LD/LD-LD-LD, is observed. The scarcity of particles
limits the effective particle influx into the lane, resulting in
the manifestation of a low-density phase in each lane. With
the addition of more particles to the system, the number of
phases increases to three. The phase diagram then consists
of one symmetric phase (LD-LD-LD/LD-LD-LD) and two
asymmetric phases (L-L-L/L-L-L and L-L-S/L-L-L), which
disrupt the symmetry of the system as evident from Fig. 3(a)
for μ = 0.1. This observation can be explained as follows: For
lower values of β, there is a tendency for particles to accumu-
late primarily at the right end of the output lane. Consequently,
the boundary layer at the right boundary infiltrates into the
bulk region, resulting in the occurrence of a boundary-induced
shock in the output lane.

Further increasing the particle count in the system re-
veals the emergence of two additional asymmetric phases:
L-L-H/L-L-L and L-S-H/L-L-L, as depicted in Fig. 3(b) for
μ = 0.45. The L-S-H/L-L-L phase appears adjacent to L-
L-S/L-L-L, with L-L-H/L-L-L serving as a boundary curve
that separates the L-L-S/L-L-L and L-S-H/L-L-L phase re-
gions. When the value of μ exceeds 0.5, two new asymmetric
phases, namely L-H-H/L-L-L and S-H-H/L-L-L, emerge
alongside the L-S-H/L-L-L phase. Additionally, a symmetric
phase (LD-SP-LD/LD-SP-LD) appears adjacent to the LD-
LD-LD/LD-LD-LD phase, in addition to the already existing
phases. Physically, the emergence of the high-density (HD)
phase in a lane is expected, as it cannot occur in the sys-
tem for μ < 0.5 due to an insufficient number of particles
in the system to achieve the high-density state. The critical
value of μ at which the bulk-induced shock phase (LD-SP-
LD/LD-SP-LD) emerges is 0.5 and is theoretically justified
from Eq. (27). Furthermore, the L-H-H/L-L-L phase acts as
a boundary curve that separates the S-H-H/L-L-L and L-S-
H/L-L-L phase regions [see phase diagram given Fig. 3(c) for
μ = 0.6].

Beyond μ = 0.5, the topology of the phase diagram un-
dergoes substantial qualitative and quantitative changes. The
phase plane becomes more intricate due to the emergence
of new symmetrical and asymmetrical phases as evident
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FIG. 3. Stationary phase diagrams for different values of μ: (a) μ = 0.1, (b) μ = 0.45, (c) μ = 0.6, (d) μ = 0.7, (e) μ = 1.5, and (f)
μ → ∞. Solid lines represent theoretical findings while red circles denote Monte Carlo simulation results. The blue dashed curves indicates
the L-L-L/L-L-L phase. The phases L-L-L/L-L-L, L-L-S/L-L-L, L-L-H/L-L-L, L-S-H/L-L-L, and L-H-H/L-L-L, all converge in a narrow
region which is presented by black squares in panels (d) and (e).

from Fig. 3(d) for μ = 0.7. Consequently, the phase dia-
gram undergoes changes such as the translation of phase
boundaries and contraction of existing phases. Notably, four
new asymmetrical phases, specifically H-H-H/L-L-L, H-H-
H/L-S-L, S-H-H/L-S-L, and L-H-H/L-S-L appear in the

phase plane. Additionally, two symmetrical phases, LD-
HD-LD/LD-HD-LD and SP-HD-LD/SP-HD-LD, emerge.
The symmetric phase SP-HD-LD/SP-HD-LD appears ad-
jacent to the symmetric LD-SP-LD/LD-SP-LD phase, and
the boundary separating these two phases represents the
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LD-HD-LD/LD-HD-LD phase. The Eq. (28) provides the
curve indicating the existence of the LD-HD-LD/LD-HD-LD
phase. In the lower half region, when α takes on large val-
ues, a significant portion of the region is dominated by the
H-H-H/L-L-L phase, which is adjacent to the S-H-H/L-L-L
phase. Figure 3(d) illustrates that for α ≈ 5.5, the boundary
curves corresponding to L-L-L/L-L-L, L-L-H/L-L-L, and L-
H-H/L-L-L all converge within a very narrow region of width
approximately 0.02 with respect to β. Consequently, this nar-
row region is represented by ’black square’ symbols in the
phase diagram. The coordinates (α, β) in the α-β plane, where
the two curves represent the boundary of the H-H-H/L-L-L
region given by Eq. (B3) intersect, can be easily determined.
This intersection occurs at the points where α−

ineff
+ α−

outeff
=

α+
ineff

. For a fixed value of α � α, an increase in the value
of β leads to a phase transition sequence: H-H-H/L-L-L →
H-H-H/L-S-L → S-H-H/L-S-L → L-H-H/L-S-L → L-S-
H/L-L-L → L-L-H/L-L-L → L-L-S/L-L-L → L-L-L/L-L-L
→ LD-LD-LD/LD-LD-LD.

Once μ exceeds the value 1, a new symmetric phase
emerges in the phase diagram, referred to as HD-HD-LD/HD-
HD-LD [see Fig. 3(e)]. In this phase, the HD (high-density)
region always maintains a maximal particle density of 1,
while the low-density region remains at 0. This phase can
be interpreted as a congestion region, where there is no
particle movement whatsoever. It is positioned adjacent to
SP-HD-LD/SP-HD-LD in the upper half plane and is also
neighboring the H-H-H/L-S-L phase in the lower half plane.
Finally, as μ → ∞, the phase diagram undergoes a substantial
simplification. It displays only four distinct stationary phases:
two symmetric phases, namely LD-LD-LD/LD-LD-LD and
HD-HD-LD/HD-HD-LD, and two asymmetric phases, L-L-
L/L-L-L and H-H-H/L-L-L as evident from Fig. 3(f).

The aforementioned observations demonstrate that the
presence of limited resources has a substantial impact on the
phenomenon of symmetry breaking. This effect occurs even
with a relatively small number of particles in the system. In
the forthcoming sections, we will elucidate the significant and
abrupt phase transitions discussed earlier, as well as delve
into the dynamics of shocks both boundary-induced and bulk-
induced.

B. Shock dynamics

In this section, we will explore the characteristics of two
distinct types of shocks that have been observed in the previ-
ous section. A shock that enters through either the left end of
the input lane or the right end of an output lane is referred to
as a boundary-induced shock. A bulk-induced shock refers to
the occurrence of localized congestion within the interior of
the system, away from the boundaries. It originates from the
internal dynamics of the system rather than external influences
at the boundaries. To delve into a detailed study of the phase
transitions that lead to the formation of these types of shocks,
we have selected a filling factor value and vary the boundary-
controlling parameters α and β.

A bulk-induced shock in the symmetric LD-SP-LD/LD-
SP-LD and SP-HD-LD/SP-HD-LD appears in the phase
diagram, as evident from Fig. 3(d). In the LD-SP-LD/LD-SP-
LD, a discontinuity in the density profile is observed in the

0 1 2 3x

0

0.2

0.4

0.6

0.8

1 =3.5
=1.7
=0.05

FIG. 4. Phase transitions exhibited for μ = 0.8 and β = 1 for
varying values of α. The system evolves from LD-LD-LD/LD-LD-
LD → LD-SP-LD/LD-SP-LD → SP-HD-LD/SP-HD-LD. Since in
the symmetric phase, the density profiles for the two species are iden-
tical, we plot the density profile only for the positive species. Solid
lines give mean-field results while symbols correspond to Monte
Carlo simulations. The shaded region for x ∈ [1, 2] represents the
bridge lane.

bridge lane for both particle species. While for the SP-HD-
LD/SP-HD-LD, this discontinuity appears in the input lane,
where the density profile connects a region of low density
having constant particle density at 0 to a region of high density
with density 1. The explicit expression for the location of
the shock in LD-SP-LD/LD-SP-LD is computed in Eq. (A3)
which suggest that for fixed values of β and μ, an increase in
α leads to an increase in the number of particles feed into the
system which in turn sweeps the shock toward the left. This
is affirmed by Fig. 4, which clearly shows that for β = 1 and
μ = 0.8, the high-density region of the shock enhances and
with an increase in α, the shock vanishes from the bridge lane.
To validate it mathematically, we employ Eq. (A3), which
gives us the shock position in the LD-SP-LD/LD-SP-LD
phase as

xw = 6βμ

α(3β − 1)
− 2(3μ − 2).

The shock position clearly demonstrates that an increase in α

causes the shock to shift toward the left, indicating the dis-
appearance of the LD-SP-LD/LD-SP-LD phase. With further
enhancement in α, this shock enters the input lane leading
to an occurrence of the SP-HD-LD/SP-HD-LD phase. As
already been examined theoretically, in this phase, a density
profile connecting a region of density 0 to 1 is observed in the
input lane, density 1 in the bridge lane, and the output lane has
a constant density of 0 (see Appendix A).

Now, let us examine some key aspects of the localized
shock induced by the boundary in the phase diagram for
μ = 0.6, as shown in Fig. 3(c). When a particular lane under-
goes a shock phase, we can determine the speed of the shock
by calculating the difference between the exit rate and the
entrance rate of that specific lane. For the system to exhibit
a localized shock, the speed of the shock must be zero. To
analyze the behavior of the shock, we fix μ = 0.6 and α = 2,
and examine the position of the shock relative to the exit rate
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FIG. 5. Phase transitions with respect to β for fixed values of the
other parameters as α = 2, and μ = 0.6 representing evolution of the
system from S-H-H/L-L-L → L-S-H/L-L-L → L-L-S/L-L-L → L-
L-L/L-L-L → LD-LD-LD/LD-LD-LD. Panels (a) and (b) show the
density profile for the (+) and the (-) species, respectively. Solid lines
give mean-field results while symbols correspond to Monte Carlo
simulations. The shaded region for x ∈ [1, 2] represents the bridge
lanes. The dotted arrow indicates the direction of increasing β.

parameter β. Figure 5(a) illustrates the phase transitions of the
positive species as β increases. We can observe the following
sequence of transitions for the positive species: S-H-H →
L-H-H → L-S-H → L-L-H → L-L-S → L-L-L. Throughout
these transitions, the negative species consistently exhibit a
low-density phase in each lane. These transitions can be ex-
plained through the following reasoning. For smaller values
of β, a shock enters the input lane of the positive particles
from the left end. The position of this shock can be determined
using Eq. (B6). As β increases, the effective entrance rate
α+

ineff
also increases, causing the shock to move toward the

right. With further increments in β, the shock travels from
lane P to the bridge lane and then to lane Q, ultimately leaving
the system and resulting in the positive particles displaying a
low-density phase in each lane. Meanwhile the entrance rate
of the negative species through lane Q which is α−

ineff
also

continues to increase with respect to β [see Fig. 5(b)]. Thus,

if one considers the position of shock as the order parameter,
then these transitions are of second order.

Here, we will explore the changes occurring in the α-β
plane for μ = 0.7 by selecting a point within the H-H-H/L-
L-L region, ensuring that α is large enough. Our focus will
be on examining the density profile at various values of β

(refer to Fig. 6). To begin, we set β = 0.25 in this region
and present Fig. 6(a), where we observe an enhancement
in the modified entrance rates of the two-particle species,
given by α±

ineff
, as β increases. Initially, a bulk-induced shock

phase, referred to as H-H-H/L-S-L, emerges in the system,
characterized by a discontinuous density profile in the bridge
lane for the negative species. As β further increases, a shock
enters from the left end corresponding to the positive particles.
This leads to a transition from the H-H-H/L-L-L phase to a
bulk-induced shock phase H-H-H/L-S-L and finally to a
boundary-induced shock phase S-H-H/L-S-L. Importantly,
as β increases, both shocks progressively shift from the
left to the right. Around the critical value of β ≈ 0.332,
the shock in lane P reaches the right boundary, caus-
ing the shock in the bridge lane to reverse its direction.
As β further increases, the latter shock moves back to-
ward the left boundary, resulting in the system transi-
tioning into the L-H-H/L-L-L phase. After attaining this
phase the system evolves to L-S-H/L-L-L → L-L-H/L-L-
L → L-L-S/L-L-L → L-L-L/L-L-L, whose details have
already been discussed.

C. Back-and-forth transitions

We now examine a special characteristic in the phase dia-
gram known as the back-and-forth transition, which emerges
when observing the phase diagram for μ = 0.7 [see Fig. 3(d)]
and in the limit as μ approaches infinity [see Fig. 3(f)]. The
term “back-and-forth transition” is defined as follows. When
examining a particular phase diagram, if the system undergoes
a transition from phase X to phase Y and then returns back to
phase X, denoted as X → Y → X while adjusting a single
parameter and keeping the remaining parameters constant,
we refer to this phenomenon as the back-and-forth transition
[29,53,54].

Upon closer examination of the phase diagram for μ = 0.7,
an interesting boundary emerges between the S-H-H/L-L-L
and H-H-H/L-L-L regions. When we analyze the system’s
behavior by fixing α = 4, μ = 0.7 and only varying the exit
rate β, we observe a transition from the S-H-H/L-L-L phase
to the H-H-H/L-L-L phase. Surprisingly, as β continues to
increase, the system transitions back to the S-H-H/L-L-L
phase. Equation (29) provides us with the phase boundary
between the S-H-H/L-L-L and H-H-H/L-L-L phases, clearly
indicating that, when α and μ are held constant, the phase
boundary follows a nonmonotonic pattern with respect to β.
This causes the phase boundary to take a turn around as can
be seen in Fig. 3(d). To illustrate these transitions in detail, we
have plotted Fig. 7 to display various density profiles while
keeping α = 4, μ = 0.7, and employing different values of β.
The unusual behavior of the system can be elucidated through
the following intuitive explanation. When we fix α = 4, ini-
tially increasing β results in a raised exit rate for both species
of particles from their respective output lane. Consequently,
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FIG. 6. Dynamics of the phase involving shock for μ = 0.7, α = 12 and different values of β. (a) → (b) → (c) → (d) → (e) → (f) gives
the order of the phase transition. Solid lines give mean-field results while symbols correspond to Monte Carlo simulations. The shaded region
for x ∈ [1, 2] represents the bridge lanes.

a greater number of particles become available in the pool to
be pushed onto the lanes. This leads to an enhancement in
the modified entrance rates, i.e., α±

ineff
, for the two species of

particles. As a result, the positive species starts accumulating
on lane P, causing a hindrance to the exit of the negative
species. This accumulation gives rise to a shock in lane P
for the positive species, which moves toward the left as β

continues to increase. During this stage, the system maintains
equal entrance-exit rates in lane P for the positive species, but
this equilibrium is disrupted as β further increases. Eventu-
ally, the shock reaches the left end, causing a phase transition
from S-H-H/L-L-L to H-H-H/L-L-L at the critical value of
β = 0.1063. Subsequently, the entrance rate of the positive
species onto lane P remains higher than the exit rate from
lane P, as confirmed by the theoretical Eq. (B2). The modi-
fied entrance rate α+

ineff
is a diminishing slope function of β,

which eventually reaches the value β+
in . At the critical value of

β = 0.2764, the system once again exhibits the S-H-H/L-L-L
configuration.

Similarly, the phase diagram depicted in Fig. 3(e) also
illustrates a recurring pattern of transitions. It begins with a
movement from the symmetric HD-HD-LD/HD-HD-LD and
the asymmetric L-L-L/L-L-L phases, followed by a shift to
the symmetric LD-LD-LD/LD-LD-LD phase, and ultimately
returning to the HD-HD-LD/HD-HD-LD phase. This pro-
gression can be explained as follows:

Consider the case where α = 1 and μ tend toward infinity.
In situations where resources are abundant, the entrance rate

through the input lane remains fixed and is represented by
the parameter α, which is smaller than β in this scenario.
Consequently, a greater number of particles enter the system
than exit, resulting in an accumulation of particles in the input
and bridge lane, which leads to the HD-HD-LD/HD-HD-LD
phase where the system shows a 1-1-0 density profile for each
of the particle species.

However, as the value of β increases, more particles start
leaving through the output lanes. This leads to a transition
toward the L-L-L/L-L-L phase, and subsequently to the LD-
LD-LD/LD-LD-LD phase. In the case of larger values of β,
the increased particle exit rate from the output lane causes a
low-density phase to emerge in this lane. As a result, the other
lanes experience a high-density phase. If one considers the
particle density as the order parameter, then these transitions
are of first order.

D. Finite-size effect

The exploration of the TASEP model incorporating bidi-
rectional dynamics has provided insights into the impact of
finite system size on the asymmetric low-density phase. In
our study, the asymmetric phase, L-L-L/L-L-L, emerges even
at extremely small values of the filling factor μ and con-
tinues to persist as μ increases. Based on the theoretical
investigation revealed by the mean-field framework, it has
been observed that this phase remains confined to a curve
in the phase plane as shown in Fig. 3. However, numerical
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FIG. 7. (a) Density profiles displaying back-and-forth transition
for μ = 0.7 and α = 4 with β = 0.05 (S-H-H/L-L-L), 0.2 (H-H-
H/L-L-L), and 0.3 (S-H-H/L-L-L). (b) Effective entry-exit rates and
the position of shock xw [given by Eq. (B6)]of the positive particles
for lane P for fixed μ = 0.7 and α = 4. Solid lines denote theoretical
results and round symbols show Monte Carlo simulation results.

simulations conducted using the Gillespie Algorithm for
N = 100 demonstrate that this phase exists over a substantial
region, rather than just a curve. Nevertheless, as the lat-
tice length of each lane increases, the region encompassing
this asymmetric phase shrinks, suggesting its disappearance
in the thermodynamic limit and validating the theoretical
findings. To examine this effect caused by finite lane size,
we plot the region width � with respect to β of the L-
L-L/L-L-L region displayed by the system while keeping
α = 0.4 and μ = 0.45, as illustrated in Fig. 8. As observed
from the figure, the width of the L-L-L/L-L-L region de-
creases as the size of each lane, denoted by N , increases.
Therefore, for sufficiently large systems, the observed region
contracts, which aligns with our theoretical observations. It
is important to mention that the size of the symbols de-
picted in Fig. 3 representing the simulation results have
been appropriately chosen to reflect the impact of finite lane
length.

The theoretical analysis of our model heavily relies on the
assumption of a thermodynamic limit, where the number of
sites in each lane (N) tends to infinity. However, in Monte

0 500 1000 1500N
0

2

4

6

10-2

FIG. 8. Variation of region width � of L-L-L/L-L-L phase with
increasing β for fixed α = 0.4 and μ = 0.45 obtained through
simulations.

Carlo simulations, the length of each lane, denoted as N , is
a finite value. This finite length effect is also noticeable in
the boundary that separates the LD-SP-LD/LD-SP-LD phase
from the SP-HD-LD/SP-HD-LD phase, which is identified
as the LD-HD-LD/LD-HD-LD phase. It has been observed
that as the value of N increases, the boundary predicted by
the Monte Carlo simulations approaches the one obtained
through theoretical analysis. In other words, we graph the
position where this transition occurs for fixed values of
μ = 0.8 and β = 0.9 while increasing N . It is found that
the deviation from the theoretically derived phase boundary
decreases as N increases and for N ≈ 3000, this deviation
approaches the value obtained analytically (Fig. 9). Beyond
this point, no further changes are observed in this position.
A similar effect can be witnessed in the phase boundary
between LD-SP-LD/LD-SP-LD and HD-HD-LD/HD-HD-
LD phase. Thus we have refrained from plotting these
phase boundaries through MCs in the phase diagram given
by Fig. 3.

0 1000 2000 3000N

75

2.25

2.75

3.25

MCs
Mean-field results

FIG. 9. Variation of phase boundary separating LD-SP-LD/LD-
SP-LD region from SP-HD-LD/SP-HD-LD region for β = 0.9 and
μ = 0.8. The MCs results (symbols) approach the boundary obtained
through a theoretical framework (dotted line) for larger values of N .
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VI. CONCLUSION

In this paper, we study a particular variant of the exclu-
sion model about roundabouts, consisting of two bridge lanes
in the middle with particles traveling in opposite directions.
These bridge lanes are intricately linked to a bidirectional
TASEP lane on each side. A global constraint on the total
number of particles in the system is considered and is charac-
terized by a filling factor. The interactions of the bridge lanes
with the side lane induce an inhomogeneity in the system
which is dealt with by defining appropriate effective entrance
and exit rates. Mean-field approximations are employed to
calculate critical stationary characteristics, such as phase di-
agrams, significant density profiles, and phase transitions,
to comprehend the impact of finite resources on the system
dynamics. The theoretical findings are validated through dy-
namic Monte Carlo simulations performed by utilizing the
Gillespie Algorithm.

The main goal of our theoretical analysis is to probe the
effect of coupling the system to a finite pool on the spon-
taneous symmetry-breaking phenomenon. With an increase
in the particle count, significant qualitative and quantitative
changes are observed in the phase diagram. The exact location
of the phases, the phase boundaries as well as the density
profiles are governed by the entrance and exit rates from the
extreme ends in addition to the filling factor. The complexity
of the phase diagram is highly sensitive to the filling factor μ

which controls the number of resources in the system. Though
the phase diagram is comparatively simplified for smaller and
larger values of μ, but for intermediate values the complexity
is enhanced. This leads to a nonmonotonic variation in the
number of phases portrayed with increasing μ. Moreover, we
found two congested phases where the particles are stuck in
a jammed state and no further movement is possible. The
most striking property of the proposed study is the advent of a
back-and-forth phase transition which exists even when there
is no scarcity of particles available to the lanes. In addition to
this, the system attains phases that display boundary-induced
shock corresponding to one and bulk-induced shock with
respect to the other particle species. To obtain insight into
the nature of transitions across the phase boundaries, we
have considered the position of shock as the order parameter.
We present explicit calculations for phase boundaries and
density profiles in both symmetric and asymmetric phases.
Furthermore, we offer straightforward physical explanations
to elucidate the theoretical observations.

The present work is an attempt to understand the com-
plex nonequilibrium bidirectional transportation of particles
on roundabout like structure in a constrained environment.
Our model effectively captures crucial aspects of bidirec-
tional transport observed in scenarios involving biological
molecular motors and vehicular traffic on roundabout-like
network configurations. It serves as a valuable tool for
controlling and managing transport mechanisms within net-
work models, offering efficiency through the adjustment of
boundary-controlling parameters and resource availability.
This capability holds significant promise in improving the de-
sign and operation of transportation systems, communication
networks, and other systems where efficient and controlled
transport is essential for their functionality and performance.

The theoretical framework is not only limited to intracellular
traffic by motor proteins or vehicular traffic, but can also be
generalized for any kind of system where bidirectional trans-
port takes place along junctions. In the future, this study can
be extended to incorporate different features such as dynamic
defects, interactions between entities, Langmuir Kinetics, etc.
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APPENDIX A: SYMMETRIC PHASES

1. LD-LD-LD/LD-LD-LD phase

In this phase, both the particle species display a low-
density phase in all the lanes. Each lane is entry-dominated
and the corresponding particle density is equal to the effective
entrance rates of the respective lanes. So, the bulk and the
boundary densities of each lane is given by

ρ1
in = αineff , ρin = αineff , ρ+,N

in = Jin

βin
,

ρ+,1
B = αB, ρB = αB, ρ+,N

B = JB

βB
,

ρ+,1
out = αouteff , ρout = αouteff , ρN

out = Jout

β
.

The bulk currents in each lane is given by

Jin = αineff

(
1 − αineff

)
,

JB = αB(1 − αB),

Jout = αouteff

(
1 − αouteff

)
.

(A1)

Necessary conditions for the existence of this phase are
given by

αineff < min{βin, 0.5}, αB < min{βB, 0.5},
αouteff < min{β, 0.5}.

Inserting the boundary as well as bulk densities stated above
in Eqs. (9), (11), and (19) to obtain

αineff = αouteff = α∗β
α∗ + β

,

βin = 1 − αB,

αB = αineff ,

βB = 1 − αouteff − αineff .

All these above-attained expressions for the effective entrance
and exit rates when plugged in Eq. (23) yields

μ = r + 6
4αineff ,
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which provides us with the pool capacity as

r = 1

4α
[2μ(α − β ) − 3αβ

+
√

16αβμ2 + (2μ(α − β ) − 3αβ )2].

Under these circumstances, the existential condition for this
phase is

αineff < βB. (A2)

2. HD-HD-LD/HD-HD-LD phase

We assume that in this symmetric phase both the particle
species manifest high-density phase in their input as well as
bridge lanes while the output lane displays LD phase. The
specifications that support the extant of this asymmetric phase
are

ρin = 1 − βin,

ρB = 1 − βB,

ρout = αouteff .

One solves Eqs. (9) and (19) to get

βB = βin = 1 − αB, αouteff = 0.

Physically it implies that the density of positive species in lane
Q given by αouteff is 0. This means that there is no particle
movement from the bridge onto lane Q, suggesting that βin =
βB = 0. Thus, we have that, the particle density in the input
as well as the bridge is 1 while in the output lane, it is 0.As
particle movement is not possible in this scenario, this phase
can also be referred to as a congested phase.

Utilizing the particle number conservation given by
Eq. (23), we have r = μ − 1. So, it is evident that the HD-
HD-LD/HD-HD-LD phase persists only when μ > 1 and
continues to exist as μ → ∞. As the particle density is in-
dependent of the boundary-controlling parameters, the phase
boundaries for this region can only be calculated numerically.

3. LD-SP-LD/LD-SP-LD

The particle density, in this case, displays a constant den-
sity of αineff in the input lanes, a shock in the bridge lanes
where a constant density of αB is connected to density 1 − βB

on the right and again low-density phase in the output lanes
with density αouteff . In this case, one can compute the relation
between the rates as

αB = αineff ,

αout = 1 − βB,

βin = 1 − αB,

βB = 1 − αouteff − αB.

Utilizing the above equations to solve Eqs. (15) and (16) gives

αineff = α∗(4β − 1)

α∗ + 4β
,

αouteff = α∗ + 2β(1 − α∗)

α∗ + 4β
.

Since the existence of the shock phase in the bridge lane
requires αB = βB, we obtain the capacity of the pool as

r = βμ

α(3β − 1)
.

To calculate the position of the shock xw, one needs to solve
the Eq. (23), which gives

xw = 6βμ − 2α(3β − 1)(3μ − 2)

α(3β − 1)
. (A3)

Thus, one can write the existential condition for this phase as

0 < xw < 1. (A4)

4. SP-HD-LD/SP-HD-LD

In this case, Eqs. (11), (9), and (19) reduces to

αB = 1 − βin,

βB = 1 − αouteff − αB,

αout = 1 − βB,

βin = βB(1 − βB)

αB
,

along with the modified entrance rates given by

αineff = αineff

(
1 − αineff

)
αineff (1−αineff )

α∗ + αouteff (1−αouteff )
β

,

αouteff = αouteff

(
1 − αouteff

)
αouteff (1−αouteff )

αout
+ βin (1−βin )

βin

.

From the above equations, we can deduce that βin = βB which
further implies that αouteff = 0. This indicates that the en-
trance of particles to the output lane is restrained, forcing
the exit rate βB from the bridge lane to take the value 0.
As βin = βB = αouteff = 0, there are no positive particles in
the output lane while the bridge lane is fully packed with
particle density 1. Now, the input lanes display a shock phase
where a density profile connects a region of low-density to
high-density region with particle density changing from αineff

to 1 − βin. The existence of this phase requires αineff to remain
equal to βin, which implies that αineff = 0. Last, one can obtain
the existential criteria for this phase numerically. As particle
movement is not possible in this scenario, this phase is also
referred to as a congested phase.

APPENDIX B: ASYMMETRIC PHASES

1. L-L-L/L-L-L phase

During the L-L-L/L-L-L phase, all lanes experience a low-
density phase, but the current and bulk density differ between
the two types of particles. Upon calculating the effective rates
for each lane, they are found to satisfy a simple relation
expressed as

α+
ineff

= α+
B = α+

outeff
= 1 − β+

in = 1 − β+
B + α−

ineff
,

along with

α−
ineff

= α−
B = α−

outeff
= 1 − β−

in = 1 − β−
B + α+

ineff
.
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Here, α+
ineff

and α−
ineff

are obtained by solving Eqs. (15) and (16) as

α+
ineff

= 1

2(α∗ − β )2(α∗ + β )
{β3 + α∗(β − 1)[β2 − (α∗)2] − (α∗)2β

∓
√

(α∗ − β )2[β4 + 2(α∗)3(1 − β )β2 − 2α∗β4 + (α∗)4(1 − 2β − 3β2) + (α∗)2β2(β2 + 2β − 2)]}. (B1)

The above expressions are used to determine the pool capacity as

r = 1

8α

{
4μ(α + β ) + 3α(β − 1) +

√
16αβ(3 − 4μ)μ + [4βμ + α(4μ + 3β − 3)]2

}
.

Thus, the constraint on the parameters to attain this phase is

α−
outeff

< β.

2. H-H-H/L-L-L Phase

In this phase, the positive species portray the HD phase
while the negative species display the entrance dominant
phase in all the lanes. In such a scenario, the bulk currents
are given by

J+
in = β+

in (1 − β+
in ),

J+
B = β+

B (1 − β+
B ),

J+
out = β(1 − β ),

J−
in = α−

ineff

(
1 − α−

ineff

)
,

J−
B = α−

B (1 − α−
B ),

J−
out = α−

outeff

(
1 − α−

outeff

)
,

which assists us in writing the boundary densities for each
lane as

ρ+,1
in = 1 − J+

in

α+
ineff

, ρ+,N
in = 1 − β+

in ,

ρ+,1
B = 1 − J+

B

α+
B

, ρ+,N
B = 1 − β+

B ,

ρ+,1
out = 1 − J+

out

α+
outeff

, ρ+,N
out ,= 1 − β,

ρ−,1
in = J−

in

β−
in

, ρ−,N
in = α−

ineff
,

ρ−,1
out = J−

out

β
, ρ−,N

out = α−
outeff

,

ρ−,1
B = J−

B

β−
B

, ρ−,N
B = α−

B .

Again one can solve Eqs. (9), (11), and (19) along with
Eqs. (15) and (16) to obtain the values of the effective entrance
and exit rates for the positive species as

β+
B = 1 − α+

out = 1 − α+
B = β+

in = β,

α+
outeff

= β(1 − β )

β + α−
ineff

, (B2)

α+
ineff

= β(1 − β )

μβ(1−β )
αr + α−

outeff

(
1−α−

outeff

)
β

,

while for the negative species,

α−
B = 1 − β−

in = α−
ineff

,

α−
ineff

= 1

2
((1 + α∗) −

√
(1 + α∗)2 − 4α∗β ),

α−
out = α−

ineff

(
1 − α−

ineff

)
β − α−

ineff

,

α−
outeff

= ((1 + α−
out ) −

√
(1 + α−

out )2 − 4α−
outβ )

2
,

β−
B = β − α−

outeff
.

Here, the equation for the pool dynamics given by Eq. (23)
gets converted to

μ = r +
(
3(1 − β ) + 2α−

ineff
+ α−

outeff

)
4

,

which gives the value of the pool capacity as

r = {3α(4μ − 3) + 4μ(6β + 8μ − 9) + 3
√

α2(3 − 4μ)2 + 16μ2 − 8αμ[3 + 6β2 − 4μ + 4β(2μ − 3)]}
8(3α + 4μ)

.

Thus, one can identify the relevant region for this phase as

α−
ineff

+ α−
outeff

� β � α+
ineff

. (B3)

3. L-L-S/L-L-L phase

During this phase, we make an assumption that the (+)
particles are in a low-density (LD) phase in lanes P and the
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bridge, while lane Q exhibits a discontinuity in the density
profile, connecting a region of low-density to high-density.
However, the (−) particles represent a low-density phase in all
the lanes. This phase persists when the boundary-controlling
parameters satisfy the following conditions:

α+
ineff

< min{β+
in , 0.5}, α−

ineff
< min{β−

in , 0.5},
α+

B < min{β+
B , 0.5}, α−

B < min{β−
B , 0.5},

α+
outeff

= β < 0.5, α−
outeff

< min{β, 0.5}.
The effective boundary rates as retrieved from Eqs. (9), (11),
and (19) is

α+
ineff

= α+
B , α+

out = α+
ineff

(
1 − α+

ineff

)
β+

B

,

α−
ineff

= α−
B , α−

out = α−
ineff

(
1 − α−

ineff

)
β−

B

,

along with

β+
B = 1 − α−

ineff
− α+

outeff
,

β−
B = 1 − α+

ineff
− α−

outeff
.

These values can now be substituted in Eqs. (15) and (16) to
get

α−
ineff

= (1 + α∗) −
√

(1 + α∗)2 − 4α∗β
2

,

α+
ineff

= 1

2β

[
β(1 + α∗)

−
√

β2(1 − α∗)2 + 4α−
ineff

α∗β
(
1 − α−

ineff

)]
.

Since the flow of particles is continuous throughout the
system, we have α+

ineff
= α+

B = α+
outeff

and α−
ineff

= α−
B = α−

outeff
.

To acquire the value of pool capacity, one can solve the con-
dition that α+

outeff
= β which is the requirement for lane Q to

remain in the S phase for the positive species. Now, the only
variable that is left to be calculated is xw, the position of shock.
Note that∫ 1

0
ρ+

outdx =
∫ xw

0
α+

outeff
dx +

∫ 1

xw

(1 − β )dx,

and finally one can revisit Eq. (23) to obtain the value of the
shock position as

xw = 4(μ − r) − 3α−
ineff

− 2α+
ineff

− 1 + β

2β − 1
. (B4)

Thus, one needs to identify the region where Eq. (B3) as well
as the condition 0 < xw < 1 is obeyed. As xw → 1, we reach
the L-L-L/L-L-L phase whereas when xw takes the value 0,
the shock position shifts toward the left end of lane Q and the
system exhibits the L-L-H/L-L-L phase. In the limiting case
of μ → ∞, this phase does not exist.

4. L-L-H/L-L-L phase

The sole distinction between this phase and the L-L-S/L-
L-L phase lies in the location of the shock within lane Q for
the positive species. In the previous scenario, the shock had to

be positioned away from the boundaries, whereas in this case,
the value of xw needs to be precisely 0 to achieve the L-L-
H/L-L-L phase. It is important to note that the L-L-H/L-L-L
phase does not exist in the limit where μ approaches infinity.
Furthermore, this phase serves as a boundary that separates
the region of L-L-S/L-L-L from the region of L-S-H/L-L-L.

5. L-S-H/L-L-L phase

Once again, we follow a similar procedure as we did for the
previous phases. The continuous flow of particles within the
system implies that α+

ineff
= α+

B , β+
B = β, and α−

ineff
= α−

B =
α−

outeff
. To determine the values of these modified entrance

rates, we utilize Eqs. (15) and (16), resulting in

α−
ineff

= 1

2
((1 + α∗) −

√
(1 + α∗)2 − 4α∗β ),

α+
ineff

= 1

2β

[
β(1 + α∗)

−
√

β2(1 − α∗)2 + 4α−
ineff

α∗β
(
1 − α−

ineff

)]
.

(B5)

By solving α+
B = βB, the necessary condition for the existence

of S phase in the bridge lane, we can determine the pool ca-
pacity. Furthermore, the position of the shock can be obtained
using Eq. (23) as

xw = 4(μ − r) − 2(1 − β ) − 3α−
ineff

− α+
ineff

α+
ineff

+ β − 1
.

When the value of xw approaches 1, the system manifests
the L-L-H/L-L-L phase. Conversely, as xw tends to 0, L-H-
H/L-L-L is attained. Additionally, this phase disappears as μ

approaches infinity.

6. S-H-H/L-L-L phase

The continuous flow of particles leads to significant im-
plications, particularly regarding the bulk densities of lane P,
bridge, and Q. Specifically, the bulk density corresponding
to the negative species is given by α−

ineff
, which remains con-

sistent across all the three lanes. Similarly, for the positive
species, we can establish the requirement that β+

in = β+
B = β

to maintain a continuous flow. By utilizing these conditions in
Eqs. (15) and (16) we obtain the following expressions:

α−
ineff

= 1

2
[(1 + α∗) −

√
(1 + α∗)2 − 4α∗β],

α+
ineff

= 1

2β

[
β(1 + α∗)

−
√

β2(1 − α∗)2 + 4α−
ineff

α∗β
(
1 − α−

ineff

)]
.

To acquire the capacity of the pool, one can solve α+
ineff

= β.
Additionally, the position of the shock can be calculated from
Eq. (23) as

xw = 4(μ − r) − 3
(
α−

ineff
+ 1 − β

)
2β − 1

. (B6)
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The region of existence for this phase can be expressed in a
similar manner as demonstrated for other cases.

7. L-H-H/L-L-L phase

Here, the positive species display the LD phase in lane P
while the other two lanes are in high-density phase whereas
the negative species of all the lanes are in entrance dominated
phase. Similar to the previous scenario, we can derive the
following expressions:

α−
ineff

= 1

2
[1 + α∗ +

√
(1 + α∗)2 − 4α∗β],

α−
outeff

= α−
ineff

= α−
B ,

α+
ineff

= 1

2β

[
β(1 + α∗)

−
√

β2(1 − α∗)2 + 4α−
ineff

α∗β
(
1 − α−

ineff

)]
.

The existence of this phase is determined by the position of
xw in S-H-H/L-L-L reaching the right boundary of lane P,
specifically when xw = 1. This condition defines the curve
that represents the existence of this phase.

8. H-H-H/L-S-L phase

During this phase, the positive species display exit domi-
nated phase in the input, bridge, and output lane, whereas the
other species of particles are in entrance dominated phase in
the input and output lane, with the bridge lane exhibiting a
shock phase. The modified and effective entrance-exit rates
for the different lanes can be derived similarly to the previous
phase which provides us with

α−
ineff

= 1

2
[1 + α∗ +

√
(1 + α∗)2 − 4α∗β],

α−
outeff

= β

2
,

α+
outeff

= β(1 − β )

β + α−
ineff

,

α+
ineff

= 8α2(1 − β )

[4(1 − β ) − α2](2 − β )
,

β−
B = β − α−

outeff
,

along with the conditions β+
in = β+

B = β, α−
ineff

= α−
B . The

condition for the existence of the shock phase in the bridge
lane corresponding to the negative species, α−

B = β−
B , is uti-

lized to determine the pool capacity and is given by

r = μ(2 − β )

2α
. (B7)

The position of the shock can be determined from Eq. (23) as

xw = 8(μ − r − 1) + 5β

2(β − 1)
.

Thus, the necessary condition for the existence of this phase
can be written as

0 < xw < 1, β < min
{
α+

outeff
, α−

ineff

}
.

This phase no longer exists in the limiting case of μ tends to
infinity.

9. H-H-H/L-H-L phase

The main distinction between this phase and the H-H-
H/L-S-L phase is the specific location of the shock within
the bridge lane for the negative species. Unlike the previous
scenario where the shock needed to be positioned away from
the boundaries; the value of xw in the H-H-H/L-S-L must be
precisely 0 for the system to achieve the H-H-H/L-H-L phase.
As μ tends toward infinity, the H-H-H/L-H-L phase becomes
nonexistent.

10. S-H-H/L-S-L phase

The same analytical approach can be employed for this
phase as in the other cases. However, due to the limited num-
ber of equations available, it is not possible to calculate the
exact location of the shock or derive an explicit formulation
for the phase boundaries.

11. S-H-H/L-H-L phase

In this phase, the effective entrance and exit rates can be
obtained analogously as done for the S-H-H/L-L-L phase.
These expressions can further be utilized to calculate the
position of the shock as well as the pool capacity.

APPENDIX C: DISCARDED PHASES

(i) The total particle density of the bidirectional lanes can-
not be greater than one, i.e., ρ+

in + ρ−
out ≯ 1 and ρ+

out +ρ−
in ≯ 1.

So, all the phases of the form X1 − X2 − X3/Y1 − Y2 − Y3

where X1,Y3 ∈ {H/HD, S/SP, M/MC} cannot persists.
(ii) If X1 ∈ {LD/L, HD/H}, then X2 �= MC/M.
(iii) If X1 = MC/M, then X2 /∈ {LD/L, HD/H, MC/M}.
(iv) The remaining phases pose a challenge when attempt-

ing to evaluate Eqs. (9), (11), (19), as well as Eqs. (15) and
(16), as their simultaneous resolution leads to a state of self-
inconsistency.

APPENDIX D: ALTERNATIVE APPROACH TO OBTAIN
A DENSITY PROFILE

In this section, we present a numerical technique for
acquiring density profiles for the proposed system. The con-
tinuum version of the evolution equation given by Eq. (5) is
discretization through a finite difference scheme, wherein the
time and space derivatives are substituted with forward and
central difference formulas, respectively. By selecting spatial
grid size �x = 1/N and suitable time step �t that satisfies
the stability condition �t/�x2 � 1, the solution is obtained as
the limit n approaches infinity, where n is the number of time
steps, ensuring the attainment of a steady state. The resulting
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decoupled discretized equation is expressed as follows:

ρ+,n+1
j,i = ρ+,n

j,i + ε�t

2

(
ρ+,n

j,i+1 − 2ρ+,n
j,i + ρ+,n

j,i−1

�x2

)

+ �t

(
ρ+,n

j,i+1 − ρ+,n
j,i−1

2�x

)(
2ρ+,n

j,i − 1
)
,

ρ−,n+1
j,i = ρ−,n

j,i + ε�t

2

(
ρ−,n

j,i+1 − 2ρ−,n
j,i + ρ−,n

j,i−1

�x2

)

− �t

(
ρ−,n

j,i+1 − ρ−,n
j,i−1

2�x

)(
2ρ−,n

j,i − 1
)
,

where j takes the values 1, 2, and 3 to represent the input,
bridge, and output lanes, respectively, and i �= 1, N . As per
our model, the lanes interact effectively at the boundary sites
only. Hence, this effect is implemented by employing the
mean-field version of the boundary equations for the (+)
species as

ρ+,n+1
1,1 = ρ+,n

1,1 + �t

[
α

(
1 −
∑

j

∑
i

(
ρ+,n

j,i + ρ−,n
j,i

)
4Nμ

)

× (1 − ρ+,n
1,1 − ρ−,n

1,1

)− ρ+,n
1,1

(
1 − ρ+,n

1,2

)]
,

ρ+,n+1
1,N = ρ+,n

1,N + �t
[
ρ+,n

1,N−1

(
1 − ρ+,n

1,N − ρ−,n
1,N

)
− ρ+,n

1,N

(
1 − ρ+,n

2,1

)]
,

ρ+,n+1
2,1 = ρ+,n

2,1 + �t
[
ρ+,n

1,N

(
1 − ρ+,n

2,1

)− ρ+,n
2,1

(
1 − ρ+,n

2,2

)]
,

ρ+,n+1
2,N = ρ+,n

2,N + �t
[
ρ+,n

2,N−1

(
1 − ρ+,n

2,N

)
− ρ+,n

2,N

(
1 − ρ+,n

3,1 − ρ−,n
3,1

)]
,

ρ+,n+1
3,1 = ρ+,n

3,1 + �t
[
ρ+,n

2,N

(
1 − ρ+,n

3,1 − ρ−,n
3,1

)

− ρ+,n
3,1

(
1 − ρ+,n

3,2 − ρ−,n
3,2

)]
,

ρ+,n+1
3,N = ρ+,n

3,N + �t
[
ρ+,n

3,N−1

(
1 − ρ+,n

3,N

)− βρn
3,N

]
.

Analogous equations can be written for the other species as
well.

APPENDIX E: MONTE CARLO SIMULATIONS

To conduct simulations, we utilize the Gillespie Algorithm
within a Monte Carlo framework, implementing a random
sequential update rule. At each time step, a site is selected
based on a generated random number, and its state is updated
according to the specific dynamical rules.

The occurrence of an event, such as a particle entering
the input lane, particle hopping in the bulk, particle exiting
the output lane, or species exchange, is determined proba-
bilistically. The probability of selecting a particular event is
proportional to the sum of all rates associated with that event.
The time interval until the next event, denoted as �t , follows
an exponential distribution. In each simulation, the length of
each lane is taken to 1500. The typical run of each simula-
tion is 1010 time steps, with the initial 5% of observations
discarded to ensure that the system has reached a stationary
state before data are taken. In the case of large α, it is neces-
sary to discard the initial 20% of the simulations. Then, the
observable quantities are recorded at every 10N time step and
averaged until the simulation terminates.

To construct phase diagrams through simulations, we mea-
sure the particle density and the current as a function of α and
β. These particle density values serve as an order parameter,
allowing us to distinguish between different phases within
the system. By varying these rates during simulations, we
can construct a phase diagram that highlights distinct regions
representing various phases. Determining the boundaries be-
tween these phases involves manually identifying specific
values of α and β at which the order parameter undergoes
abrupt changes. Through simulations, these phase boundaries
are plotted with an accuracy of under 2%, which is taken care
of by the size of the circular symbols used in the plots.
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