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Local time of a system of Brownian particles on the line with steplike initial condition
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We consider a system of noninteracting Brownian particles on a line with a steplike initial condition, and we
investigate the behavior of the local time at the origin at large times. We compute the mean and the variance
of the local time, and we show that the memory effects are governed by the Fano factor associated with
the initial condition. For the uniform initial condition, we show that the probability distribution of the local
time admits a large deviation form, and we compute the corresponding large deviation functions for the annealed
and quenched averaging schemes. The two resulting large deviation functions are very different. Our analytical
results are supported by extensive numerical simulations.
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I. INTRODUCTION

Imagine a box with a wall dividing it into two parts: one
contains a gas of particles and the other is empty. What hap-
pens when we remove the wall? Indeed, the system is not
in equilibrium (even if it was initially). It is also clear that
the gas will eventually spread out and fill the entire space.
But how exactly does this happen? The described scenario
exemplifies an out-of-equilibrium transport problem that, in
general, can be formulated for various geometries and for
different types of particles. One-dimensional systems play an
important role in this context by serving as simple models that
may provide valuable insights and help in the development of
general frameworks for nonequilibrium statistical mechanics.

Recently it has been realized that such systems may exhibit
an everlasting memory of the initial condition. In other words,
even at large times, their behavior may strongly depend on
the initialization, indicating some form of nonergodicity. This
was shown for the leader statistics for an expanding Jepsen gas
[1]; the mean-squared displacement of a tracer [2,3]; the total
particle current for a diffusive system [4–6], a system of run
and tumble particles [6,7], and a system Brownian particles
with resetting [8]; and for the two-time correlation function of
a number of leaked particles in the one-dimensional effusion
problem [9]. The goal of this paper is to extend this analysis
to another observable, namely the local time (density). This
quantity measures the amount of time particles have spent in
the vicinity of a given point. If we discretize the system in
both time and space, then the analog of the local time would
be the number of visits to a given site of the lattice.

Studies of the local time have a long history dating back
to the seminal work of Lévy [10]. Since then, it has become
a classical topic in probability theory (see, e.g., Ref. [11]
and references therein), and it has found applications in very
diverse contexts. Consider competitive sports as an example.
The moments in the game when the teams are neck and neck
are usually the most exciting to watch. Since there is always
an element of chance and luck in sports, if we treat the score
difference between two teams as “coordinate,” then we essen-
tially arrive at the diffusion problem [12]. In this setup, the

local time at the origin measures the amount of time when the
score difference is small, thereby describing how interesting
the game is to watch. Another example comes from the theory
of diffusion-controlled reactions [13]. Suppose that there is
a receptor whose activity is proportional to the time spent
by activating molecules in its vicinity. Then if the receptor
is small, the local time can be used to evaluate the effective
reaction rate [14]. Here we have mentioned only two examples
in which local time appears naturally, but there are many
others. For a more comprehensive review, we refer the reader
to Ref. [15].

The statistical properties of the local time of a single
particle in one dimension have been extensively studied in
the literature in many different setups. They include diffu-
sion in a random Sinai-type potential [16,17], in an external
field [18]. with a drift [19,20], with reflecting boundaries
[21], conditioned diffusion [22], diffusion with resetting [23],
the Ornstein-Uhlenbeck process [24], and run and tumble
particles [25], to name a few. However, to the best of our
knowledge, the statistics of the local time in the context of
transport problems have not been systematically studied.

In this paper, we consider a system of noninteracting Brow-
nian particles initially distributed on the negative half-line
with uniform density, and we study the statistical properties
of the local time at the origin. We show that there exist long
memory effects in the variance that are governed by a single
static quantity of the initial condition known as generalized
compressibility or the Fano factor [26]. In this system, the
initial condition plays a role similar to the realization of the
disorder in the theory of disordered systems. Therefore, it can
be treated in two ways: we can either take the initial condition
to be the typical one (quenched averaging scheme), or we can
average over all possible initial conditions (annealed aver-
aging scheme). We show that in both cases, the probability
distribution of the local time admits a large deviation form
[27,28], and we analytically compute corresponding large
deviation functions along with their asymptotic expansions,
thereby describing atypical fluctuations of the local time. To
support our analytical results, we perform numerical simula-
tions with the importance sampling Monte Carlo method.
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FIG. 1. Schematic representation of the Brownian trajectories for
N = 5 particles.

The paper is organized as follows. In Sec. II we give a
formal definition of the model and the problem we address, as
well as presenting the main results. In Sec. III we compute the
probability distribution of the local time for a single particle
along with the mean and the variance of the local time for
the system of particles. We show that the long memory effects
in the variance are governed by the Fano factor of the initial
condition. In Sec. IV we consider the uncorrelated uniform
initial condition, and we analytically compute the large devi-
ation functions for the probability distributions of the local
time in both annealed and quenched cases. We also study
their asymptotic behaviors for atypical values of the local
time. Section V is devoted to the numerical simulations, which
show perfect agreement with the analytical results. Finally, we
conclude in Sec. VI.

II. THE MODEL AND THE MAIN RESULTS

A. The model

Consider a system of N noninteracting Brownian particles
in one dimension, initially confined in the box [−L, 0], and
let the system evolve in time (see Fig. 1). In our setup, the
particles do not interact and the evolution is governed by a
system of Langevin equations. If we denote the position of
the ith particle by xi(t ), then this system reads

dxi(t )

dt
=

√
2D ηi(t ), i = 1, . . . , N, (1)

where D is a diffusion coefficient and ηi(t ) is a Gaussian white
noise with zero mean and unit variance,

〈ηi(t )〉 = 0, 〈ηi(t )η j (t
′)〉 = δi j δ(t − t ′). (2)

Denoting the total duration of the process by t , we define the
local time (density) at the point a as

T (a) =
∑

i

∫ t

0
dt ′ δ[xi(t

′) − a]. (3)

This quantity characterizes the amount of time spent by the
particles in the vicinity of the point a. Namely, the time spent
in the segment [a, a + da] is equal to T (a)da. If we discretize
this problem both in time and in space, then the analog of (3)
on a discrete lattice would be the number of visits to a site a

after t steps. Also, we clearly have an overall “normalization”∫ ∞

−∞
da T (a) =

∑
i

∫ t

0
dt ′ 1 = Nt . (4)

In the case of a single particle, the full probability distribution
of T (a) can be easily obtained (see, e.g., [16]). We provide this
calculation in Sec. III A, and the result is given by (36). For
now, we only mention that the mean and the variance of the
local time for a single particle grow as

√
t and t , respectively.

Our main goal is to study the statistics of the local time at
the origin,

T ≡ T (0) =
∑

i

∫ t

0
dt ′ δ[xi(t

′)], (5)

in the thermodynamic limit, i.e., the limit where L, N → ∞
with their ratio ρ̄ = N/L being fixed.

The quantity (5) is indeed a random variable, and the
randomness comes from two sources: stochasticity of the
Brownian trajectories, and the fluctuations in the initial con-
figuration of particles. In this setup, the initial configuration
plays a role similar to the realization of disorder in the disor-
dered systems. Therefore, as was argued in [4], we can treat it
in two ways: we can either compute a probability distribution
of T averaging over all realizations of the initial configuration,
or, alternatively, we can find a probability distribution of T for
the most typical initial condition. We call these distributions
annealed and quenched, respectively. Such a “pictorial” ex-
planation is useful to have in mind, but it is not clear how to
use it for actual computations. So we shall give a more formal
definition.

Denote by P [T, t | x] the probability distribution of the
local time T for a fixed initial configuration x = (x1, . . . , xN )
and by 〈e−pT 〉x its Laplace transform,

〈e−pT 〉x =
∫ ∞

0−
dTe−pTP [T, t | x]. (6)

Here and subsequently, the brackets 〈· · · 〉x stand for the aver-
aging over Brownian trajectories given the initial condition x.
Then the annealed and quenched distributions are defined as
[4,6] ∫ ∞

0−
dTe−pTPan[T, t] = 〈e−pT 〉x, (7)∫ ∞

0−
dTe−pTPqu[T, t] = exp[log 〈e−pT 〉x], (8)

where the bar · · · indicates averaging over all initial configu-
rations.

B. Main results

First we consider the case in which initial coordinates of
particles are correlated, but the marginal distribution of each
particle’s initial position is uniform with density ρ̄. In this
case, we adapt the approach of [2] and show that the mean
value of the local time is given by

〈T 〉x = ρ̄ t

2
. (9)
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FIG. 2. Large deviation function in the annealed case and its asymptotic expansions. On both panels the solid lines correspond to the large
deviation function computed in MATHEMATICA from (14) and (15). Dashed, dotted, and dash-dotted lines are asymptotic behaviors of �an(τ )
in (18) for small, typical, and large values of rescaled local time τ , respectively.

The quenched variance reads

Varqu[T ] = 〈T 2〉x − 〈T 〉2
x = 2

3

ρ̄ t3/2

√
πD

(2 −
√

2). (10)

For the annealed variance, we obtain the large time behavior

Varan[T ] = 〈T 2〉x − [〈T 〉x]2

	 2

3

ρ̄ t3/2

√
πD

[1 + (1 −
√

2)(1 − αic )]. (11)

The quantity αic in (11) is the Fano factor of the initial con-
dition. If we denote by n(	) the number of particles initially
found in the segment [−	, 0], then αic is

αic = lim
	→∞

Var[n(	)]

n(	)
. (12)

Expressions (10) and (11) are indeed in accordance with cu-
mulant generating functions (8) and (7), respectively.

Note that the scaling behaviors of the mean (9) and the
variances (10) and (11) for the system of particles differ from
their single-particle counterparts by the factor of

√
t (recall

that for a single particle, the mean is proportional to
√

t and
the variance is proportional to t). This is in fact very natural,
and it can be explained by a simple heuristic argument we give
in Sec. III B.

Finally, we consider an uncorrelated uniform initial condi-
tion and compute large deviation functions for the annealed
and quenched distributions. We show that at large times, these
distributions behave as

P [T, t] ∼ exp[−ρ̄
√

4Dt �(τ )], τ = T

t ρ̄
, (13)

where �(τ ) is given by an inverse Legendre transform of
the function φ(q), which is different for the annealed and
quenched distributions. Namely, for the annealed case we
have

�an(τ ) = max
q

[−qτ + φan(q)], (14)

where

φan(q) = 1√
π

− 1

2q
+ eq2

2q
erfc[q]. (15)

For the quenched case,

�qu(τ ) = max
q

[−qτ + φqu(q)], (16)

where

φqu(q) = −
∫ ∞

0
dz log[erf (z) + eq2+2qzerfc(q + z)]. (17)

Here erf (x) = 2√
π

∫ x
0 dz e−z2

and erfc(x) = 1 − erf (x).
From (14) and (15) we compute the asymptotic expansion

of the large deviation function for the annealed case,

�an(τ ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
π

− √
2τ , τ → 0,

3
8

√
π
(
τ − 1

2

)2
, τ → 1

2 ,

τ
√

log τ
2 − τ

2
√

log τ
2

, τ → ∞.

(18)

Similarly, from (16) and (17) we find that in the quenched
case,

�qu(τ ) ∼

⎧⎪⎪⎨
⎪⎪⎩

φ∞ − √−τ log τ , τ → 0,

3
8

√
π

2−√
2

(
τ − 1

2

)2
, τ → 1

2 ,

4
3
√

3
τ 3/2, τ → ∞,

(19)

where φ∞ = − ∫∞
0 dz log(erfz) ≈ 1.034 42.

Plots of the large deviation functions for both cases along
with asymptotic expansions (18) and (19) are shown in Figs. 2
and 3, respectively.

Note that for atypically large local times, i.e., τ → ∞, the
quenched large deviation function behaves as �qu(τ ) ∼ τ 3/2,
hence for the probability distribution (13) we have

Pqu[T, t] ∼ exp

[
−(25/23−3/2ρ̄

√
Dt )

(
T

t ρ̄

)3/2
]
. (20)

Comparing it to the annealed case

Pan[T, t] ∼ exp

⎡
⎣−(ρ̄

√
Dt )

⎛
⎝ T

t ρ̄

√
log

T

t ρ̄

⎞
⎠
⎤
⎦, (21)

we see that the probability density decays much faster for
the quenched distribution as T → ∞. This is due to the fact
that in the annealed case, we have rare initial conditions with
particles initially concentrated close to the origin. Since these
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FIG. 3. Large deviation function in the quenched case and its asymptotic expansions. On both panels the solid lines correspond to the large
deviation function computed in MATHEMATICA from (16) and (17). Dashed, dotted, and dash-dotted lines are asymptotic behaviors of �qu(τ )
in (19) for small, typical, and large values of rescaled local time τ , respectively.

configurations lead to the atypically large values of the local
time, the tail of the annealed probability distribution decays
slower than the tail of the quenched one.

For the atypically small local times, the behaviors of the
quenched and annealed distributions are also different. In
particular, the probabilities that T = 0, i.e., the probabilities
that no particle has reached the origin up to time t (survival
probabilities), decay with t as stretched exponentials, but the
constants are different in the quenched and annealed cases.
Namely,

Pan[0, t] ∼ e−θan ρ̄
√

4Dt , Pqu[0, t] ∼ e−θqu ρ̄
√

4Dt , (22)

where

θan = 1√
π

≈ 0.56, θqu = φ∞ ≈ 1.03. (23)

This is again due to the atypical fluctuation of the initial
condition. Indeed, there exist atypical initial configurations in
which all particles are far from the origin. Since these particles
require more time to reach the origin, such initial conditions
lead to a larger probability of “survival.”

As a final remark, we should mention that the survival
probabilities (22) naturally appear in the context of the target
problems (see, e.g., [15]) and the values of θan and θqu are
already known [29] (see also [30] for the detailed investigation
of the front-position statistics).

III. MEAN AND VARIANCE

A. One particle

Let us first consider the case N = 1 and compute the prob-
ability distribution of the local time at the origin for a single
Brownian particle

T =
∫ t

0
δ(x(t ′))dt ′. (24)

It is useful, for a moment, to consider a more general problem.
Define the functional Ô on the path x(t ) starting at x(0) = x
as

Ô[x(t ′)] =
∫ t

0
V [x(t ′)] dτ. (25)

Here V [x(τ )] can be any function, with the only requirement
that Ô[x(t ′)] � 0 for all paths. The value of Ô depends on the
realization of the path, hence it is a random variable. Denote

by P [O, t | x] the probability that Ô = O at time t . Using the
Feynman-Kac formalism (see [31] for a pedagogical review),
one can show that the Laplace transform of this probability

Q(p, t | x) =
∫ ∞

0−
e−pOP [O, t | x]dO (26)

satisfies the backward Fokker-Planck equation

∂

∂t
Q(p, t | x) =

[
D

∂2

∂x2
− pV (x)

]
Q(p, t | x), (27)

with the initial condition Q(p, 0 | x) = 1. To solve (27) it is
convenient to perform yet another Laplace transform with
respect to t ,

Q̃(p, α | x) =
∫ ∞

0−
e−αt Q(p, t | x)dt . (28)

Then (27) reduces to

αQ̃(p, α | x) − 1 =
[

D
∂2

∂x2
− pV (x)

]
Q̃(p, α | x). (29)

Now we get back to the original question and specify the
choice of potential V (x) = δ(x). If we do that, then (25) is
exactly a definition of the local time for a single particle
(24), and (29) becomes an ordinary second-order differential
equation [

D
∂2

∂x2
− α − pδ(x)

]
Q̃(p, α | x) = −1. (30)

We must endow this equation with boundary conditions. Note
that if x → ±∞, then the time spent at the origin should be
zero, therefore P(T, t | ± ∞) = δ(T ), hence Q(p, t | ± ∞) =
1 and Q̃(p, α| ± ∞) = 1

α
.

Solving (30) separately for x > 0 and x < 0 and demand-
ing the continuity of the solution at x = 0, we get

Q̃(p, α | x) = 1

α
+ A e−

√
α
D |x|. (31)

Note that (30) fixes the discontinuity of the derivative

D
∂

∂x
Q̃(p, α | x)

∣∣0+

0− = p Q̃(p, α | 0), (32)

and hence

A = − p

α(p + √
4αD)

. (33)
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Therefore, the solution of (30) reads

Q̃(p, α | x) = 1

α

(
1 − p

p + √
4αD

e−
√

α
D |x|
)

. (34)

To find the probability distribution of the local time density,
we need to invert the double Laplace transform

Q̃(p, α | x) =
∫ ∞

0−
dt e−αt

∫ ∞

0−
d p e−pTP [T, t | x]. (35)

After straightforward computation (see Appendix A), we ar-
rive at

P [T, t | x]=erf

[ |x|√
4Dt

]
δ(T )+

√
4D

πt
exp

[
− (2DT + |x|)2

4Dt

]
.

(36)
The factor at δ(T ) in (36) is a contribution from the tra-
jectories that have not crossed the origin up to time t . In
other words, this is nothing but survival probability, i.e., the
probability that a particle has not visited the origin up to the
observation time t .

In what follows, we will use the Laplace transform of (36),

〈e−pT 〉x =
∫ ∞

0−
e−pTP [T, t | x]dT

= erf

[ |x|√
4Dt

]
+ e− x2

4Dt erfcx

[
pt + |x|√

4Dt

]
, (37)

where we used the scaled complementary error function

erfcx(x) = ex2
erfc(x). (38)

From (37) we can easily compute the first two moments of T ,

〈T 〉x =
√

t

πD
e− x2

4Dt − |x|
2D

erfc

[ |x|√
4Dt

]
,

〈T 2〉x = x2 + 2Dt

4D2
erfc

[ |x|√
4Dt

]
− |x|

4D2

√
4Dt

π
e− x2

4Dt . (39)

It is evident that at large times, the mean value of the local
time for a single particle scales as

√
t , and the variance scales

as t

〈T 〉x ∼ √
t, 〈T 2〉x − 〈T 〉2

x ∼ t, t → ∞. (40)

B. System of particles

Now we proceed to the system of particles evolving inde-
pendently. Since particles do not interact, one would expect
the distribution of the local time T to be Gaussian close to
the typical value. Therefore, the fluctuations are governed by
mean and variance. We will compute them shortly, but before
delving into the calculation, it is always useful to understand
the scaling one should expect. Here this can be done by a
simple heuristic argument.

The typical displacement of a Brownian particle grows
with time as t1/2. This means that the number of particles that
reached the origin up to time t is proportional to t1/2. At the
same time, contribution of each particle to the mean value of
the local time is proportional to t1/2 (40). Then it is natural to
expect that the large time behavior of the mean value of the
local time is just a product of these two factors. This means
that the mean value of the local time should be proportional

to t . Recalling that the variance for a single particle grows as
t , by the same argument we find that for a system of particles
the variance should be proportional to t3/2. To summarize, we
expect the scalings t and t3/2 for the mean and the variance of
the local time, respectively. Having this in mind, we move on
to the actual computation.

Let us define the empirical density of initial condition x
as

ρ̂(z | x) =
∑

i

δ(z − xi ). (41)

Then the mean local time density is

〈T 〉x =
∫ ∞

−∞
dz ρ̂(z | x)〈T 〉z (42)

where 〈T 〉z is the mean value of the local time for a single
particle initially located at z, which is given by (39). Recalling
that 〈T 〉z is an even function of z and initially all particles are
confined on the negative half-line, we rewrite (42) as

〈T 〉x =
∫ ∞

0
dz ρ̂(−z | x)〈T 〉z. (43)

Averaging over realizations of the initial conditions, we get

〈T 〉x =
∫ ∞

0
dz ρ̂(−z | x)〈T 〉z. (44)

In what follows, we assume that the average initial density
does not depend on the coordinate

ρ̂(−z1 | x) = ρ̂(−z2 | x) = ρ̄. (45)

This essentially means that the initial density of particles is
uniform. Then for the mean value of the local time, we have

〈T 〉x = ρ̄

∫ ∞

0
dz〈T 〉z. (46)

Using the explicit form (39) of 〈T 〉z we find that

〈T 〉x = ρ̄ t

2
. (47)

The expression for the mean value of the local time (47) is
valid for both quenched and annealed distributions, but the
variances differ.

We start with the quenched distribution. In accordance with
the cumulant generating function (8), the variance is

Varqu[T ] = 〈T 2〉x − 〈T 〉2
x

=
∫ ∞

0
dz ρ̂(−z | x)

[〈T 2〉z − 〈T 〉2
z

]
. (48)

Expressing it in terms of the empirical density ρ̄, we get

Varqu[T ] =
∫ ∞

0
dz ρ̂(−z | x)

[〈T 2〉z − 〈T 〉2
z

]
= ρ̄

∫ ∞

0
dz
[〈T 2〉z − 〈T 〉2

z

]
. (49)

From (49) we see that the quenched variance depends only on
the average density of particles in the initial configuration. We
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again use (39), and after straightforward computation we find
that ∫ ∞

0
dz 〈T 2〉z = 2

3

t3/2

√
πD

, (50)∫ ∞

0
dz 〈T 〉2

z = 2

3
(
√

2 − 1)
t3/2

√
πD

, (51)

therefore

Varqu[T ] = 2

3
(2 −

√
2)

ρ̄ t3/2

√
πD

, (52)

which is exactly the result stated in (10).
The annealed variance is given by

Varan[T ] = 〈T 2〉x − 〈T 〉x
2
. (53)

Following [2], we rewrite (53) as

Varan[T ] = 〈T 2〉x − 〈T 〉2
x + [〈T 〉2

x − 〈T 〉x
2]

(54)

and treat two terms in (54) separately. The first term is nothing
but the quenched variance (48), and the entire dependence on
the initial condition is encoded only in the second term, which
we denote by Varic[T ],

Varic[T ] = 〈T 〉2
x − 〈T 〉x

2
. (55)

Let us express it in terms of the empirical density. To do this,
we note that

〈T 〉2
x =

∫ ∞

0
dz ρ̂(−z | x)〈T 〉z

∫ ∞

0
dz′ ρ̂(−z′ | x)〈T 〉z′ (56)

and hence

〈T 〉2
x =

∫ ∞

0
dz
∫ ∞

0
dz′ 〈T 〉z〈T 〉z′ ρ̂(−z | x)ρ̂(−z′ | x). (57)

Combining (57) with (55) and (46), we get

Varic[T ] =
∫ ∞

0
dz
∫ ∞

0
dz′〈T 〉z〈T 〉z′C(z, z′), (58)

where C(z, z′) is two-point correlation function of the initial
condition, i.e.,

C(z, z′) = ρ̂(−z | x)ρ̂(−z′ | x) − ρ̄2. (59)

To proceed further, we make one more assumption, and we
restrict ourselves to the case in which the initial configuration
was obtained from some translationally invariant distribution
on the real line by removing all particles from the positive
half, i.e.,

C(z, z′) = ρ̄ θ (z)θ (z′)C(z − z′), (60)

where θ (z) is the Heaviside function.
Introducing the Fourier transform of the two-point correla-

tion function

C(z) = 1

2π

∫ ∞

−∞
dq eiqzS(q), (61)

we rewrite (58) as

Varic[T ]= ρ̄

2π

∫ ∞

0
dz
∫ ∞

0
dz′
∫ ∞

−∞
dq eiq(z−z′ )S(q)〈T 〉z〈T 〉z′ .

(62)

Substituting (39) into (62) after rescaling of integration vari-
ables z = y

√
4Dt and q = p/

√
4Dt , we arrive at

Varic[T ] = ρ̄ t3/2

π
√

D

∫ ∞

0
dy
∫ ∞

0
dy′

∫ ∞

−∞
d p eip(y−y′ )

× S

(
p√
4Dt

)(
1√
π

e−y2 − yerfc[y]

)

×
(

1√
π

e−y′2 − y′erfc[y′]
)

. (63)

At large times, the integral over p gives us a δ-function,
simplifying (63) to

Varic[T ] = S(0)
2ρ̄ t3/2

√
D

∫ ∞

0
dy

(
1√
π

e−y2 − yerfc[y]

)2

.

(64)

The factor S(0) in (64) is exactly the Fano factor αic of the
initial condition (12) (for more details, see, e.g., Ref. [9],
Sec. IV). After straightforward computation, we arrive at

Varic[T ] = S(0)
2

3
(
√

2 − 1)
ρ̄ t3/2

√
πD

= αic
2

3
(
√

2 − 1)
ρ̄ t3/2

√
πD

. (65)

Finally, combining (65) with (54), we obtain

Varan[T ] = 2

3

ρ̄ t3/2

√
πD

[1 + (1 −
√

2)(1 − αic )]. (66)

This is exactly the result stated in (11).
From (52) we see that the quenched variance does not

depend on the fluctuations of the initial condition. Actually
this is true not only for the variance, but also for the full
distribution Pqu[T, t]. To show this, we rewrite the definition
of the quenched distribution (8) in terms of the empirical
density (41). Since particles do not interact, this can be done
easily. First we note that

log〈e−pT 〉x =
∑

i

log〈e−pT 〉xi (67)

and hence

log〈e−pT 〉x =
∫ ∞

0
dz ρ̂(−z | x) log〈e−pT 〉z. (68)

Averaging over initial conditions, we arrive at

exp[log 〈e−pT 〉x] = exp

[
ρ̄

∫ ∞

0
dz log〈e−pT 〉z

]
(69)

therefore∫ ∞

0−
dTe−pTPqu[T, t] = exp

[
ρ̄

∫ ∞

0
dz log〈e−pT 〉z

]
. (70)

This means that the quenched average neglects all configura-
tions except for the typical one.

Let us now have a closer look at (66) in two particular
cases. First, if the initial coordinates of the particles are inde-
pendently drawn from the uniform distribution on the segment
[−L, 0], then C(z − z′) = δ(z − z′), hence S(q) is a constant
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S(q) = S(0) = αic = 1. Therefore, (64) is valid at any time t
and not only at large times. The variance in this case is

αic = 1 : Varan[T ] = 2

3

ρ̄ t3/2

√
πD

. (71)

Second, we note that if the initial condition is such that
αic = 0, then the quenched and annealed variances coincide,

αic = 0 : Varan[T ] = Varqu[T ] = 2

3
(2 −

√
2)

ρ̄ t3/2

√
πD

. (72)

This suggests that a typical configuration should have αic = 0.

IV. LARGE DEVIATION FUNCTIONS

Mean and variances that we computed in Sec. III B suggest
that at large times, probability distributions behave as

Pan[T, t] ∼ exp[−ρ̄
√

4Dt �an(τ )],

Pqu[T, t] ∼ exp[−ρ̄
√

4Dt �qu(τ )], (73)

where τ = T
ρ̄t . In the quenched averaging scheme, the prob-

ability distribution and hence the large deviation function
�qu(τ ) is the same for all considered initial conditions [under
assumptions (45) and (60)]. On the other hand, the annealed
large deviation function depends on the initialization, there-
fore we need to specify it. Since the particles do not interact,
the most natural choice is uncorrelated uniform distribution.
Essentially this means that we take the initial configuration
from the equilibrium.

A. Annealed large deviation function

As was mentioned previously, to model uniform initializa-
tion, we first consider N particles uniformly distributed on the
segment [−L; 0] and then take the limit N, L → ∞ with the
ratio ρ̄ = N/L being fixed. Then the right-hand side of (7) is

〈e−pT 〉x =
[∫ L

0

dx

L
〈e−pT 〉x

]N

. (74)

Using the explicit form of 〈e−pT 〉x (37), we obtain∫ L

0

dx

L
〈e−pT 〉x

=
∫ L

0

dx

L

(
erf

[ |x|√
4Dt

]
+ e− |x|2

4Dt erfcx

[
pt + |x|√

4Dt

])
. (75)

The integral in (75) can be computed exactly, resulting in∫ L

0

dx

L
〈e−pT 〉x

= 1 − 1

L

(√
4Dt

π
− 2D

p
+ 2D

p
erfcx

[
p

√
t

4D

])
. (76)

Combining (74) with (76), we obtain in the thermodynamic
limit N, L → ∞ with fixed ρ̄ = N/L

〈e−pT 〉x = exp[−ρ̄
√

4Dt φan(q)], q = p

√
t

4D
, (77)

where φan(q) is

φan(q) = 1√
π

− 1

2q
+ 1

2q
erfcx[q]. (78)

This is the same function as (15) [recall the definition of
erfcx(x) (38)].

In principle, to find the probability distribution of local
time density T , we need to invert the Laplace transform∫ ∞

0−
dT e−pTPan[T, t] = 〈e−pT 〉x (79)

with 〈e−pT 〉x given by (77). However, since we are interested
in the large deviation function, we instead substitute the ansatz
(73), and after rescaling τ = T

t ρ̄ , we arrive at∫ ∞

0−
dτ e−ρ̄

√
4Dt[qτ+�an(τ )] = exp[−ρ̄

√
4Dt φan(q)]. (80)

At large times, we can compute the integral over τ in the
saddle-point approximation. By comparing the exponents, we
find

min
τ

[qτ + �an(τ )] = φan(q), (81)

and after inverting the Legendre transform we get the follow-
ing expression for the large deviation function:

�an(τ ) = max
q

( − qτ + φan(q)). (82)

This is a concave function with a minimum at some value τmin,
which we will compute later. Of course it should coincide with
the mean value we have already found in Sec. III B, hence we
expect τmin = 1/2.

The explicit form of φan(q) along with (82) give a paramet-
ric representation for the large deviation function, allowing
us to plot �an(q) (see Fig. 2). Also by studying behaviors
of φan(q) at q → 0, q → ∞, and q → −∞, one can find
asymptotic behaviors of �an(τ ) for τ → τmin, τ → 0, and
τ → ∞, respectively. Below we provide this derivation.

1. Typical fluctuations T ∼ 〈T〉x

First we consider the case of typical T . To analyze the
behavior of �an(τ ) in proximity to τ = τmin, we need to study
φan(q) around 0. Expanding φan(q) in (78) in series for small
q up to the order q2 yields

φan(q) ∼ q

2
− 2

3
√

π
q2, q → 0, (83)

and hence

�an(τ ) ∼ max
q

(
− 2

3
√

π
q2 − q

(
τ − 1

2

))
. (84)

This is a quadratic function, so we easily find that

�an(τ ) ∼ 3

8

√
π

(
τ − 1

2

)2

, τ → τtyp = 1

2
. (85)

Thus at large times, close to the mean value, the probability
distribution of T is given by

Pan[T, t] ∼ exp

[
−ρ̄

√
4Dt

3

8

√
π

(
T

t ρ̄
− 1

2

)2
]
. (86)
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That is a Gaussian distribution with mean ρ̄t
2 and variance

2
3

ρ̄t3/2√
πD

, which coincides with (66) (recall that for the uncor-
related uniform initial condition, we have αic = 1).

2. Atypical fluctuations 〈T〉 � 〈T〉x

The behavior of the large deviation function for τ → 0
is governed by q → ∞. Using an asymptotic expansion for
erfcx(x),

erfcx[x] = ex2
erfc[x] ∼ 1

x

1√
π

, x → ∞, (87)

we find the behavior of φan(q) in (78) for q → ∞,

φan(q) ∼ 1√
π

− 1

2q
, q → ∞, (88)

and hence

�an(τ ) ∼ max
q

(
1√
π

− 1

2q
− qτ

)
. (89)

The maximum of this function is reached at q = 1√
2τ

, thus

�an(τ ) ∼ 1√
π

−
√

2τ , τ → 0. (90)

3. Atypical fluctuations 〈T〉 � 〈T〉x

The behavior of the large deviation function for τ → ∞ is
governed by q → −∞. In this limit, the asymptotic expansion
for erfcx[x] reads

erfcx[x] ∼ 2ex2 + 1

x

1√
π

, x → −∞. (91)

Using (91), we find that

φan(q) ∼ 1√
π

+ eq2

q
, q → −∞, (92)

and

d

dq
[φan(q) − qτ ] ∼ eq2

(
2 − 1

q2

)
− τ ∼ 2eq2 − τ, (93)

hence the maximum value in (82) corresponds to q =
±√log τ

2 . Since the behavior of the large deviation function is
dictated by q → −∞, we choose the solution with the minus
sign q = −√log τ

2 , therefore

�an(τ ) ∼ 1√
π

+ eq2

q
− qτ

∣∣∣∣∣
q=−

√
log τ

2

(94)

which gives us

�an(τ ) ∼ τ

(√
log

τ

2
− 1

2
√

log τ
2

)
, τ → ∞. (95)

B. Quenched large deviation function

According to (70), the quenched probability distribution is
given by∫ ∞

0−
dTe−pTPqu[T, t] = exp

[
ρ̄

∫ ∞

0
dz log〈e−pT 〉z

]
. (96)

Analogously to the annealed case, we substitute an ansatz
for the probability distribution (73) and the explicit form
of 〈e−pT 〉z (37) into (96). Then, after rescaling τ = T

t ρ̄ , q =
p
√

t
4D , we find the parametric representation for the quenched

large deviation function in the saddle point approximation.
Namely,

�qu(τ ) = max
q

[ − qτ + φqu(q)], (97)

where

φqu(q) = −
∫ ∞

0
dz log[erf (z) + e−z2

erfcx(q + z)]. (98)

Now we again extract the asymptotic behavior of �qu(τ ) from
φqu(q). The procedure is exactly the same as in the annealed
case, yet calculations are a bit more involved. We provide
them below.

1. Typical fluctuations T ∼ 〈T〉x

The asymptotic behavior of �qu(τ ) close to the typical
value of τ can be extracted from φqu(q) close to q = 0. We
expand the integrand in (98) and after straightforward calcu-
lation arrive at the following expansion for φqu(q):

φqu(q) ∼ 1

2
q − 2

3
√

π
(2 −

√
2)q2, q → 0. (99)

To obtain the large deviation function behavior, we need to
compute

�qu(τ ) ∼ max
q

[
q

(
1

2
− τ

)
− 2

3
√

π
(2 −

√
2)q2

]
. (100)

This is again a quadratic function. Maximizing it, we find that

�qu(τ ) ∼ 3

8

√
π

2 − √
2

(
τ − 1

2

)2

, τ → τtyp = 1

2
, (101)

which means that close to the typical values of T the proba-
bility distribution Pqu[T, t] is

Pqu[T, t] ∼ exp

[
−ρ̄

√
4Dt

3

8

√
π

2 − √
2

(
T

ρ̄t
− 1

2

)2
]
. (102)

That is again, in agreement with (10), a Gaussian distribution
with the mean ρ̄t

2 and the variance 2
3

2−√
2√

πD
ρ̄t

3
2 .

2. Atypical fluctuations T � 〈T〉x

Analyzing φqu(q) for q → ∞, we find the behavior of
�qu(τ ) for atypically small values of τ . Replacing erfcx(q)
in (98) by its asymptotic expansion (87), we get

φqu(q) ∼ −
∫ ∞

0
dz log

[
erfz + e−z2 1

q
√

π

]
, q → ∞.

(103)

The large q behavior of this integral can be conveniently found
by the following trick. Taking the derivative of (103) with
respect to q, we obtain

∂

∂q
φqu(q) ∼ 1

q2

∫ ∞

0

dz
1
q + √

πez2 erfz
. (104)
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This integral diverges as q → ∞, and to obtain the behavior
of φqu we can find the leading term with respect to q and then
integrate it back. There are many ways to extract the divergent
part of the integral in (104). Here we use the Pauli-Willars
regularization. That is, we formally rewrite (104) as∫ ∞

0
dz

1
1
q + √

πez2 erfz

=
∫ 1

0
dz

(
1

1
q + √

πez2 erfz
− 1

2z + 1
q

)

+
∫ ∞

1

dz
1
q + √

πez2 erfz
+
∫ 1

0

dz

2z + 1
q

(105)

and note that in (105) all integrals but the last one are conver-
gent as q → ∞. Therefore, we have

∂

∂q
φqu(q) ∼ 1

q2

∫ 1

0

dz

2z + 1
q

∼ log q

2q2
. (106)

Integrating this back (in the leading order) yields

φqu(q) ∼ φqu(∞) − log q

2q
, q → ∞. (107)

The constant of integration φqu(∞) can be computed from
(98) and is given by

φqu(∞) = −
∫ ∞

0
dz log[erfz] ≈ 1.034 42. (108)

Therefore, for the large deviation function we have

�qu(τ ) ∼ max
q

(
−qτ + φ∞ − log q

2q

)
. (109)

To maximize the expression above, we take the derivative with
respect to q arriving (in the leading order) at

−τ + log q

2q2
= 0. (110)

The large q behavior can be found by first solving this equa-
tion with respect to q as q2 = (log q)/2τ and then iteratively
substituting this expression into itself. In the leading order, the
solution of (110) yields

q =
√

− log τ

4τ
. (111)

Therefore, the large deviation function at small τ is given by

�qu(τ ) ∼ φ∞ −
√

−τ log τ , τ → 0. (112)

As a side remark, we mention that after the change of vari-
ables q = e−u/2, Eq. (110) transforms into 4τ + ueu = 0. The
solution of this equation is given by the lower branch of the
Lambert W -function u = W−1(−4τ ). This fact may be useful,
for example, when computing subleading corrections.

3. Atypical fluctuations T � 〈T〉x

Finally, we need to study the behavior of φqu(q) as q →
−∞ to get the asymptotic of �qu(τ ) for large values of τ .

First we rescale the variable of integration in (98) to get

φqu(q) = q

2
×
∫ ∞

0
dy log

[
erf
(
−qy

2

)

+ eq2(1−y)erfc
(

q − qy

2

)]
. (113)

As q → −∞, it simplifies into

φqu(q) ∼ q

2

∫ ∞

0
dy log[1 + 2eq2(1−y)], q → −∞. (114)

Integrating by parts yields the complete Fermi-Dirac integral,
which we can compute in terms of the polylogarithm function

φqu(q) ∼ −q3

2

∫ ∞

0
dy

y

1 + 1
2 eq2(y−1)

∼ 1

2q
Li2(−2eq2

), q → −∞. (115)

Using the asymptotic expansion Li2(z) ∼ − 1
2 log2(−z), we

find

φqu(q) ∼ q3

4
+ q

2
log 2, q → −∞. (116)

This means that the large deviation function is given by

�qu(τ ) ∼ max
q

(
−qτ + q

4
(q2 + 2 log 2)

)
. (117)

Maximizing this function, we finally obtain

�qu(τ ) ∼ 4

3
√

3
τ 3/2, τ → ∞. (118)

V. NUMERICAL SIMULATIONS

To support our analytical results, we have performed nu-
merical simulations. One of the possible ways to explore the
probability distribution is to sample N single-particle local
times directly from (36). Then the sum of these single-particle
local times is the local time of the system of particles. But
by doing so, we cannot reach atypically small and atypically
large values of the local time. This problem is not new at
all, and in a variety of situations it can be resolved by the
means of importance sampling Monte Carlo method (see, e.g.,
[32–36]). Here we shall implement this approach as well.

A. Importance sampling

Let us briefly recall the basics of the importance sampling
Monte Carlo. Suppose that we are interested in the average
value of some observable O which depends on a random value
z with probability distribution P [z],

〈O(z)〉 =
∫

dz P [z]O(z). (119)

The usual Monte Carlo strategy is to get n samples of zi from
P [z] and estimate the average by

〈O(z)〉 ≈ 1

n

∑
i

O(zi ), zi ← P [z]. (120)

The larger the value of n, the more accurate is (120), and in
the limit n → ∞ it becomes exact. From the first look at the
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problem we consider there seems to be no natural observable,
since we need to study the probability distribution itself. But
actually we can explore the distribution by choosing O(z) to
be an indicator function

O(z) = 1[z1,z2](z) =
{

1, z ∈ [z1, z2],

0, z /∈ [z1, z2].
(121)

Indeed, the average value of such an observable is exactly the
probability that z lies in the segment [z1, z2],

〈O(z)〉 = 〈1[z1,z2](z)〉 = P [z1 � z � z2]. (122)

If we choose the segment to be [z, z + dz] with sufficiently
small dz, then we get the probability density P [z] itself,
namely

〈1[z0,z0+dz](z)〉 = P [z0]dz. (123)

However, the smaller the value of P [z0], the more samples
we need in (120) to obtain an accurate estimation of P [z0].
Therefore, this strategy is ill-suited at the tails of the distribu-
tion, where P [z0] is usually very small. The workaround is to
introduce a bias. Let us formally rewrite (119) as

〈O(z)〉 =
∫

dzQ[z]

(
O(z)

P [z]

Q[z]

)
(124)

with Q[z] being an arbitrary probability distribution. By com-
paring (119) with (124), we see that to get the mean value
of 〈O(z)〉, we can sample z from Q[z] and not from P [z].
The idea is to chose Q[z] which is not too small at the tails,
say when z → ∞. The price to pay is reweighting of the
observable, i.e., instead of (120) we should use

〈O〉 ≈ 1

n

∑
i

O(zi)
P [zi]

Q[zi]
, zi ← Q[z]. (125)

The results we get from (120) and (125) are indeed equivalent
in the limit n → ∞. However, in practice, by an appropri-
ate choice of Q[z] we can drastically reduce the number of
samples required to get a sufficiently accurate estimation of
〈O(z)〉.

Now we proceed to the implementation of the importance
sampling to the local time density. Note that when dealing
with this type of problem, one usually resorts to the Metropo-
lis algorithm to explore the probability distribution P [z] for
atypical values of z. However, since the probability distribu-
tion of the local time of single particle (36) is fairly simple, we
can sample from it directly. The direct sampling approach is
more efficient, therefore here we use it and not the Metropolis
algorithm.

B. Single particle

Let us start with a simple case and consider a single
Brownian particle initially located at x0. Then the probability
distribution of the local time P [T, t | x0] is given by (36). This
distribution is almost Gaussian, hence we can sample from
it directly. To explore the tails of the distribution, we use
an importance sampling with an exponential tilt. Namely, we
choose the distribution Q[T, t | x0] in (125) to be

Q[T, t | x0] = e−β T
t

Z (β, x0)
P [T, t | x0], (126)

where β is an adjustable parameter, and Z (β, x0) is a normal-
ization,

Z (β, x0) =
∫ ∞

0−
dTe−β T

t P [T, t | x0]

= erf

[ |x0|√
4Dt

]
+ e− x2

0
4Dt erfcx

[
β + |x0|√

4Dt

]
. (127)

In (127) we again used a scaled complementary error function
erfcx(x) (38). Recall that the initial position of the particle x0

and observation time t are fixed, hence x0 and t in (126) are
just parameters of the distributions.

By varying β in (126), we get different parts of the distri-
bution. Positive (negative) values of β exponentially bias the
trajectories with small (large) local times.

C. Quenched distribution

As we argued in Sec. III, the quenched probability dis-
tribution does not depend on the fluctuations of the initial
condition, and it is governed solely by the typical configu-
ration. But what is this typical configuration? One can argue
[6] that the typical initial configuration consists of equidis-
tantly distributed particles. In our simulations, to mimic the
quenched distribution we consider the deterministic initial
condition and fix the initial position of the ith particle to be

xi ≡ xi(0) = − i − 1
2

ρ̄
, i = 1, . . . , N. (128)

In fact, we can introduce fluctuations in the initializa-
tion (128) without impacting the probability distribution at
large times. In other words, we have a set of “typical con-
figurations” which can be used to compute a quenched
large deviation function (see Appendix B for the detailed
discussion).

The initial condition (128) is deterministic, and the only
randomness in the local time T is the one originating from
the stochasticity of the Brownian trajectories. This is very
convenient for the numerical simulations.

The local time of the system is the sum of the single-
particle local times. Since there is no interaction, these are
independent random variables. This means that we can sample
N values of single-particle local times Ti from the tilted distri-
bution (126) and reweight the sum. That is, the probability
density Pqu[T, t] at T = ∑

j Tj can be estimated with the
observable 1[T,T +dT ] as

Pqu[T, t] dT ≈ 1

n

n∑
i=1

1[T,T +dT ]

⎛
⎝∑

j

Tj

⎞
⎠ N∏

j=1

P [Tj, t | x j]

Q[Tj, t | x j]
,

(129)

with Tj sampled from the distribution Q[T, t | x j] (126),

Tj ← Q[T, t | x j]. (130)

In simulations we used L = 104, N = 104 (hence ρ̄ = 1),
D = 1

2 , t = 104. For each value of β we produce 106 configu-
rations of trajectories (which means 1010 samples of a single
particle local time). Note that for the infinite box approxima-
tion to be valid, we should have L � √

Dt . To get the large
deviation function from the probability distribution, we use
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FIG. 4. Analytical result for the large deviation function in the quenched case obtained from (16) and (17) (solid lines) and numerical
results of the simulations. Different shapes correspond to the different values of tilt β in (129).

(13) and calculate the proportionality constant numerically for
given parameters ρ̄, D, and t . The resulting plots are given in
Fig. 4.

D. Annealed distribution

In principle, to get a sample of the local time T from
Pan[T, t] (7), we can do the following: first we sample initial
coordinates xi of the ith particle from a uniform distribution on
the segment [−L, 0]; then we sample N single-particle local
times from the conditional distribution P [T, t | xi] given by
(36); finally, to get a sample of T , we compute the sum of Ti

obtained on the previous step.
The difference with respect to the quenched case is that

now the fluctuations of the initial condition have an impact on
the local time. For example, if we take an atypical configu-
ration in which all particles are located far from the origin,
then the local time will be much smaller than the typical
value. Similarly, if all particles are initially located close to
the origin, then the local time is much larger than the typical
value. In practice, this means that sampling xi from the uni-
form distribution performs poorly. To deal with such atypical
fluctuations, we perform importance sampling for both x and
T . In other words, we introduce a bias for trajectories and
initial coordinates at the same time.

The importance sampling strategy is now as follows: first
we sample the initial coordinates xi from a distribution F [x],
which we will define shortly; then we sample N single-particle
local times from the tilted conditional distribution Q[T, t | xi]
given by (126); to get a sample of T , we compute the sum of
Ti and reweight it appropriately. Then similarly to (129), the
probability density Pan[T, t] at T = ∑

j Tj can be estimated
as

Pan[T, t] dT

≈ 1

n

n∑
i=1

1[T,T +dT ]

⎛
⎝∑

j

Tj

⎞
⎠ N∏

j=1

P [Tj, t | x j]

Q[Tj, t | x j]

1/L

F [x j]
, (131)

where x j and t j are sampled from F [x] and Q[T, t | x j], re-
spectively,

x j ← F [x], Tj ← Q[T, t | x j]. (132)

The factor 1/L in (131) is the density of the uniform distribu-
tion on the segment [−L, 0].

The task now is to find a good distribution F [x]. To do
this, it is convenient first to understand in more detail why

sampling from the uniform distribution performs poorly. Sup-
pose that we bias only trajectories, i.e., perform only an
exponential tilt in T (126) and choose F [x] to be a uniform
distribution on the segment [−L, 0]. Then (131) transforms
into

Pan[T, t] dT ≈ 1

n

n∑
i=1

1[T,T +dT ]

⎛
⎝∑

j

Tj

⎞
⎠ N∏

j=1

eβ
Tj
t Z (β, x j ).

(133)

Let us have a closer look at the atypically large values of
T . Such values correspond to the large and negative β. If x is
close to the origin, then the behavior of Z (β, x) is dictated by
the second term in (127) and reads

Z (β, x) ∼ 2 exp

[
β|x|
2Dt

]
, x → 0, β → −∞, (134)

whereas if x is far from the origin, then the second term in
(127) vanishes while the first term is equal to erf (∞) = 1.
Therefore, Z (β, x) decays exponentially in proximity to the
origin and becomes a constant as we move far away from
it. This means that in fact the sum (133) is dominated by
the small values of x, but we rarely get such values when
sampling x from the uniform distribution. The way to resolve
this problem would be to choose F [x] as

Foptimal[x] = 1

Z0(β )
Z (β, x) (135)

with the normalization

Z0(β ) =
∫ 0

−L
dy Z (β, y). (136)

By choosing F [x] as in (135), we essentially embed the fact
that configurations with x close to the origin are exponentially
more important in the sampling of x. Unfortunately, sampling
from distribution (135) is a nontrivial task on its own [recall
the expression for Z (β, x) (127)]. Therefore, instead we use an
approximate distribution Fapprox[x], which captures the main
features of Foptimal[x] but at the same time is easy to sample
from. These main features are behaviors at x = 0 and x = −L.
Namely, we sample x from

Fapprox[x] = c1 exp

[
β|x|
2Dt

]
θ (x0 − |x|) + c2 θ (|x| − x0).

(137)
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× ×

FIG. 5. Probability distributions Foptimal[x] (135) (solid lines) and Fapprox[x] (137) (dashed lines) in the vicinity of the origin for β = −120
(left plane) and β = 600 (right plane). For the plots we used L = 104, D = 1/2, and t = 104.

Parameters x0, c1, and c2 are fixed by requiring that Fapprox[x]
is a continuous function, is properly normalized,∫ 0

−L
Fapprox[x]dx = 1, (138)

and has the same asymptotic expansion as Foptimal[x] at x = 0,

Fapprox[0] = Foptimal[0]. (139)

Recall that both functions Fapprox[x] and Foptimal[x] are expo-
nential in proximity to the origin, and by requiring (139) we
fix the coefficient in front of the exponent.

The above-mentioned conditions can be solved analyti-
cally, resulting in the explicit expressions for x0, c1, and c2 as
functions of the tilt parameter β (for a fixed t , D, and L). For
the comparison between Fapprox[x] and Foptimal[x], see Fig. 5.

Indeed, there are many ways to choose the probability dis-
tribution F [x], and not only (137). Actually, we have justified
the choice (137) only for negative β. If β is positive, then the
second term in (127) vanishes as β → ∞ and

Z (β, x) ∼ erf

[ |x|√
4Dt

]
, β → ∞. (140)

This means that the distributions (137) and (135) have differ-
ent behaviors close to the origin. However, by construction
the values of Foptimal[x] and Fapprox[x] at x = 0 are the same,
and for large x both functions are constants. In practice this
is enough, and the distribution (137) approximates (135) rea-
sonably well (see Fig. 5). The reminiscence of the different
behaviors in proximity to the origin can be seen in the error at

the edges of the probability distributions obtained numerically
for positive values of β (see Fig. 6 on the left).

In summary, to obtain the probability density of the an-
nealed distribution, we use prescriptions (131) and (132) with
probability distributions F [x] and Q[T, t | x] given by (137)
and (126), respectively. To compare the numerics with the an-
alytical result, we again compute the proportionality constant
in (13) numerically. The resulting plots are given in Fig. 6.

The parameters for the simulations are the same as in the
quenched case. Namely L = 104, N = 104 (hence ρ̄ = 1),
D = 1

2 , and t = 104 with 106 configurations of trajectories for
each value of β.

VI. CONCLUSION

We have considered the system of noninteracting Brownian
particles on the line with a steplike initial condition. For a
particular observable, i.e., the local time density at the origin,
we have obtained several results.

We have investigated the behavior of the mean and the
variance for the steplike initial condition revealing a per-
sistent memory of the initialization. We have demonstrated
that the influence of the initial condition on the variance is
governed by the Fano factor of the initial condition. For the
uncorrelated uniform initial conditions, we considered two
averaging schemes: annealed and quenched. In both cases
we have provided a description of the large time behavior of
the local time density at the origin by computing the large
deviation functions. To support our analytical results, we have

FIG. 6. Analytical result for the large deviation function in the annealed case obtained from (14) and (15) (solid lines) and numerical results
of the simulations. Different shapes correspond to the different values of tilt β in (131).
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conducted extensive numerical simulations utilizing the im-
portance sampling Monte Carlo method.

Our analytical calculations are based on the Feynman-Kac
formalism. Since this formalism can be applied to a wide
range of Brownian functionals and not only to the local time
density, it is natural to investigate other observables. For ex-
ample, one can perform similar analysis for the occupation
time or for the area under Brownian excursion. Addition-
ally, it would be intriguing to address analogous problems in
different systems, such as Brownian motions with a drift or
with resetting, noncrossing Brownian motions, or systems of
active particles (where run-and-tumble particles serve as a toy
model). It is known that in these systems, dynamical phase
transitions may occur [8,19,37,38]. Therefore, it becomes per-
tinent to inquire how the initial condition may impact these
phase transitions. It would also be interesting to extend the
formalism developed here for Brownian particles to the case
of anomalously diffusing independent particles, such as for
Lévy flights.

Furthermore, introducing interactions into the system is
of particular interest as well. For example we can consider
a system of Brownian particles with annihilation or coales-
cence. It is known [39] that in such systems, the distribution
of the number of particles that infiltrate the positive half-line
is asymptotically stationary. Therefore, it is natural to ask
whether this is also the case for the distribution of the local
time.

APPENDIX A: INVERSION OF THE LAPLACE
TRANSFORM

In this Appendix, we compute the inverse Laplace trans-
form of (35). To simplify the calculations, we first invert the
transform T �→ p to get the Q(T, α | x),

Q(T, α | x) =
∫ ∞

0−
dα e−αt P [T, t | x]. (A1)

The analytical structure of (34) as a function of p is fairly sim-
ple. Namely, it has a single pole at p = −√

4αD. Therefore,
the first Laplace transform is easy to invert,

Q(T, α | x) = 1

α
(1 − e−

√
α
D |x|) δ(T ) +

√
4D

α
e−

√
α
D (|x|+2DT ).

(A2)

Now we need to invert the second Laplace transform t �→ α.
The right-hand side of (A2) has a branch cut in the α-plane.
To compute P [T, t | x], we deform the contour of integration
C1 in the Bromwhich inversion formula,

P [T, t | x] = 1

2π i

∫
C1

dα Q(T, α | x)eαt , (A3)

to another contour C2 as shown in Fig. 7. Then we rep-
resent the integral over C2 as a sum of two integrals over
s ∈ (−∞, 0]. Changing the variables s = −u2D and using the
identity

1

2π

∫ x

0
dy(eiuy + e−iuy) = 1

u

eiux − e−iux

2π i
(A4)

C1

α

C2

FIG. 7. Contour transformation.

after some algebraic manipulations, we find that

P [T, t | x] =
(

1 + 1

π

∫ |x|

0
dy
∫ ∞

−∞
due−D u2t+iu y

)
δ(T )

+ 2D

π

∫ ∞

−∞
du e−D u2t−iu(2DT +|x|). (A5)

Computing Gaussian integrals, we arrive at

P [T, t | x] =
(

1 + 1

π

√
π

Dt

∫ |x|

0
dy e− y2

4Dt

)
δ(T )

+ 2D

π

√
π

Dt
exp

[
− (2DT + |x|)2

4tD

]
. (A6)

Rewriting (A6) in terms of erf (x) yields exactly (36).

APPENDIX B: QUENCHED DISTRIBUTION
AND HYPERUNIFORM INITIALIZATION

In this Appendix, we give a rigorous proof demonstrating
that the typical configuration can be selected from a particular
class. This class involves particles that are distributed in an
approximately equidistant manner.

Consider the initial distribution such that the position of the
ith particle is sampled from the distribution pi(x) with the only
constraint that this distribution is supported on the segment χi

defined as

χi =
[
− i

ρ̄
,− i − 1

ρ̄

]
. (B1)

Essentially this means that particles are distributed equidis-
tantly with some small fluctuations. In this scenario, the
number of particles initially located in some segment has a
variance that scales much slower than the size of the segment
(in fact, it is bounded by a constant). Therefore, the distribu-
tion of the initial coordinates of particles belongs to the class
of hyperuniform distributions. Consequently, following [2] we
refer to this initial condition as “hyperuniform.”

Let us now show that for the hyperuniform initial condition
at large times, the annealed probability distribution of the local
time density is equivalent to the quenched one. In other words,
this means that if we initialize particles in this manner, then
the initial configuration will always be a typical one. This is
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particularly important when performing numerics because to
find the large deviation function for the quenched distribution,
we need to point out the typical configuration.

The probability P(x1, . . . , xN ) of a given initial condition
is

P(x1, . . . , xn) =
∏

i

pi(xi ). (B2)

Using (B2), we express the averaging over realizations of
the initial coordinates, and we find that the full (annealed)
distribution (7) of the local time at the origin is given by

∫ ∞

0−
dTe−pTPhu[T, t] =

∏
i

∫
χi

pi(x)dx 〈e−pT 〉x. (B3)

We can replace the integrals above by the average values of
〈e−pT 〉x, which are reached at some points x∗

i ∈ χi,

〈e−pT 〉x =
∏

i

〈e−pT 〉x∗
i
= exp

[∑
i

log〈e−pT 〉x∗
i

]
. (B4)

Indeed, the exact values of x∗
i depend on the probability distri-

bution pi(x) as well as on t and p, but to simplify the notation
we omit this dependence.

The sum in (B4) looks like a Riemann sum, so it is tempt-
ing to approximate it by an integral, namely

1

ρ̄

∑
i

log[〈e−pT 〉x∗
i
] ≈

∫ ∞

0
dz log[〈e−pT 〉z]. (B5)

However, according to (B1) the size of the segments is 1/ρ̄.
This means that unless we consider the high density limit ρ̄ →
∞, the size of the segment cannot be considered small. There-
fore, the approximation (B5) should be justified. Fortunately,
in our case, it can easily be done. The Laplace transform of
the single-particle probability distribution 〈e−pT 〉z defined in
(37) and hence its logarithm are monotonous as functions of
x. Therefore, the sum and the integral in (B5) are bounded
between two sums,

S1 = 1

ρ̄

∑
i

log
[〈e−pT 〉 i−1

ρ̄

]
,

S2 = 1

ρ̄

∑
i

log
[〈e−pT 〉 i

ρ̄

]
. (B6)

The error of approximation (B5) is smaller than |S1 − S2|.
From (B6) it is evident that

|S1 − S2| = 1

ρ̄

∣∣∣∣∣
∑

i

〈e−pT 〉 i−1
ρ̄

− 〈e−pT 〉 i
ρ̄

∣∣∣∣∣. (B7)

Rearranging the terms, we see that the difference is defined by
the values of 〈e−pT 〉z at z = 0 and at z → ∞, namely

|S1 − S2| = 1

ρ̄
| log〈e−pT 〉z=0 − 〈e−pT 〉z→∞|. (B8)

Using the explicit form (37) of 〈e−pT 〉z, we find that
limz→∞〈e−pT 〉z = 1 and hence

|S1 − S2| = | log〈e−pT 〉z=0| = 1

ρ̄

∣∣∣∣∣log

[
e

p2t
4D erfc

(
p

√
t

4D

)]∣∣∣∣∣.
(B9)

At large times, it behaves as

|S1 − S2| ∼ 1

ρ̄
log

[
p

√
πt

4D

]
. (B10)

We see that the error of approximation (B5) is bounded by
a function that grows as t → ∞. The question is whether it
grows faster or slower than actual values of the quantities in
(B5). Since both the integral and the sum in (B5) are bounded
between S1 and S2, we can analyze either one of them. Let us
consider the integral

I =
∫ ∞

0
dz log[〈e−pT 〉z]. (B11)

From (37), after rescaling of the variables, we get

I =
√

4Dt ×
∫ ∞

0
du log

[
erfu + e−u2

erfcx

(
p

√
t

4D
+ u

)]
.

(B12)

For large times, this integral behaves as

I ∼
√

4Dt
∫ ∞

0
du log[erfu] ≈ −

√
4Dt 1.034, (B13)

hence for the relative error we have∣∣∣∣S1 − S2

I

∣∣∣∣ ∼ 1

ρ̄

log p
√

πt
4D√

4Dt
. (B14)

This means that the relative error of the approximation (B5)
decays with time and thereby this approximation is justified.

In practice, this means that to mimic quenched distribution,
we can initialize the system in an arbitrary way provided that
the ith particle is confined within the interval (B1).
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