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Asymptotic large deviations of counting statistics in open quantum systems
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We use a semi-Markov process method to calculate large deviations of counting statistics for three open
quantum systems, including a resonant two-level system and resonant three-level systems in the � and V
configurations. In the first two systems, radical solutions to the scaled cumulant generating functions are
obtained. Although this is impossible in the third system, since a general sixth-degree polynomial equation is
present, we still obtain asymptotically large deviations of the complex system. Our results show that, in these
open quantum systems, the large deviation rate functions at zero current are equal to two times the largest nonzero
real parts of the eigenvalues of operator −iĤ , where Ĥ is a non-Hermitian Hamiltonian, while at a large current
these functions possess a unified formula.
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I. INTRODUCTION

In the past two decades, the counting statistics of open
quantum systems [1–3] have attracted considerable theoretical
interest [4–16]. A widely accepted method is the tilted quan-
tum master equation (TQME) [2,3,12,17,18]. For instance, to
obtain the key scaled cumulant generating functions (SCGFs)
of large deviations [19], one can diagonalize the generator
of the TQME and solve for its largest real eigenvalue [2,3].
The TQME is very similar in form to the quantum master
equation (QME). Assume that the dimension of a quantum
system is D. Then, the generator is a D2 × D2 matrix. Because
the size of the matrix rapidly increases with the dimension, the
large deviation properties of open quantum systems are usu-
ally investigated numerically. There are few analytical results
[5,8,10,15,20].

Very recently, we proposed a semi-Markov process (sMP)
method to study this topic [20]. This method is directly based
on the probability interpretation of quantum jump trajectories
[17,21–25]. These trajectories, which pertain to the evolu-
tion of the wave functions of single quantum systems, are
composed of deterministic pieces and random collapses of
the wave functions. Figure 1 illustrates this picture: the gray
dot in the right column represents the states |1〉 of the three
quantum systems (a)–(c) from which the quantum trajectories
depart, the curve denotes the deterministic evolution of the
wave functions, and the arrows indicate the state to which the
wave functions collapse. Because the time intervals between
departure and termination are distributed nonexponentially
and are independent of previous histories, these processes are
sMPs [6,20,26–28]. In contrast to the TQME method, the
dimension in the sMPs method is equal to the number of
collapsed states, M, and the size of the involved generator is
M × M [7,20,28]. M is usually smaller than D. Hence it is
interesting to explore whether this method can reveal some
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unnoticed large deviation properties of quantum systems in
an analytical way. In this work, we report several findings for
resonant two-level systems and three-level quantum systems
in � and V configurations. These open quantum systems are
typical and have wide applications in quantum optics [29,30]
and quantum thermodynamics [31].

This paper is organized as follows. In Sec. II, we exactly
solve the SCGF of a simple two-level system and analyze
its asymptotic behaviors. A general computing scheme is de-
veloped. Section III studies a three-level quantum system in
the � configuration. We find that the SCGF of the system is
indeed identical to that of the two-level system. Section IV
focuses on asymptotically large deviations of a more chal-
lenging three-level system in the V configuration. To achieve
this aim, we determine the parameter space of this nontrivial
quantum system. In Sec. V, we unify these asymptotic SCGFs
and derive corresponding large deviation rate functions. Sec-
tion VI concludes this paper.

II. TWO-LEVEL SYSTEM

We start with the simple quantum system shown in
Fig. 1(a). It is driven by a resonant field and the surrounding
environment is a vacuum. The QME generator of the system
is

L[ρ] = −i[H, ρ] + k2

[
σ12ρσ21 − 1

2
{σ21σ12, ρ}

]
. (1)

Here, the Planck constant h̄ is set to 1,

H = −�2

2
(σ12 + σ21) (2)

is the interaction Hamiltonian between the system and the
field in the interaction picture, σ12 ≡ |1〉〈2|, σ21 ≡ |2〉〈1|, �2

is the Rabi frequency of the field driving the |1〉-|2〉 transition,
and k2 is the decay rate. The two-level system is assumed
to depart from the ground state |1〉 at time 0. Since only
one collapsed state is present, i.e., M = 1, the sMP method

2470-0045/2023/108(6)/064111(9) 064111-1 ©2023 American Physical Society

https://orcid.org/0000-0002-4396-2977
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.064111&domain=pdf&date_stamp=2023-12-06
https://doi.org/10.1103/PhysRevE.108.064111


FEI LIU PHYSICAL REVIEW E 108, 064111 (2023)

FIG. 1. Schematic diagrams of one two-level and two three-level
quantum systems. In the left column, the lines with double arrows
indicate resonant driving and the lines with a single arrow represent
spontaneous decays. In the right column, the gray dot represents the
states |1〉 of the quantum systems. The curve denotes the determin-
istic evolution of the wave functions that depart from the states. The
arrows on the curve point to the state |1〉 to which each wave function
eventually collapses.

indicates that the SCGF φ(λ) of the counting statistics is equal
to the largest real root of an algebraic equation [20,32]

p̂11(v) = e−λ, (3)

where λ ∈ (−∞,+∞) is a real parameter of the cumulant
generating function for the counting statistics. In Eq. (3),
p̂11(v) is the Laplace transform of p11(τ ) with parameter v:

p̂11(v) =
∫ ∞

0
p11(τ )e−τvdτ. (4)

The function p11(τ ) is the waiting time distribution in which
the system starts from |1〉, successively evolves, and eventu-
ally collapses to |1〉 at time τ . The quantum jump trajectory
theory [24] gives its expression:

p11(τ ) = k2‖σ12ψ (τ )‖2

= k2‖σ12 exp(−iτ Ĥ )|1〉‖2, (5)

where the non-Hermitian Hamiltonian is [24]

Ĥ = H − i

2
k2σ21σ12. (6)

For the simple two-level system, the exponential opera-
tor in Eq. (5) has a closed analytical expression. Taking its
Laplace transform and substituting the result into Eq. (3),
we find that the equation reduces to a cubic polynomial and
the SCGF is exactly solved [20,33]. Even so, the exponential
operator formula is too specialized to be available in other
quantum systems. Therefore, it would be more desirable if the
time waiting distribution could be solved by a general com-
puting scheme. To this end, we write the Laplace transform of
the wave function ψ (τ ) as

ψ̂ (v) = 1

v + iĤ
|1〉 = ĉ1(v)|1〉 + ĉ2(v)|2〉. (7)

Given the eigenvalues of the operator −iĤ as h1 and h2, the
coefficient of the wave function directly involved in Eq. (5) is

ĉ2(v) = i
�2

2

1

(v − h1)(v − h2)
. (8)

Note that the denominator is also a factorized form of the
determinant of the operator v + iĤ ; that is,

det(v + iĤ ) = v2 + k2

2
v + �2

2

4
. (9)

Then, the eigenvalues hi (i = 1, 2) are the two roots of the
quadratic polynomial; they are either nonrepeated (unequal)
or repeated (equal). Next, a partial fraction expansion is
performed on ĉ2(v) to obtain the Laplace transform p̂11(v).
Because this procedure depends on the roots’ properties, we
need to discuss them separately. For the case of nonrepeated
roots, that is, k2

2 �= 4�2
2, a calculation leads to

p̂11(v) = k2�
2
2

4

1

‖h1 − h2‖2

[
1

v − 2 Re(h1)
+ 1

v − 2 Re(h2)

− 2 Re

(
1

v − (h1 + h∗
2 )

)]
(10)

= k2�
2
2

2

1

(v − 2h1)(v − 2h2)(v − h1 − h2)
, (11)

where the unequal roots are h1/2 = −(k2 ±
√

k2
2 − 4�2

2)/4
and the asterisk (∗) represents complex conjugation. To arrive
at Eq. (11), we use an intermediate step, Eq. (10), which is also
beneficial in analyzing asymptotic behaviors of large devia-
tions. For the case of repeated roots, that is, h ≡ h1/2 = k2/4
for k2

2 = 4�2
2, we have [5,15]

p̂11(v) = k2�
2
2

2

1

(v − 2h)3
. (12)

It is worth emphasizing that Eq. (12) is indeed a special case
of Eq. (11), although the previous intermediate equation is no
longer valid. Substituting Eq. (11) into Eq. (3) and applying
Cardano’s formula for the cubic polynomial equation, the
SCGF of the two-level quantum system is [20,33]

φ(λ) = −k2

2
+ 3

√
q(λ)

2
+

√

(λ) + 3

√
q(λ)

2
−

√

(λ), (13)

where q(λ) = k2�
2
2eλ/2, 
(λ) = q2(λ)/4 + p3/27 is called

the discriminant of the cubic algebraic equation [34], and p =
(k2

2 − 4�2
2)/4 [35]. A brief description of the roots of cubic

polynomial equations is given in Appendix A.
Figure 2 depicts the SCGF (13) under two sets of param-

eters. These curves appear simple: they are monotonically
increasing; when λ approaches negative infinity, the data tend
toward constants, while when λ approaches positive infinity,
the data increase exponentially (see inset). Because these
characteristics are closely related to the large deviation prop-
erties [19], it is interesting to find the causes. We use Eq. (3)
instead of Eq. (13) to conduct this analysis. Although using
the latter equation is more direct, exact large derivation for-
mulas are very rare in general quantum systems. First, we
note that the denominator of Eq. (11) is a cubic polynomial.
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FIG. 2. Solid and dashed curves are the data of Eq. (13). The
parameters are set to k2 = 1, �2 = 0.4 (k2 > 2�2), and k2 = 1, �2 =
0.8 (k2 < 2�2). The dotted curves are the asymptotic behaviors of
the SCGF in the limit λ → −∞. The inset shows the asymptotic
behaviors in the opposite limit. A logarithmic scale is used for the
SCGFs therein.

We immediately have

φ(λ → +∞) ∼ −k2

2
+ 3

√
k2�

2
2

2
eλ/3, (14)

which has nothing to do with the roots’ properties and is
always valid. The situation is different for the opposite limit
λ → −∞. For k2 > 2�2, where the two roots are real and
unequal, Eq. (10) implies that

φ(λ → −∞) ∼ −1

2

(
k2 −

√
k2

2 − 4�2
2

) + k2�
2
2

|k2
2 − 4�2

2|
eλ.

(15)

For k2 < 2�2, where the two roots are complex conjugates,
h1 = h∗

2, we have

φ(λ → −∞) ∼ −k2

2
+ 2

k2�
2
2∣∣k2

2 − 4�2
2

∣∣eλ. (16)

In the second term on the right-hand side of Eq. (16), the
first coefficient 2 is due to Re(h1) = Re(h2). A comparison
between the exact SCGF (13) and the asymptotic formulas is
shown in Fig. 2. Their agreement is satisfactory [36]. Before
leaving the two-level system, we want to point out that the
first terms on the right-hand sides of Eqs. (15) and (16) can
be uniformly represented as 2hmax and hmax is the maximum
value of the real parts of the eigenvalues of the operator −iĤ
under the respective parameter regions.

III. THREE-LEVEL SYSTEM IN THE � CONFIGURATION

We apply the previous computing scheme to the three-
level quantum system schematically shown in Fig. 1(b). The

generator of the QME is the same as Eq. (1) except that the
interaction Hamiltonian in this system is

H = −�2

2
(σ12 + σ21) − �3

2
(σ23 + σ32), (17)

where σ23 ≡ |2〉〈3|, σ32 ≡ |3〉〈2|, and �3 is the Rabi fre-
quency of the field driving the |2〉-|3〉 transition. The large
deviation properties are still determined by Eq. (3). Because
this is a three-level system, we set its wave function in the
Laplace domain to

ψ̂ (v) =
3∑

i=1

ĉi(v)|i〉. (18)

A simple calculation leads us to

ĉ2(v) = i
�2

2

1

(v − h1)(v − h2)
. (19)

Here, hi, i = 1, 2, are nonzero eigenvalues of the non-
Hermitian operator −iĤ of the three-level system. They are
also nonzero roots of a cubic polynomial,

det(v + iĤ ) = v

(
v2 + k2

2
v + �2

2 + �2
3

4

)
, (20)

and h1/2 = −[k2 ±
√

k2
2 − 4(�2

2 + �2
3)]/4. When we com-

pare Eqs. (19) and (20) to Eqs. (8) and (9), we immediately
see that the Laplace transform of the time waiting distribution
and the following large deviation properties of the three-level
quantum system in the � configuration yield the same con-
clusions as in the two-level quantum system. We only need to
replace �2

2 in the latter by �2
2 + �2

3.

IV. THREE-LEVEL SYSTEM IN THE V CONFIGURATION

We now turn to the other three-level quantum system
schematically shown in Fig. 1(c). The Hamiltonian of the
system looks very similar to Eq. (17):

H = −�2

2
(σ12 + σ21) − �3

2
(σ13 + σ31), (21)

where σ13 ≡ |1〉〈3|, σ31 ≡ |3〉〈1|, and �3 is the Rabi fre-
quency of the field driving the |1〉-|3〉 transition. We apply
the previous computing scheme again. First, the three-level
system indicates that Eq. (18) should be used and the relevant
coefficient in the wave function is

ĉ2(v) = i
�2

2

v

(v − h1)(v − h2)(v − h3)
. (22)

Now, the eigenvalues of the operator −iĤ are hi, i = 1, 2, 3.
They are also the three roots of the determinant of the opera-
tor; that is,

det (v + iĤ ) = v3 + k2

2
v2 + �2

2 + �2
3

4
v + k2

2

�2
3

4
. (23)

Because these three roots distinguish the quantum system
in the V configuration from the quantum system in the
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FIG. 3. Parameter regions where the discriminant (24) takes neg-
ative, positive, and zero values. We see that the region in which

 < 0, or the triangular area enclosed by the two solid red curves
(
 = 0) and the y axis, occupies a very small area in the space. The
blue dashed line represents the equation q ∝ 9y/2 − 9z − 1 = 0. The
dark point is special, where p = q = 0 and 
 = 0. The inset depicts
2hmax as a function of z with fixed y = 1/4. The three vertical lines
represent the z values of parameter �3 that are used in Fig. 4.

� configuration, we need to analyze them carefully. If we
were not concerned about realistic values of the parameters,
these roots could be either one real and two complex conju-
gate roots or three real roots repeated or nonrepeated. This
property depends on whether the discriminant of the cubic
polynomial (23),


 =
( p

3

)3
+

(q

2

)2
, (24)

is positive or nonpositive, where p = (3b − a2)/3, q =
(9ab − 2a3 − 27c)/27, a = k2/2, b = (�2

2 + �2
3)/4, and c =

k2�
2
3/8. Note that we use the same notations p, q, and 
 as

in Eq. (13). We do not believe that this will cause confusion.
The reason for specifically defining these parameters is given
in Appendix A. Interestingly, when we explicitly write the
discriminant in terms of the physical parameters, we find that
it is simply proportional to

(3y + 3z − 1)3 + (9y/2 − 9z − 1)2, (25)

where we additionally define two dimensionless quantities,
y = (�2/k2)2 and z = (�3/k2)2. These two terms in paren-
theses correspond to dimensionless versions of (p/3)3 and
(q/2)2, respectively. In Fig. 3, we numerically depict the
regions where Eq. (24) takes positive, negative, and zero
values. Next, a partial fraction expansion is performed on
Eq. (22) to obtain the Laplace transform of the waiting
time distribution, p̂11(v). Because this procedure depends on
whether the roots are repeated or not, we discuss the two cases
separately.

FIG. 4. Solid and dashed curves are the SCGFs obtained by nu-
merically solving the sixth-degree polynomial equation. The values
of the parameters are k2 = 4, �2 = 2, and �3 = 0.2 for 
 < 0 and
are k1 = 4, �2 = 2, and �3 = 0.8 for 
 > 0 and q < 0. The large
deviation under a specific set of parameters (
 < 0) was discussed
in Ref. [5], where the TQME method was used. The dotted blue and
red curves show the asymptotic behaviors of the SCGFs in the limit
λ → −∞. Note that, for 
 < 0, we only retain the first constant term
and discard the exponential term in Eq. (29), since it would induce a
dramatic deviation from the data within the parameter range shown in
the figure. [In this situation, we can present an alternative asymptotic
formula that is more satisfactory in numerical precision by retaining
another term proportional to 1/(v − h1 − h2), where the three roots
have the order h3 < h2 < h1. Because the numerical aspects of the
large deviations are beyond the scope of this paper, we do not show
the results.] The inset compares the asymptotic behaviors and numer-
ical data in the opposite limit, where a logarithmic scale is also used
for the SCGFs.

A. Nonrepeated roots

For this case, after a simple calculation, we obtain

p̂11(v) = k2�
2
2

4

[
3∑

i=1

‖ai‖2 1

v − 2 �(hi )

+ 2
3∑

i=1

3∑
j>i

Re

(
aia

∗
j

1

v − (hi + h∗
j )

)]
(26)

= k2�
2
2

2

k2�
2
3/8 + ∏3

i=1(v − hi )∏3
i=1

∏3
j�i[v − (hi + h j )]

, (27)

where ai = hi/
∏′

j (hi − h j ) are the coefficients of the frac-
tions and the prime symbol means that i is not equal to j.
Analogous to the two-level system, we also use an interme-
diate step, Eq. (26). To derive Eq. (27), we apply Vieta’s
formulas for the cubic polynomial (23) [37]. Substituting this
result into Eq. (3), we see that the SCGF is the largest real
root of a sixth-degree polynomial equation. In general, it is
not solvable with radicals [37]. Hence a numerical algorithm
for solving roots is needed. Figure 4 shows data under two sets
of parameters.
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TABLE I. Conditions and parameters of the asymptotic SCGFs
φ(λ → −∞) in the three-level quantum system in the V configu-
ration. The first three lines concern the same Eq. (29). Note that
Eq. (32) is not included here.


 q hmax C Eq.

>0 <0 Re(h2) h2
1/‖h2 − h1‖4

>0 >0 h1 ‖h2‖2/[4 Im2(h2)‖h2 − h1‖2] (29)
<0 h1 h2

1/[(h1 − h2)(h1 − h3)]2

= 0 <0 h2 h2/3
2 /(h1 − h2)2/3 (33)

= 0 >0 h1 h2
1/(h2 − h1)4 (29)

We see that these curves of large deviations are similar to
those in the two-level system, which includes approaching ex-
ponential functions and some constants in limits of very large
|λ|. If the parameter v is positive and very large, the numerator
and denominator of Eq. (27) are simply proportional to v3 and
v6, respectively. Hence we have

φ(λ → +∞) ∼ −k2

3
+ 3

√
k2�

2
2

2
eλ/3. (28)

This explains the former characteristic. The latter is implied
in Eq. (26). For convenience, let us define the maximum value
hmax of the nonzero real parts of the three roots. This value
is determined by the signs of the discriminant 
 and the q
values. Table I explicitly lists them. We especially specify h1

as real therein; see also Eq. (A2). After simple calculations,
we obtain the asymptotic SCGFs

φ(λ → −∞) ∼ 2hmax + k2�
2
2

4
C eλ. (29)

Concrete expressions for the parameter C and their conditions
are given in Table I.

B. Repeated roots

Unlike in the two-level system, the situation of repeated
roots under 
 = 0 in the three-level system involves more
details. The reason is that the method of making a par-
tial fraction expansion depends on the number of repeated
roots. If p = q = 0, there are three equal real roots. Let
the root be h. We obtain the following partial fraction
expansion:

p̂11(v) = k2�
2
2

4

[
2!

(v − 2h)3
+ 1

4

(
h + k2

2

)
3!

(v − 2h)4

+
(

h + k2

2

)2 4!

(v − 2h)5

]
. (30)

Note that, in this case, h = −k2/6, �2 = √
8/27k2, and

�3 = √
1/27k2; see also the coordinates of the dark point

in Fig. 3. On the other hand, if pq �= 0, there are only two
equal roots. Let them be h2 and unequal h1. We obtain another

partial fraction expansion,

p̂11(v) = k2�
2
2

4

[
a2

1

v − 2h1
+ a2

21

v − 2h2
+ 2a1a21

1

v − (h1 + h2)

+ 2a1a22
1

[v − (h1 + h2)]2

+ 2a21a22
1

(v − 2h2)2
+ a2

22
2

(v − 2h2)3

]
, (31)

where a1 = h1/(h2 − h1)2, a21 = −h1/(h2 − h1)2, and a22 =
h2/(h2 − h1). We emphasize that, if Eqs. (30) and (31) were
written in the form of rational functions, they would become
the same Eq. (27). Hence the asymptotic SCFG φ(λ → +∞)
in the three-level system still follows Eq. (28). In the opposite
limit, for the case of three equal roots, Eq. (30) leads to

φ(λ → −∞) ∼ 2h + k2
5

√
16

81
eλ/5. (32)

For the case of two equal roots, we separate two further pos-
sibilities. One is that, for a parameter q < 0, the asymptotic
SCFG is

φ(λ → −∞) ∼ 2hmax + 3

√
k2�

2
2

2
C eλ/3, (33)

where the explicit hmax and C are given in Table I (the second
line from the bottom). The other possibility is that the parame-
ter q > 0. We find that the asymptotic SCGF φ(λ → −∞) has
the same expression as Eq. (29) and the parameter C changes
accordingly; see the last line in Table I.

V. ASYMPTOTIC LARGE DEVIATION RATE FUNCTIONS

The asymptotic SCGFs in the above quantum systems have
unified forms in the limit of very large |λ|:

φ(λ) ∼
⎧⎨
⎩

2hmax + C−eλ/n, λ → −∞,

C+eλ/3, λ → +∞.

(34)

Here, hmax is the maximum nonzero real part of the eigenval-
ues of the operator −iĤ , the number n takes the value 1,3,5,

and the coefficient C+ = 3

√
k2�

2
2/2 [38]. Considering that the

SCGFs are differential, we can directly apply the Legendre
transform on the functions to derive rate functions [19] in two
limits:

I ( j) = max
λ

{ jλ − φ(λ)}

∼
{−2hmax + n j ln [n j/(C−)] − n j, j → 0,

3 j ln (3 j/C+) − 3 j, j → +∞,

(35)

where j is the rate or the time average of the counting number.
This simple asymptotic rate function provides insights into

the large deviation properties of the counting statistics of
these open quantum systems. We see that, at a zero rate, the
function is exactly equal to −2hmax and its slope is negative
infinity. According to the large deviation principle, in the long
time limit, the probability distribution of the rate is p( j) ∼
exp[−t I ( j)] [19]. Because the rate is always nonnegative,
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FIG. 5. Dashed, dotted, and solid curves are the large deviation
rate functions of the three-level quantum system in the V configura-
tion. Except for the Rabi frequency �3, the parameters are the same
as those in Fig. 4. In particular, we denote the asymptotic behaviors
of the rate functions by drawing horizontal dotted lines, marking the
slope and formula. Note that the mean rates or the minimum values
of these rate functions are almost constant (≈0.4).

when it approaches zero, it is not very surprising that the
rate function I ( j) tends toward certain constants. However,
the physical meanings of these constants and the method of
approaching them are nonintuitive. On the other hand, for the
three-level system in the V configuration, the combination of
Fig. 3 and Table I shows that hmax may be a nondifferentiable
function on some Rabi frequencies. Indeed, this characteristic
arises at the curve made of the upper red solid line and dashed
blue line in Fig. 3. As an illustration, the inset therein depicts
the function in terms of z by fixing y = 1/4. We see that,
when the variable z is larger than a certain value, where the
determinant 
 is zero, hmax is almost fixed at a constant,
and when the variable crosses the value from the right and
approaches zero, the function rapidly increases to zero. Ac-
cording to Eq. (35), there is an apparent transition from very
improbable to probable in the random event of zero counting.
This argument is verified numerically in Fig. 5, where the
three rate functions of the SCGFs at different �3 values are
depicted.

From the perspective of quantum trajectories, the above
observation means that if these counting processes are long
but finite in time, at a larger Rabi frequency �3 on the
|1〉 − |3〉 transition, wave function collapses occur at a high
frequency in almost all trajectories. As �3 decreases and
becomes less than a certain value, trajectories with very few
collapses appear significantly often. This transition is rapid
[39]. In quantum physics, the situation of few collapses in-
dicates that, most of the time, the wave functions of the
three-level quantum system are in a superposition in which
the metastable state |2〉 is predominant [23]. Therefore, this
large deviation shares a common physical foundation with the

famous intermittent fluorescence [40–43]. Note that one col-
lapse of the wave function denotes that one photon is emitted.
According to an earlier theory ([23] and references therein),
for the three-level quantum system studied in this paper, the
parameter condition for exhibiting bright and dark periods is
z � y2. Obviously, the Rabi frequencies in the triangular area
of Fig. 3 satisfy this condition. Even so, because the large
deviation with zero rate is a fluctuation effect of the stochastic
processes, we do not think that intermittent fluorescence is the
cause of the former or vice versa.

Before closing the main text, we want to mention that the
sMP method is also useful in analytically studying SCGFs
near λ = 0; see Appendix B. The results therein are inti-
mately related to the full counting statistics of open quantum
systems [2,14].

VI. CONCLUSION

In this paper, we study large deviations of the counting
statistics of three open quantum systems that are typical
in quantum optics and quantum thermodynamics. The sMP
method is used and a general computing scheme is proposed.
We find that, in the asymptotic limits, the SCGFs of these
systems possess consistent features. Hence we can unify the
large deviation rate functions to simple formulas in zero
and large rate limits. An exact connection between the large
deviations and the non-Hermitian Hamiltonians of the open
quantum systems is naturally revealed by these formulas. In
principle, the TQME can be applied to obtain the same results.
After all, there is an overlap between these two methods.
However, we do not think that this process would be sim-
ple. First, one immediately faces an eigenvalue problem for
matrices of large size, e.g., a 9 × 9 matrix for the three-level
quantum systems. Even though this eigenvalue problem is
successfully transformed into a high-degree polynomial equa-
tion, because its coefficients are very complex combinations
of microscopic parameters in the QME generator, the con-
nection between the maximum real root of the polynomial
equation and underlying quantum physics inevitably becomes
ambiguous.

In concretely solving the large deviations of the open quan-
tum systems, we also note that although the sMP method
circumvents the process of finding the largest eigenvalue of
the generator of a TQME, the method has to perform a
Laplace transform on the waiting time distribution and solve
the largest real roots of higher-degree polynomial equations.
The three-level quantum system in the V configuration shows
that the latter is not easy. Hence the true benefits of the sMP
method are that it has transparent probability interpretations
and that it studies specific questions such as asymptotic large
deviations in an analytically tractable way rather than in terms
of numerical precision or efficiency.

Thus far, none of our calculations and discussions include
the effects of field detuning or the presence of other decay
or excitation channels. Whether these factors alter asymptoti-
cally large deviations or make the general computing scheme
ineffective is an interesting question that deserves further
study.
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APPENDIX A: THREE ROOTS OF A CUBIC POLYNOMIAL

Given a cubic polynomial with real coefficients on x,

x3 + ax2 + bx + c = 0. (A1)

Its three roots are given by Cardano’s formulas [34]:

x1 = −a

3
+ S + T, (A2)

x2 = −a

3
− 1

2
(S + T ) + i

√
3

2
(S − T ), (A3)

x3 = −a

3
− 1

2
(S + T ) − i

√
3

2
(S − T ), (A4)

where

S = 3

√
q/2 +

√

, (A5)

T = 3

√
q/2 −

√

, (A6)

p = (3b − a2)/3, and q = (9ab − 2a3 − 27c)/27; 
 is the
discriminant and is defined in Eq. (24). The variables
a, b, c, p, q are also used in the main text.

APPENDIX B: SCGFS OF OPEN QUANTUM
SYSTEMS AT ZERO λ

Because the SCGF φ(λ) satisfies Eq. (3), we can succes-
sively take derivatives of the equation to obtain a sequence of
new equations, e.g.,

∂v p̂11(v)φ′(λ) = −e−λ, (B1)

∂2
v p̂11(v)[φ′(λ)]2 + ∂v p̂11(v)φ′′(λ) = e−λ, (B2)

∂3
v p̂11(v)

[
φ′(λ)

]3 + 3∂2
v p̂11(v)φ′(λ)φ′′(λ) + ∂v p̂11(v)φ′′′(λ)

= −e−λ, . . . . (B3)

Here, we let v = φ(λ) and exhibit the first three equations.
Additionally, the Laplace transform of the waiting time distri-
bution p̂11 can be expanded in terms of v:

p̂11(v) = 1 − τv + τ 2

2!
v2 − τ 3

3!
v3 + · · · . (B4)

The coefficients τ n, n = 1, 2, 3, . . ., in Eq. (B4) are the nth
moments of the waiting time; that is,

τ n =
∫ ∞

0
t n p11(t )dt = (−1)n ∂n

v p̂11|v=0. (B5)

Note that p̂11(v = 0) = 1 due to the normalization condi-
tion of the distribution. Setting λ = 0 on both sides of

Eqs. (B1)–(B3) and using the condition v = φ(0) = 0, we
derive

φ′(0) = 1

τ
, (B6)

φ′′(0) = 1

τ 3 (τ 2 − τ 2), (B7)

φ′′′(0) = 1

τ 5 [τ 4 + 3(τ 2)2 − 3(τ 2)τ 2 − τ (τ 3)], . . . . (B8)

In large deviations theory [19], φ′(0) denotes the mean count-
ing rate j, φ′′(0) represents the fluctuation strength of the
counting rate, and φ′′′(0) measures the degree of asymmetry
of the counting distribution. Budini obtained Eqs. (B6) and
(B7) earlier in another scenario [15].

It is worth emphasizing that because we have obtained the
Laplace transforms of the waiting time distributions, Eqs. (11)
and (27), these waiting time moments can be directly written
in terms of the physical parameters of the quantum systems.
In the following, we focus on the derivation of the complex
three-level system in the V configuration and the results for
the relatively simple two-level system are given directly. First,
we rewrite p̂11 in Eq. (27) in rational function form:

p̂11 = k2�
2
2

2

∑3
i=0 αiv

3−i∑6
i=0 βiv6−i

. (B9)

We set the coefficients α0 and β0 to 1. In the numerator, the
other coefficients are

α1 = k2/2,

α2 = (�2
2 + �2

3)/4, (B10)

α3 = k2�
2
3/4,

respectively. In the denominator, the coefficients βi, i =
1, . . . , 6, are complex: they are obtained by Vieta’s theorem
of the sixth-degree polynomial, where the roots of the polyno-
mial equation are 2h1, 2h2, 2h3, h1 + h2, h2 + h3, h1 + h3;
see also the denominator of Eq. (27). For instance, the two
simplest of these are

β1 = −4(h1 + h2 + h3), (B11)

β6 = 8h1h2h3(h1 + h2)(h2 + h3)(h1 + h3). (B12)

Importantly, βi, i = 1, . . . , 6, are symmetric polynomials in
h1, h2, h3. This is obvious in Eqs. (B11) and (B12). Hence,
according to the fundamental theorem of symmetric polyno-
mials [37], we can further write βi in terms of polynomials in
the coefficients of Eq. (23); that is, α1, α2, α3/2, as follows:

β1 = 4α1,

β2 = 5α2
1 + 8α2,

β3 = 2α3
1 + 11α1α2 + 5

2α3,

β4 = 6α2
1α2 + 4α2

2 + 7α1α3, (B13)

β5 = 4α1α
2
2 + 4α2

1α3 + 2α2α3,

β6 = 4α1α2α3 − 2α2
3 .
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Finally, on the basis of Eq. (B9), we obtain the first three waiting time moments expressed in terms of the physical parameters:

τ = k2�
2
2

2

α3β5 − α2β6

β2
6

, (B14)

τ 2 = k2�
2
2

β6(α1β6 − α2β5) + α3
(
β2

5 − β4β6
)

β3
6

, (B15)

τ 3 = 3k2�
2
2

β6
(
α2β

2
5 − α2β4β6 − α1β5β6 + β2

6

) + α3
(
2β4β5β6 − β3

5 − β3β
2
6

)
β4

6

. (B16)

We examine these tedious formulas by numerically calculating the quadratic approximation of the rate function, that is,

I ( j) ≈ 1
2 I ′′( j)( j − j)2 (B17)

and I ′′( j) = 1/φ′′(0) [19], and comparing it to the data in Fig. 5. We see that the fluctuation strength φ′′(0) increases rapidly in
a differentiable way when the Rabi frequency �3 is smaller than a certain value (≈0.6), where 
 = 0 and further decreases. For
the two-level quantum system, the first three waiting time moments are calculated in the same way and their expressions are as
follows:

τ = k2
2 + 2�2

2

k2�
2
2

, (B18)

τ 2 = 2k4
2 + 2k2

2�
2
2 + 8�4

2

k2
2�

4
2

, (B19)

τ 3 = 6k6
2 + 72k2

2�
4
2 + 48�6

2

k3
2�

6
2

. (B20)

Here, we write them directly in terms of the physical parameters k2 and �2.

[1] L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting
statistics and coherent states of electric current, J. Math. Phys
37, 4845 (1996).

[2] D. A. Bagrets and Yu. V. Nazarov, Full counting statistics of
charge transfer in Coulomb blockade systems, Phys. Rev. B 67,
085316 (2003).

[3] M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium
fluctuations, fluctuation theorems, and counting statistics in
quantum systems, Rev. Mod. Phys. 81, 1665 (2009).

[4] M. Bruderer, L. D. Contreras-Pulido, M. Thaller, L. Sironi,
D. Obreschkow, and M. B. Plenio, Inverse counting statistics
for stochastic and open quantum systems: The characteristic
polynomial approach, New J. Phys. 16, 033030 (2014).

[5] J. P. Garrahan and I. Lesanovsky, Thermodynamics of quantum
jump trajectories, Phys. Rev. Lett. 104, 160601 (2010).

[6] F. Carollo, R. L. Jack, and J. P. Garrahan, Unraveling the large
deviation statistics of Markovian open quantum systems, Phys.
Rev. Lett. 122, 130605 (2019).

[7] M. Esposito and K. Lindenberg, Continuous-time random walk
for open systems: Fluctuation theorems and counting statistics,
Phys. Rev. E 77, 051119 (2008).
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