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Anomalous dimensions of the Smoluchowski coagulation equation
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The coagulation (or aggregation) equation was introduced by Smoluchowski in 1916 to describe the clumping
together of colloidal particles through diffusion, but has been used in many different contexts as diverse as phys-
ical chemistry, chemical engineering, atmospheric physics, planetary science, and economics. The effectiveness
of clumping is described by a kernel K (x, y), which depends on the sizes of the colliding particles x, y. We
consider kernels K = (xy)γ , but any homogeneous function can be treated using our methods. For sufficiently
effective clumping 1 � γ > 1/2, the coagulation equation produces an infinitely large cluster in finite time (a
process known as the gel transition). Using a combination of analytical methods and numerics, we calculate the
anomalous scaling dimensions of the main cluster growth. Apart from the solution branch which originates from
the exactly solvable case γ = 1, we find a branch of solutions near γ = 1/2, which violates matching conditions
for the limit of small cluster sizes, widely believed to hold on a universal basis.
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I. INTRODUCTION

Smoluchowski’s equation [1] has its origin in physical
chemistry, but more generally furnishes a fundamental de-
scription of the formation of larger objects by the aggregation
of smaller entities. It appears in many physical problems
such as planetesimal accumulation, mergers in dense clus-
ters of stars, aerosol coalescence in atmospheric physics, and
polymerization and gelation (see [2–7]), but also in chemical
engineering [7], and the social sciences [8,9] It describes the
evolution of the density c(x, t ) of particles of size x at time t ,
taking into account the formation of clusters of size x by the
aggregation of pairs of size x − y and y, respectively, as well
as the disappearance of clusters of size x forming a larger one:

ct (x, t ) = 1

2

∫ x

0
K (x − y, y)c(x − y, t )c(y, t )dy

− c(x, t )
∫ ∞

0
K (x, y)c(y, t )dy. (1)

Here the function K (x, y) (known as the coagulation kernel)
describes the probability for two particles of sizes x and y to
stick together.

The behavior of solutions to (1) depends crucially on the
degree of homogeneity of K . To explore this, here we restrict
ourselves to the class of models described by

K (x, y) = (xy)γ , (2)
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for which the degree is 2γ . This kernel applies to branched
polymers with surface interactions [4,10], and to fractal clus-
ters more generally [11,12], but stands for a much broader
class of models whose asymptotic behavior for large cluster
sizes scales with an exponent 2γ . One of the fundamen-
tal problems in the field is to relate, by solving (1), γ to
the scaling exponent σ = β−1 determining the typical size
of clusters, and the gel exponent τ , giving the power-law
size distribution of clusters [4]. Thus by measuring β or τ ,
one is then able to infer fundamental mechanisms of aggre-
gation, in phenomena as diverse as planetesimal formation
[7], aerosol dynamics [13], or pipeline fouling caused by
asphaltenes [14].

Only for γ = 1 can (1) be solved explicitly [15–18], for
more general kernels studies have relied on discrete particle
simulations and ad hoc scaling arguments (see [19] and ref-
erences therein). It is therefore of enormous importance to
develop mathematical methods able to provide novel infor-
mation on the behavior of solutions to (1).

For 1/2 < γ � 1, (1) develops singularities in finite time,
such that, starting from an initial particle size distribution
c(x, 0) with all its moments Mi = ∫ ∞

0 xic(x, 0) dx bounded,
there is a certain time t0 such that all moments Mi for i � i0
diverge (see [20] and references therein). This phenomenon,
which has the character of a phase transition [4], is called
finite time gelation (at a gelation time t0) and indicates the
aggregation of particles in a single cluster of infinite mass.
In practice, of course, the singularity will be cut off by the
finite size of the total number of particles available, so that the
largest clusters no longer grow. On the other hand, if γ � 1/2,
solutions exist globally in time [21].

As in many other physical problems involving diverging
quantities (cf. [4,22,23]), we assume that the approach to the
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singularity is self-similar, of the form

c(x, t ) = t ′αψ (xt ′β ); (3)

here t ′ = t0 − t is the time distance to the singularity. We
assume that the scaling function ψ is smooth, integrable, and
positive, since c(x, t ) represents the density of particles.

The self-similar structure (3) has so far been established
only for γ = 1, while for γ < 1 self-similar solutions have
not been determined explicitly. Discrete numerical simula-
tions (cf. [24,25]) appear to show self-similarity of the second
kind [22], for which similarity exponents cannot be deter-
mined from dimensional considerations or from symmetry
arguments. This fact was proven in [26] for 1 − γ sufficiently
small, without calculating the exponents explicitly.

Inserting the similarity form into (1) and balancing powers
of t ′, one finds α − 1 = 2α − (2γ + 1)β, and thus the scaling
relation

α = β(2γ + 1) − 1. (4)

It follows that

c(x, t ) = t ′β(2γ+1)−1ψ (xt ′β ), (5)

the Laplace transform of which will form the basis of our
analysis; the quantity s(t ) = constt ′−β is known as the typ-
ical cluster size [19]. In addition, one obtains an integral
equation for the similarity profile ψ (ξ ); we will consider the
Laplace transform of ψ below. The scaling form (5) is also
known as the “self-preservation hypothesis” [3]; for example,
using a rescaling analogous to (5), in Fig. 7.11 of [3] the
distribution of aerosol particles, taken from experiment, is
collapsed onto a single profile ψ (ξ ).

II. LAPLACE TRANSFORM METHOD

We begin by transforming (1) into Laplace space, always
assuming a kernel of the form K = (xy)γ . This equivalent for-
mulation is more convenient then (1) for both numerical and
analytical purposes, as we will see below. As the transformed
variable we choose

ω(λ, t ) ≡
∫ ∞

0
(1 − e−λx )xc(x, t ) dx, (6)

so that the total mass, which is conserved by (1), is

M1 =
∫ ∞

0
xc(x, t ) dx = ω(∞, t ), (7)

while ω(0, t ) = 0.
Multiplying (1) by e−λx and integrating in x, the left-hand

side becomes
∂

∂t

∫ ∞

0
e−λxc(x, t ) dx, (8)

while the first term on the right-hand side of (1) turns into∫ ∞

0
e−λx

[
1

2

∫ x

0
xγ (x − y)γ c(x − y, t )c(y, t ) dy

]
dx

= 1

2

∫ ∞

0

∫ ∞

0
e−λ(z+y)yγ zγ c(z, t )c(y, t ) dy dz

= 1

2

[∫ ∞

0
e−λxxγ c(x, t ) dx

]2

,

while the second term becomes

−
[∫ ∞

0
e−λxxγ c(x, t )

] ∫ ∞

0
xγ c(x, t ).

Taken together, we can write the right-hand side as

1

2

[∫ ∞

0
(e−λx − 1)xγ c(x, t ) dx

]2

− 1

2

[∫ ∞

0
xγ c(x, t )

]2

. (9)

To transform this into a closed equation for ω, we take the
λ derivative of both (8) and (9) and use mass conservation,
∂t M1 = 0, to find

∂ω

∂t
= 1

2

∂

∂λ

[∫ ∞

0
(1 − e−λx )xγ c(x, t ) dx

]2

. (10)

The right-hand side of (10) can be rewritten using

1

�(1 − γ )

∫ ∞

0

ω(λ + y, t ) − ω(y, t )

yγ
dy

= 1

�(1 − γ )

∫ ∞

0

1

yγ

[∫ ∞

0
(e−yx−e−(λ+y)x )xc(x, t ), dx

]
dy

= 1

�(1 − γ )

∫ ∞

0

[∫ ∞

0
e−yxy−γ dy

](
1 − e−λx

)
xc(x, t ) dx

=
∫ ∞

0
(1 − e−λx )xγ c(x, t ) dx,

so that we finally obtain

∂ω

∂t
(λ, t ) = 1

2

∂

∂λ

[∫ ∞

0

ω(λ + ζ , t ) − ω(ζ , t )

�(1 − γ )ζ γ
dζ

]2

, (11)

which we will consider for the remainder of this paper.
The Laplace formulation (11) is similar to the nonlinear

transport equations investigated by us previously [27] and for
whose solution we have developed efficient numerical meth-
ods. For γ = 1, the expression in square brackets is ω(λ, t ), so
that (11) turns into Burgers’ equation. If γ < 1, one can think
of (11) as a generalization of Burgers’ equation, but with or-
dinary derivatives replaced by fractional derivatives. In a later
section, we will simulate the time-dependent equation (11)
directly, but first we consider similarity solutions to determine
the blow up of cluster sizes.

Similarity solutions

Using (4), we now look for similarity solutions of (11),
defined by

ω(λ, t ) = t ′β(2γ−1)−1β�(η), η = λ/t ′β, (12)

which is consistent with (5); the factor β was introduced
for later convenience. Of course, �(η) is related to ψ (ξ ) by
Laplace transform [26]:

�(η) = 1

β

∫ ∞

0
(1 − e−ηξ )ξψ (ξ ) dξ . (13)

The behavior of �(η) for large arguments represents the
distribution of small clusters; if ψ (ξ ) ∝ ξ−τ for ξ → 0 (see
(3.19) of [19]), then �(η) ∝ ητ−2 for η → ∞, where τ is
known as the (pre)gel exponent [28]. This implies that as
t0 is approached, the distribution function for small clusters
approaches a power law c(x, t0) ∝ x−τ , which will once more
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link to the kernel’s exponent γ . Similar power-law distribu-
tions occur in many other fields, such as Zipf’s law [8], and
have been proposed to understand phenomena such as bank
mergers [9].

Inserting (12) into (11), we recover the scaling relation (4)
from a balance of both sides. Dividing through by β, we have

−ν�(η) + η�′(η) = 1

2

dF 2

dη
, (14)

with F defined by

F ≡ 1

�(1 − γ )

∫ ∞

0

�(η + ζ ) − �(ζ )

ζ γ
dζ , (15)

and ν = (2γ − 1)β − 1)/β. It is advantageous to eliminate
β from the equation in favor of ν, since β diverges as
γ approaches 1/2, while ν remains finite. Similarity equa-
tions similar to (14) have been considered previously by
[19,26].

The left-hand side of (14) corresponds to the time deriva-
tive of the Smoluchowski equation, which is expected to
vanish for large η in order for the solution to match to
the “background” of the distribution of small clusters. This
matching condition [23] then implies that �(η) ∝ ην for large
η, which according to the above leads to the scaling relation
τ = 2 + ν = 1 + 2γ − σ [19], which relates the gel exponent
τ with the exponent σ ≡ β−1, determining the typical cluster
size. In summary,

τ = 2 + ν, σ = 2γ − ν − 1 (16)

can be used to recover physically significant exponents from
ν. We will see below that the matching condition leading to
(16) holds true only for the “lower” branch of solutions, which
grows out of the classical case γ = 1, but fails for the “upper”
branch, reported here.

III. THE LOWER BRANCH

We are looking for solutions to (14) with �(η) regular at
the origin and �(η) ≈ Aην for η → ∞, where A is a constant
to be found as part of the solution, along with ν. In the exactly
solvable case γ = 1, we have F = �(η), so (14) becomes

−ν� + η�′ = ��′, (17)

the same as for the kinematic wave equation [26,30]. This
equation has an infinite sequence of regular solutions

η = 1 + j

j
� + B�1+ j, j = 1, 2, . . . , (18)

where B is an arbitrary constant. For the “ground” state j = 1,
the cluster size exponent is β = 2, and ν = 1/2. A sequence
of nontrivial solution branches, exhibiting anomalous scaling
exponents, emanate from each of these exact solutions; we
will focus on the ground-state branch, which is expected to be
attracting, while all other branches are unstable.

To evaluate faithfully the contributions to the improper
integral in (15), it is useful to have a good approximation of
�(η) for large arguments, beyond the leading order match-
ing condition �(η) ≈ Aην . Perturbing around this asymptotic

behavior, we find that to leading order

F ≈ A

�(1 − γ )

∫ ∞

0

(η + ζ )ν − ζ ν

ζ γ
dζ

= Aην−γ+1

�(1 − γ )

∫ ∞

0

(1 + z)ν − zν

zγ
dz = ACνη

ν−γ+1,

where

Cν ≡ �(γ − 1 − ν)

�(−ν)
. (19)

Inserting this back into the right-hand side of (14), one finds
that � has the expansion

� ≈ Aην + A2C2
ν

1 + ν − γ

1 + ν − 2γ
η1−2γ+2ν + · · · (20)

for large η.
The numerical procedure used to solve (14) is similar to

that developed in [27] to solve nonlocal transport equations.
The function � is discretized on a grid ηi, i = 1, . . . , k, where
η1 = 0 and �i = �(ηi ). We use local refinement near the
origin, based on the width of the peak of �′, which sets the
scale over which the solution is varying. To resolve the tip of
the distribution �, the grid spacing is at first constant near the
origin. Then, in order to resolve the distribution over many
orders of magnitude (up to 70 orders of magnitude in some
cases, as seen below), we allow the grid spacing to increases
geometrically up to a large value ηk . Beyond ηk , we use the
asymptotic expansion (20), in which A is treated as an un-
known, which is solved for, as described below. For each case,
we made sure that the result did not depend on a particular
choice of the parameters characterizing the discretization.

In order to evaluate the improper integral in (15), we split
the domain of integration into the interval [0, ηk] and the
remainder (ηk,∞). In the first integral, we use a formula
equivalent to the trapezoidal rule, but taking into account the
singularity at the origin explicitly; the value of �(η + ζ ) is
found by interpolating from the fixed grid. If the argument
η + ζ of � is greater than ηk , we use the asymptotic expansion
(20) to evaluate �. For the second integral, in which ζ > ηk ,
we use (20) everywhere, and then evaluate the integral numer-
ically.

We will see below that for γ near 1/2, � has a complicated
crossover behavior, so that (20) becomes valid only for very
large values of η; thus one has to choose ηk large enough for
(20) to be meaningful. Depending on γ , we allow ηk to be as
large as 1070 ≈ e161, verifying that the result does not depend
significantly on the choice of ηk .

The similarity equation (14) is invariant under the transfor-
mation

�(η) = aϕ(η/a1/(2γ−1)); (21)

to fix the constant a, we impose �′(0). It is easy to check that
the ground-state solution for γ = 1 always satisfies �′(0) =
1/2, so we impose this condition for arbitrary γ , in order to
find a unique solution. It is clear from (13) that we also have
to impose �(0) = 0.

This reduces the lower branch problem to a system of
nonlinear equations defined on the grid ηi, where the k vari-
ables are the index ν, the amplitude A, and the values �i, i =
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FIG. 1. The exponent ν for γ between 1/2 and 1. One branch
(the lower branch) starts from γ = 1, ν = 1/2 on the right and ends
by intersecting another branch (the upper branch) at γc ≈ 0.5214.
The scaling ν = γ − 1/2 [19] is shown as the dotted line. The inset
shows a detail of the bifurcation, where the two branches meet at γc.
The circles mark the result of particle-based simulations of Lee [25].
In [29], exponents are calculated solving the similarity equation di-
rectly, but only for γ = 3/4, for which the result agrees with [25].

2, . . . , k − 1 of the profile. The equations are �′(0) = 1/2
and (14), evaluated at ηi, i = 2, . . . , k. This system of equa-
tions is solved using Newton’s method, using ηk = 1010 up to
γ ≈ 0.53; for smaller γ , the solution is extended to ηk ≈ 1070.
To obtain a good initial guess, we start from the “ground-
state” solution for γ = 1 as an initial condition, and continue
the solution branch in small steps of γ . The Newton iteration
eventually fails to converge for γ ≈ 0.5217, indicating a bi-
furcation toward the upper branch. For higher order branches
we once again start from the exact solution for γ = 1, but
choosing j > 1. In this case �′(0) = j/(1 + j), which we use
as the normalization for all values of γ .

The resulting values of ν, which make up the “lower
branch,” are shown in Fig. 1 as the lower solid line, emanating
from ν = 1/2 for γ = 1. Starting from the exact solution for
γ = 1, a solution is found by proceeding in small steps of
γ , the preceding solution being used as an initial condition.
A typical profile �(η), for the intermediate value γ = 0.794,
is shown as the dotted line in the inset of Fig. 4 below. The
solid line comes from solving the dynamical equation (11)
directly.

In a number of papers [10,28,31–33], it was proposed
(see also the discussion in Sec. 3.5.4 of [19]) that scaling
relations might be derived from the condition that the rate
of change of the total mass M1 should remain finite. While
this is certainly true after the gel time, it does not necessarily
hold for our case, and indeed is erroneous, as seen below.
However, making this assumption for the time being, this
means that dM1/dt remains bounded. Using the similarity
form (5), this implies that t ′β(2γ+1)−1 ∼ t ′, or β = 2/(2γ − 1).
It follows that ν = ((2γ − 1)β − 1)/β = γ − 1/2, and also
σ = (2γ − 1)/2. The scaling relation ν = γ − 1/2 is shown
as the dotted line in Fig. 1, clearly in strong disagreement with

the actual solution of (14). This confirms the numerical results
of Lee [25], obtained using a particle-based description, which
are discussed in detail in [19] and which are shown as circles
in Fig. 1. The same conclusions were reached rigorously [26],
by investigating the neighborhood of the exact solution for
γ = 1. Indeed, in (14) the behaviors for small and for large
clusters are in fact coupled, which leads to anomalous scaling
exponents [22,23], invalidating a simple linear scaling.

To summarize our numerical results so far, we developed
an interpolation formula, which describes the lower solution
branch to three decimal places, where ε ≡ 1 − γ :

ν = 1
2 − 3

2ε + 1.1044ε2 log ε + 3.8187ε2

− 6.4849ε3 + 5.14ε4. (22)

Extending the result of [26] for small ε, we fitted the lower
branch data using a least squares approach. The coefficient
of ε was chosen in accordance with the slope dν/dγ = 3/2
for γ = 1, which was proved in [26]. The logarithm was also
suggested by the analysis of [26] and yields a significantly
improved fit.

We have also calculated solution branches which emanate
from the higher-order solutions at γ = 1, which are known to
be unstable [23]. It is therefore likely that the entire higher-
order branches are unstable. Indeed, we have also solved the
time-dependent evolution equations in Laplace space for the
particular value of γ = 0.7942, and found the solution to con-
verge onto the stable ground-state solution, shown in Fig. 1;
see Sec. V below.

Transition toward the upper branch

As γ decreases toward 1/2, the correction exponent 1 −
2γ + 2ν in (20) becomes ever closer to ν, so a larger domain
is needed to correctly describe the asymptotics for large η,
as seen in Fig. 2. In this case we have chosen ηk ≈ e161,
beyond which value the dashed line, representing (20), is a
good approximation to the solid line (the full solution). The
two exponents become identical for ν = 2γ − 1 ≡ δ, which
suggests the appearance of an alternative branch of solutions,
for which �(η) ∼ ηδ , and which we call the “upper branch,”
also shown in Fig. 1. This transition occurs at γ ≈ 0.5214,
close to the critical value of γ = 1/2, in a regime that has
not been explored previously; the smallest value considered
in [25] is γ = 7/12 ≈ 0.58.

To understand the transition between the two branches, we
write a formal solution of the similarity equation (14):

�(η) = F 2

2η
+ 1 + ν

2
ην

∫ η

0

F 2

η2+ν
dη. (23)

If the integral in (23) is convergent, then the second term
scales like ην , and

A = 1 + ν

2

∫ ∞

0

F 2(η′)
η′2+ν

dη′; (24)

the first term in (23) is seen to be subdominant.
We anticipate a nonuniform convergence of the lower

branch toward the upper branch as γ → γc. Let us assume
that as suggested by Fig. 2, for 1 � η � ηc, � ∼ ηδ , while
for ηc � η � ∞, � ∼ ην . Since the integral in (24) converges
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FIG. 2. The local exponent of �(η) over a large domain, with
γ = 0.521829. In performing the integral in (15), for arguments
η < ηk = 1070 ≈ e161, �(η) is being used as shown. For arguments
η > ηk , this is replaced by the approximation (20). The solid line is
the full solution on the lower branch, the dashed line is (20). The
solid horizontal line on the left is δ = 2γ − 1 = 0.04366, the dashed
horizontal line on the right is ν = 0.02808.

for � ∼ ην , this means that A ∼ ηδ−ν
c , where the exponent is

positive on the lower branch, so that as ηc → ∞, the prefactor
A diverges. Indeed, a best fit to the numerical data yields A ≈
A0/(γ − 0.521)β̄ , with β̄ = 0.348 and A0 = 0.44, a blowup at
γ very close to the extrapolated value of γ = γc = 0.5214.

If on the other hand the integral in (23) is divergent, both
terms on the right of (23) scale in the same way. Then using
the ansatz � ≈ Āηδ , we can calculate the asymptotic behavior
of F as F ≈ ĀCδη

δ+1−γ . Inserting this into (23), and balanc-
ing both sides yields

� ≈ δ − ν

γC2
δ

η2γ−1 ≡ Āηδ, (25)

to leading order as η → ∞.

IV. THE UPPER BRANCH

To evaluate the integral in (15) along the upper branch, for
η � ηk we now use (25) instead of (20). Note that according
to (25), the amplitude Ā is no longer an unknown, but can be
calculated in terms of ν and δ = 2γ − 1.

To account for the scale invariance (21) of �, we impose
�′(0) = 1. The variables are now ν and �i, i = 2, . . . , k − 1.
In order to suppress oscillations in �(η), which appear for
large values of η, we found it necessary to solve the first
derivative of (14) (as we did before in [27]). Imposing this
condition at infinity, we were able to nucleate an upper branch
solution from the lower branch, using a γ close to the bifurca-
tion. The branch is then continued to the left and to the right.

A typical profile on the upper branch is shown in Fig. 3,
using a logarithmic scale, except near the origin. The dashed
line is the expected asymptotics (25), and γ is the same as in

FIG. 3. The profile �(η) on the upper branch, on a double loga-
rithmic scale (solid line), compared to the asymptotics (25) (circles);
γ = 0.521829, the same as in Fig. 2, and ν = 0.0285.

Fig. 2, showing the lower branch. This demonstrates that for a
range of γ values above γc, there are multiple solutions. This
is also clear from the phase diagram in Fig. 1, where both
branches are shown. The lower branch ends at γc, where it
meets the upper branch, as seen in the inset. There appears to
be unique asymptotic behavior coming in for γ � 1/2, which
makes it difficult to continue the upper branch all the way to
γ = 1/2.

An interesting feature of the upper branch is that ην ≡
ηα/β−2 does not equal the true asymptotic behavior � ≈ Āηδ ,
which is represented by circles in Fig. 3. As a result, the
Laplace transform ω(λ, t ) of the cluster size distribution on
account of (12) behaves for large arguments like ω(λ, t ) ≈
βĀλδt ′−1, which for t ′ → 0 diverges, and hence does not
match the expected static distribution at large arguments.

This implies that for the upper branch there must be
another, outer region, which interpolates between the asymp-
totics (25) and a time-independent outer solution. This is
described by an outer similarity solution, which we present
now.

Outer solution

The outer solution

ω(λ, t ) = t ′λ̄ϕ(ζ ), ζ = λt ′−(1+λ̄)/δ (26)

succeeds in bridging the time dependence ω ∝ t ′−1 with a
static outer distribution, as we will now show; λ̄ is another
anomalous exponent to be determined. Inserting (26) into (11)
yields the similarity equation

−λ̄ϕ + 1 + λ̄

δ
ζϕ′ = F (ϕ) dF (ϕ)

dζ
, (27)

where F (ϕ) is the same as (15), but with � replaced by ϕ.
Equation (27) has a solution ζ δ/(γCδ ) = βĀζ δ , which for
ζ → 0 matches the asymptotics (25) of the upper branch.

To understand the consistency of the behavior for small ζ ,
we look for solutions to (27) of the form

ϕ ≈ βĀζ δ + g(ζ ).
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Linearizing in g, we arrive at

−λ̄g + 1 + λ̄

δ
ζg′ = d

dζ

(
2ζ (1+δ)/2

(1 + δ)Cδ

F (g)

)
,

which has a solution of the form g(ζ ) = Gζ ᾱ , where ᾱ satis-
fies (

1 + λ̄

δ
− λ̄

)
ᾱ = 2(1 + ᾱ)Cᾱ

(1 + δ)Cδ

. (28)

For small δ, λ̄, (28) simplifies to

2(1 + ᾱ)�(1/2 − ᾱ) = (1 + 2ᾱ)�(1 − ᾱ)
√

π,

whose dominant (smallest) solution is ᾱ = α0 = 1.30737 . . . .
In the limit of large ζ , on the other hand, the time de-

pendence of (26) must drop out, so we have to require that
ϕ(ζ ) ≈ ϕ0ζ

λ̄δ/(1+λ̄). This will ensure that for small cluster
sizes, ω matches onto a static cluster size distribution. The
exponent λ̄ plays the role of a nonlinear eigenvalue, with the
constant G in g(ζ ) providing a shooting parameter, which
is adjusted such that ϕ has the right power-law behavior at
infinity.

While the existence of an outer solution is relevant for
the consistency of the outer solution, its exact form is not
important for the rate of blow up of moments

Mi =
∫ ∞

0
xic(x, t ) dx, (29)

as found on the upper branch. As a result, all moments can be
computed in terms of derivatives of the Laplace transform,
evaluated at the origin. For example, according to (6) the
second moment is

M2 = ∂ω

∂λ
(0, t ) = t ′2β(γ−1)−1β�′(0),

where β = 1/(δ − ν). But �′(0) can be found from the profile
�(η) (cf. Fig. 3), as computed as part of the solution of the
upper branch, without knowledge of the outer solution.

V. DYNAMICAL SIMULATIONS

As a further test of the validity of the similarity solutions
obtained so far, here we integrate the Laplace-transformed
dynamical equations directly, as given by (11). As a first
example, we choose γ = 0.794, in the range 1/2 < γ � 1,
for which finite time blowup is observed. This demonstrates
the stability of the similarity solution obtained previously.
Second, we look at γ = 1/4, from a range of values for which
blowup occurs in infinite time only. In both cases, we use the
initial condition

ω(λ, 0) = 1 − eλ/(λ−1), (30)

which approaches the limiting value of 1 to all orders, as
λ → 1. As a result, the integral on the right-hand side of
(11) has to be evaluated only up to ζ = 1, since the integrand
vanishes for the remainder. In time, the condition ω(1, t ) = 1
continues to hold, so that the boundary condition ω(∞, t ) = 1
remains satisfied, which implies mass conservation. Other-
wise, the integral on the right-hand side of (11) is evaluated in
the same way as described before in the case of the similarity
equation (14).

FIG. 4. Comparison of similarity theory with direct numerical
simulation of (11) for γ = 0.794. In the main panel, a sequence of
profiles as obtained from (11); the heavy line is the initial condition.
As the inset, the last profile ω(λ, t ) is rescaled using the exponents
obtained from solving (14): ν = 0.2277, so that β = 2.773 (solid
line). The dashed line is the similarity profile �(η), which is a
solution of (14); scales are logarithmic.

The time step is performed explicitly, combining a full
time step and two half steps to achieve second-order accuracy.
The difference between the two is used as an error control, to
choose the time step [23]. The resulting sequence of profiles
is shown in the main panel of Fig. 4, starting from (30)
(heavy line). The profile propagates to the left, producing an
increasingly sharp front. Simulations are continued until the
width of the front, as defined by the position of the maximum
of the right-hand side of (11), falls below 10−9.

In the inset of (4) we show the last profile, rescaled ac-
cording to (12), in order to obtain an approximation to �(η)
(solid line). The invariance (21) of the profile is used to
impose �′(0) = 1/2 at the origin. A solution to the similar-
ity equation (14) is superimposed (dashed line), and almost
perfect agreement is found. Notice, however, that the rescaled
solution of (11) levels off at a certain point, as it must to satisfy
ω(∞, t ) = 1 for all times, reflecting mass conservation. The
similarity solution, on the other hand, corresponds to a cluster
distribution which does not have a first moment. This illus-
trates how a solution with finite, conserved mass nevertheless
approximates the similarity solution in a nonuniform fashion.

If on the other hand 0 < γ < 1/2, mass is conserved for all
times, and the cluster size diverges in infinite time only. The
similarity form of the cluster size distribution is now [4,34]

c(x, t ) = tαψ (xtβ ), (31)

so that mass conservation implies

M1 = tα−2β

∫ ∞

0
ξψ (ξ ) dξ

finite, and α = 2β. Together with (4) we obtain the scaling
relation β = 1/(2γ − 1), which should be valid for γ < 1/2.
To test this, we performed time-dependent simulations of (11)
for γ = 1/4. Since (12) now takes the form

ω(λ, t ) = tα−2ββ�(λt−β ),
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FIG. 5. Scaling of cluster size for γ = 1/4 (infinite time sin-
gularity). The solid line shows ∂λω(0, t ) as a function of t in a
double logarithmic plot. Mass conservation predicts an exponent of
1/(1 − 2γ ) = 2 in that case (dashed line), in very good agreement
with our numerics.

the slope at the origin should scale like

∂ω

∂λ
∝ tα−3β ∝ t−β ∝ t1/(2γ−1).

In Fig. 5 we have plotted this quantity as a function of time.
For large times, we find very good agreement with the pre-
diction 1/(2γ − 1) = 2, expected for γ = 1/4, in agreement
with earlier conclusions by Lee [25].

Finally, we have also performed simulations for γ around
the critical value γc, in order to confirm that the upper branch
is indeed stable for 1/2 < γ < γc. However, owing to the
smallness of the relevant values of ν, our resolution is not
sufficient to reach any firm conclusions.

VI. DISCUSSION

Our numerical simulations of the dynamical equa-
tions demonstrate the stability and the physical realizability
of the solution branches we have found, at least for some
values of γ . However, mathematical issues remain in relation
to the solution branches over the full range 1/2 < γ � 1.
First, although we find self-similar solutions which satisfy
the correct asymptotics, it is not clear if they are stable, at
least linearly. Second, a problem with the Laplace transform
method we used is that the original scaling function ψ (ξ ) is
not automatically positive, as required for a physical solution.

For the lower branch in the neighborhood of γ = 1, positivity
was proved in [26]. Apart from this, both the stability and
positivity remain open problems for general γ .

There are many directions in which to extend the present
research. First, it would be interesting to consider (1) for times
after the singularity and establish postgel solutions, including
the scaling relations they satisfy. Second, we have not been
able to extend the upper solution branch to the limiting case
γ = 1/2. We have found a solution to (14) with ν = 0, which
is of the form

ω(λ, t ) = �(λet ), η = λet , (32)

which would imply that s(t ) = exp(const t ). On the other
hand, Lee [25] has compared (32) to the alternative scaling
s(t ) ∝ exp(const

√
t ), proposed in [33], and concluded that the

latter scaling provides a better fit. However, we believe that
owing to the limited range over which scaling was observed,
it is difficult to draw definitive conclusions even from the
high resolution data of [25]. Unfortunately, our own dynam-
ical simulations are not sufficiently accurate to distinguish
between the two scenarios.

Third, many studies have looked at other types of homo-
geneous kernels [4], such as K = xλyν or K = xλ + yλ. For
example, an important question is whether exponents depend
only on the degree of homogeneity λ = μ + ν, or whether
they are more sensitive to the structure of the kernel. In-
deed, our methodology extends to much more general kernels,
for example, of the form K (x, y) = (xμyν + xνyμ)/2 (with
μ + ν = 2γ ). This would lead to the integro-differential equa-
tion (14), with the right-hand side replaced by 1

2
d (FμFν )

dη
, where

Fμ and Fν are defined as in (15), with γ replaced by μ and ν,
respectively.

In wave turbulence [35–38], similar integral equations
arise, which have not been solved explicitly, as we do here.
Instead, the theory rests on scaling assumptions similar to
those which in coagulation theory were found to be invalid.
Here a stationary turbulent spectrum would correspond to
postgel solutions, which evolve out of the initial singularity;
see, for example, [38], Sec. 9.2.3. It is therefore possible that
a more careful treatment of the integral equations of wave
turbulence yields anomalous dimensions, as has been con-
jectured [37], which would change the scaling exponents of
(say) the velocity field of the turbulence. Similar issues arise
in Bose-Einstein condensation, where numerical results point
to anomalous scaling exponents different from the classical
ones [39–41].

In conclusion, integro-differential equations represent an
area where some of today’s most challenging unsolved prob-
lems in statistical mechanics and in fluid dynamics come
together. Using self-similar solutions to the Smoluchowski
equation, we showed that such integral equations have many
unexpected properties, which challenge long-held beliefs.
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