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The pseudofractal scale-free web (PSFW) is a well-known model for a scale-free network with small-world
characteristics. Understanding the dynamic properties of this network can provide valuable insights into dynamic
processes occurring in general scale-free and small-world networks. In this study we investigate search processes
using discrete-time random walks on the PSFW to reveal the impact of the resetting position on optimizing
search efficiency, as measured by the mean first-passage time (MFPT). At each step the walker has two options:
with a probability of 1 − γ , it moves to one of the neighboring sites, and with a probability of γ , it resets to
the predefined resetting position. We explore various choices for the resetting position, present rigorous results
for the MFPT to a given node of the network, determine the optimal resetting probability γ ∗ where the MFPT
reaches its minimum, and evaluate the ratio of the minimum for MFPT to the MFPT without resetting for each
case. Results show that, in large PSFWs, both the degree of the resetting position and the distance between
the target and the resetting position significantly affect the search efficiency. A higher degree of the resetting
position leads to a slower convergence of the walker to the target, while a greater distance between the target
and the resetting position also results in a slower convergence. Additionally, we observe that resetting to a vertex
randomly selected from the stationary distribution can significantly expedite the process of the walker reaching
the target. The findings presented in this study shed light on optimizing stochastic search processes on large
networks, offering valuable insights into improving search efficiency in real-world applications, where the target
node’s location is unknown.
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I. INTRODUCTION

Stochastic searches occur in various domains, such as ani-
mal foraging [1,2], protein search phenomena in DNA [3–5],
and algorithms seeking global optimal solutions [6]. These
search processes can be modeled as random walks on un-
derlining networks [7–10], and the mean first-passage time
(MFPT), which measures the average time for a walker to
reach a specific target site for the first time [11,12], serves
as a key indicator of search efficiency of random search
processes. Over the past several decades, researchers have
extensively investigated the MFPT on various networks, em-
ploying different random walk strategies [13–16]. The results
have consistently demonstrated that both the topology of
the networks and the random walk strategies significantly
influence the MFPT [17–20]. One can optimize the search
efficiency by appropriately designing random walk strategies
on the underlying networks [21–24].

Recently, “resetting” has been introduced in search
processes, and it has been shown that resetting can im-
prove search efficiency [25]. Consequently, search processes
with stochastic resetting have garnered increasing attention
[26–28]. In d-dimensional infinite space, a diffusion searcher
faces the challenge of requiring an infinite mean time to reach
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a target for d = 1 and d = 2. Moreover, for d > 2, there is a
nonzero probability that the searcher may not even reach the
target. However, the introduction of resetting can effectively
prevent particles from escaping in the system, thereby ensur-
ing that the searcher can always find the target in finite time
[29]. Specifically, when considering a diffusion process with
Poissonian resetting, i.e., a diffusion process with a constant
rate γ of resetting to a given site (i.e., the resetting position),
the MFPT can be minimized at a nonzero optimal reset rate
γ ∗ [25,29]. Moreover, for a diffusion process with a rate
γ of resetting to a randomly drawn resetting position, the
choice of resetting position or the probability distribution of
the resetting position has a significant impact on the optimal
MFPT [30]. Furthermore, optimization problems controlled
by first-passage resetting have been introduced and investi-
gated [31,32]. Resetting does not always lead to accelerated
search processes in confined d-dimensional spaces, as re-
ported in a study by Bonomo et al. [33]. The effectiveness
of resetting in accelerating the search process relies on the
distance between the target and the resetting position. The re-
setting position refers to the location where the walker restarts
after resetting. The distance between these two points plays a
crucial role in determining how efficiently resetting aids in
speeding up the search process.

In the study of random walks on complex networks, various
methods have been introduced to assess the survival proba-
bility and MFPT under different resetting strategies [34,35].
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Related strategies include a fixed probability of resetting the
walker to a fixed site [34] or one of multiple sites [35–37]
at each step and time-dependent probability [38] and node-
dependent probability [39] of resetting the walker to a special
site at each step. In these contexts, a relationship between
the MFPT and the spectral properties of the transition matrix
has been presented. Additionally, exact results for MFPT on
small-scale networks have been obtained, indicating that re-
setting can expedite the search process. For the general case
of first-passage progress under restart, the MFPT can be eval-
uated exactly using the probability generation functions of the
first-passage time and the wait time between two successive
resettings [33]. There are also work which focus on the effect
of resetting position on the search efficiency [40] and work
which evaluate the effect of stochastic resetting on the entropy
rate for discrete-time Markovian processes [41].

However, to the best of our knowledge, a result of the
MFPT for random walks with resetting on complex networks
has just been obtained on one-dimensional lattices and some
small-scale networks. The resetting positions in these studies
are often chosen to be close to the target, and the impact
of the resetting position on the optimization of MFPT on
large-scale networks has not been explored. It should be noted
that many real-world scenarios involving random searches can
be represented as large-scale complex networks. Therefore,
understanding the effect of resetting (or resetting position)
on the MFPT for random walks on such large-scale com-
plex networks becomes an intriguing problem. Addressing
the question of how resetting affects the search process on
large-scale complex networks would be highly challenging
[42]. The inherent heterogeneity of complex networks adds
complexity to the problem.

In this study we investigate the impact of resetting po-
sitions on the optimization of the MFPT for discrete-time
random walks on the pseudofractal scale-free web (PSFW)
[43]. Our study focuses on understanding how resetting af-
fects the efficiency of the random search process. During
each step of the random walk, the walker has two options:
it can either move to one of the neighbors of the current
site with a probability of 1 − γ or reset to a specific reset-
ting position with a probability of γ . To comprehensively
explore the impact of different resetting positions, we evaluate
analytically the MFPT to the hub, which is the vertex with
the highest degree, for various choices of resetting positions.
Accurate results for the MFPT to the hub of the networks
and the optimal resetting probability γ ∗ where MFPT reaches
the minimum are obtained. It is worth noting that scale-free
and small-world properties are prevalent in many real-world
networks, making them relevant for our investigation. The
PSFW, being a well-known network model that exhibits both
scale-free and small-world characteristics, serves as a suitable
basis for our study.

II. NETWORK MODEL

The pseudofractal scale-free web (PSFW) is a determin-
istic network model designed to capture the characteristics
of scale-free networks with small-world properties [43,44].
The PSFW, denoted as n, with G(n) (n � 0), is constructed
iteratively as follows: For the initial generation n = 0, G(0)

FIG. 1. Constructions of the PSFW G(n) with generation n = 0,
1, 2.

comprises only two vertices connected by an edge. For subse-
quent generations with n > 0, G(n) is obtained from G(n − 1)
by replacing each edge of G(n − 1) with a triangle. In other
words, for every edge of G(n − 1), a new vertex is intro-
duced, which connects to both endpoints of the edge. Figure 1
illustrates the constructions of PSFW G(n) for generations
n = 0, 1, and 2. Figure 2 depicts the construction of PSFW
for generation n = 3.

As a result of this construction, the PSFW G(n) with n � 0
exhibits certain properties. Specifically, the total number of
edges En in G(n) is equal to 3n, while the total number of
vertices Nn is given by 3n+3

2 . During the growth from genera-
tion n to generation n + 1, 3n new vertices are introduced, and
they are connected to the existing vertices. Consequently, the
degree of each old vertex in G(n) doubles. Furthermore, the
three vertices present in G(1) attain the highest degree in G(n)
(n � 1), and we refer to them as the hubs of PSFW G(n). For
convenience, in PSFW G(n) with n � 3, we label the three
hubs A, B, and C; the three new vertices in generation 2 D,
E , and F ; and, the nine new vertices in generation 3 G, H ,
I , J , K , L, M, N , and O, respectively. Figure 2 illustrates the
labeled vertices for the PSFW with generation n = 3.

As is widely recognized, the PSFW exhibits both scale-free
and small-world characteristics [43]. Notably, its diameter

FIG. 2. Construction of PSFW G(3), where the three hubs of
G(3) are labeled A, B, and C; the three new vertices in generation 2,
indicated in blue, are labeled D, E , and F ; and the nine new vertices
in generation 3, indicated in green, are labeled G, H , I , J , K , L, M,
N , and O respectively.
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experiences logarithmic growth with the size of the network,
denoted by Nn. Additionally, the number of vertices with a
degree k follows a power-law distribution with a power expo-
nent β = 1 + log 3/ log 2 ≈ 2.585 [43]. Although the PSFW
displays a form of self-similarity, it has no finite fractal di-
mension, and it is not a fractal. Then it is aptly called as
pseudofractal scale-free web. In 2007 a broader class of scale-
free networks was introduced, known as (u, v)-flowers [45].
The specific network considered in this study corresponds to
the (1, 2)-flowers configuration.

Note that the PSFW exhibits rich characteristics. Consid-
erable effort has been dedicated to exploring its structure
and dynamic properties, including diameter and average path
length [46], spectral properties [47,48], number of spanning
trees [49,50], first-passage properties [23,51,52], and percola-
tion [53].

III. MFPT FOR GENERAL DISCRETE-TIME RANDOM
WALKS UNDER RESETTING IN GENERAL NETWORKS

In this section we introduce a comprehensive method for
determining the MFPT in a general discrete-time first-passage
process under resetting. Subsequently, as an application of
the general method, we apply this general method to de-
rive a rigorous formula for calculating the MFPT in general
discrete-time random walks with a fixed resetting probability
on general networks. These findings will be utilized to com-
pute the MFPT for random walks under resetting with a fixed
probability on the PSFW in the subsequent sections.

A. MFPT for the discrete-time first-passage process under
resetting

The first-passage process under resetting is characterized
by restarting the process after some random time R has
elapsed. Let TR denote the first-passage time under resetting,
and T represent the first-passage time without any interrup-
tions. One can obtain [27]

TR =
{

T, T < R,

R + T ′
R, T � R,

(1)

where T ′
R and TR denote the independent and identically dis-

tributed random variables.
In the context of continuous-time first-passage processes

under resetting, where R follows an exponentially distributed
random variable, Ref. [27] provided formulas to calculate
the first two moments of TR utilizing the Laplace transform
method, and Ref. [33] by using a probability generation func-
tion. However, a notable distinction arises in Ref. [33], in
which TR = T if T = R, different from Eq. (1); this implies
that the walker can reach the target precisely at the moment of
a reset (e.g., T = R). In most cases, for a random walk with
resetting, when the resetting time R is reached, the walker is
reset to a given site, and there is no opportunity to reach the
target at that specific instance. Therefore, we cannot directly
apply the formulas from Ref. [33] to derive the MFPT for
random walks under resetting on the PSFW.

Therefore, in this section we will investigate the relation-
ship between the mean of TR and the probability generation
functions of T and R. We will then present the formulas to

calculate the mean of TR for discrete-time first-passage pro-
cess under resetting, as shown in Eq. (1), by using the method
presented in Ref. [33].

Let

I (T � R) =
{

0, T < R,

1, T � R.
(2)

Equation (1) can be rewritten as

TR = min(T, R) + I (T � R) × T ′
R. (3)

Let 〈·〉 denote the first moment of random variable “·” and
Pr(·) represent the probability that event “·” occurs. We have

〈TR〉 = 〈min(T, R)〉 + 〈I (T � R)T ′
R〉

= 〈min(T, R)〉 + Pr(T � R)〈T ′
R〉

= 〈min(T, R)〉 + [1 − Pr(T < R)]〈T ′
R〉. (4)

Note that TR and T ′
R are independent and identically distributed

random variables and 〈TR〉 = 〈T ′
R〉. We get

〈TR〉 = 〈min
(
T, R

)〉
Pr(T < R)

, (5)

where

〈min(T, R)〉 =
∞∑

m=0

Pr(min(T, R) > m)

=
∞∑

m=0

⎡
⎣
⎛
⎝ ∞∑

k=m+1

Pr(T = k)

⎞
⎠ ∞∑

l=m+1

Pr(R = l )

⎤
⎦
(6)

and

Pr(T < R) =
∞∑

m=0

⎡
⎣Pr(T = m)

∞∑
l=m+1

Pr(R = l )

⎤
⎦. (7)

B. MFPT for discrete-time random walks under resetting
with fixed probability in general networks

Here we consider discrete-time random walks under re-
setting on general networks. At each step, there is a fixed
probability γ that the walker is reset to the initial state (or
site), and a probability 1 − γ that the walker jumps to one
of the neighbors of the site currently occupied. Therefore,
random variable R, the time it takes the walker to restart the
random walk, follows a geometric distribution with parameter
γ , reads as

Pr(R = l ) = (1 − γ )l−1γ , l � 1. (8)

Therefore, for any m � 0,

∞∑
l=m+1

Pr(R = l ) =
∞∑

l=m+1

(1 − γ )l−1γ

= (1 − γ )m. (9)
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Substituting
∑∞

l=m+1 Pr(R = l ) from Eq. (9) in Eq. (6) and
Eq. (7), we get

〈min(T, R)〉 =
∞∑

m=0

⎡
⎣(1 − γ )m

∞∑
k=m+1

Pr(T = k)

⎤
⎦

=
∞∑

k=1

[
Pr(T = k)

k−1∑
m=0

(1 − γ )m

]

=
∞∑

k=1

[
Pr(T = k)

1 − (1 − γ )k

γ

]

= 1

γ

[
1 −

∞∑
k=0

[
Pr(T = k)(1 − γ )k

]]

= 1 − �T (1 − γ )

γ
(10)

and

Pr(T < R) =
∞∑

m=0

[Pr(T = m)(1 − γ )m]

= �T (1 − γ ), (11)

where �T (z) =∑∞
k=0[Pr(T = k)zk] is the probability-

generating function of random variable T .
Inserting Eq. (10) and Eq. (11) into Eq. (5), we get

〈TR〉 = 1 − �T (1 − γ )

γ�T (1 − γ )
, (12)

which is a function of resetting probability γ . Therefore, one
can find the optimal γ ∗ where 〈TR〉 obtained the minimum by
solving the following equation:

d

dγ
〈TR〉 = 0, (13)

which is equivalent to

[�T (1 − γ )]2 − �T (1 − γ ) − γ
d�T (1 − γ )

dγ
= 0. (14)

If �T (1 − γ ) is a rational function of γ , which can be
expressed as

�T (1 − γ ) ≡ XT (γ )

YT (γ )
, (15)

one can rewrite Eq. (14) as(
XT (γ )

YT (γ )

)2

− XT (γ )

YT (γ )
− γ

dXT (γ )
dγ

YT (γ ) − dYT (γ )
dγ

XT (γ )

[YT (γ )]2
= 0,

(16)
which is equivalent to

X 2
T (γ ) − XT (γ )YT (γ ) − γ

[
dXT (γ )

dγ
YT (γ ) − dYT (γ )

dγ
XT (γ )

]

= 0. (17)

It should be pointed out, for any discrete-time first-passage
process under resetting, as introduced in Sec. III A, if random
variable R follows a geometric distribution with parameter γ ,
results obtained here are also true.

IV. MFPT ON THE PSFW FOR RANDOM WALKS UNDER
RESETTING WITH A FIXED RESETTING POSITION

In this section we describe the analysis of the MFPT to the
hub A for random walks under resetting on the PSFW. During
each step the walker has a fixed probability γ of resetting to
a predefined site, which we refer to as the resetting position.
We explore different choices of the resetting position, namely,
vertices B, D, I , F , and H , and the newest common neighbor
of hub A and B, as shown in Fig. 2. For each resetting position,
we determine the optimal resetting probability that results in
the minimum MFPT. Subsequently, we discuss the influence
of the resetting position on the optimal MFPT. It is important
to note that in this analysis we assume that the initial position
of the walker coincides with the chosen resetting position.
However, the initial position of the walker affects only the
steps leading up to the first reset occurrence, and its impact
on the MFPT under resetting is inconsequential. The results
presented in this section will shed light on how the choice of
the resetting position affects the search efficiency, as measured
by the MFPT.

A. MFPT under resetting for a random walk
from hub B to hub A

In this subsection, we specifically focus on the case where
the walker begins at the hub B (i.e., the neighbor of A with
the highest degree). At each step, there is a constant proba-
bility γ that the walker will reset to its initial position. Let
T B→A(n), T B→A

R (n) denote the first-passage time from node B
to A, without and with resetting on the PSFW of generation
n, respectively. We define �B→A

T (n, z) as the probability-
generating function of T B→A(n) and 〈T B→A

R (n)〉 as the mean
of T B→A

R (n).
Here we evaluate the MFPT from B to A under reset-

ting, denoted as 〈T B→A
R (n)〉. Rigorous results for 〈T B→A

R (n)〉
are presented, along with the optimal value of γ ∗

B (n) where
〈T B→A

R (n)〉 reaches its minimum.
Recalling the result for the MFPT under resetting, as shown

in Eq. (12), we aim to derive 〈T B→A
R (n)〉. To achieve this,

our first step is to obtain the probability-generating function,
denoted as �B→A

T (n, z), for the first-passage time T B→A(n).
Previously obtained results have shown that [52,54], for

any n > 1, �B→A
T (n, z) satisfies

�B→A
T (n, z) = �B→A

T

(
1,�B→A

T (n − 1, z)
)
, (18)

with an initial condition �B→A
T (1, z) = z

2−z . Solving the above
recursive formula, we get

�B→A
T (n, z) = z

2n − (2n − 1)z
. (19)

Therefore

�B→A
T (n, 1 − γ ) = 1 − γ

(2n − 1)γ + 1
. (20)

By replacing �T (1 − γ ) with �B→A
T (n, 1 − γ ) in Eq. (12),

and using the expression for �B→A
T (n, 1 − γ ) in Eq. (20), we

can derive the MFPT from node B to A under resetting in this
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FIG. 3. Plot of 〈T B→A
R (n)〉 vs γ in the PSFW with generation n =

8. 〈T B→A
R (n)〉 increases monotonically in γ on interval [0, 1).

particular case:

〈
T B→A

R (n)
〉 = 1 − �B→A

T (n, 1 − γ )

γ�B→A
T (n, 1 − γ )

= 2n

1 − γ
. (21)

As shown in Fig. 3, 〈T B→A
R (n)〉 increases monotonically in

γ on interval [0, 1) and reaches its minimum at γ ∗
B (n) = 0.

The minimum value of 〈T B→A
R (n)〉 is obtained when no reset-

ting occurs. Based on the analysis and the results obtained, it
can be concluded that resetting does not lead to a reduction
in the MFPT or accelerate the search process in this particular
case.

B. MFPT under resetting for a random walk from
vertex D to hub A

In this subsection we focus on the scenario where the
walker initiates from vertex D (i.e., the neighbor of A with
the second highest degree). At each step, there is a fixed
probability γ of resetting the walker back to its initial position.
Our objective is to evaluate the MFPT from vertex D to A
under resetting, denoted as 〈T D→A

R (n)〉. We will present the
results for 〈T D→A

R (n)〉 and determine the optimal value of γ ∗
at which 〈T D→A

R (n)〉 reaches its minimum.
To derive 〈T D→A

R (n)〉, our first step is to derive the
probability-generating function, denoted as �D→A

T (n, z), for
the first-passage time from D to A. Similarly to the derivation
of Eq. (18), we find [52,54] that for any n > 2, �D→A

T (n, z)
satisfies

�D→A
T (n, z) = �D→A

T

(
2,�D→A

T (n − 2, z)
)
. (22)

For n = 2, we find �D→A
T (2, z) = z(z−2)

3z−4 , as shown in Ap-
pendix A. Solving the above recursive formula, we get

�D→A
T (n, z) = (2n−1 − 1)z2 − 2n−1z

(5 × 2n−2 − 22n−2 − 1)z2 + (22n−1 − 5 × 2n−2)z − 22n−2
. (23)

Therefore,

�D→A
T (n, 1 − γ ) = (2n−1 − 1)γ 2 + (2 − 2n−1)γ − 1

(5 × 2n−2 − 22n−2 − 1)γ 2 + (2 − 5 × 2n−2)γ − 1
. (24)

Replacing �T (1 − γ ) with �D→A
T (n, 1 − γ ) in Eq. (12), and

substituting �D→A
T (n, 1 − γ ) from Eq. (24), we obtain〈

T D→A
R (n)

〉 = (3 × 2n−2 − 22n−2)γ − 3 × 2n−2

(2n−1 − 1)γ 2 + (2 − 2n−1)γ − 1
. (25)

By taking the first-order derivative with respect to γ on
both sides of Eq. (25) and setting d

dγ
〈T D→A

R (n)〉 = 0, we
obtain

(23n−3 + 3 × 2n−2 − 5 × 22n−3)γ 2 + 3 × (22n−2 − 2n−1)γ

+ 3 × 2n−2 − 22n−3 = 0, (26)

with root1

γ ∗
D(n) = 3(2n−1 − 22n−2) + √

25n−4 − 24n−3

23n−2 + 3 × 2n−1 − 5 × 22n−2

= 2n−1(3 × 21−n + √
2n − 2 − 3)

2n−1(2n − 5) + 3
. (27)

For any n � 3, 1 > γ ∗
D(n) > 0, and 〈T D→A

R (n)〉 reaches its
minimum at γ ∗

D(n). Figure 4 shows the plot of 〈T D→A
R (n)〉 vs

γ in the PSFW with generation n = 8. 〈T D→A
R (8)〉 reaches its

minimum at γ ∗
D(8) = 0.052.

1Another root is negative; it has thus been removed.

We also observe that, for any n > 5, γ ∗
D(n) decreases

monotonically with increasing n, as shown in Fig. 5. Addition-
ally, in the PSFW where the size is sufficiently large, n → ∞,

γ ∗
D(n) ≈ 1√

2n
→ 0. (28)
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FIG. 4. Plot of 〈T D→A
R (n)〉 vs γ in the PSFW with generation n =

8. 〈T D→A
R (8)〉 reaches its minimum at γ ∗

D (8) = 0.052.
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FIG. 5. Plot of the optimal resetting probability γ ∗
D (n) as a

function of n. For any n > 5, γ ∗
D (n) decreases monotonically with

increasing n, and γ ∗
D (n) → 0, as n → ∞.

Replacing γ in Eq. (25) from Eq. (27), we get the MFPT from
vertex D to A under resetting with γ = γ ∗(D),

〈
T D→A

R (n)
〉
γ=γ ∗(D) ≈ 3

√
2n − 2n

√
2n − 3 × 2n

2 − 4
2n + 8√

2n − 2
√

2n − 4
. (29)

Letting γ = 0 in Eq. (25), we can obtain the MFPT without
resetting,

〈T D→A(n)〉 = 3 × 2n

4
. (30)

By calculating the ratio of 〈T D→A
R (n)〉γ=γ ∗(D) to 〈T D→A(n)〉,

we obtain, in the PSFW where the size is sufficiently large,

i.e. n → ∞,

〈
T D→A

R (n)
〉
γ=γ ∗(D)

〈T D→A(n)〉 ≈ lim
n→∞

3
√

2n − 2n
√

2n − 3 × 2n

2 − 4
2n + 8√

2n − 2
√

2n − 4

× 4

3 × 2n
→ 2

3
. (31)

This result indicates that, although the optimal resetting
probability, where 〈T D→A

R (n)〉 reaches its minimum, is ap-
proximately equal to 0 in the PSFW with a large enough
size, resetting can always expedite the search process in
this case.

C. MFPT under resetting for a random walk from vertex
I to hub A

In this subsection we consider the case where the
walker initiates from vertex I (i.e., the neighbor of A with
the third highest degree). At each step, there is a fixed
probability γ of resetting the walker back to its initial
position. Similarly, we calculate the MFPT from vertex
I to A under resetting, denoted as 〈T I→A

R (n)〉, and find
the optimal value of γ ∗

I (n) at which 〈T I→A
R (n)〉 reaches

its minimum.
First, we derive the probability-generating function,

�I→A
T (n, z), of the first-passage time from I to A. Similar to

Eq. (18), we find [54] that for any n > 3,

�I→A
T (n, z) = �I→A

T

(
3,�I→A

T (n − 3, z)
)
. (32)

For n = 3, �I→A
T (3, z) = z(3z−4)

7z−8 , as shown in Appendix A.
Solving the aforementioned recursive formula, we obtain

�I→A
T (n, z) = (2n−1 − 1)z2 − 2n−1z

(9 × 2n−3 − 22n−3 − 1)z2 + (22n−2 − 9 × 2n−3)z − 22n−3
.

Therefore,

�I→A
T (n, 1 − γ ) = (2n−1 − 1)γ 2 + (2 − 2n−1)γ − 1

(9 × 2n−3 − 22n−3 − 1)γ 2 + (2 − 9 × 2n−3)γ − 1
. (33)

Then, by replacing �T (1 − γ ) with �I→A
T (n, 1 − γ ) in

Eq. (12), and substituting �I→A
T (n, 1 − γ ) from Eq. (33), we

obtain

〈
T I→A

R (n)
〉 = (5 × 2n−3 − 22n−3)γ − 5 × 2n−3

(2n−1 − 1)γ 2 + (2 − 2n−1)γ − 1
. (34)

By taking the first-order derivative with respect to γ on
both sides of Eq. (34) and setting d

dγ
〈T I→A

R (n)〉 = 0, we obtain

(23n−4 + 5 × 2n−3 − 7 × 22n−4)γ 2 + 5 × (22n−3 − 2n−2)γ

+5 × 2n−3 − 3 × 22n−4 = 0, (35)

with a root2

γ ∗
I (n) = 5 ∗ (2n−2 − 22n−3) +

√
3 × (25n−6 − 24n−5)

23n−3 + 5 × 2n−2 − 7 × 22n−3

= 2n−1(5 × 21−n + √
3 × 2n − 6 − 5)

2n−1(2n − 7) + 5
. (36)

For any n � 4, 1 > γ ∗
I (n) > 0, and 〈T I→A

R (n)〉 reaches its
minimum at γ ∗

I (n). Figure 6(a) depicts the plot of 〈T I→A
R (n)〉

vs γ in the PSFW with generation n = 8. 〈T I→A
R (8)〉 reaches

its minimum at γ ∗
I (8) = 0.091. Similar to γ ∗

D(n), for any
n > 5, γ ∗

I (n) decreases monotonically with increasing n, as

2Another root is negative; it has thus been removed.
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FIG. 6. (a) Plot of 〈T I→A
R (n)〉 vsγ in the PSFW with generation

n = 8. 〈T I→A
R (8)〉 reaches its minimum at γ ∗

I (8) = 0.091. (b) The
plot of the optimal resetting probability γ ∗

I (n) as a function of n.
For any n > 5, γ ∗

I (n) decreases monotonically with increasing n, and
γ ∗

I (n) → 0, as n → ∞.

shown in Fig. 6(b). Furthermore, in the PSFW with a suffi-
ciently large size, n → ∞,

γ ∗
I (n) ≈

√
3

2n
→ 0. (37)

Replacing γ from Eq. (36) in Eq. (34), we obtain the MFPT
under resetting at the optimal γ = γ ∗

I (n),

〈
T I→A

R (n)
〉
γ=γ ∗

I (n) = 5
√

3 × 2n − 2n
√

3 × 2n − 5 × 2n

12 − 24
2n + 16

√
3
2n − 4

√
3 × 2n − 8

.

Let γ = 0 in Eq. (34), we obtain the MFPT without resetting

〈T I→A(n)〉 = 5 × 2n

8
. (38)

Calculating the ratio of 〈T I→A
R (n)〉γ=γ ∗

I (n) to 〈T I→A(n)〉, we
get〈
T I→A

R (n)
〉
γ=γ ∗

I (n)

〈T I→A(n)〉 ≈ lim
n→∞

5
√

3 × 2n − 2n
√

3 × 2n − 5 × 2n

12 − 24
2n + 16

√
3
2n − 4

√
3 × 2n − 8

× 8

5 × 2n
→ 2

5
, (39)

this indicates that resetting can always hasten the search
process, although the optimal resetting probability where
〈T I→A

R (n)〉 reaches its minimum is approximately equal to 0
in the PSFW, which is sufficiently large.

D. MFPT under resetting for a random walk from the newest
common neighbor of hub A and B to hub A

Let ζn denote the newest common neighbor of hub A and
B in the PSFW with generation n, and T ζn→A(n) represent
the first-passage time from ζn to hub A in the PSFW with
generation n. In this subsection we will evaluate the MFPT
under resetting for a random walk from ζn to hub A and find
the optimal value of γ ∗

ζn
(n) at which 〈T ζn→A

R (n)〉 reaches its
minimum.

First, we derive the probability-generating function,
�

ζn→A
T (n, z), of the first-passage time from ζn to A. It is clear

that Pr(T ζn→A(n) = 0) = 0, Pr(T ζn→A(n) = 1) = 1
2 , and for

any k > 1,

Pr(T ζn→A(n) = k) = 1
2 Pr(T B→A(n) = k − 1).

Therefore,

�
ζn→A
T (n, z) =

∞∑
k=0

zkPr(T ζn→A(n) = k)

= z
1

2
+

∞∑
k=2

zt 1

2
Pr(T B→A(n) = k − 1)

= z

2
+ z

2

∞∑
t=2

zt−1Pr(T B→A(n) = k − 1)

= z

2

[
1 + �B→A

T (n, z)
]

= z

[
2n−1 − (2n−1 − 1)z

2n − (2n − 1)z

]
, (40)

where the last line of Eq. (40) is obtained by replacing
�B→A

T (n, z) from Eq. (19). Thus

�
ζn→A
T (n, 1 − γ ) = −(2n−1 − 1)γ 2 + (2n−1 − 2)γ + 1

(2n − 1)γ + 1
.

(41)
Then, replacing �T (1 − γ ) with �

ζn→A
T (n, 1 − γ ) in

Eq. (12), and substituting �
ζn→A
T (n, 1 − γ ) from Eq. (41), we

obtain the MFPT under resetting as follows:

〈
T ζn→A

R (n)
〉 = (2n−1 − 1)γ + 2n − 2n−1 + 1

(1 − 2n−1)γ 2 + (2n−1 − 2)γ + 1
. (42)

By taking the first-order derivative with respect to γ on
both sides of Eq. (42) and setting d

dγ
〈T ζn→A

R (n)〉 = 0, we
obtain

(22n−2 − 2n + 1)γ 2 + (22n−1 − 2)γ + (−22n−2 + 2n + 1)

= 0, (43)

with a root3

γ ∗
ζn

(n) = 2 − 22n−1 + √
24n−1 − 23n+1 + 22n+1

22n−1 − 2n+1 + 2

= 2n[
√

(2n−1 − 2)2n + 2 − 2n−1] + 2

2n(2n−1 − 2) + 2
. (44)

For any n � 3, 1 > γ ∗
ζn

(n) > 0, and 〈T ζn→A
R (n)〉 reaches its

minimum at γ ∗
ζn

(n). Figure 7 illustrates the plot of 〈T ζn→A
R (n)〉

vs γ in the PSFW with generation n = 8. 〈T ζn→A
R (8)〉 reaches

its minimum at γ ∗
I (8) = 0.41.

As shown in Fig. 8, γ ∗
ζn

(n) increases monotonically with
increasing n, and in the PSFW with a sufficiently large size,
n → ∞,

γ ∗
ζn

(n) →
√

2 − 1 ≈ 0.4142. (45)

Similar to the derivation of Eqs. (31) and (41), calculating
the ratio of the MFPT with optimal resetting probability to
the MFPT without resetting, we find, in the PSFW with a

3Another root is negative; it has thus been removed.
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FIG. 7. Plot of 〈T ζn→A
R (n)〉 vs γ in the PSFW with generation

n = 8. 〈T ζn→A
R (8)〉 reaches its minimum at γ ∗

ζn
(8) = 0.41.

sufficiently large size,〈
T ζn→A

R (n)
〉
γ=γ ∗

ζn
(n)

〈T ζn→A(n)〉 → 0. (46)

Therefore, in this case, resetting can significantly expedite
the search process in a large PSFW, and the optimal resetting
probability where the MFPT reaches its minimum is approxi-
mately equal to 0.4142.

Recalling the results presented in Secs. IV A–IV C, we
observe significant differences in the optimal resetting prob-
abilities and the ratio of the MFPT with optimal resetting
probability to the MFPT without resetting. With these obser-
vations, we arrive at the following conclusion. For random
walks on the PSFW, the degree of the resetting position has
a tremendous influence on the MFPT to hub A. In a large
PSFW, if at each step the walker has a fixed probability of
resetting to vertex B, which is the neighbor of hub A with

0 10 20 30 40
n

0.2

0.25

0.3

0.35

0.4

0.45

n*
(n

)

FIG. 8. Plot of optimal resetting probability γ ∗
ζn

(n) as a function
of n. For all n > 3, γ ∗

ζn
(n) increases monotonically with increasing n,

and γ ∗
ζn

(n) → 0.4142, as n → ∞.

the highest degree, resetting would slow the search process to
reach target A; if at each step the walker has a fixed probability
of resetting to vertex D (or I), which are neighbors of hub A
with the second highest, or third highest, degrees, resetting
can always expedite the search process to reach target A to
a certain extent, but the optimal resetting probability, where
the MFPT reaches its minimum, is almost equal to 0. If the
walker has a fixed probability of resetting to vertex ζn, which
is a common neighbor of hub A and hub B with the lowest
degree, resetting can substantially shorten the MFPT to hub A
and accelerate the search process. Even though the distances
between these resetting positions (i.e., B, D, I , ζn) and hub
A are all equal to 1, the effect of resetting on the MFPT to
hub A is remarkably different. The reason lies in the varying
degrees of these resetting positions. The higher the degree of
the resetting position, the more difficult it is for the walker to
reach hub A from that resetting position.

E. MFPT under resetting for a random walk from
vertex F (or H) to hub A

In this subsection we consider the case where the walker
initiates from a vertex [e.g., F (or H), as shown in Fig. 2],
which is not a neighbor of hub A. Furthermore, at each step,
there is a fixed probability γ of resetting the walker back to
the initial position. Similarly, we calculate the MFPT from
vertex F (or H to A under resetting), referred to as 〈T F→A

R (n)〉
[or 〈T H→A

R (n)〉] and find the optimal γ ∗
F (n) [or γ ∗

H (n)] where
〈T F→A

R (n)〉 [or 〈T H→A
R (n)〉] reaches its minimum.

First, we derive the probability-generating function,
�F→A

T (n, z) [or �H→A
T (n, z)], of the first-passage time from

F (or H) to A. Similar to Eq. (18), we find [54], for any n > 2,

�F→A
T (n, z) = �F→A

T (2,�F→A
T (n − 2, z)), (47)

with �F→A
T (2, z) = z2

4z−3 ; and for any n > 3,

�H→A
T (n, z) = �F→A

T (3,�F→A
T (n − 3, z)), (48)

with �H→A
T (3, z) = z2

8z−7 .
Solving Eqs. (47) and (48), and replacing z with 1 − γ , we

obtain

�F→A
T (n, 1 − γ )

= γ 2 − 2γ + 1

[22n−2 − 5 × 2n−2 + 1]γ 2 + [5 × 2n−2 − 2]γ + 1
(49)

and

�H→A
T (n, 1 − γ )

= γ 2 − 2γ + 1

[22n−3 − 9 × 2n−3 + 1]γ 2 + [9 × 2n−3 − 2]γ + 1
.

(50)

Therefore,

〈
T F→A

R (n)
〉 = 1 − �F→A

T (n, 1 − γ )

γ�F→A
T (n, 1 − γ )

= (22n−2 − 5 × 2n−2)γ + 5 × 2n−2

(γ − 1)2
(51)
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FIG. 9. Result of a random walk by the searcher in the eight-
generation (1, 2)-flowers. (a) Plot of the MFPT of the searcher from
the initial node F with respect to the reset probability. (b) Plot of
the MFPT of the searcher from the initial node H with respect to the
reset probability.

and

〈
T H→A

R (n)
〉 = 1 − �H→A

T (n, 1 − γ )

γ�H→A
T (n, 1 − γ )

= (22n−3 − 9 × 2n−3)γ + 9 × 2n−3

(γ − 1)2
. (52)

As shown in Fig. 9, both 〈T F→A
R (n)〉 and 〈T H→A

R (n)〉 in-
crease monotonically in γ on interval [0,1), and the minimum
of the MFPT to hub A is obtained at γ = 0, where no resetting
occurs in the entire process.

Note that the distance between F (or H) and A is greater
than that between B (or D, I , and ζn) and A. By comparing
the results obtained in this subsection with those obtained
in Secs. IV A–IV D, we confirm that the distance between
the resetting position and the target (i.e., A) has a tremen-
dous effect on the MFPT to the target. The farther the
distance, the smaller the effect of resetting on the optimization
of MFPT.

V. MFPT ON THE PSFW FOR RANDOM WALKS UNDER
RESETTING WITH THE RESETTING POSITION

SELECTED RANDOMLY

In this section we examine the scenario where the walker
starts from a vertex randomly selected according to a station-
ary distribution (i.e., � = ( d1∑

k dk
, d2∑

k dk
, . . . , dN∑

k dk
), with dk

being the degree of vertex k, and N being the total number
of vertexes of the networks), and at each step, there is a
fixed probability γ of resetting to another vertex randomly
drawn from the same probability distribution �. Similarity,
we calculate the MFPT under resetting from a randomly
drawn vertex to hub A, referred to as 〈T �→A

R (n)〉, and aim to
find the optimal value of γ ∗

�(n) at which 〈T �→A
R (n)〉 reaches

its minimum.
First, we derive the probability-generating function,

��→A
T (n, z), of the first-passage time from a randomly drawn

vertex to hub A.
As derived in Appendix B,

��→A
T (n, z) = 2n−1

3n
× z(1 + z)∏n

k=1 χ (k, z)
, (53)
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FIG. 10. (a) 〈T �→A
R (n)〉 as a function of γ for n = 8. The mini-

mum value of 〈T �→A
R (n)〉 occurs at γ ∗

�(8) = 0.234. (b) 〈T �→A
R (n)〉 as

a function of γ for n = 25. The minimum value of 〈T �→A
R (n)〉 occurs

at γ ∗
�(25) ≈ 0.255.

with

χ (k, z) = [2k + (4 − 2k )z][2k + (1 − 2k )z]

[2k + (3 − 2k )z][2k + (2 − 2k )z]
,

k = 1, 2, . . . , n.

Thus,

〈
T �→A

R (n)
〉 = 1 − ��→A

T (n, 1 − γ )

γ��→A
T (n, 1 − γ )

=
1 − 2n−1(1−γ )(2−γ )

3n×∏n
k=1 χ (k,1−γ )

γ
2n−1(1−γ )(2−γ )

3n×∏n
k=1 χ (k,1−γ )

= 3n
∏n

k=1 χ (k, 1 − γ ) − 2n−1(1 − γ )(2 − γ )

2n−1γ (1 − γ )(2 − γ )

= 3nφ(n, γ ) − 2n−1(1 − γ )(2 − γ )

2n−1γ (1 − γ )(2 − γ )
, (54)

where φ(n, γ ) =∏n
k=1 χ (k, 1 − γ ).

The expression for 〈T �→A
R (n)〉 may appear lengthy and

complex. However, by plotting 〈T �→A
R (n)〉 as a function of

γ , one can find the optimal γ ∗
�(n) where 〈T �→A

R (n)〉 reaches
its minimum. Figure 10 shows the plot of 〈T �→A

R (n)〉 vs γ for
n = 8 and n = 25.

Furthermore, as shown in Fig. 11, in the PSFW with a large
size, n → ∞, we find that

φ(n, γ ) =
n∏

k=1

χ (k, 1 − γ ) ≈[1 − (γ − 1)2]
299
500 . (55)
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FIG. 11. Comparison of plots φ(n, γ ) vs γ with different choices
of n (n = 25, n = 50, and n = 100) and the approximation obtained
from [1 − (γ − 1)2]

299
500 . The four curves closely overlap, confirming

the accuracy of Eq. (57).
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Replacing φ(n, γ ) from Eq. (55) in Eq. (54), we obtain

〈
T �→A

R (n)
〉 ≈ 3n[1 − (γ − 1)2]

299
500 − 2n−1(1 − γ )(2 − γ )

2n−1γ (1 − γ )(2 − γ )
.

(56)

By taking the first-order derivative with respect to γ on
both sides of Eq. (56) and setting d

dγ
〈T �→A

R (n)〉 = 0, we
obtain

299
250 3n2n−1[2γ − γ 2]

299
500 (1 − γ )2 − 3n2n−1[2γ − γ 2]

299
500

×(3γ 2 − 6γ + 2) + [2n−1(1 − γ )(2 − γ )]2 = 0, (57)

which can be simplified as

γ (γ − 2)(451γ 2 − 902γ + 201) = 0, (58)

with a root4

γ ∗
�(n) = 1 −

√
250

451
≈ 0.255, (59)

and 〈T �→A
R (n)〉 reaches its minimum at γ ∗

�(n) ≈ 0.255 while
n is big enough.

By taking the first-order derivative with respect to γ on
both sides of Eq. (53) and setting z = 1, we obtain the MFPT
without resetting:

〈T �→A(n)〉

= ∂��→A
T (n, z)

∂z

∣∣∣∣
z=1

=
2n−1 × 3n+1 × φ(n, 1) − 3n × [ ∂φ(n,z)

∂z

∣∣
z=1

]× 2n

[3n × φ(n, 1)]2

= 2n−1 × 3n+1 × 2n

3n − 3n × 2n−1

3n−1

[− 5
9 (2n − 1)

]× 2n[
3n × 2n

3n

]2
= (5 × 2n + 4)

6
. (60)

Calculating the ratio of the MFPT at the optimal resetting
probability to the MFPT without resetting, in the PSFW with
a sufficiently large size, n → ∞, we find〈

T �→A
R (n)

〉
γ=γ ∗

�(n)

〈T �→A(n)〉 → 0. (61)

Therefore, in a large PSFW, resetting to a vertex randomly
drawn from the stationary distribution proves to be a favor-
able strategy for expediting the search process. In scenarios
where the location of the target is unknown, the findings from
this study provide valuable insights into optimizing stochastic
search in the PSFW and other large networks.

VI. CONCLUSION

In this work we explored discrete-time random walks under
resetting on the PSFW. During each step of the random walks,
the walker either moves to one of the neighbors of the current

4All the other roots do not belong to (0, 1) and have thus been
removed.

site with a probability of 1 − γ , or resets to the resetting
position with a probability of γ . We have considered vari-
ous choices for the resetting position and rigorously derived
results for the MFPT to the hub (i.e., vertex with the highest
degree) of the networks. Additionally, we have identified the
optimal resetting probability γ ∗ at which MFPT reaches its
minimum and evaluated the ratio of the MFPT with optimal
resetting probability and the MFPT without resetting. Our
findings demonstrate that, in a large PSFW, if the resetting
position is set to be the one of the neighbors with the highest
degree, or to be a common neighbor of B and C, the resetting
process slows the walker’s progress towards the target A; if
the resetting position is set to be the one of the neighbors
with the second highest, or third highest, degree of the target
A, resetting can always expedite the search process to reach
target A to a certain extent, but the optimal resetting proba-
bility γ ∗ at which MFPT to target A reaches its minimum is
approximately 0. If the resetting position is set to be one of
the neighbors with the lowest degree of node A, resetting can
significantly expedite the process of the walker reaching the
target node A. In this case the optimal resetting probability γ ∗,
where the MFPT to target A reaches its minimum, is approx-
imately 0.4142. We have also observed that if the resetting
position is a vertex randomly drawn from the stationary dis-
tribution, resetting can also significantly speed the process of
the walker reaching the target node A in the large PSFW. The
optimal resetting probability γ ∗, at which the MFPT to target
A reaches its minimum, is approximately 0.255. Note that, in
the general case, where the target node’s location is unknown,
it becomes challenging to select a suitable resetting position
close to the target with a small degree to expedite the search
process. Therefore, in such scenarios, our results suggest that
resetting to a vertex randomly drawn from the stationary dis-
tribution in the large PSFW can be an acceptable strategy
to expedite the search process. To further our understanding,
interesting questions remain: What is the effect of the resetting
position on the MFPT in other network types? Can resetting
to a vertex randomly drawn from the stationary distribution
expedite the search process in other networks as well? These
questions warrant further investigation and exploration.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: METHOD FOR DERIVING THE
PROBABILITY GENERATION FUNCTION FOR THE

FIRST-PASSAGE TIME AND RETURN TIME ON A
SMALL-SIZED PSFW

For a small PSFW, the probability generation function for
the first-passage time and return time can be directly obtained
by using the symbolic toolbox of MATLAB. First, we present
the general method.

Let

� = (Pi j )
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be the transfer probability matrix for a random walk on the
PSFW, where

Pi j =
{

1
di

if i ∼ j, and i is not a trap,

0, others,
(A1)

with “i ∼ j” indicating that a link exists between i and j.
Therefore, the probability-generating function for the passage
time and the return time can be obtained using the following
equation [55]:

�(z) =
∞∑

n=0

(z�)n = (I − z�)−1, (A2)

where �(z) = [φi j (z)], and φi j (z) represents the probability-
generating function of the time for a walker, starting from site
i, to be found at site j. If site j is a trap, φi j (z) is simply
the probability-generating function for the first-passage time
from site i to j. On the other hand, if there are no traps in the
network, φii(z) is simply the probability-generating function
for the return time for a random walk starting from site i,
i.e., the time for a walker, starting from site i, to be found at
site i.

Then we present some examples to demonstrate the
calculation of the probability-generating function for the first-
passage time in the small PSFW. In the PSFW with generation
1, let vertex 1 (i.e., vertex A) be a trap:

� =

⎛
⎜⎜⎝

0 0 0
1
2 0 1

2
1
2

1
2 0

⎞
⎟⎟⎠. (A3)

Substituting � from Eq. (A3) in Eq. (A2) and calculat-
ing the matrix inverse using the MATLAB symbol toolbox,
we obtain

�B→A
T (1, z) = φ21(1, z) = z

2 − z
. (A4)

In the PSFW with generation 2, let vertex 1 (i.e., vertex A)
be a trap:

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1
4 0 1

4
1
4 0 1

4
1
4

1
4 0 0 1

4
1
4

1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0

0 1
2

1
2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

Substituting � from Eq. (A5) in Eq. (A2) and calculat-
ing the matrix inverse using the MATLAB symbol toolbox,
we obtain

�D→A
T (2, z) = φ41(2, z) = z(z − 2)

3z − 4
(A6)

and

�F→A
T (2, z) = φ61(2, z) = z2

3z − 4
. (A7)

Similarly, in the PSFW with generation 3, we obtain

�I→A
T (3, z) = φ91(3, z) = z(3z − 4)

7z − 8
(A8)

and

�H→A
T (3, z) = φ81(3, z) = z2

7z − 8
. (A9)

Finally, we present some examples demonstrating the cal-
culation of the probability-generating function for the return
time in the small PSFW. In the PSFW with generation 0,
let

� =
(

0 1
1 0

)
. (A10)

Substituting � from Eq. (A10) in Eq. (A2) and calculating
the matrix inverse using the MATLAB symbol toolbox, we
obtain the probability-generating function for the return time
for vertex A in the PSFW with generation 0,

�A
RT(0, z) = φ11(0, z) = 1

(1 + z)(1 − z)
. (A11)

Similarly, in the PSFW with generation 1, let

� =

⎛
⎜⎜⎝

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎟⎟⎠ (A12)

and calculate the matrix inverse using the MATLAB sym-
bol toolbox, we get the probability-generating function
for the return time for vertex A in the PSFW with
generation 1,

�A
RT(1, z) = φ11(1, z) = 2 − z

(2 + z)(1 − z)
. (A13)

APPENDIX B: DERIVATION OF EQ. (55)

In this Appendix we present a detailed derivation of the
probability-generating function, ��→A

T (n, z), for the first-
passage time from a randomly drawn vertex to hub A in the
PSFW with generation n (n > 2).

It is known that [54],

��→A
T (n, z) = 2n−1z

(1 − z)3n
× 1

�A
RT(n, z)

, (B1)

where �A
RT(n, z) is the probability-generating function of the

return time for a random walk starting from vertex A on the
PSFW for generation n. It is defined such that �A

RT(n, z)(n, z)
satisfies the following equation:

�A
RT(n, z) = 1


(�B→A
T (n − 1, z))

× �A
RT(n − 1, z), (B2)

with 
(z) = �A
RT(0,z)

�A
RT(1,z) .

Using the method presented in Appendix A, we obtain

�A
RT(0, z) = 1

(1 + z)(1 − z)
(B3)
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and

�A
RT(1, z) = 2 − z

(2 + z)(1 − z)
. (B4)

Therefore,

�A
RT(n, z) = [2n + (4 − 2n)z][2n + (1 − 2n)z]

[2n + (3 − 2n)z][2n + (2 − 2n)z]
�A

RT(n − 1, z)

≡ χ (n, z)�A
RT(n − 1, z), (B5)

where χ (n, z) ≡ [2n+(4−2n )z][2n+(1−2n )z]
[2n+(3−2n )z][2n+(2−2n )z] .

Using Eq. (B5) recursively, we obtain

�A
RT(n, z) =

∏n
k=1 χ (k, z)

(1 + z)(1 − z)
. (B6)

Substituting �A
RT(n, z) from Eq. (B6) into Eq. (B1), we

obtain

��→A
T (n, z) = 2n−1

3n
× z(1 + z)∏n

k=1 χ (k, z)
. (B7)
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Miklós, V. T. Sós, and T. Szönyi (János Bolyai Mathematical
Society, Budapest, 1996), Vol. 2, pp. 353–398.

064109-13

https://doi.org/10.1063/1.4927085
https://doi.org/10.1103/PhysRevE.75.061102
https://doi.org/10.1063/1.4997761

