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Rényi entropy of zeta urns
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We calculate analytically the Rényi entropy for the zeta-urn model with a Gibbs measure definition of the
microstate probabilities. This allows us to obtain the singularities in the Rényi entropy from those of the
thermodynamic potential, which is directly related to the free-energy density of the model. We enumerate
the various possible behaviors of the Rényi entropy and its singularities, which depend on both the value
of the power law in the zeta urn and the order of the Rényi entropy under consideration.
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I. INTRODUCTION

Diversity, as well as how to measure it, has been a subject
of fundamental interest in mathematical biology and ecology
for many years [1–9]. There have been interesting contribu-
tions from numerous authors that make use of ideas from
statistical mechanics and thermodynamics, specifically those
related to various notions of entropy. A prototypical problem
is to quantify the diversity of an ecosystem whose organisms
may be divided into N distinct species, where the σ th species
has a relative abundance of pσ , so that

p1 + p2 + · · · + pN = 1. (1)

From a statistical mechanical perspective, pσ is the probabil-
ity of having a microstate σ in some ensemble. Given the
pσ , there are a multitude of entropylike measures of diver-
sity that one might consider (and which have already been
proposed), a small selection being species richness

∑
σ p0

σ ,
Shannon entropy [10] −∑

σ pσ ln pσ , Gini-Simpson index

[11] 1 − ∑
σ p2

σ , Tsallis entropy (of order λ) [12] 1−∑
σ pλ

σ

λ−1 ,
and Rényi entropy (of order λ) [13] Hλ = 1

1−λ
ln

∑
σ pλ

σ . The
parameter λ is a non-negative real number. In the limit λ → 1,
the Rényi entropy Hλ [13] reproduces the Shannon entropy
H1 = −∑

σ pσ ln pσ [10] and in the limit λ → 0 it gives

*piotr.bialas@uj.edu.pl
†zdzislaw.burda@agh.edu.pl
‡D.A.Johnston@hw.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the logarithm of the species richness (i.e., logarithm of the
number of microstates): H0 = ln

∑
σ p0

σ = ln
∑

σ 1.
We focus on the Rényi entropy here. Its exponential, the

diversity or Hill number [14] of order λ, is denoted by
Dλ = exp(Hλ),

Dλ( p̄) =
(∑

σ

pλ
σ

)1/(1−λ)

, (2)

where we have defined an abundance vector p̄ =
(p1, p2, p3, . . . , pN ). The Hill number is perhaps a more
suitable choice than the entropy itself in an ecological setting
since the resulting Hill numbers generally have a direct
interpretation in terms of familiar quantities. For instance,
D0( p̄) will be the number of distinct species and

D2( p̄) = 1∑
σ p2

σ

is the inverse participation ratio. Also, in the uniform
case Dλ(1/N, 1/N, . . . , 1/N ) = N ∀ λ, giving the number of
species. In essence, the Hill numbers and their generalizations
are providing an “effective number of species” for an ecosys-
tem with some input from our prejudices on the importance
of rare species determined by the parameter λ. The parameter
λ can be thought of as tuning the sensitivity of the diversity
measure Dλ( p̄) to the occurrence of rare species. Since the
summands are given by pλ

σ , rare species (smaller pσ ) will be
weighted less strongly as λ is increased. The highest sensitiv-
ity to rare species is therefore given by λ = 0.

It is possible to further refine (complicate) such models by
introducing a measure of the similarity Zσν between species σ

and ν, with 0 � Zσν � 1, where Zσν = 0 is the total dissim-
ilarity and Zσν = 1 is the total similarity [5]. In this case the
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Hill numbers would be modified to

DZ
λ ( p̄) =

(∑
σ

pσ [(Z p̄)σ ]λ−1

)1/(1−λ)

, (3)

where

(Z p̄)σ =
∑

ν

Zσν pν . (4)

We consider only the case Z = I here.
It has been observed [15,16] that if the pσ are given by a

Gibbs measure

pσ = exp(−βEσ )

Z (β )
, (5)

with the partition function defined by Z (β ) =∑
σ exp(−βEσ ), then the Rényi entropy Hλ is related to

the logarithm of the ratio of partition functions

Hλ = 1

1 − λ
ln

Z (λβ )

Zλ(β )
. (6)

This may also be written as a difference of free energies
F (β ) = −(1/β ) ln Z (β ),

Hλ = λβ2

(
F (λβ ) − F (β )

λβ − β

)
, (7)

where the expression in large parentheses may be regarded as
a q derivative of F defined by(

dF (x)

dx

)
q

= F (qx) − F (x)

qx − x

(with λ playing the role of q). We recover the usual relation
between the Shannon entropy and the free energy in the limit
of λ → 1. This relation is also the basis of using the Rényi
entropy and the replica trick in conformal field theory [17]
and numerical [18] calculations to evaluate the entanglement
entropy of various statistical mechanical systems.

II. MODEL

It is tempting to use simple explicitly solvable statistical
mechanical models to investigate the properties of diversity
measures such as the Rényi entropy and indeed this has al-
ready been done in [19] for the class of models, zeta urns,
which we address here. However, our aims and also our notion
of a “species” or microstate are rather different from those of
[19], as we highlight below.

Zeta-urn models describe weighted partitions of S balls
(particles) between N boxes such that each box i contains at
least one particle si � 1 and S = s1 + s2 + · · · + sN . In our
case, microstates σ in this model correspond to the particle
distributions in the boxes σ = (s1, s2, . . . , sN ). The number of
states for S particles in N boxes is N = (S−1

N−1

)
. The abundance

vector (p1, . . . , pN ) is thus not the same as in [19], where
the authors considered the abundance vector (p1, . . . , pS ) in
the set {1, 2, . . . , S} in an ensemble in which the number of
boxes N was allowed to fluctuate. The geometrical picture
behind this choice in [19] is of breaking a bar of length S
into N segments of sizes (s1, s2, . . . , sN ) and maximizing the
diversity (by some measure) of these, which was then applied

to the general problem of partitioning a set of S elements into
N components with a power-law distribution for the proba-
bilities of the component sizes. In [19] it was found, using
a phenomenological calculation based on cluster size estima-
tion in spin models [20], that D0 was maximized for β = 2,
which is the value given by Zipf’s law [21,22]. This, as well
as the predicted scaling with S, agreed well with numerical
simulations.

Here we would like to use (6) and (7) to investigate the
singular behavior of the Rényi entropies in a zeta-urn model.
To this end, the energy of the system in the state σ is taken to
be logarithmic in the number of particles in each box

Eσ =
N∑

i=1

ln si. (8)

The corresponding partition function [23,24]

ZS,N (β ) =
∑

σ

e−βEσ (9)

may be rewritten as

ZS,N (β ) =
∑

(s1,...,sN )

w(s1) · · · w(sN )δS−(s1+···+sN ), (10)

with

w(s) = s−β (11)

for s = 1, 2, 3, . . .. The parameter β in the power law for
the weights can thus be considered as the inverse tempera-
ture: β = 1/T . Despite its simplicity, this model occurs in
many problems of statistical physics, including zero-range
processes [25–28] (as a nonequilibrium steady state), mass
transport [29–31], random trees [32,33], lattice models of
quantum gravity [34–36], emergence of the longest interval
in tied-down renewal processes [37,38], wealth condensation
[39], and diversity of Zipf’s population [19]. The system de-
scribed by the model has a phase transition which is associated
with a real-space condensation [23].

We will study the Rényi entropy for this model with a
given microstate being a particle distribution in the boxes
σ = (s1, s2, . . . , sN ) as described above. The Rényi entropy
is defined as in the Introduction,

Hλ = 1

1 − λ
ln

∑
σ

pλ
σ ,

where pσ is the probability of the σ state:

pσ = 1

Z (β )
e−βEσ . (12)

In Eq. (12) Z is an abbreviation for ZS,N (β ). With the Gibbs
measure definition of the microstates employed here, the free-
energy difference or Rényi entropy relations of (6) and (7)
apply. This in turn allows us to relate the singular behavior of
the Rényi entropy (density) to that of the free energy (density).

Our aim is to calculate Hλ explicitly in the thermodynamic
limit

S → ∞,
N

S
→ r, (13)
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where r ∈ (0, 1), and then use this to obtain the singular
behavior, if it exists. The parameter r is a free parameter
which is equal to the inverse particle density (i.e., the average
number of particles per box). In the limit (13), the free energy
F (β, r, S) is an extensive quantity, which means that it grows
linearly with the system size F (β, r, S) = S f (β, r) + o(S) as
S goes to infinity. We are interested in the coefficient f (β, r)
of the leading term, which can be interpreted as the free
energy per particle. Only if this coefficient is zero do the
next-to-leading terms denoted by o(S) need to be considered.
In general, we will use the convention that extensive quan-
tities will be denoted by capital letters and the corresponding
densities by lowercase letters. In particular, we will denote the
Rényi entropy per particle (or the Rényi entropy density) by
hλ.

Let us introduce a thermodynamic potential

φ(β, r) = lim
1

S
ln ZS,N , (14)

where lim in this equation means the thermodynamic limit
as defined in (13). The function φ(β, r) gives the rate of
exponential growth of the partition function with S in the
thermodynamic limit (13) and it is directly related to the free-
energy density φ(β, r) = −β f (β, r). Dividing both sides of
(6) by S and taking the limit (13), we find a direct relationship
between the Rényi entropy density and the thermodynamic
potential φ,

hλ(β, r) = φ(λβ, r) − λφ(β, r)

1 − λ
. (15)

For λ → ∞ Eq. (15) reduces to h∞(β, r) = φ(β, r) and for
λ = 0 to h0(β, r) = φ(0, r). Clearly, h0(β, r) is independent
of β. It can be easily determined by enumeration of states,
which gives

ZS,N (0) =
∑

σ

1 =
(

S − 1

N − 1

)
= N . (16)

Substituting this into (14), we find in the thermodynamic limit
(13)

h0(β, r) = φ(0, r) = −r ln r − (1 − r) ln(1 − r). (17)

For the Shannon entropy (density) limit λ → 1,

h1(β, r) = φ(β, r) − ∂βφ(β, r), (18)

as can be seen by applying l’Hôpital’s rule to (15).
The thermodynamic potential φ(β, r) can be found analyt-

ically using the saddle-point method. The details can be found
in [23,24,34] or in the preceding paper, where results on the
phase structure of the zeta-urn model have been updated and
collected in one place [40]. Here we quote the result, which is
expressed in terms of a generating function

Kβ (α) = ln
∞∑

k=1

w(k)e−αk = ln Liβ (e−α ), (19)

where Liβ (z) is the polylogarithm

Liβ (z) =
∞∑

k=1

zk

kβ
. (20)

The middle expression in (19) is a definition of the generating
function, while the last expression is just its explicit form for
the power-law weights (11).

For α = 0,

Kβ (0) = ln ζ (β ). (21)

Two cases can be distinguished. For β � 2, φ(β, r) can be
expressed as parametric equations, where both φ and r are
parametrized by α ∈ (0,∞):

r = − 1

K ′
β (α)

(22)

and

φ(β, r) = α − Kβ (α)

K ′
β (α)

. (23)

These equations are valid for all values from the range r ∈
(0, 1), which is an image of the range α ∈ (0,∞) of the
mapping (22).

For β > 2, the image of the range α ∈ (0,∞) is r ∈ (rc, 1)
where rc = rc(β ) is a critical value given by

rc(β ) = − 1

K ′
β (0)

= ζ (β )

ζ (β − 1)
. (24)

The saddle-point solution (22) and (23) holds for r ∈ (rc, 1),
while for r ∈ (0, rc] the solution is linear in r,

φ(β, r) = rKβ (0) = r ln ζ (β ). (25)

For r ∈ (rc, 1) the system is in the fluid phase, while for
r ∈ (0, rc) it is in the condensed phase. In the condensed phase
one box captures a finite fraction of all particles S as S → ∞
[23]. This is a real-space condensation. It should be noted that
in the condensed phase the Rényi entropy is determined by
the bulk part of the distribution, which remains in the critical
state, since the contribution from the condensate in a single
box vanishes in the thermodynamic limit (13). The phase
transition, which the system undergoes for the given inverse
temperature β at the critical inverse density rc(β ), manifests
as a singularity of the thermodynamic potential φ(β, r). The
singularity can be seen as a discontinuity of a derivative of the
thermodynamic potential

lim
r→r+

c

∂n
r φ(β, r) �= lim

r→r−
c

∂n
r φ(β, r). (26)

Generically, the discontinuity is infinite, as a result of the
derivative divergence, but there are cases in which the discon-
tinuity is finite, usually for the first-order phase transitions,
but not only. The transition is said to be nth order when the
nth derivative ∂n

r φ is discontinuous, while all kth derivatives
∂k

r φ for k = 1, . . . , n − 1 are continuous at the critical point
rc(β ).

The parametric equations (22) and (23) can be used to plot
the function φ(β, r) and thus also hλ(β, r) (15). We show
two examples in Fig. 1 for β = 5/2 and 3/2 to illustrate
the behavior for the two cases mentioned above. Here we are
interested in singular points where the Rényi entropy density
is singular or, more precisely, where any nth derivative is
discontinuous:

lim
r→r+

c

∂n
r hλ(β, r) �= lim

r→r−
c

∂n
r hλ(β, r). (27)
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FIG. 1. (a) Rényi entropy density hλ(β, r) for β = 5/2 and, from top to bottom, λ = 0 (dashed line) and λ = 0.6, 0.9, 1.01, 1.1, 2.0, and ∞
(solid lines). The primary singular points lie on the dotted vertical line at rc = ζ (5/2)/ζ (3/2) ≈ 0.5135. The position of the secondary singular
points depends on λ [see Eq. (28)]. The secondary singular points are marked by dots. For λ = 1.01 the primary and secondary singular points
almost merge. For λ = 0.6 there is no secondary singular point, because λβ � 2.0. Note that the curves are linear in the intervals (0, r∗), where
r∗ = min(rc, rc,λ) (25). (b) Rényi entropy density hλ(β, r) for β = 3/2 and, from top to bottom, λ = 0 (dashed line) and λ = 0.8, 1.4, 1.6, 2.0,
3.0, and ∞ (solid lines). There are no primary singular points in this case. The secondary singular points, however, do exist for λ > 4/3 and are
marked by dots. There is no secondary singular point for λ = 0.8 (the curve below the dashed line), because λ < 4/3. The singular behavior
of the Rényi entropy density hλ(β, r) is not visible to the naked eye in the figure as it is associated with the discontinuity (or divergence) of
higher derivatives ∂n

r hλ(β, r) but not of the function itself. For instance, for λ = 3.0, the singular point is at rc,λ = ζ (4.5)/ζ (3.5) ≈ 0.936 (28).
At this point, the second derivative ∂2

r h(β, r) is discontinuous and the fourth derivative ∂4
r h(β, r) ∼ (r − rc,λ)−1/2 is divergent, as follows from

Eqs. (A19) and (A20).

The Rényi entropy density hλ(β, r) inherits its singularities
from φ(β, r). The primary singularity lies at the critical point
rc(β ) (24), but hλ(β, r) may also have a secondary singularity
coming from φ(λβ, r) in (15) which is located at a different
point:

rc,λ(β ) = ζ (λβ )

ζ (λβ − 1)
. (28)

In this respect, the Rényi entropy density for the zeta-urn
model is behaving [unsurprisingly, given (8), (9), and (12)]
as an equilibrium statistical mechanical system, with singu-
larities at two different β values. It was found in [41] that
this was not the case for the totally asymmetric exclusion
process (TASEP), where H2 was calculated by combinatorial
means and found to possess no secondary singularities. It
was suggested there that secondary singularities would gener-
ically be absent in such nonequilibrium systems, since they
were a consequence of the relations (6) and (7), which are
peculiar to equilibrium systems. Although the distribution of
particles in a zeta-urn model can be considered as arising as
a nonequilibrium steady state in a zero-range process with
suitable jumping rates for the particles [25], we are treating
it as a purely equilibrium model here.

The function hλ(β, r) has a primary singularity at rc (24)
for β > 2 and a secondary singularity at rc,λ (28) for λβ > 2,
so there are four different cases: (a) hλ(β, r) is regular for any
r ∈ (0, 1) for β � 2 and λβ � 2, (b) hλ(β, r) is singular at
rc,λ for β � 2 and λβ > 2, (c) hλ(β, r) is singular at rc for
β > 2 and λβ � 2, and (d) hλ(β, r) is singular at rc and rc,λ

for β > 2 and λβ > 2. The positions of the secondary and
primary singularities merge for λ → 1 (the Shannon entropy).
The behavior is illustrated in Fig. 2. The primary singularities
of hλ(β, r) at rc (24) are directly related to the singularities
of the thermodynamic potential φ(β, r) at the critical point
r = rc, while the secondary singularities of hλ(β, r) (15) are
related to the singularities of φ(λβ, r) at the phantom critical
point rc,λ (28). The thermodynamic potential φ(λβ, r) has a

critical point rc(β ) for β > 2 and φ(λβ, r) has a phantom
critical point rc,λ(β ) for λβ > 2.

The critical behavior of φ(β, r) is encoded in discontinu-
ities of higher-order derivatives of φ(β, r) at the critical point
rc. The second derivative for r → r+

c behaves like (see the
Appendix)

∂2
r φ(β, r) ∼

⎧⎨
⎩

−c1(r − rc)x + · · · for β ∈ (2, 3)
+c2 ln(r − rc) + · · · for β = 3
−c3 + · · · for β ∈ (3,∞),

(29)
where x = (3 − β )/(β − 2) (A10) and c1, c2, and c3 are
positive constants. The ellipses indicate subleading terms. In
contrast, ∂2

r φ(β, r) = 0 for r → r−
c . So we conclude that the

second derivative has a finite discontinuity for β ∈ (3,∞)
and it is logarithmically divergent for β = 3. It is continuous
for β ∈ (2, 3), but then higher derivatives diverge. Moreover,
as discussed in the Appendix, for β ∈ (3,∞), the second
derivative contains, among the subleading terms, a term of
approximately (r − rc)β−3 for a noninteger β or a term of
approximately (r − rc)β−3 ln(r − rc) for an integer β. This
term leads to a divergence of higher derivatives for r → r+

c .
To summarize, the second derivative of the Rényi entropy

density (15) inherits its singular behavior at the critical point
from ∂2

r φ:

∂2
r hλ(β, r) = ∂2

r φ(λβ, r) − λ∂2
r φ(β, r)

1 − λ
. (30)

This is the primary singularity. However, additionally,
∂2

r hλ(β, r) can acquire a secondary singularity at rc,λ (28)
when λβ > 2. The singularity type is the same as for the
primary singularity except that it corresponds to the critical
behavior of the thermodynamic potential φ for the inverse
temperature λβ rather than β.

For λ = 0, h0(β, r) (17) is independent of β and has no sin-
gular points in the range r ∈ (0, 1). Another exception is λ →
1 because the resulting singularity of h1(β, r) comes from the
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FIG. 2. (a) Position of the primary (dashed line) and secondary (solid line) singular points [Eqs. (24) and (28), respectively] for β = 5/2
and (b) position of the secondary singular point for β = 3/2 plotted as a function of λ−1 in the range λ−1 ∈ (0, β/2). The solid curves have the
same universal shape, differing mainly in their support (0, β/2), which depends on β. There is no secondary singular point outside this range.
Similarly, there is no primary singular point for β � 2.

merging of the primary and the secondary singularities. One
can expect from Eq. (18) that the power-law singularities will
acquire an extra logarithmic factor from the derivative of a
power depending on β. For example, the second derivative
has the singularity

∂2
r h1(β, r) ∼ (r − rc)x ln(r − rc). (31)

The logarithm here is generated from the derivative in the
second term in (18).

III. DISCUSSION

We have calculated analytically the Rényi entropy for the
abundance vector defined by the Gibbs measure for a zeta-urn
model. In the thermodynamic limit for a suitable choice of
parameters, the model has a (condensation) phase transition,
which manifests as a singularity of the free energy at the
critical point. The Rényi entropy also has a singularity at this
point, but in addition to this the Rényi entropy can, depending
on its order, display a secondary singularity at another point
unlike the archetypal nonequilibrium model, the TASEP, as
demonstrated in [41]. The secondary singularity is a phantom
of the original singularity but itself is not directly related to
any critical behavior in the system. The mechanism which
leads to the occurrence of the secondary singularity is quite
generic, following from (6) and (7), so such secondary sin-
gularities will occur in other statistical mechanical models
with Gibbs weights and phase transitions. In the case of the
TASEP, the weights are given by matrix products and do not
have this structure. We stress, however, that these secondary
singularities are rooted in the mathematical definition of the
Rényi entropy rather than in physical behavior of the system.
Below we illustrate this in a discussion of the secondary
singularities for the Rényi divergence, where they arise from
a comparison of two systems at different temperatures, so as
such they cannot be a physical property of either one of the
systems individually.

The Rényi divergence of order λ,

�λ( p̄|q̄) = 1

λ − 1
ln

∑
σ

pλ
σ

qλ−1
σ

, (32)

is a generalization of the Kullback-Leibler divergence [42]
which is reproduced from the expression (32) in the

limit λ → 1 . The Rényi divergence for two Gibbs dis-
tributions p̄ = {pσ = e−β1Eσ /Z (β1), σ = 1, . . . ,N } and q̄ =
{qσ = e−β2Eσ /Z (β2), σ = 1, . . . ,N } for the same statistical
system at different temperatures T1 = 1/β1 and T2 = 1/β2 is

�λ(β1|β2) = 1

λ − 1
ln

Z (λβ1 − (λ − 1)β2)Zλ−1(β2)

Zλ(β1)
,

(33)
which should be compared with (6). For convenience, we
have replaced arguments of �λ by β1 and β2, which uniquely
identify the thermal distributions p̄ and q̄. The divergence is
proportional to the temperature difference and the heat capac-
ity of the system

�λ(β|β + �β ) = λ�β2

2
[ln Z (β )]′′ + o(�β2). (34)

For the zeta-urn model, in the thermodynamic limit (13),
Eq. (33) yields

�λ(β1|β2) = 1

λ − 1
[φ(λβ1 − (λ − 1)β2, r) − λφ(β1, r)

+ (λ − 1)φ(β2, r)]. (35)

We see that, apart from the primary singularities at rc,1 =
ζ (β1)/ζ (β1 − 1) and rc,2 = ζ (β2)/ζ (β2 − 1), the Rényi
divergence can have a secondary singularity at rc,λ =
ζ (βλ)/ζ (βλ − 1), where βλ = λβ1 − (λ − 1)β2, if βλ > 2.

Returning to the interpretation of the Rényi entropy density
as a diversity measure, it is interesting to look at the behavior
of hλ as r is varied in Fig. 1. For a given β as r is decreased
(i.e., as the density of particles is increased), hλ initially
increases, reaching a maximum value at

∂rhλ(β, r) = ∂rφ(λβ, r) − λ∂rφ(β, r)

1 − λ
= 0, (36)

with the limiting case of λ = 1 being given by

∂rh1(β, r) = ∂rφ(β, r) − ∂2
βrφ(β, r) = 0. (37)

The values taken by ∂rφ(β, r) in (36) and (37) will depend
on whether a singularity has been encountered or not, giv-
ing ln ζ (β ) for r ∈ (0, rc] and Kβ (α(r)) for r ∈ (rc, 1), with
similar considerations for ∂rφ(λβ, r). Whether the maximum
value of hλ(β, r) is attained as r is decreased before a singular-
ity is encountered will depend on both λ and β. For instance,
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when β = 5/2 we can see in Fig. 1 that the maximum of hλ

occurs before any singularities are encountered when λ � 1,
whereas it may encounter the secondary singularity at rc,λ(β )
for sufficiently large λ before reaching its maximum. The
Shannon entropy h1 attains a maximum value in the fluid
phase and then decreases linearly with r into the condensed
phase after encountering the primary singularity as the density
of particles is increased. In the second example in Fig. 1,
β = 3/2, there is no primary singularity but the secondary one
exists for λ > 4/3 and can lie on either side of the maximum
of hλ depending on the value of λ.

It is also clear that whatever the value of β, the maximum
value of hλ decreases from that of h0 as λ is increased and
shifts to larger r. The value of the maximum diversity and the
density at which it occurs hence both depend on the value of
λ chosen for a given β. Similarly, increasing β for a given λ

decreases the maximum value of hλ and shifts it to larger r.
The task of maximizing the diversity for a zeta-urn model in
the ensemble we consider thus depends on both what we mean
by the diversity, e.g., the choice of λ, and what parameters we
have under our control, e.g., r and/or β.

APPENDIX

In this Appendix we discuss the critical behavior of the
thermodynamic potential φ(β, r) at r = rc. We want to estab-
lish how the singularity type at the critical point rc depends
on β. We find it convenient to take the partial derivative of
φ(β, r) with respect to r because the corresponding paramet-
ric equations for ∂rφ(β, r) are simpler than those for φ(β, r)
(22) and (23) and are therefore more useful in the analysis of
critical point singularity. For r ∈ (0, rc] we get

∂rφ(β, r) = Kβ (0) = ln ζ (β ), (A1)

while for r ∈ (rc, 1),

r = − 1

K ′
β (α)

(A2)

and

∂rφ(β, r) = Kβ (α), (A3)

where α ∈ (0,∞). The equations will be used as follows. First
we will expand the right-hand side of (A2) to extract the de-
pendence of α = α(r) on r, for r approaching rc from above.
Then we will substitute α = α(r) into the expression on the
right-hand side of (A3) to determine the type of singularity
of ∂rφ(β, r) for r → rc. To this end we will use the series
expansion of the polylogarithm for a noninteger β [43]:

Liβ (e−α ) = �(1 − β )αβ−1 +
∞∑

k=0

(−1)kζ (β − k)

k!
αk .

(A4)
For β ∈ (2, 3), Eqs. (A2) and (A3) can be written as

r = rc + Bαβ−2 + o(αβ−2) (A5)

and

∂rφ(β, r) = μc − a1α + o(α) (A6)

with coefficients rc, μc, a1, and B > 0, depending on β. The
dependence of the coefficients on β can be easily determined

[for instance, μc(β ) = ln ζ (β )], but will not be displayed in
the analysis below because we want to concentrate on the
dependence on r. From (A5) we get

α = C(r − rc)1/(β−2) + o((r − rc)1/(β−2)), (A7)

with C = B−1/(β−2). Substituting this into (A6) leads to

∂rφ(β, r) = μc − D(r − rc)1/(β−2) + o((r − rc)1/(β−2)),

(A8)

with D = a1C. The coefficients μc and D depend only on β,
so if we take the derivative of both sides with respect to r we
get

∂2
r φ(β, r) = −E (r − rc)(3−β )/(β−2) + o((r − rc)(3−β )/(β−2)),

(A9)

with E = (β − 2)D a positive function of β ∈ (2, 3). The
second derivative ∂2

r φ(β, r) is related to particle density fluc-
tuations. For β ∈ (2, 3) the exponent

x = 3 − β

β − 2
(A10)

changes from zero to infinity when β changes from 3 to
2, so the transition is of second or higher order. For β = 2
the transition disappears and there is no phase transition for
β � 2. On the other hand, for β = 3 the second derivative has
a logarithmic singularity at rc. To see this, let us use the series
expansion of the polylogarithm for an integer β [43],

Liβ (e−α ) = (−1)β−1

(β − 1)!
[Hβ−1 − ln(α)]αβ−1

+
∞∑

k=0,k �=τ−1

(−1)kζ (β − k)

k!
αk, (A11)

with Hn = 1 + 1/2 + · · · + 1/n the nth harmonic number. For
β = 3, Eqs. (A2) and (A3) take the form

r = rc + b1α + Bα ln α + o(α ln α) (A12)

and

∂rφ(β, r) = μc − a1α + o(α), (A13)

where again the coefficients rc, b1, B, μc, and a1 depend only
on β. Calculating α as a function of r from (A12), we get

α = c1(r − rc) − C(r − rc) ln(r − rc)

+ o((r − rc) ln(r − rc)), (A14)

with c1 = 1/b1 + B/b2
1 ln b1 and C = B/b2

1. Substituting this
into (A13), we get

∂rφ(β, r) = μc − d1(r − rc) + D(r − rc) ln(r − rc)

+ o((r − rc) ln(r − rc)), (A15)

where d1 = a1c1 and D = a1C. As a consequence, the second
derivative has a logarithmic singularity for r → r+

c ,

∂2
r φ(β, r) = −d1 + D + D ln(r − rc) + o(ln(r − rc)).

(A16)

What is essential in this equation is that the second deriva-
tive diverges logarithmically when r → r+

c . This means that
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for β = 3 the particle density fluctuations are infinite at the
critical point: r → r+

c .
For β > 3, Eqs. (A2) and (A3) take the form

r = rc + b1α + · · · + Bαβ−2 + o(αβ−2) (A17)

and

∂rφ(β, r) = μc − a1α + o(α), (A18)

so for r → r+
c ,

∂rφ(β, r) = μc − a1

b1
(r − rc) + · · · + a1B

bβ−1
1

(r − rc)β−2

+ o((r − rc)β−2) (A19)

and hence

lim
r→r+

c

∂2
r φ(β, r) = −a1

b1
< 0. (A20)

On the other hand,

lim
r→r−

c

∂2
r φ(β, r) = 0, (A21)

as follows from (25). Hence the second derivative has a
finite discontinuity for β > 3. Additionally, we see that
the first derivative contains a singular term of approx-
imately (r − rc)β−2, and therefore the second derivative
contains a term of approximately (r − rc)β−3, which makes
higher derivatives diverge for r → r+

c . For an integer β

this term is approximately (r − rc)β−3 ln(r − rc), as follows
from (A11).
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