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We investigate the effect of localization on the local charging of quantum batteries (QBs) modeled by
disordered spin systems. Two distinct schemes based on the transverse-field random Ising model are considered,
with Ising couplings defined on a Chimera graph and on a linear chain with up to next-to-nearest-neighbor
interactions. By adopting a low-energy demanding charging process driven by local fields only, we obtain that
the maximum extractable energy by unitary processes (ergotropy) is highly enhanced in the ergodic phase in
comparison with the many-body localization (MBL) scenario. As we turn off the next-to-nearest-neighbor inter-
actions in the Ising chain, we have the onset of the Anderson localization phase. We then show that the Anderson
phase exhibits a hybrid behavior, interpolating between large and small ergotropy as the disorder strength is
increased. We also consider the splitting of total ergotropy into its coherent and incoherent contributions. This
incoherent part implies in a residual ergotropy that is fully robust against dephasing, which is a typical process
leading to the self-discharging of the battery in a real setup. Our results are experimentally feasible in scalable
systems, such as in superconducting integrated circuits.
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I. INTRODUCTION

Few-body devices able to exploit quantum features, such as
entanglement and coherence, have been referred to as quan-
tum devices, leading to the second revolution for quantum
technologies. They can potentially provide striking advan-
tages, such as more sensitivity [1–4] and high efficient
metrology [5–7]. They can also be used for communication
tasks [8–11], heat and spin current devices like transis-
tors [12–16], and diodes [17–19], among others [20–26].
Naturally, each of these devices needs energy to operate and
this energy, in turn, can be supplied by another quantum
storage device, i.e., a quantum battery (QB) [27,28]. By fol-
lowing the seminal work by Alicki and Fannes [29], QBs are
designed as a set of interacting quantum cells, each of them
usually represented by a two-level quantum system (qubit).
These cells can be charged to store energy (with respect to a
reference Hamiltonian) by means of external agents, such as
fields, interactions, or any other stimulus able to inject energy
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into the system. Although QBs are typically composed by
qubits, proposals of QB with qutrits [30] and bosonic systems
can also be found [31–33].

QBs may exhibit supercharging behavior, with efficiency
of energy extraction growing with the number of cells [29].
Such advantage with respect to classical batteries has been
attributed to entanglement and quantum correlations [34–41].
However, both constructive and destructive scenarios have
been found for the interplay between entanglement and avail-
able energy in QBs [34,42–46]. However, coherence seems to
play an important role for the QB performance [45,47–52].
As a consensus, collective effects in the dynamics are behind
a robust route for designing efficient QBs, when compared
with the parallel (noninteracting) charging of the system [53].
From the experimental point of view, the energy storing prop-
erties of a diversity of quantum systems have been exploited,
with physical realizations in a number of architectures, such
as nuclear magnetic resonance [54], superconducting inte-
grated circuits [55,56], metal complex [57], and an all-optical
setup [58].

Here, we aim at investigating quantum phases of matter
that may be suitable for qubit-based QBs. Concretely, we
will focus on the ergotropy and charging power of quantum
devices subject to disordered couplings and external fields. As
sketched in Fig. 1, two distinct schemes for QBs based on the
transverse-field random Ising model will be considered, with
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FIG. 1. Two distinct schemes of QBs based on the transverse-
field random Ising model are considered: (i) Ising couplings on a
linear chain with up to next-to-nearest-neighbor interactions (left)
and (ii) Ising couplings defined on a Chimera graph (right). For
both models, the charging process is locally driven by an external
field. The set of intracell interactions defines the kind of model
adopted, such that different phases can be obtained as a function of
the disorder strength.

Ising couplings defined on a Chimera graph (for a physical
realization, see, e.g., Ref. [59]) and on a linear chain with up
to next-to-nearest-neighbor interactions [60]. Analyses of dis-
order effects in the performance of QBs have been previously
considered in the literature, such as in Refs. [61,62]. How-
ever, differently from previous works, where time-dependent
interactions drive the charging process, we adopt permanent
interactions, so that the QB charging is performed through
external local fields only. Our approach is motivated by the
fact that switching on/off interactions typically costs a sig-
nificant amount of energy in comparison with the ergotropy
provided by the QB [57]. As a result, we obtain that the
ergodic phase favors the QB performance, with disorder be-
ing detrimental to ergotropy due to the memory effects in
the many-body localization (MBL) phase. Remarkably, when
Anderson localization is available, we have a hybrid scenario
between ergodic and MBL behaviors depending on the dis-
order strength. We also address the splitting of ergotropy into
coherent and incoherent contributions, showing that a residual
extractable work robust against dephasing can be stored as
incoherent ergotropy [51].

II. PRELIMINARIES

We review now the concept of ergotropy and introduce the
quantum spin systems adopted as models of QB in our work.

A. Ergotropy

The energy available to be extracted in the form of work in
a QB depends on both the state ρ of the quantum device and
the reference Hamiltonian Href that sets the energy scale of
the system. Given ρ and Href , the internal energy is provided
by the expectation value E (ρ, Href ) = tr (ρHref ). By keeping
a constant entropy, work can be performed by/on the QB by
unitary operations. In this scenario, we define ergotropy as the
maximum energy extractable by realizing unitary operations
on the system [63]. Therefore, ergotropy reads

E(ρ, Href ) = max
U

[E (ρ, Href ) − E (UρU †, Href )]. (1)

The maximization over U is achieved by driving the QB
toward the passive state ρ̄ ≡ UρU † associated with ρ, i.e., a
state that cannot provide further energy by unitary operations.
We can compute E(ρ, Href ) by looking at the spectral decom-
positions of ρ = ∑d

i=1 pi|pi〉〈pi| and Href = ∑d
i=1 εi|εi〉〈εi|,

where we assume the ordering p1 � p2 � ... � pd and ε1 �
ε2 � ... � εd , with d being the dimension of the Hilbert
space. Thus, ergotropy can be rewritten as [63] (see also
Refs [64,65])

E(ρ, Href ) = E (ρ, Href ) −
d∑

i=1

εi pi. (2)

Notice that both the internal energy and the ergotropy depend
on the reference Hamiltonian Href . In the charging process
of a QB, we also add a charging Hamiltonian Hch(t ), yield-
ing a total driving Hamiltonian Hd(t ) = Href + Hch(t ). Let
us take Href = H0 + Hint, where H0 is a local Hamiltonian
and Hint contains the native system interactions. Then, any
additional cost to charge the battery comes from the charging
Hamiltonian Hch(t ). More precisely, the cost to turn-on and
turn-off the term Hch(t ) should be considered in the energy
balance of the device, which may lead to nonefficient quantum
batteries [57]. Here, to avoid the cost of engineering nonnative
interactions, we focus on a charging process driven only by
external local fields.

B. QB Models

As sketched in Fig. 1, we consider two distinct models of
QB, with many-body localization regimes properly charac-
terized. First, let us consider an N-particle random spin-1/2
Ising linear chain with on-site magnetic static field hk . The
native interactions are provided by nearest-neighbor (J (1)

k )
and next-to-nearest-neighbor (J (2)

k ) couplings. The reference
Hamiltonian of the system reads

H Isi
ref =

N∑
k=1

hkσ
z
k −

N−1∑
k=1

J (1)
k σ x

k σ x
k+1 +

N−2∑
k=1

J (2)
k σ x

k σ x
k+2, (3)

where σα (α=x, y, z) are the standard Pauli matrices. The
QB is charged according to a transverse local field through
a charging Hamiltonian

Hch =
N∑
k

�kσ
x
k . (4)

This driving field can be implemented, for instance, through
an oscillating small radio-frequency magnetic field of inten-
sity |Brf | ∝ �k , as in a nuclear magnetic resonance setup [66].
We assume local fields uniformly distributed over the chain,
with hk = h and �k = � constant couplings. In this model,
the random nature of the system relies on the interactions
between nearest neighbors given by J (1)

k , as selected from
a uniform distribution in the interval [J0(1 − δ), J0(1 + δ)],
where J0 sets the energy scale of the system and δ is a di-
mensionless parameter that determines the degree of disorder.
Concerning the next-to-nearest-neighbor coupling J (2)

k , it will
also be taken as a constant chosen as a function of J0. For the
charging process we assume J0 = �.
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The localization properties of random spin-1/2 Ising
chains have been widely studied [60]. In particular, as the
next-to-nearest-neighbor interaction is turned off (J (2)

k = 0),
the model reduces to the well known nearest-neighbor trans-
verse field Ising chain, such that an arbitrary amount of
disorder (δ > 0) brings the system into an Anderson local-
ization regime [67]. However, when J (2)

k �= 0, the degree of
disorder needs to be strong enough to drive the system to
many-body localization (MBL), otherwise the system remains
in an ergodic phase [67–69]. Unless specified otherwise, we
refer to the various phases of this model by adopting the spe-
cific values for the couplings: (i) Anderson localized, J (2)

k = 0
and δ = 1; (ii) ergodic phase, J (2)

k = h/2 = 0.3J0 and δ = 1;
and (iii) MBL phase, J (2)

k = h/2 = 0.3J0 and δ = 5.
It is worth mentioning that this model was previously

considered to investigate localization effects on QB [62].
However, in Ref. [62], the authors assume the QB is charged
through turned-on interactions between the quantum cells of
the battery during charging time. Then, all figures of merit are
evaluated with respect to the free part of the Hamiltonian, i.e.,
the on-site applied field. As previously mentioned, the energy
cost of switching on/off the interactions might be detrimental
to the performance of the QB, with the energy cost to charge
the battery much larger than the ergotropy itself [57,70].
Here, we analyze the energy cost of the charging process in
Appendix A, showing that the charging through a local field
only is an energy friendly choice.

As our second QB model, we consider random Ising in-
teractions and local fields defined on the 8-spin Chimera unit
cell, as sketched in Fig. 1. The reference Hamiltonian reads

HChi
ref =

∑
k

hkσ
z
k +

∑
〈k, j〉∈CChi

Jk jσ
z
k σ z

j , (5)

where the 〈k, j〉 ∈ CChi refers to a sum over the connections of
the Chimera graph. Concerning the charging Hamiltonian Hch,
it will be defined through transverse local fields, as in Eq. (4),
with constant couplings �k = �. For this system, we consider
random values for both hk and Jk j from a uniform distribution
[−δJ0, δJ0], with δ being the disorder amplitude, such that δJ0

is the maximum admissible value for the coupling strength.
Taking into account the characterization of the MBL phase
transition as in Ref. [59], with J0 = �, we will adopt the
specific values for the disorder strength: (i) Ergodic phase,
δ = 2, such that δJ0 = 2�; (ii) MBL phase, δ = 6, such that
δJ0 = 6�. It is worth mentioning that, while the Anderson
localized phase is well defined for the random Ising chain
in the absence of next-to-nearest-neighbor interactions (i.e.,
when J2 = 0) [71], we do not expect that the chimera topology
will exhibit Anderson localization for the regime of couplings
considered here.

By disregarding decoherence effects, the dynamics of the
QB is governed by the unitary evolution operator U (t ) as
ρ(t ) = U (t )ρ(0)U †(t ). We assume the device starts from its
fully empty state ρ(0) = |G〉〈G|, where |G〉 is the ground state
of the reference Hamiltonian for each model (empty energy
state of the battery). Given the randomness of local fields
and interaction strengths, we will have a distinct reference
Hamiltonian Hn,ref for each disorder realization. Therefore, it
is expected that the ergotropy will change for different choices

(a) (b)

AL

MBL

Ergodic
MBL

Ergodic

FIG. 2. The dynamics of average ergotropy for (a) the N = 8 ran-
dom Ising chain with next-to-nearest neighbors and (b) the random
Ising model on the 8-spin Chimera graph. The number of realizations
is taken as Nr = 100. The Hamiltonian parameters for each phase are
set as described in Sec. II B.

of the random parameters. For this reason, to define a fair fig-
ure of merit to evaluate the QB performance, we will consider
the average ergotropy over Nr realizations of disorder [65]

Ē(t ) = 1

Nr

Nr∑
n=1

E(ρn(t ), Hn,ref )

Emax
n

, (6)

where E(ρn(t ), Hn,ref ) is the time-dependent ergotropy asso-
ciated with the evolved state ρn(t ) for the nth realization.
We also define Emax

n = tr (ρn,fcHn,ref ) − tr (ρn,GHn,ref ) as the
maximum capability of the battery, i.e., the ergotropy stored in
its fully charged state ρn,fc, with ρn,G denoting the density op-
erator for the ground state of Hn,ref . Because we assume pure
states (unitary evolution), ρn,fc is the eigenstate of Hn,ref with
the highest eigenvalue [63,72]. In this way, we can measure
the charge in the QB with the reference Hamiltonian Hn,ref for
a given realization n, with respect to the maximally charged
state ρn,fc. Throughout this work we show the results for the
case with Nr = 100, but it is worth saying that we do not
observe any significant change by taking Nr > 100.

III. RESULTS AND DISCUSSION

A. Ergotropy and charging power

Now, we present our main results. First, we evaluate the
ergotropy by charging the battery in the different phases afore-
mentioned. In Fig. 2, we show the dynamics of the average
ergotropy for both models considered in our work, where we
conclude that the MBL phase turns out to be a poor choice
for a QB in the sense of energy storage. This can be explained
by the emergence of memory effects attributed to the MBL
phase with respect to the initial state [59,73], which in turn
prevents the QB from a significant evolution with respect to
its ground state. If the dynamics starts from a different state,
an enhancement of the charging performance is expected,
but it requires the initialization step by using a different ref-
erence Hamiltonian. For example, in Ref. [62], the authors
considered the initial state as the lowest energy level of the
noninteracting quantum cells, which will demand an extra cost
as we turn on the interactions throughout the charging process.

Differently from the MBL phase, where the “frozen” dy-
namics handicaps the energy charging, the battery presents
a charging enhancement in either the ergodic or Anderson
phases. In the case of the ergodic phase, such a result can
be explained by its delocalization behavior, which makes the
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FIG. 3. Average fidelity F̄ (t ) as defined by Eq. (7) for (a) the
N = 8 random Ising chain with next-to-nearest neighbors and (b) the
random Ising model on the 8-spin Chimera graph. The number of
realizations is taken as Nr = 100. The Hamiltonian parameters for
each phase are set as described in Sec. II B.

ergodic phase more suitable for ergotropy deposition. Notice
that the Anderson phase follows a similar pattern as obtained
in the ergodic phase for the chosen disorder strength, also
showing a remarkable difference with respect to the MBL
phase in terms of ergotropy. Due to the absence of strong
memory effects typical of the MBL phase, the dynamics of
QB in the Anderson phase is not frozen so that it shows a suit-
able performance. Moreover, for a wide time interval, which
is around the range [100, 102], the Anderson phase presents a
performance even better than the ergodic case. We can reach
a more precise view at the above discussion by analyzing
the memory effects of MBL phase and its poor performance
for ergotropy storage. To this end, we need to know how the
evolved state of the QB looks like when compared to its initial
ground state. More resemblance to the initial state can be
inferred as a sign of retaining information about the past and,
consequently, indicating a memory effect. Therefore, we con-
sider the average fidelity, taken over Nr disorder realizations,
between the time-dependent density operator of the QB and
its initial ground state, which reads

F̄ (t ) = 1

Nr

Nr∑
n=1

F (ρn(t ), ρn,G), (7)

where the fidelity of two general density matrices ρ and σ is
defined by F (ρ, σ ) = Tr

√√
ρσ

√
ρ. As shown in Fig. 3 the

highest fidelity over the considered charging time belongs to
the MBL phase, implying the minimum change in the state
of the QB with respect to its initial preparation. This fact
is more visible for the Chimera model. Let us now analyze
the time-averaged charging power of the QB as a function
of time. Notice that, as shown in from Fig. 2, the maximum
instantaneous amount of ergotropy is achieved for different
instants of time for each phase considered. Then, it is mean-
ingful to consider the time-averaged charging power in the
parametrized time interval ��t = �(t − t0) (assuming here
t0 = 0). In this context, by using the notation introduced in
Eq. (6), we can introduce the dimensionless power parameter

P̄0(�t ) = Ē(t ) − Ē(0)

��t
. (8)

Notice that P̄0(�t ) is directly related to the average power
P(�t ). Indeed, P(�t ) can be written in terms of the average
of the maximum ergotropy capability of the battery Ēmax =∑Nr

n=1 Emax
n /Nr , the charging field amplitude �, and the

(a) (b)AL

MBL

Erg.

MBL

Ergodic

FIG. 4. The dynamics of averaged charging power for (a) the
N = 8 random Ising chain with next-to-nearest neighbors and (b) the
random Ising model on the 8-spin Chimera graph. The number of
realizations is taken as Nr = 100. The Hamiltonian parameters for
each phase are set as described in Sec. II B.

parameter P̄0(�t ) as P(�t ) = �ĒmaxP̄0(�t ). Through the
above definition, we can collect information about the charg-
ing performance (including the optimal charging time window
�topt) defined over the entire time-domain of the charging
process, which makes this analysis more robust than simply
finding the optimal charging time for the battery. For both
models, as it can be seen from Fig. 4, the QB in the ergodic
phase is more powerful than the other phases for the range of
time considered. Then, while the Anderson phase may allow
for storing more energy than the ergodic phase for a specific
time range, its charging power is not as efficient as the ergodic
QB.

For completeness of our discussions, it is worth mentioning
that different behaviors for the ergotropy and phase-dependent
battery performance can be drastically modified for other
kinds of fields chosen to charge the battery. We identified
that such a change is mainly due to the charging-field induced
change in the localization transition of the system, then lead-
ing to a significant effect on the nature of the models and
their quantum phases (for more details, see Appendix B.) In
addition, in Appendix C we included a brief analysis of the
expected negative effects of random next-to-nearest-neighbor
interaction (J2). As a conclusion of this case, we observe that a
small reduction in the quality of charging process is expected
when introducing this extra randomness, such that additional
efforts to engineer random next-to-nearest-neighbor couplings
J2 do not help the charging process.

So far, our results suggest that the disorder strength seems
to be the main determinant for ergotropy and power rather
than the quantum (ergodic or Anderson) phase the system
actually is. In fact, the charging of the QB in the Ander-
son localized and ergodic phases are performed by using
an equal degree of disorder (δ = 1), while the MBL phase
requires stronger disorder. The role played by disorder can
be confirmed by considering the Anderson phase for different
degrees of randomness. This is shown in Fig. 5, where we have
plotted ergotropy and dimensionless power in the Anderson
phase for the Ising linear chain for different values of δ. Notice
that the Anderson phase then interpolates between the ergodic
and MBL behaviors as we increase the strength of disorder.

B. Incoherent and coherent ergotropy

Let us now split ergotropy into its coherent and incoherent
contributions [51]. The generation of quantum superpositions
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(a) (b)

FIG. 5. The dynamics of (a) average ergotropy and (b) power for
the N = 8 random Ising chain in the Anderson phase for different
degrees of disorders. The number of realizations is taken as Nr =
100. The Hamiltonian parameters for each phase are set as described
in Sec. II B.

(coherence) in the energy basis during the charging leads to
a nonzero amount of coherent ergotropy. On ther other hand,
part of the total ergotropy is stored as incoherent ergotropy.
In particular, the incoherent part of the ergotropy is relevant
in our discussion because it takes into account the “residual”
ergotropy of the dephased state ρD in energy eigenbasis of the
reference Hamiltonian, with ρD = ∑d

i 〈εi|ρ|εi〉|εi〉〈εi|. Phys-
ically speaking, it quantifies the total amount of ergotropy
that remains in the system, even in absence of an external
charging field under a dephasing process. Therefore, we can
identify this amount of remaining ergotropy as related to the
robustness of a QB against its self-discharging process [49].

Inspired by Ref. [51], we introduce the average normalized
incoherent and coherent ergotropy, respectively, as

ĒInco(t ) = 1

Nr

Nr∑
n=1

E
(
ρD

n (t ), Hn,ref
)

Emax
n

, (9)

ĒCohe(t ) = 1

Nr

Nr∑
n=1

E(ρn(t ), Hn,ref ) − E(ρD
n (t ), Hn,ref

)
Emax

n

. (10)

Figure 6 shows the time evolution of ĒInco(t ) and ĒCohe(t )
for different phases of the models considered in our work.

(a)

AL

MBL

Ergodic

(b)

MBL

Ergodic

(c) (d)

AL

MBL

Erg.

MBL

Ergodic

FIG. 6. The dynamics of coherent and incoherent ergotropy for
(a), (c) the N = 8 random Ising chain with next-to-nearest neighbors
and (b), (d) the random Ising model on the 8-spin Chimera graph.
The number of realizations is taken as Nr = 100. The Hamiltonian
parameters for each phase are set as described in Sec. II B.

(a) (b)

AL

MBL

Ergodic
MBL

Ergodic

FIG. 7. Average quantum coherence for (a) the N = 8 random
Ising chain with next-to-nearest neighbors and (b) the random Ising
model on the 8-spin Chimera graph. The number of realizations is
taken as Nr = 100. The Hamiltonian parameters for each phase are
set as described in Sec. II B.

Given the good qualitative agreement between the behavior
of the total extractable energy and the its coherent and in-
coherent parts, we can safely state that the performance of
the QB is mainly related to the coherence generated during
its charging, since the extractable work is mainly stored as
coherent ergotropy. However, by comparing Figs. 2 and 6,
it can be inferred that, even though the total ergotropy is
mostly consisted of coherent part, there remains a nonzero
amount of incoherent ergotropy during charging process. This
can be useful in a real setup since, as discussed above, the
incoherent ergotropy is robust against dephasing channels,
since its corresponding state is already dephased in the basis
of eigenenergies. It is worth mentioning that the incoherent
ergotropy can be wasted under dissipation processes through
population relaxation. Nonetheless, one may find a situation in
which pure dephasing is the main dominant process, namely
for quantum dots [74–77] or trapped ions [78,79], resulting in
potential usefulness of the incoherent ergotropy.

We can now analyze the average normalized coherence
QC(t ) generated for each dynamics as quantified by the l1-
norm, which is defined as

QC(t ) = 1

Nr

∑Nr

n=1

[
1

Cmax

∑
i, j �=i

|ρi j |
]
, (11)

In Eq. (11), the term in “brackets” is the l1-norm coherence of
the density matrix for each realization n, where Cmax denotes
the coherence of the quantum state (|e〉 + |g〉)/

√
2, which

is the maximally coherent state in the local basis {|e〉, |g〉}.
The results for QC(t ) are shown in Fig. 7 for both the Ising
chain and the Chimera graph. Comparing Figs. 2(b) and 7(b),
for the Chimera graph, quantum coherence can be regarded as
a suitable figure of merit of the stored ergotropy, at least qual-
itatively. As time passes by, both quantities sharply increase
when the QB is in the ergodic phase but they are small for
the MBL phase. This is not the case for the Ising chain. The
model contains some amount of initial quantum coherence but
localized phases reach more coherence in comparison with the
ergodic phase. The relation between generation of ergotropy
and coherence is then model-dependent, i.e., different patterns
of interactions may imply in different qualitative relations.

IV. CONCLUSIONS

We have investigated quantum phases of disordered spin
systems as a model of qubit-based QBs. Differently from pre-
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vious investigations, we have focused on the local ergotropy
injection through external fields only. This is due to the low
energy demanding property of this scheme in comparison
with the time-dependent switchable interacting systems. For
the models considered in our work, ergodicity has shown to
improve the QB performance, with disorder being detrimental
to ergotropy due to the memory effects of the discharged
state in the MBL phase. In the case of the linear Ising chain,
where Anderson localization is induced for any amount of
disorder as the next-to-nearest interaction is turned off, we
have shown the presence of a hybrid scenario interpolating
between ergodic and MBL behaviors depending on the disor-
der strength. It is worth highlighting here that, while the MBL
phase is attractive for time-dependent interacting QBs [62], it
develops a poor performance for the local charging scheme.
Concerning quantum coherence, we identified that most of
ergotropy is stored as coherent ergotropy, which provides the
quantum character of the energy storing device. However,
we also obtained a nonvanishing amount of incoherent er-
gotropy, which indicates robustness of the storage capability
against the self-discharging of QBs due to dephasing (see,
e.g., Refs. [49,51]). Further investigations of lattice topologies
and quantum phases in disordered systems as well as experi-
mental implementations are left for a future analysis.
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APPENDIX A: ENERGY COST OF SWITCHING
ON/OFF INTERACTIONS

In this section, we analyze the energy cost of turning on/off
the intracell interactions for both models of QB considered in
our work. For the spin-1/2 Ising chain with nearest and next-
to-nearest-neighbor interactions we have H Isi

ref = H Isi
0 + H Isi

int ,
where

H Isi
0 = h

N∑
k=1

σ z
k , H Isi

int = −
N−1∑
k=1

Jkσ
x
k σ x

k+1 + J2

N−2∑
k=1

σ x
k σ x

k+2.

(A1)

For the Ising couplings defined on the Chimera graph, we also
have HChi

ref = HChi
0 + HChi

int where

HChi
0 =

∑
k

hkσ
z
k , HChi

int =
∑

k j

Jk jσ
z
k σ z

j . (A2)

We introduce the energy cost Cint to implement the inter-
actions as the difference between the norm of the reference
Hamiltonian including interactions (Href ) and the norm of the
reference Hamiltonian without interactions (H0). Mathemati-
cally, we have

Cint = N (Href ) −N (H0), (A3)

FIG. 8. Cost of turning on/off (a) intracell interactions and
(b) local charging fields as function of the degree of disorder for
the N = 8 random Ising chain with next-to-nearest neighbors and
the random Ising model on the 8-spin Chimera graph. The number
of realizations is taken as Nr = 100. The Hamiltonian parameters for
each phase are set as described in Sec. II B.

where N (A) =
√

Tr(A†A) is the Hilbert-Schmidt norm of a
given (finite-dimensional) matrix A. Our definition based on
the Hilbert-Schmidt norm is motivated by previous works
showing that such a quantity is a good measure of energy cost
for quantum control in different contexts [80–83], including
experiments [84,85]. More precisely, it is related to a measure
of the thermodynamic cost of an arbitrary unitary quantum
evolution [86]. In this way, one can show that, for the Ising
chain, the cost reads

CIsi
int = 16

⎛
⎝−2

√
4h2 +

√
8h2 + 6J2

2 +
∑

k

J2
k

⎞
⎠, (A4)

while, for the Chimera graph, we have

CChi
int = 16

⎛
⎝−

√∑
k

h2
k +

√∑
k

h2
k +

∑
k j

Jk j
2

⎞
⎠. (A5)

In our work, interactions are always present and we only
turn-on and turn-off the charging field. Then, we define the
energy cost Cch of charging with local chargers as the differ-
ence between the norm of the driving Hamiltonian (including
reference Hamiltonian and any local charging fields) and the
norm of the reference Hamiltonian. Mathematically, we write

Cch = N (H ) −N (Href ), (A6)

where H = Href + Hch is the total driving Hamiltonian.
Again, one can simply obtain the explicit form of this cost
for the two models

CIsi
ch = 16(

√
	2 + 8�2 − |	|), (A7)

CChi
ch = 16(

√

2 + 8�2 − |
|), (A8)

with 	2 = 8h2 + 6J2
2 + ∑

k J2
k , and 
2 = ∑

k h2
k + ∑

k j Jk j
2.

To compute the energy cost we define here the quantity

C̄ch = 1

Nr

Nr∑
n=1

Cch,n

Emax
n

, (A9)

where Cch,n denotes the charging cost for each model, as given
by Eqs. (A4), (A5), (A7), and (A8), in the nth realization. It
quantifies the average normalized energy cost of the charging
(either with interactions or local fields) as a multiple of the
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FIG. 9. (a), (b) The dynamics of average ergotropy with periodic charging field for (a) Ising chain and (b) Chimera graph. The number of
realizations is taken as Nr = 100, � = J0, and ωp = 0.3J0. (c) The dynamics of average ergotropy for the various phases of the Ising model
compared to the new results with random NNN interactions. We adopt the same parameters as in Fig. 2.

maximum capability Emax
n of the QB for each model. We

apply this definition to all models considered in this work to
compare the energy cost for charging by using time-dependent
intracell interactions and the cost for the case where we charge
the battery by using local fields. In Fig. 8 we present the cost
for each model as function of the degree of disorder. For all
models considered here as energy storing quantum devices,
the charging by local fields is energetically more efficient than
the time-dependent interaction engineering, particularly when
disorder is strong enough. In particular, the advantage of the
local charging comes from the fact that, for high disorder,
the interaction dominates over the local charging field as
N (H ) → N (Href ), providing Cch,n � Emax

n for each model.
We stress that while this limit is consistent, it does not imply
that we have zero cost to implement the charging.

APPENDIX B: OSCILLATING CHARGING FIELDS

Let us consider now a charging protocol given by an oscil-
lating classical field acting locally on each quantum cell of the
battery. The corresponding charging Hamiltonian is given by

Hch =
N∑
k

�k cos
(
ω

p
k t

)
σ x

k , (B1)

where �k = � and ω
p
k denote the amplitude of the periodic

charging field and its frequency applied to the kth cell, respec-
tively. First, notice that, for such a field, the condition δ = 6,
such that δJ0 = 6�, for the MBL phase of the Chimera graph
is broken down. Indeed, notice that we have now the change
� → �(t ) = � cos(ωp

k t ). Then, δJ0 = 6� is only satisfied as
ω

p
k t = 2nπ (n ∈ Z). Therefore, the localization pattern may

be affected by the choice of the charging Hamiltonian. By

modifying the charging term, we may significantly affect the
nature of the models and their quantum phases.

Now for completeness, let us discuss the battery perfor-
mance by keeping the phase pattern while slightly replacing
Eq. (4) for a periodic charging Hamiltonian in Eq. (B1). For
simplicity, we set them to be identical for each cell, i.e.,
ω

p
k = ωp. By taking this selection of charging fields, we plot

the average ergotropy of the QB [by making use of Eq. (6)].
This is shown in Fig. 9, where it can be seen that we have
the same charging pattern as before. Once again, we see that
ergotropy storage is small in the MBL phase. Moreover, for
the Ising chain, there is a similar behavior for ergodic and AL
phases (again with slightly better performance in favor of the
AL phase).

APPENDIX C: NEXT-TO-NEAREST-NEIGHBOR
DISORDER EFFECTS

In this section, we address the effect of disorder in the
next-to-nearest-neighbor (NNN) interaction terms. To tackle
this point, we randomize the NNN coupling strength, such
that J2 is randomly selected from the uniform distribution
[−δ, δ]. The disorder strength δ is set to be the same as for
the nearest-neighbor interactions. First, we remark that in this
scenario J2 �= 0 leads to absence of Anderson localized phase
in the Ising model, so here we exclude this phase from our
analysis. In Fig. 9(c), we compare the average ergotropy of
the Ising model in its various phases along with the curves for
the ergodic and MBL phases with random NNN interactions.
As a main result of this analysis, we observe that this extra
randomness reduces the quality of the charging process, since
the overall amount of ergotropy is decreased compared to the
previous cases where J2 is fixed.
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