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Dawkins introduced a groundbreaking concept suggesting that humans, similar to other animals, operate
as gene-propagating machines. Following in his footsteps, Blackmore posits that humans might distinguish
themselves from other animals by also serving as specialized meme-replicating machines. Here we introduce
a mathematical model that examines the impact of social conformity on the propagation of bad memes (memes
with low intrinsic appeal). We state the meme equations, which give us the number of different kinds of memes
living in the population and its total amount. We show that, unlike a virus, bad memes have a very low probability
of initially spreading. However, as memes are produced in large numbers, some will eventually experience a
stochastic rise and persist for extended periods, aided by social conformism within groups. We develop analytical
approximations to calculate the mean time taken for memes to become extinct and the mean time spent in each
population state. These approximations enable us to apply the meme equations to conduct a qualitative analysis.
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I. INTRODUCTION

The term “meme” was introduced by Dawkins in the final
section of his influential book, The Selfish Gene [1]. Dawkins
proposes an analogous of the DNA information unit, the gene,
but in the realm of ideas: “Examples of memes are tunes,
ideas, catch-phrases, clothes fashions, ways of making pots or
of building arches. Just as genes propagate themselves in the
gene pool by leaping from body to body via sperms or eggs,
so memes propagate themselves in the meme pool by leaping
from brain to brain via a process which, in the broad sense,
can be called imitation.”

The academic community met the meme concept with
an initial skepticism [2]. However, nowadays, the internet
provides numerous memes that can be monitored and ana-
lyzed for their distribution and fluctuations over time [3–7].
The meme concept is the base of a compelling hypothesis
suggesting that the evolution of human intellect reached a
turning point when humans acquired the ability to imitate
others without discrimination, leading to the emergence of
a new replicator that selects genes for producing brains with
greater capacity to propagate memes [8]. Indeed, humans and
primates process imitation through a neural mirroring system,
simulating observed actions as if performed [9,10].

The study of meme propagation is often based on mod-
ifications of SIR models. Effective in diverse contexts, like
internet search topics and Feynman diagram adoption in
physics communities [11–14], these models overlook the dis-
tinction between virus and meme dissemination. Although
there are “viral memes” like internet memes, newspaper head-
lines, popular songs, gossip, and emerging social truisms
that quickly infect a large number of individuals and are
quickly forgotten, there are also memes that are retained
for longer times, like habits such as hand washing, shav-
ing, kissing one’s partner, congratulating someone on their
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birthday, wearing specific accessories, using cutlery during
meals, nightly prayers, or playing chess. Moreover, the conta-
gion mechanism is different. While virus spread as a cascade
of infections, not all memes spread in this way. In [15], it
was show that only a few very popular memes spread like
infectious diseases. The majority of memes spread like com-
plex contagions, where mechanisms like social reinforcement
and homophily may be in place. So, the meme spreading
mechanism is likely to be a combination of intrinsic quality
and extrinsic mechanism, like the limited capacity of atten-
tion [16] or social effects [17].

There is another class of works that models the spread of
ideas, but are not from the memes’ point of view: the ideas,
opinions, or cultural traits are fixed and the individuals adopt
them through a social mechanism, like imitation. For example,
in the famous Axelrod culture model [18], a predetermined
number of features is proposed, each with a fixed number of
traits. Consequently, memes are treated as static and almost
inherent to human culture. These models are very similar
to the well-established Ising spin model [19]: the two states
correspond to the presence or not of the meme. The results
are quite elegant: individuals exhibit random opinions at very
high temperatures, several clusters of the same opinions are
created at slightly above critical temperatures, yet no global
magnetization is observed, and almost all individuals align in
one direction below the critical temperature, indicating a fer-
romagnetic state. Random field Ising models have also been
used, as in [20], where the authors predict a scaling law that
is reasonably followed by three completely different kinds of
social trend behaviors, namely, the evolution of the birth rates
in European countries from 1960 to 2000, the adoption of cell
phones in the latest 1990s, and the dynamics of an audience
clapping.

Similar approaches have been employed in [21–23], which
explain the diversity of opinions by considering spatial
configurations or homophily as potential limiting factors.
Additionally, variations of the branching process have been
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utilized in other studies [24]. For instance, in [25], the au-
thors analyze information cascades on Twitter and discover
a reasonable alignment between the empirical data and the
theoretical model. A comprehensive review of statistical me-
chanics applied to social dynamics is presented in [26].

Evolutionary game theory is also a suitable framework to
analyze meme evolution if the goal is to investigate social
factors [27]. This theoretical framework combines game-
theoretical concepts, where the decisions of one agent are
affected by the decisions of others, with stochastic death-
birth evolution, which determines which types evolve in the
population. Research often focuses on finding equilibrium
concentrations of each type and on first-passage problems,
such as determining the fixation probability and fixation time
for each type. This framework is widely used to study the
evolution of cooperation in population, but less used to an-
alyze meme evolution. As one example of use, it is well
known that the opinions of others, especially those in the
same group, play a significant role in the adoption of memes,
with individuals often attempting to conform to the majority
view [28]. As a second example, in [29] the authors extend the
Deffuant model by integrating game theoretical concepts of
individual rational choices. However, there is not much done
in the meme research field that uses evolutionary game theory
as a theoretical tool.

Last, since interaction with others are important in the
evolutionary game theory framework, the population structure
is an important ingredient in the theory. The configura-
tion in which the population is organized into groups, with
each group forming a complete graph, has garnered notable
attention in the existing literature [30–34]. An illustrative ex-
ample of such a structured social environment can be found
in schools, where individual classrooms constitute distinct
groups. Within the same classroom, individuals often possess
a stronger sense of self-identity and face similar social pres-
sures, resulting in a higher likelihood of correlated behavior
on average [35].

Here, we introduce a game-theoretical conceptualization of
the meme invasion process to investigate the propagation of
bad memes under social pressure in a population structured in
groups. We define bad memes as memes that do not hold much
appeal. For example, if the idea of self-harm is presented
to a person in isolation, it would be regarded as a harmful
meme since the individual would naturally have strong initial
objections to it. However, when there is social pressure for
conformity, which we model as a stag-hunt–like game [36],
a meme has the potential to experience a stochastic rise, ul-
timately becoming dominant and persisting within a group.
This can occur even if the meme lacks intrinsic appeal or
quality. This phenomenon is of particular interest to the analy-
sis of harmful memes because individuals are often subjected
to the pluralistic ignorance effect, where harmful behavior
is adopted on the grounds that others approve it, whereas
the reality is the opposite: everyone is not comfortable with
it [35].

More specifically, we posit that memes are continually
generated by random individuals and, once introduced into the
population, undergo distinct and parallel frequency-dependent
Moran processes [37]. The birth rates of these memes are de-
termined by their intrinsic quality and social pressure, which

creates an invasion barrier. In this way, if many bad memes
are produced, some may be subjected to a stochastic rise and
overcome the initial barrier imposed by group conformism.
Our model does not impose any restrictions on the number
of memes that individuals can adopt, except for an intrinsic
probability of being forgotten. Thus the only absorbent state
is the one without the meme.

We calculate the mean extinction time for a meme with bad
quality in populations of different sizes and social pressures.
We also expand the formula to account for instances where
the population is divided into groups of equal sizes, utiliz-
ing a time-scale separation technique. We also calculate the
probabilities of a meme dominating i groups before becoming
extinct and the conditional mean time that it remains in the
population in such cases. Our approximations are validated
through simulations, exhibiting a good level of agreement.
Finally, we conduct a social analysis proposing the meme
equations to quantify the amount of bad memes. The analysis
confirms our hypothesis that the social factor can act as a
reinforcement mechanism for unfavorable memes that occa-
sionally flourish due to stochastic fluctuations.

The paper is organized as follows. In Sec. II, we introduce
the stochastic evolutionary model. Section III analyzes the
mean extinction time and the time that a single meme stays
in each state. In Sec. IV, we make the social analysis of
the model after defining the meme equations. Finally, Sec. V
offers a general discussion of our findings.

II. MODEL

Let us suppose that a new meme, denoted by A, emerges in
the mind of an individual within the population. An individual
classified as type A carries and disseminates the meme A,
while an individual classified as type B does not carry and
does not propagate the meme A. It is important to note that
type B does not represent an alternative meme, but rather the
absence of an active meme A in one’s mind. More specifically,
a B individual either has never been in touch with the meme
or has encountered it but refrains from propagating it.

We take a population of size N divided into n groups of
equal size N/n. Initially, all individuals are of type B. Suppose
a new meme A has emerged inside one individual’s mind. Let
NAi and NBi be, respectively, the number of A and B individuals
in group i, for i = 1, . . . , n. We have n free variables because
of the constraint NAi + NBi = N/n. Every time step one indi-
vidual is randomly picked to change his idea. Let X be the
type of this chosen individual and suppose that he pertains to
group i. Then this individual imitates the strategy of a Y type
individual of a group i with probability proportional to its fit-
ness FYi and of a group j �= i with probability proportional to
μFY j . The factor μ ∈ [0, 1] stands for the groups’ connection.
Also, if X = A, this individual has a probability proportional
to γ to change to B without any imitation coming after. The
parameter γ is the forgetting rate. A schematic illustration of
the game-imitation dynamics is presented in Fig. 1.

The fitness of the memes is determined by their intrinsic
quality a and by the payoff obtained in the interactions that
the individuals carrying the meme have inside their groups.
Supposing that the interactions in the groups are well mixed,
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FIG. 1. Schematic illustration of the game and imitation dynam-
ics. There are two types of individuals: those who have been exposed
to the meme and actively disseminate it (blue) and those that negate
the meme (red). In each time step, one individual is chosen to imitate
another randomly chosen individual from his group (continuous ar-
row) or from another group (dashed arrow). The imitation probability
depends on the frequency of each type (A and B) in the group: the
greater the number of others of the same type, the higher the imitation
probability of that type.

the fitness of Ai and Bi individuals are given by

FAi = a + sn
NAi

N
,

FBi = 1 + s

(
1 − n

NAi

N

)
, (1)

where a is the intrinsic quality of the meme and s is the inten-
sity of the social factor. Note that the parameter a measures
the intrinsic appeal of the meme, compared to its negation.
For example, for a = 0.1 and s = 0, the individual has ten
times more chance to imitate a B than an A individual. The
memes that have an intrinsic value lower than that of their
negation, that is, a < 1, are called bad memes. The social
term in the fitness ranges from 0 to s as the fraction of A in
the group ranges from 0 to 1. The game played inside each
group is a stag hunt for s > |1 − a|, which is the appropriate
game to model incentives of social conformity. Notice that the
social factor is symmetric for A and B types. For a = 1, for
example, the best strategy is the one that is the majority in the
population, regardless of being A or B.

It is worth noting that certain models have the capac-
ity to predict the distribution of various species through a
straightforward dynamic process where types compete for
space without requiring the assumption of varying fitness
among them. For instance, Hubbell’s Unified Neutral The-
ory of Biodiversity [38] aptly captures species distributions
on islands. Moreover, the distribution of highly infectious
memes’ popularity appears to align well with models founded
on the assumption of neutral fitness [39]. However, our focus
in this study is directed towards highly retainable memes,
typically adopted with more deliberation and within a frame-
work of game-based interactions. This context entails that
the likelihood of meme acceptance hinges on the group’s
state, representing an instance of complex contagion dynam-
ics [15,17].

The state of the population is characterized by the vector
N = (NA1, . . . , NAn). The transition rates for our model are
given by

T +
i (N) = 1

Z

(
1

n
− NAi

N

)∑
j

μi j
NA j

N
FA j, (2)

T −
i (N) = 1

Z

NAi

N

⎡
⎣γ +

∑
j

μi j

(
1

n
− NA j

N

)
FB j

⎤
⎦, (3)

where μii = 1 and μi j = μ for j �= i, and Z appears as a
normalization factor obtained from

∑
i(T

+
i + T −

i + T 0
i ) = 1.

The transition rate T 0
i corresponds to no transition.

Having a model, we can calculate the mean time of extinc-
tion of a meme with quality a given the fixed parameters N , n,
s, γ , and μ. Notice that the social factor works simultaneously
as a reinforcement for memes that successfully overcome the
invasion barriers and as a resistance to the invasion of new
ideas. In fact, if s and N/n are large enough, even memes
with a > 1 have a low probability of initially spreading in the
population, so the bad memes exist only due to the stochastic
nature of the social dynamics.

Last, let us state clearly some assumption made in our
model. First, we assume that the memes do not interact with
one another in an individual’s mind. As a result, each indi-
vidual can carry multiple noninteracting memes and, for each
meme, we classify individuals as either type A or type B.
Second, we assume that all memes have the same intrinsic
forgotten rate because we are concerned with the propagation
of retainable memes. Moreover, we assume that γ is small
and, since we would like to focus on the effects of social pres-
sure and population structure, we assume that all memes have
the same forgotten rate. Our mathematical analysis is based
on the assumption of low connection between the groups.
Nevertheless, we also perform simulations for high values
of μ that help us to understand the range of validity of our
approximation.

III. ANALYSIS OF SINGLE MEME INVASION

In this section, we begin by determining the average time
it takes for a meme to become extinct when it originates from
a single individual within a well-mixed population (a single
large group). Our mathematical derivation for the scenario
with a single group follows the methodology proposed in [40].
However, there is a difference to our model, as the state
NA = 0 is the only absorbing state. A comprehensive analysis
of the one-dimensional case of the Moran process can be
found in [41], where the author provides closed-form formulas
for the mean fixation time and for the higher moments as
well. Comprehensive resources on first passage problems and
other frequently encountered inquiries concerning stochastic
models can be found in [42,43].

In our study, there are n coupled random variables repre-
senting the fractions of memes in each group, which poses
an analytical challenge. To extract meaningful insights from
this complex system, we assume that the exchange of ideas
between different groups is minimal. This enables us to em-
ploy a time-scale separation technique, allowing us to redefine
the transition rates and conduct a mathematical analysis based
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on the single-group scenario. This approximation preserves
the demographic effects of population fragmentation. We cal-
culate the mean extinction time of the meme, the arrival
probabilities at i groups, and the conditional time that a meme
stays given that it has dominated i groups. While the equa-
tions apply to any population size, we illustrate the results
only for small populations in order to compare with simula-
tions, given that simulating fixation times in large populations
is exceedingly time consuming.

A. Single group

First we analyze the dynamics when there is only one
group. In this case our model is greatly simplified because we
have only the variable NA. The transition rates are given by

T +(NA) = 1

Z

(
1 − NA

N

)
NA

N
FA, (4)

T −(NA) = 1

Z

NA

N

[
γ +

(
1 − NA

N

)
FB

]
, (5)

T 0(NA) = 1

Z

[(
NA

N

)2

FA +
(

1 − NA

N

)2

FB

]
. (6)

Let l = NA and T ∗(NA) = T ∗
l for ∗ = +,−, 0. Also, let tl

be the mean time of extinction of meme A when the population
has l individuals of type A. It is true that t0 = 0 and

tl = 1 + T +
l tl+1 + T −

l tl−1 + T 0
l tl (7)

for l = 1, . . . , N . Using that T 0
l = 1 − T +

l − T −
l , rearranging

the terms, and defining zl = tl − tl−1, we have

zl+1 = λl zl − 1

T +
l

with l = 1, . . . , N, (8)

where we defined λl = T −
l /T +

l . Because t0 = 0, we have
z1 = t1. The iteration of this equation yields

zk = t1

k−1∏
p=1

λp −
k−1∑
p=1

1

T +
p

k−1∏
q=p+1

λq, (9)

for k = 2, . . . , N . Summing zk in Eq. (9) for k from l + 1 to
N , and noticing that the sum applied to the definition of zl is a
telescopic one, we obtain

tl = tN − t1

N−1∑
k=l

k∏
p=1

λp +
N−1∑
k=l

k∑
p=1

1

T +
p

k∏
q=p+1

λq. (10)

This equation give us a relation between t1 and tN . We still
need to look for another relation to link tN with t1. We take
l = N in Eq. (7) and rearrange the terms to obtain

tN (1 − T 0
N ) = 1 + T −

N tN−1, (11)

where we recall that T +
N = 0, since the state N + 1 is not

available. Finally, we just make l = N − 1 in Eq. (10), take
the resulting expression of tN−1, and plug it in Eq. (11). The
variable tN cancels out and we are left with the simplified
equation

0 = 1 − T −
N t1

N−1∏
p=1

λp + T −
N

N−1∑
p=1

1

T +
p

N−1∏
q=p+1

λq,
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FIG. 2. Mean duration time of a bad meme. The y axis is the
extinction time and the x axis is the group size. Parameters are a =
0.1 and γ = 0.01. The curves show the results for different s values:
0, 5, 10, 15, 20, and 25 (from bottom to top). Note that bad memes
last for a much longer time in small groups and for high social terms.
For example, for s = 25 the bad meme lasts almost 400 more times
in a group of 5 people than it would last if s = 0 or if N = 20.

which gives

t1 =
1

T −
N

+ ∑N−1
p=1

1
T +

p

∏N−1
q=p+1 λq∏N−1

p=1 λp

. (12)

Equation (12) is the mean time it takes for a new meme to be
extinct starting in one individual.

The expression for an arbitrary l is easy to find. Rearrang-
ing Eq. (10) for l = 1 we obtain tN in the function of t1:

tN = t1 + t1

N−1∑
k=1

k∏
p=1

λp −
N−1∑
k=1

k∑
p=1

1

T +
p

k∏
q=p+1

λq.

Equation (10) provides a formula for tl in the function of t1 and
tN . Substituting the expression above in Eq. (10), and doing
some algebra, we obtain

tl = t1 + t1

l−1∑
k=1

k∏
p=1

λp −
l−1∑
k=1

k∑
p=1

1

T +
p

k∏
q=p+1

λq. (13)

In Fig. 2, we compare the exact solution [Eq. (12)] to the
Monte Carlo simulations for a meme with a small quality
a = 0.1 for different social intensities. We re-scale the time
to be inversely proportional to the group size, τ = t1/N . The
reason is that, when the population grows, the rate at which
the individuals are randomly picked to be updated has to grow
proportionally, since the group size should not influence the
rate at which the individuals change their ideas.

We draw attention to the significant effect that the social
term has in favoring the entrance of bad memes. The average
time a bad meme stands in the population can be two orders
of magnitude greater for high values of s. Also, the effect
depends on small populations, since they are more sensitive
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to stochastic fluctuations and the bad memes have a greater
chance to invade by a sudden stochastic rise. Then, the social
factor acts as a reinforcement, making the meme last long
when it is by luck initially successfully spread.

B. Many groups

The analysis for many groups is more difficult because
there are n coupled stochastic variables. However, in the
limit of low group connections, μ << 1, we can obtain an
approximation for the mean extinction time of the meme.
The social interpretation for this condition is that the groups
are very strong unities. In such a scenario, individuals place
significantly greater importance on the opinions of their fel-
low group members compared to the opinions of individuals
outside their group.

We emphasize that there is a significant difference between
the group-structured population with no connection, μ = 0,
and with very low connection, μ � 1 [44]. If μ = 0, there
are n distinct absorbing states and n distinct quasistationary
states. The states of each group after a relaxation time are
independent. In contrast, if μ � 1, there are only two states:
the quasistationary state NA = N and the extinction state NA =
0. In particular, we have shown that, even with very low
connection, one meme can invade the entire population. This
contrasts with the case where μ = 0, where a single meme can
invade only the group from which it originated.

In the regime μ << 1, we can describe the system only in
terms of the total number of A individuals, NA. Because one
individual is chosen at a time, the global transition rates are
given by

T ∗(N) =
∑

i

T ∗
i (N). (14)

Suppose that we start the system with one A individual in
some group that can be chosen to be the group 1. Suppose that
after a time has passed, we have a quantity NA of A individuals
in the population. What is the most probable distribution of
them in the groups?

Since the intergroup connection is very low, each group
will evolve to its equilibrium much before the meme A can
migrate to another group. Thus, if we have, for example,
NA � N/n individuals A in the population, they will probably
be in the group 1. Note that here we use the assumption
that the forgotten rate is low γ < 1/(N/n), which makes the
state NA1 = N/n a metaequilibrium for group 1. Suppose the
population has N/n < NA � 2N/n individuals of type A. In
this case, group 1 is probably complete, NA1 = N/n, and the
remaining NA − N/n individuals are all located in one of the
other groups. Because the global transition rates are symmet-
ric by renumbering the group indices, we can assume without
loss of generality that the remaining NA − N/n individuals
A are all in the group 2. The same argument follows for all
possible values of 1 � NA � N and we can define the global
transition rates for low group connection only in terms of NA:

T ∗(NA) = T ∗(N′), (15)
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FIG. 3. Mean duration time of a bad meme in splitted popula-
tions. The y axis is the extinction time and the x axis is the social
term s. Parameters are N = 12, a = 0.1, γ = 0.01, and μ = 0.001.
The curves show the results for different values of n: 1, 2, 3, 4, and
6 (from bottom to top). Note that bad memes last much longer in
divided populations and for high social terms.

where N′ is defined by

N′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(NA, 0, . . . , 0) if NA � N
n ,(

N
n , NA − N

n , 0, . . . , 0
)

if N
n < NA � 2N

n ,
...(

N
n , N

n , . . . , NA − (n−1)N
n

)
if (n−1)N

n < NA � N.

Finally, with these new rates defined, the analysis is anal-
ogous to the previous one done for a single group of size
N . The mean time of extinction is given by the same equa-
tion [Eq. (12)], with the adjusted transition rates:

t1 =
1

T −
N

+ ∑N−1
p=1

1
T +

p

∏N−1
q=p+1 �q∏N−1

p=1 �p

, (16)

where �p = T −
p /T +

p . Also, we have

tl = t1 + t1

l−1∑
k=1

k∏
p=1

�p −
l−1∑
k=1

k∑
p=1

1

T +
p

k∏
q=p+1

�q, (17)

taking the new transition rates into Eq. (13).
In Fig. 3 we compare the approximation provided by

Eq. (16) with simulations for a population of 12 individuals
divided into 1, 2, 3, 4, or 6 weakly connected groups. We
see that the social term enhances by far the mean extinction
time of a very bad meme, that otherwise would rapidly be
eliminated. Also, the effect is increased the more fragmented
the population. The explanation, again, is due to the stochas-
ticity intrinsic to small groups. To overcome the initial barrier
of social conformity, the meme has to do a stochastic rise
convincing up to 1/2 of the group. This improbable event
becomes more probable if the groups are smaller so that the
meme can enter bit by bit into the population. Once a bad
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FIG. 4. Mean duration time of a bad meme in splitted popula-
tions for increasingly higher μ. The y axis is the extinction time
and the x axis is the social term s. Parameters are N = 12, a = 0.1,
γ = 0.01, and n = 4. From the top curve to the bottom the μ values
are 0.001, 0.002, 0.004, 0.01, and 0.1. We can see that our analyt-
ical results depend on the condition of low migration, but they are
surprisingly good approximations for the higher μ scenarios as well.

meme gets lucky, high social terms will ensure it a long
duration.

Figure 4 also presents simulations of the mean extinction
time for higher values of μ. Our analytical prediction starts to
deviate for μ � 0.001, but remarkably the approximation still
captures well the mean extinction time for higher values of
μ, far beyond the assumption that all groups are monomor-
phic when interchanging some meme. As μ increases, we
observe that the mean extinction time of the meme becomes
smaller. This suggests that, as the group-structured population
becomes more connected, it resembles a scenario with only
one group.

C. Arrival probabilities

In order to better understand the meme dynamics when
transiting through the population, here we calculate the arrival
probabilities of a meme that starts in one individual of the
population, still in the regime of low migration where we use
the single-variable transition rates T ∗(NA).

We call Pi(l ) the probability that the meme A invades i
groups before being extinct, starting from l individuals. We
can set the recursive relation

Pi(l ) = T +(l )Pi(l + 1) + T −(l )Pi(l − 1) + T 0(l )Pi(l ),
(18)

with the boundary conditions Pi(0) = 0 and Pi(iN/n) = 1.
Recalling that T 0(l ) = 1 − T +(l ) − T −(l ), defining zi(l ) =
Pi(l + 1) − Pi(l ) and �(l ) = T −(l )/T +(l ), we obtain

zi(l ) = �(l )zi(l − 1). (19)
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FIG. 5. Arrival probability of a bad meme. Here we plot the prob-
ability for the meme to invade a population of N = 12 individuals
before being extinct. The y axis is the arrival probability and the x
axis is the social term s. Parameters are N = 12, a = 0.1, γ = 0.01,
and μ = 0.001. The curves show the results for different values of
n: 1, 2, 3, 4, and 6 (from bottom to top in the rightmost part of
the graph). Note that bad memes have much more facility to invade
when s is large and this effect is increased when the groups are more
divided. However, there is an extensive range of s for which the
invasion probability behaves nontrivially with the group division.

Summing in l from k to iN/n − 1 and recognizing that the
sum over zi(l ) is a telescopic one, we obtain

Pi(k) = 1 −
iN/n−1∑

l=k

zi(l ).

Calculating the sum on the right side using Eq. (19), we obtain
the expression

Pi(k) = 1 − zi(k)

⎛
⎝1 +

iN/n−1∑
j=k+1

j∏
l=k+1

�(l )

⎞
⎠.

Taking k = 0 we have Pi(0) = 0 and zi(0) = Pi(1) − Pi(0) =
Pi(1), so that

Pi(1) = 1

1 + ∑iN/n−1
j=1

∏ j
l=1 �(l )

. (20)

Finally, from Eq. (20) we can derive the probabilities of
strict domination

Ponly
i = Pi(1) − Pi+1(1), (21)

which is the probability for the meme A to dominate i groups
starting at one individual, but not dominate i + 1 groups.
Here we have that i = 0, 1, . . . , n, Pn+1(1) = 0, and Ponly

0 =
1 − P1(1) is the probability that no group is dominated by the
meme A.

The comparison between Eq. (20) and simulations is pro-
vided in Fig. 5. We plot the probability of the meme invading
a population of N = 12 individuals before being extinct for
different group divisions. We can see that, although the groups

064103-6



STOCHASTIC EVOLUTION OF BAD MEMES PHYSICAL REVIEW E 108, 064103 (2023)

0 20 40 60 80 100 120

s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

P
ro

ba
bi

lit
y

Arrival probability for higher groups-connection

FIG. 6. Arrival probability of a bad meme for higher groups
connection. Here we plot the probability for the meme to invade
a population of N = 12 individuals before being extinct. The y
axis is the arrival probability and the x axis is the social term s.
Parameters are N = 12, a = 0.1, γ = 0.01, and n = 3. The curves
show the results for different values of μ: 0.001 (blue), 0.01 (green),
0.05 (yellow), and 0.1 (light blue). Note that our analytical results
start to deviate when the value of μ increases. Interestingly, we can
see that there is a nontrivial value of μ for which the bad memes have
more chance to invade in the presence of the social conformism.

are very weakly connected (μ = 0.001), the fragmentation
of the population may facilitate the total invasion of a very
bad meme. We also show in Fig. 6 the arrival probability
for higher values of group connection. We can see that our
approximation strongly depends on the assumption of low
connection. It is interesting to note that there is a counter-
balance between two effects of the fragmentation. On one
side it is more difficult for the meme to transit through the
population. On the other side there is an advantageous ef-
fect by making the stochastic fluctuations more probable in
the smaller groups, which helps the bad memes. Thus it is
expected that the helpful influence of the fragmentation for
the bad meme is increased when the social conformism is
stronger, as shown in the figures. Also, we can see in Fig. 6
that there is a nontrivial value of μ for which the invasion
probability is a maximum. This reveals the two opposite ef-
fects of population fragmentation in the propagation of a very
bad meme.

D. Conditional times

We also calculate the average time it takes for the meme
to be extinct starting from one individual, conditional to the
fact that i groups were dominated, but not i + 1. This is called
the conditional time of extinction tonly

i , with i = 0, 1, . . . , n.
The meme’s average duration when it is known that it has not
dominated any group is tonly

0 , in which case we assume that
the meme remained all the time in only 1 individual.

To calculate the conditional times we set the equation

t (1) = Ponly
0 tonly

0 + Ponly
1 tonly

1 + · · · + Ponly
n tonly

n , (22)

where t (1) = t1 is given in Eq. (16). Instead of trying to solve
this equation, we can look at the following relation:

t (1) = Ponly
0 tonly

0 + (
1 − Ponly

0

)
t1(1), (23)

where ti(1) is just the average time that the meme persists
when it starts in 1 individual, conditional to the fact that i
groups were dominated. Now let us estimate t1(1). First, we
can write

t1(1) = t rlx
1 + t (N/n), (24)

where t (N/n) is given by Eq. (17) and t rlx
1 is the relaxation

time it takes for the meme A to dominate one group, knowing
that the meme has achieved this goal. Note that the Markov
propriety allows us to make this separation. Because we know
that the meme invaded one group, we separate the time it takes
for this invasion to happen, t rlx

1 , and then restart the system at
the initial condition NA = N/n. As we already have t (l ) for
any l , we need to estimate t rlx

1 .
The assumption of bad memes and high social terms is

important to make the analysis of t rlx
1 feasible. Any invasion

of a bad meme, starting from one individual, is rare. When
a rare event happens, like an extinction of a large population
subjected to logistic transition rates [45], it will almost cer-
tainly take a deterministic path, which can be calculated by
the approach of WKB theory for large N .

We provide a simple estimate of t rlx
1 . We assume that when

it is known that the bad meme A dominated one or more
groups, the path it took must not have any negative transition,
where some A changed for B. Thus, in this path, we have
T −(l ) = 0. We then renormalize our rates and, for every state
l of the population, the new transition rates are given by

T +
rlx (l ) = T +(l )

T 0(l ) + T +(l )
, (25)

with T 0
rlx(l ) = 1 − T +

rlx (l ). There is an intuitive explanation for
this approach. Since our memes have a very low probability
of increasing in the population, principally in the initial state
of a group invasion, the probabilities T +(l ) tend to be very
small. Suppose that negative transitions l → l − 1 happened
in a path where an invasion took place. Then, the transition
T +(l − l ) must have happened twice, multiplying one more
very small probability to the path. Indeed, if more steps are
taken, there are more ways to realize the invasion. However,
this addition does not counterbalance the multiplication of
more improbable steps in this case.

Then, when the population is in state l , it has for each
time step the probability T +

rlx (l ) of transitioning for l + 1.
This transition will take an average of 1/T +

rlx (l ) time steps to
happen. Thus, when the meme invades the population it stays
approximately a time 1/T +

rlx (l ) in l individuals. Finally, let us
return to the calculation of t rlx

1 . It is easy to see that

t rlx
1 =

N/n−1∑
l=1

1

T +
rlx (l )

, (26)
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which gives us t1(1), by Eq. (24), and enables us to obtain tonly
0

by Eq. (23):

tonly
0 = t (1) − (

1 − Ponly
0

)
t1(1)

Ponly
0

. (27)

Now we expand Eq. (23) one more term to write

t (1) = Ponly
0 tonly

0 + Ponly
1 tonly

1

+ (
1 − Ponly

0 − Ponly
1

)[
t rlx
2 + t (2N/n)

]
, (28)

where

t rlx
2 =

2N/n−1∑
l=1

1

T +
rlx (l )

. (29)

The variable t rlx
2 is just the relaxation time it takes for the

meme to dominate two groups, when it is known that it has
done it. Since we already calculated tonly

0 , our only unknown
variable is tonly

1 , which is given by

tonly
1 = t (1) − Ponly

0 tonly
0

Ponly
1

−
(
1 − Ponly

0 − Ponly
1

)[
t rlx
2 + t (2N/n)

]
Ponly

1

. (30)

In general, we have

tonly
i = t (1) − Ponly

0 tonly
0 − · · · − Ponly

i−1 tonly
i−1

Ponly
i

−
(
1 − Ponly

0 − · · · − Ponly
i

){
t rlx
i+1 + t[(i + 1)N/n]

}
Ponly

i

,

(31)

for i = 1, . . . , n − 1, and

tonly
n = t (1) − Ponly

0 tonly
0 − · · · − Ponly

n−1 tonly
n−1

Ponly
n

. (32)

A comparison of this approximation for tonly
i with simula-

tions is shown in Fig. 7. Although the approximation is not
perfect, it fits reasonably well. More importantly, the approx-
imation is sufficiently accurate to predict the effect of group
fragmentation, allowing us to perform a qualitative analysis.

IV. MEME EQUATION AND SOCIAL ANALYSIS

In the previous section we analyzed the invasion of a sin-
gle meme. Now let us analyze the scenario where multiple
independent memes invade the population. Suppose that each
individual of the population has the same density rate r(a) of
meme creation. Then, the infinitesimal rate of meme creation
with quality between a and a + da in a population of constant
size N is given by

dR(a) = Nr(a)da. (33)

Once a meme is created, initially in only one individual’s
mind, it can be rapidly eliminated or survive for a long time.
However, in the limit of t → ∞ it will certainly be eliminated.
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FIG. 7. Conditional extinction times. Here we plot the times for
the meme to be extinct starting from one individual condition to
the fact that it has dominated only 0, 1, 2, 3, and 4 groups, in
a population of N = 12 divided into n = 4 groups. The y axis is
the conditional time and the x axis is the social term s. Parameters
are N = 12, n = 4, a = 0.1, γ = 0.01, and μ = 0.001. From top to
bottom, we show the conditional times of domination of only 4, 3,
2, 1, and 0 groups. The approximation gives us a great distinction of
the orders of magnitude.

The reason is that memes have a forgotten rate γ . Thus the
only attractor of the system is the state where the meme is
extinct. We can then define a finite mean time to extinction
of a meme with quality a, which we call τ (a). With these
definitions, we can state the meme equation

dM(a) = τ (a)dR(a), (34)

which gives the infinitesimal amount of memes with quality
between a and a + da in the population. If we want to calcu-
late, for example, the amount of bad memes in the population,
a ∈ [0, 1], we just have to integrate the expression in this
interval to obtain

M[0,1] =
∫ 1

0
dM(a) =

∫ 1

0
Nr(a)τ (a)da. (35)

This equation gives us a measure of the bad memes’ vari-
ety, but we are also interested in the total amount of memes
that are lying in all individuals minds, so we define the total
meme equation, which gives the infinitesimal total amount of
memes in the population:

dMN (a) =
N∑

k=1

kτk (a)dR(a), (36)

where τk (a) is the average time that a meme with quality a
stays occupying exactly k individuals. Clearly, we must have∑

k τk (a) = τ (a).
Taking our analytical derivations in the previous section,

we have that τ = t1, given in Eq. (16). To state an approxi-
mation for the total meme equation, however, we need a little
more elaboration. First we define the relaxation times of the
forward and backward processes. The forward relaxation time
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is just the time it takes for the meme A to arrive at i groups,
knowing that this happens:

t rlx
i = tgo

i =
iN/n−1∑

l=1

1

T +
rlx (l )

.

The backward relaxation time is the time it takes for the meme
A to go through its path of extinction starting with iN/n − 1
individuals knowing that it managed to dominate i groups:

tback
i =

iN/n−1∑
l=1

1

T −
rlx (l )

, (37)

where T −
rlx (l ) is defined in the same way as T +

rlx (l ):

T −
rlx (l ) = T −(l )

T 0(l ) + T −(l )
. (38)

In other words, when i groups are dominated, we assume that
the meme spent a time 1/T +

rlx (l ) in state l when it was going
forward and a time 1/T −

rlx (l ) when it was going backward.
Hence it takes a time 1/T −

rlx (l ) + 1/T −
rlx (l ) in the state l , for

l < iN/n − 1, when it is known that i groups were dominated.
We can now state the approximation for the total meme

equation [Eq. (36)]:

dMN (a)

dR(a)
= Ponly

0 tonly
0

+
n∑

i=1

iN/n−1∑
l=1

lPonly
i

(
1

T +
rlx (l )

+ 1

T −
rlx (l )

)

+
n∑

i=1

iN

n
Ponly

i

(
tonly
i − tgo

i − tback
i

)
. (39)

At last, the density rate must be obtained experimentally;
however, we can reasonably assume a natural functional de-
pendence on a. Thus we can obtain the mean times for an
evolving population following the Moran process and see how
the group size and social pressure influence the abundance of
bad memes for a given density rate distribution r(a). We as-
sume that the quality distribution of the density meme creation
follows a half-normal distribution centered in a = 0 (a � 0),
with variance σ 2:

r(a) = 1

σ
exp

(
−1

2

a2

σ 2

)
. (40)

The variance σ 2 determines the society’s quality in producing
memes. In the limit of σ 2 → 0, almost all memes produced
are bad. In the limit σ 2 → ∞, individuals produce memes
with different qualities a at the same rate. Taking an in-
termediate value, σ 2 = 10, as our choice, we proceed by
considering quenched disorder: we keep the creation rate fixed
and study how the population structure and the social pressure
influence the diffusion of bad memes.

First, we integrate the meme equation, Eq. (34), in the
interval of all bad memes, a ∈ [0, 1], for a population of
N = 12 individuals. Figure 8 shows the numerical results.
We note that, for this small population, the social term s
increases the number of bad memes resident in the society.
Also, we see that, for moderate s, there are more bad memes
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FIG. 8. Meme equation. Here we plot the meme equation over
s, integrated in the interval of all bad memes a ∈ [0, 1]. Parameters
are N = 12, γ = 0.01, and μ = 0.001. The curves show the results
for different values of n: 1, 2, 3, 4, and 6 (from bottom to top in the
leftmost part of the graph). We see that the social term gives a great
reinforcement for the bad memes and that split populations are more
prone to them when s is moderate, but can act as well as a shield
against bad memes when the social terms are disproportionately
high.

in split societies. However, for high values of s, the bad memes
proliferate more in unified populations. The reason is that,
although the probability of invasion becomes constant with
increasing s, the conditional times become increasingly higher
with s and the effect of bad memes duration in large groups
is greater than the effect of groups splitting in the infiltration
probabilities. Nevertheless, in Fig. 9, we integrate the meme
equation for a population of size N = 24 and we can see
that we need to have greater values of s for this nontrivial
phenomenon to occur. Therefore, we can state that, when the
populations are large, the population’s fragmentation can only
help the bad memes thrive for s that is not too large.

Figure 10 shows the total meme equation plotted as a
function of s for the same parameters of the plot in Fig. 8.
This result enriches the analysis. First, as already expected,
the increase of s increases the number of memes for all group
divisions. Even more, although we saw that, for reasonable
values of s, the division of the population increases the variety
of bad memes, the total meme equation says that the total
number of memes is higher for less divided populations. Note
that the difference in the total number of memes is more pro-
nounced for large s. Thus the fragmentation of the population
diminishes the total number of bad memes, despite increasing
their variety. When a meme manages to dominate one large
group, it usually stays there a long time and for almost all this
time it stays occupying the entire group.

We also show in Fig. 11 a plot of the meme equation for
small s and large N . We can see an interesting phenomenon.
For larger groups, the initial increase in s diminishes the
number of bad memes. When N/n is larger, the increase in
s makes it more difficult for the new memes to invade the
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FIG. 9. Meme equation for larger N . Here we plot the meme
equation over s, integrated in the interval of all bad memes a ∈ [0, 1].
Parameters are N = 24, γ = 0.01, and μ = 0.001. The curves show
the results for different values of n: 1, 2, 4, 8, and 12 (from bottom
to top in the leftmost part of the graph). We see that, for a greater
N , the split in the population favors the bad memes for reasonable
values of s.

population because it always starts as a minority. However,
from a certain value of s, the arrival probabilities no longer
change with s. However, the conditional times keep growing
until the increase of s returns to increase the number of bad
memes.
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FIG. 10. Total meme equation. Here we plot the total meme
equation over s, integrated in the interval of all bad memes a ∈ [0, 1].
Parameters are N = 12, γ = 0.01, and μ = 0.001. The curves show
the results for different values of n: 6, 4, 3, 2, and 1 (from bottom to
top). Note that, for already moderate social terms, the total number
of bad memes in the population greatly decreases with the population
division.
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FIG. 11. Nontrivial social term. Here we plot the meme equa-
tion over s, integrated in the interval of all bad memes a ∈ [0, 1].
Parameters are N = 60, γ = 0.01, and μ = 0.001. The curves show
the results for different values of n: 1, 2, 3, and 4 (from bottom to
top). At this scale, we see that there can be nontrivial social terms for
which the bad memes’ variety is a minimum.

V. CONCLUSIONS

The goal of this work is to understand how memes lacking
inherent attractiveness can proliferate in a population due to
stochastic occurrences of popularity and later be protected
through conformity. We provide a mathematical analysis of
the single meme invasion process and we introduce the meme
equations to analyze the invasion of multiple memes. More
specifically, we are interested in the effect of the size of the
groups and the degree of the social pressure for conformism.

Using analytical techniques, we calculate the mean extinc-
tion time for a single meme that starts in one individual in
a population composed of a single group. We also develop a
good analytical approximation for scenarios involving mul-
tiple groups with limited intergroup connections. Lastly, we
devise a more sophisticated approximation scheme to esti-
mate the conditional times needed to integrate the total meme
equation.

The assumption of independent evolution of memes em-
ployed here is also a simplification. Our model does not
capture the phenomenon of memes correlation, described by
Blackmore as memeplexes [8]. In reality, seemingly unre-
lated ideas can be linked in a critical way to drive major
changes in behavior. For example, a study investigating politi-
cal attitudes [27] demonstrated the existence of interconnected
networks between different categories of attitudes towards
a candidate. An individual’s belief in a candidate’s honesty,
for instance, can influence their perception of the candi-
date’s intelligence or popularity. Certain elements of attitudes
were identified as more centrally connected, thereby yielding
greater predictive power concerning individual voting behav-
ior. Additionally, humans have a refined ability to sense social
circles and gauge the prevailing state of opinion dynamics,
thereby contributing to the correlation of memes. Once ideas
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become interlinked, they can serve as distinguishing markers
of a well-defined social group [46]. Nonetheless, in this work,
our goal is to understand the effects of group sizes and social
pressure for conformity on the propagation of bad memes.
Hence we assume that the memes evolve independent of each
other. This simplification allows us to calculate the mean
extinction time of an individual meme without considering the
state of other meme dynamics. By employing this approach,
we can focus on evaluating the influence of group size and
social pressure on the propagation of individual memes in
isolation.

The main empirical motivation for our investigation origi-
nates from a body of research spanning numerous decades, in
which scholars have sought to grasp and numerically assess
the impact of societal influence on the adoption of ideas. Some
illustrative cases are provided by Latané’s revision work [28].
In this revision, a series of experiments demonstrated substan-
tial discrepancies in how individuals responded to the same
questionnaire when answering alone versus in the presence
of others. This work shows the substantial impact exerted by
social conformity, which significantly shifts the probability
distribution in favor of alternatives embraced by the majority.
To capture these twofold effects, we introduce the parameters
a and s.

The key contribution of this work lies in presenting a
mathematical analysis that shows the substantial influence of
social pressure for conformity on the propagation of memes

that would otherwise face negligible chances of dissemination
within the population. We elucidate how the intrinsic stochas-
tic nature of social dynamics can underpin the emergence
of unfavorable memes, particularly within more fragmented
populations. These findings align harmoniously with em-
pirical studies delving into the dynamics of less infectious
memes [15,17]. These studies show that, in complex conta-
gion scenarios, memes tend to propagate more effortlessly
within disconnected populations, as they rely on social rein-
forcement for dissemination.

Our results bring attention to the significance of the memes
that prevail in our society. Despite their potential misalign-
ment with our best interests, their persistence can be attributed
to stochastic events protected by conformism. For instance,
even self-harm memes could find support within specific
groups, despite their probable lack of appeal when considered
in isolation [47]. As Blackmore points out, genes and memes
do not consider the impact of their replication, as they cannot
plan and make decisions based on the consequences of their
actions. We cannot expect them to have created a desirable
existence for us and, indeed, sometimes, they have not.
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