
PHYSICAL REVIEW E 108, 064101 (2023)

Semi-Markov processes in open quantum systems. II. Counting statistics with resetting
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A semi-Markov process method for obtaining general counting statistics for open quantum systems is extended
to the scenario of resetting. The simultaneous presence of random resets and wave function collapses means that
the quantum jump trajectories are no longer semi-Markov. However, focusing on trajectories and using simple
probability formulas, general counting statistics can still be constructed from reset-free statistics. An exact tilted
matrix equation is also obtained. The inputs of these methods are the survival distributions and waiting-time
density distributions instead of quantum operators. In addition, a continuous-time cloning algorithm is introduced
to simulate the large-deviation properties of open quantum systems. Several quantum optics systems are used to
demonstrate these results.
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I. INTRODUCTION

In a previous paper [1], we explicitly constructed semi-
Markov processes (sMPs) embedded in quantum jump
trajectories of open quantum systems and clarified their con-
nections with the Markov quantum master equation (MQME)
[2–4]. The unique advantages of the sMP method are in analy-
ses and computations of the general counting statistics of open
quantum systems [5–8], e.g., the large deviation properties of
these systems. On the one hand, unlike the tilted quantum
master equation (TQME) [7,9–14], which is now dominant
in the literature, the sMP method is a theory concerning
classic probability; all quantum characteristics are indirectly
indicated through the classical waiting time distributions. On
the other hand, the sMP method can handle the statistics of
general time-extensive quantities related to the occurrence
frequencies of adjacent collapses in quantum jump trajecto-
ries. In contrast, the TQME is restricted in the time-extensive
quantities of the frequencies of single collapses. Notably, the
counting statistics of sMPs were established over a decade
[15,16]. However, to the best of our knowledge, their signifi-
cance in open quantum systems has not been appreciated until
the present work. The sMP method was illustrated in reso-
nant two-level quantum system, where the radical solutions
of scaled cumulant generating functions (SCGFs) of entropy
production rate and counting rate were obtained. In particular,
the method can explore restart and flipping statistics of the
same system, which are beyond the scope of the TQME [1].
Very recently, the method analytically solves asymptotic large
deviations and full counting statistics of complex three-level
quantum system [17].

In this paper, we aim to deepen the sMP method by investi-
gating the counting statistics in more complex open quantum
systems in the presence of stochastic resetting. In the past
decade, stochastic systems with various resetting protocols
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have attracted much theoretical interest in the community
of nonequilibrium physics [18–25]. Although most of this
work has involved classical systems, some attention has also
been devoted to quantum systems [26–34], e.g., constructing
autonomous entanglement engines utilizing resetting [26,30],
designing nonequilibrium stationary states of quantum many-
body systems through resetting [32], and achieving speedup
of quantum hitting times by resetting [34]. Very recently, Per-
fetto et al. [33] studied the thermodynamics of quantum jump
trajectories subject to non-Poissonian resetting. They found
that the large deviation properties of the counting statistics
can be calculated exactly by relating the moment-generating
function (MGF) in the presence of resetting to that of a reset-
free system. To achieve this result, they combined techniques
used on the TQME with the renewal structure of the resetting
dynamics.

The presence of stochastic resetting in open quantum sys-
tems raises a fundamental challenge to the sMP method. In
the reset-free case, according to the theory of quantum jump
trajectories [2,9,11,35–40], the wave function of the quantum
system deterministically evolves in a nonunitary way and is
randomly interrupted by collapses. Because the time distribu-
tion of pairs of adjacent collapses is usually nonexponential,
called memory in this paper, and is independent of the pre-
vious history of the wave function, if we concentrate only on
collapses of wave functions, including the collapsed quantum
states and times, then these random events constitute a sMP
[41] 1. In general, the resetting process is also an sMP. Hence,
when these two stochastic processes occur simultaneously, the
composite process is usually no longer semi-Markovian.

This work overcomes the aforementioned challenge, and
it makes three main contributions. First, we construct a set of

1SMPs are not Markovian. The word semi-Markov comes from the
limited Markov property which a stochastic system is independent of
its past given the present state and the “present” is a time of jump or
collapse in quantum jump trajectory.
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probability formulas that can precisely describe the composite
stochastic process. The key idea is that resetting does not
alter the underlying quantum dynamics; the notion of quantum
jump trajectories is still valid. Second, we extend the previous
results of Perfetto et al. [33] to general counting statistics.
Because our theory is fully based on sMPs, previously un-
known formulas are discovered. For simplicity of description,
the counting statistics mentioned in the remainder of this
paper always refer to the general statistics unless otherwise
indicated. Finally, we introduce a continuous-time cloning
algorithm (CTCA) to simulate the large deviation statistics
of general time-extensive quantities in open quantum systems
with resetting. The algorithm originally aimed to compute
the SCGFs of non-Markov classical jump processes [42–44].
Because the set of probability formulas for the composite
stochastic process is obtained, the applications of this method
in open quantum systems are natural, and its realization is also
simple.

This paper is organized as follows. In Sec. II, we briefly
summarize the sMP method for determining the counting
statistics of open quantum systems and extend it to a situation
with arbitrary initial states. In Sec. III, counting statistics with
memoryless resetting are studied. We will see that the method
is still available if the set of collapsed states is expanded to
include the reset state. Section IV discusses a more com-
plex case with memory resetting. Although quantum jump
trajectories in this situation are no longer sMPs, by consid-
ering trajectories and using probability formula, the counting
statistics can still be constructed by reset-free statistics. In par-
ticular, an exact tilted matrix equation is obtained. In Sec. V,
we introduce a continuous-time cloning algorithm to simulate
the large-deviation statistics. In Sec. VI, several quantum op-
tics systems are used to demonstrate our results. Section VII
concludes the paper.

II. SMP METHOD FOR COUNTING STATISTICS

Let ρ(t ) be the reduced density matrix of an open quantum
system. Under appropriate conditions, the dynamics of the
system is described by the MQME [45–47]

∂tρ(t ) = −i[H, ρ(t )] +
M∑

α=1

rα

(
Aαρ(t )A†

α − 1

2
{A†

αAα, ρ(t )}
)

≡ L[ρ(t )], (1)

where the Planck constant h̄ is set to 1, H denotes the Hamil-
tonian of the quantum system, Aα is the Lindblad operator,
and the nonnegative coefficients rα and α = 1, · · · , M rep-
resent certain correlation characteristics of the environment
surrounding the quantum system.

The MQME (1) can be unraveled into quantum jump tra-
jectories [2,9,11,35–40]. These trajectories, which concern
the evolutions of the wave functions of the single quantum
systems, are composed of deterministic pieces and random
collapses of the wave functions. The former are the solutions
of nonlinear Schrödinger equations. The latter indicate that
the systems have collapsed to fixed states φα , α = 1, · · · , M,
which are called the collapsed states in this paper. If we focus
on these states and use random time intervals τ to replace the
deterministic pieces between successive collapses, then the

quantum jump trajectories can be seen as the realizations of a
sMP [1]. The ingredients of the sMP include the waiting time
densities (WTDs) and survival distributions (SDs) [41,48],
which are

p0
α|β (τ ) = rβ ‖ Aβe−iτ Ĥφα ‖2, (2)

S0
α (τ ) = ‖ e−iτ Ĥφα ‖2, (3)

respectively [2]. Here, the non-Hermitian Hamiltonian is

Ĥ = H − i

2

M∑
α=1

rαA†
αAα. (4)

Equation (2) is the probability density of the wave function
starting from collapsed state φα , continuously evolving, and
collapsing in state φβ until time τ . Equation (3) is the prob-
ability of the wave function successively evolving until time
τ without collapse. In this paper, we always denote quantities
defined or solved in the absence of resetting with a superscript
or subscript 0, unless otherwise stated. It is useful to introduce
the hazard functions of the sMP:

k0
α|β (τ ) = p0

α|β (τ )

S0
α (τ )

. (5)

Obviously, they are the conditional probability densities at
which the system collapses in φβ at time τ within a unit
time interval under the condition that the system continuously
evolves from state φα until time τ without collapsing.

A major application of the sMP perspective to open quan-
tum systems is in counting statistics [5–8]. These statistics
concern time-extensive quantities

C[ �X ] =
N∑

i=1

ωαi−1αi . (6)

Here, we denote the quantum jump trajectory with N collapses
as

�X = (φα1 , φα2 , · · · , φαN ), (7)

where φαi represents the collapsed state at time ti, i =
1, · · · , N , and ωαi−1αi is a weight specified by the collapsed
states at adjacent times ti−1 and ti, that is, the quantum states
at the beginning and end times of a deterministic stage. The
properties of the random variable (6) are characterized by the
MGF [49]

M0(λ, t ) =
∑

�X
P[ �X ]eλC[ �X ], (8)

where P[ �X ] represents the probability density of a quantum
jump trajectory �X . We set all the trajectories to start from a
certain collapsed state. Note that the summation in Eq. (8)
over quantum jump trajectories is only a shorthand notation,
and its exact meanings include summing over all possible
collapsed states at every time and performing time-ordered
integrals at different times; see also Eq. (44) below.

The MGF (8) is obtained by first solving a tilted matrix
equation in the complex frequency domain [1]:

G0(v)P̂0(v) = 1γ , (9)
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where the 1 × M vector P̂T
0 = (P̂1, · · · , P̂M ) with the upper-

case T denoting the transpose, 1T
γ = (δ1γ , · · · , δMγ ) and δαγ

is the Kronecker symbol. Here, the initial collapsed state is set
to φγ . Throughout this paper, we use a circumflex placed over
a symbol to denote its Laplace transformation. The diagonal
and nondiagonal elements of the matrix G0 are

[G0]αα = 1 − p̂0
α|α (v)eλωαα

Ŝ0
α (v)

, (10)

[G0]αβ = − p̂0
β|α (v)

Ŝ0
β (v)

eλωβα (α �= β ), (11)

respectively. Then, the Laplace transform of the MGF is

M̂0(λ, v) = 1T P̂0(v) = 1T G−1
0 (v)1γ , (12)

where 1T = (1, · · · , 1) is a 1 × M vector. The last step is
to take the inverse Laplace transform of Eq. (12) over the
complex frequency v to obtain the MGF in the time domain.
Equation (12) is itself useful since the SCGF of the large
deviation of current j = C[ �X ]/t over a long time limit [50],

ϕ(λ) = lim
t→∞

1

t
ln M0(λ, t ), (13)

can be obtained by finding its pole with the largest real value
[15]. According to Eq. (9), it is also equal to the largest real
root of the vanishing determinant of the tilted matrix G0(v).

A. Arbitrary initial states

We extend the previous results to a situation in which the
quantum jump trajectories start with a quantum state that does
not belong to the set of collapsed states, e.g., |A〉 2. For an
“autonomous” quantum system, if it starts with such a state,
then after the first collapse, all subsequent collapse states are
in the set of collapsed states; that is, the system will never
collapse to |A〉 again. Because the quantum jump trajectories
are still a sMP, we expand the previous vector and matrix
to 1 × (M + 1) P̂T

0A = (P̂A, P̂1, · · · , P̂M ) and (M + 1) × (M +
1) G0A(v), respectively. Note that we use the subscript A to
indicate the arbitrary initial state. The elements of the matrix
are

[G0A]00 = 1

Ŝ0
A(v)

, [G0A]0β = 0, (14)

[G0A]α0 = − p̂0
A|α (v)

Ŝ0
A(v)

eλωAα , [G0A]αβ = [G0]αβ (v). (15)

In these equations, p0
A|α and S0

A possess analogous formulas
to Eqs. (2) and (3) except that the subscripts α and β are
replaced by A and α, respectively. An analogous tilted matrix
equation about G0A and P̂T

0A such as Eq. (9) is valid as well.
Therefore, the Laplace transform of the MGF with the special
initial state is

M̂0A(λ, v) = 1T P̂0A(v) = 1T G−1
0A (v)1A. (16)

Here, both 1T and 1T
A = (1, 0, · · · , 0) are 1 × (M + 1) vec-

tors. Because the determinants of the tilted matrices G0 and

2This limitation is not essential and will be removed in the follow-
ing sections.

G0A are the same, an arbitrary initial state does not alter the
large deviation properties of open quantum systems.

III. COUNTING STATISTICS
WITH MEMORYLESS RESETTING

Let us start with the resetting case in which resetting occurs
at a constant rate K and is independent of previous quantum
states. This is a special case of more general memory reset-
ting. However, we will prove that this case can be studied
by simply modifying the reset-free results. Throughout this
paper, we only consider one type of resetting, and quantum
systems are always reset to |R〉. This resetting quantum state
may be one of the collapsed states. In addition, we initialize
all quantum trajectories to the reset state.

Because resetting is memoryless, the quantum jump trajec-
tories in the case of a reset state are still sMPs. This point is
shown schematically in Fig. 1(a). At time t2, resetting occurs.
Then, the evolution of the quantum system that started from
the collapsed state φα3 at time t3 is not affected by the previous
wave function history, including the time interval t3 − t2 and
the t2 value. Therefore, we naturally think of the quantum
jump trajectories as having a set of extended collapsed states;
that is, the resetting quantum state |R〉 is included. However,
we emphasize that resetting indeed leads to new SDs and
WTDs and modifies the existing SDs and WTDs:

Sα (τ ) = e− ∫ τ

0

∑M
β=1 k0

α|β ds−Kτ = S0
α (τ )e−Kτ , (17)

SR(τ ) = e− ∫ τ

0

∑M
β=1 k0

R|β ds−Kτ = S0
R(τ )e−Kτ , (18)

and

pα|β (τ ) = k0
α|β (τ )Sα (τ ) = p0

α|β (τ )e−Kτ , (19)

pα|R(τ ) = KSα (τ ) = S0
α (τ )Ke−Kτ , (20)

pR|β (τ ) = k0
R|β (τ )SR(τ ) = p0

R|β (τ )e−Kτ , (21)

pR|R(τ ) = KSR(τ ) = S0
R(τ )Ke−Kτ . (22)

With Eqs. (17)–(22), the MGF in the presence of memory-
less resetting is calculated in the same way as in the previous
reset-free case. A difference is that in the current case, the
tilted matrix G is (M + 1) × (M + 1), the elements of which
are

[G]00 = 1

Ŝ0
R(v + K )

− K, [G]0β = −K,

[G]α0 = − p̂0
R|α (v + K )

Ŝ0
R(v + K )

eλωRα , [G]αβ = [G0]αβ (v + K ).

Because we are not interested in the number of resets, we set
the weights ωRR and ωαR to zero. Obviously, the tilted matrices
defined thus far have a simple relationship:

G(v) = G0R(v + K ) − K�, (23)

where the matrix elements of G0R are given in Eqs. (14)
and (15) with the subscript A replaced by R, and � =
(1R, · · · , 1R) is a (M + 1) × (M + 1) square matrix.

Analogous to the reset-free case, the Laplace transform
of the MGF in the presence of memoryless resetting is
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FIG. 1. Schematic diagrams of two quantum jump trajectories of a quantum system with memoryless resetting (a) and memory resetting
(b). The long red vertical lines represent the times at which resetting occurs, while the short black vertical lines represent the times at which
collapses of wave functions occur. In panel (a), the times are indicated by ti. The collapsed states and the reset state at these times are denoted
by φαi and |R〉i, respectively, i = 1, 2, · · · , N . There are four types of combinations of different beginning and end states. We mark them in the
panel by horizontal short lines with double arrows. Their time intervals are uniformly labeled as τ . In panel (b), we denote the resetting times as
TI , I = 1, · · · , N , while the times at which the quantum system collapses are labeled as tI,i. The subscripts indicate the ith collapse following
the Ith resetting, where i = 1, 2, · · · . Accordingly, the collapsed states are denoted as φα(I,i). There are also four types of combinations of
different beginning and end states. We still denote them with horizontal lines with double arrows. Because the time interval τ is inadequate to
characterize the memory effects on the two combinations, we additionally define T , which is the time interval from the first collapsed state to
the last resetting.

M̂(λ, v) = 1T P̂(v), where the vector P̂T = (P̂R, P̂1, · · · , P̂M )
satisfies the tilted matrix equation

G(v)P̂(v) = 1R. (24)

Substituting Eq. (23) into Eq. (24), multiplying both sides of
the equation by 1T G−1

0R (v + K ) from the left-hand side, and
using Eq. (16), we arrive at

M̂(λ, v) = M̂0R(λ, v + K )

1 − KM̂0R(λ, v + K )
. (25)

This result indicates that the MGF in the presence of memo-
ryless resetting with reset state |R〉 is related to the MGF in
the absence of resetting but with the special initial state |R〉.
Equation (25) also implies that the SCFG of the former case
can be obtained by finding the largest real root of the following
algebraic equation with the parameter v:

KM̂0R(λ, v + K ) − 1 = 0. (26)

IV. COUNTING STATISTICS WITH MEMORY RESETTING

We move to a more complex case with memory resetting.
Unlike the previous case with memoryless resetting, a reset
affects the evolution of wave functions even if the quantum

system restarts from an independent collapsed state after re-
setting. We illustrate this point in Fig. 1(b). Assume that a
reset and a subsequent collapse to the state φα(2,1) occur at T2

and t2,1, respectively. Because of memory, the possibility of
the continuous evolution of the quantum system that restarts
from the collapsed state depends on the time interval t2,1 − T2.

This characteristic can be indicated by precise formulas.
First, we let the hazard function of memory resetting be K(τ ).
The corresponding WTD Q(τ ) of the memory resetting pro-
cess is

Q(τ ) = K(τ )S (τ ), (27)

and the SD is S (τ ) = exp[− ∫ τ

0 K(s)ds]. Then, we can write
the WTDs and SDs of the quantum jump trajectories in
the presence of memory resetting in an analogous way to
Eqs. (17)–(22):

Sα (τ, T ) = e− ∫ τ

0

∑M
β=1 k0

α|β ds−∫ T +τ

T K(s)ds = S0
α (τ )

S (T + τ )

S (T )
,

(28)

SR(τ ) = S0
R(τ )e− ∫ τ

0 K(s)ds = S0
R(τ )S (τ ), (29)
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and the WTDs are

pα|β (τ, T ) = k0
α|β (τ )Sα (τ, T ) = p0

α|β (τ )
S (T + τ )

S (T )
, (30)

pα|R(τ, T ) = K(τ + T )Sα (τ, T ) = S0
α (τ )

Q(T + τ )

S (T )
, (31)

pR|β (τ ) = k0
R|β (τ )SR(τ ) = p0

R|β (τ )S (τ ), (32)

pR|R(τ ) = K(τ )SR(τ ) = S0
R(τ )Q(τ ). (33)

In contrast to the case with memoryless resetting, we specifi-
cally introduce the time parameter T , which denotes the time
interval between a collapsed state and the most recent previous
reset; see Fig. 1(b). Obviously, the breakdown of the sMP is
due to the time dependence of the hazard function K (τ ). That
is, if the function were constant, then these SDs and WTDs
would reduce to Eqs. (17)–(22).

Although the quantum jump trajectories in the presence of
memory resetting are no longer a sMP, the MGF (8) defined
by the probabilities of the trajectories is still true. Of course,
we need to modify the notation of the trajectories to

�XN = (|R〉1, φα(1,1), · · ·, |R〉2, φα(2,1), · · ·, |R〉N , φα(N,1), · · ·),
(34)

where the total number of resets is N , |R〉I and φα(I,i) de-
note the reset state and collapsed state at times tI and tI,i,
respectively, I = 1, · · · , N , and i = 1, · · · . We can apply
Eqs. (28)–(33) to explicitly write the probability density of
an arbitrary trajectory, e.g., that in Fig. 1(b):

pR|α(1,1)(t1,1 − T1)pα(1,1)|R(T2 − t1,1)pR|α(2,1)(t2,1 − T2)

pα(2,1)|α(2,2)(t2,2, − t2,1, t2,1 − T2) · · ·
pR|α(N,1)(tN,1 − TN )Sα(N,1)(t − tN,1, tN,1 − TN ). (35)

However, if we are not simulating quantum jump trajectories,
e.g., as in Sec. V, then these complicated probability formulas
are not very useful.

According to probability theory, the probability density of
the quantum jump trajectory (34) is equal to the product of
the probability density P[ �RN ] of observing the time series of
resets,

�RN = (|R〉1, |R〉2, · · · , |R〉N ), (36)

and the conditional probability density of observing the time
series of the collapsed states given the time series of resets.
Importantly, if a reset occurred, then a segment of the quantum
jump trajectory between now and the next reset is independent
of the history before this reset. Hence, we formally write the
probability density of the quantum jump trajectory (34) as

P[ �XN ] = P[ �RN ]
N∏

I=1

P0
[ �X I

N

]
, (37)

where P0[ �X I
N ] is the conditional probability density of a seg-

ment of the quantum jump trajectory

�X I
N = (|R〉I , φα(I,1), φα(I,2), · · · , φα(I,MI ) ), (38)

given that the Ith and I + 1th resets happened. Here, we
explicitly set the number of collapses in the segment to MI .

Obviously, the entire quantum jump trajectory is a combina-
tion of these segments; that is,

�XN = ( �X 1
N , · · · , �X N

N

)
. (39)

Using the WTD and SD of the resetting process, we have

P[ �RN ] = Q(T2 − T1) · · ·Q(TN − TN−1)S (t − TN ). (40)

The conditional probability density P0[ �X I
N ] is simply the

probability density of the quantum jump trajectory (38) of a
reset-free quantum system with the special initial quantum
state |R〉. This case was discussed in Sec. II A. Therefore, we
have

P0
[ �X I

N

] = p0
R|α(I,1)(tI,1 − TI )p0

α(I,1)|α(I,2)(tI,2 − tI,1)

· · · S0
α(I,MI )(TI+1 − tI,MI ). (41)

Before achieving the desired MGF in the presence of mem-
ory resetting, we need to rewrite the time-extensive quantity
(6) as

C[ �XN ] =
N∑

I=1

C
[ �X I

N

]
. (42)

The reason is simply that we have already set the weights
ωαR and ωRR to zero. Substituting Eqs. (37) and (42) into the
definition of the MGF, Eq. (8), we have

M(λ, t ) =
∞∑

N=1

∑
�XN

P[ �RN ]
N∏

I=1

eλC[ �X I
N ]P0

[ �X I
N

]

=
∞∑

N=1

∑
�RN

P[ �RN ]
∑

· · ·
∑
�X N

N

N∏
I=1

eλC[ �X I
N ]P0

[ �X I
N

]

=
∞∑

N=1

∑
�RN

P[ �RN ]
N∏

I=1

⎛
⎜⎝∑

�X I
N

eλC[ �X I
N ]P0

[ �X I
N

]
⎞
⎟⎠. (43)

We see that the term in parentheses in the last equality is
simply the MGF M0R(λ, TI+1 − TI ) discussed in Sec. II A.
Note that the summation over the time series of resetting,
Eq. (36), is in fact a shorthand notation for the time-ordered
integrals at different times:

∑
�RN

≡
∫ t

0
dT2

∫ t

T2

dT3 · · ·
∫ t

TN−1

dTN . (44)

The complex Eq. (43) can be dramatically simplified if we
take its Laplace transform, and we arrive at

M̂(λ, v) = (Ŝ ∗ M̂0R)(λ, v)

2π i − (Q̂ ∗ M̂0R)(λ, v)
, (45)

where the asterisks represent convolutions in complex fre-
quency domain. The derivation is given in Appendix A.

Equation (45) has two consequences. First, we can obtain
the SCFG in the presence of memory resetting by find-
ing the largest real root of an algebraic equation with the

064101-5



FEI LIU PHYSICAL REVIEW E 108, 064101 (2023)

parameter v 3:

1

2π i
(Q̂ ∗ M̂0R)(λ, v) − 1 = 0. (46)

Second, Eq. (45) can be interpreted as a result of a matrix
equation analogous to Eq. (24), but the tilted matrix therein is
updated to

G(v) = [(
Ŝ ∗ G−1

0R

)
(v)

]−1[
2π i − (̂

Q ∗ G−1
0R

)
(v)�

]
. (47)

We may simply verify Eqs. (45)–(47) by applying them to the
memoryless resetting case: because the WTD and SD of such
a resetting process are exponential decay functions with the
constant K and the convolutions therein are proportional to
M̂0R(v + K ) and G−1

0R (v + K ), Eqs. (23), (25), and (26) can be
rederived.

We close this section by commenting on differences be-
tween our theory and that of Perfetto et al. [33] on the counting
statistics 4. They obtained Eq. (45) by a method that is en-
tirely based on the TQME [7,9,13]. Although our tilted matrix
equation (9) was proven to be equivalent to the former, this
consistency only holds for a special type of time-extensive
quantity, i.e., the weights that depend only on the second
collapse of a pair of collapsed states [1]5. From this perspec-
tive, our results are more general than the previous ones. In
addition, the mathematics we are using is essentially classical
probability theory. In contrast, Perfetto et al. [33] applied a
hierarchy of equations about conditional density matrices. The
probability meanings in their method are not very direct. In
the next section, we will show that the classical probability
formulas are very useful when we attempt to simulate SCGFs
of open quantum systems, either with or without resetting.

V. CONTINUOUS-TIME CLONING ALGORITHM

The algebraic Eq. (26) or the more general algebraic
Eq. (46) provides us with a way of calculating SCGFs of open
quantum systems with resetting. The first step is to solve the
reset-free MGF M̂0R(λ, v) with the special initial state |R〉.
The next step is to solve the algebraic equations. In general,
these two steps are implemented numerically. However, Cav-
allaro and Harris [42] developed a CTCA to simulate SCGFs
of an arbitrary classical non-Markov process. In this paper, we
do not review the algorithm of Cavallaro and Harris. Interested

3Given an arbitrary resetting, it is interesting to ask whether the
general equation always has real roots, and if so, is the largest real
one differentiable. This question which is raised by one of reviewers
is closely related to validity of the large deviation principle [50].

4Perfetto et al. [33] derived a renewal equation relating the dynam-
ics of the reduced density matrix ρ(t ) in the presence of memory
resetting to the reset-free density matrix and called the evolution
equation the generalized Lindblad quantum master equation. We are
curious how to connect the renewal equation with the more funda-
mental probability formulas and wave function notion developed in
this paper. Because the content deviates from the theme of the present
work, we leave the discussion in Appendix B.

5The TQME is very similar to the MQME Eq. (1) in form, which
the coefficient rα of the latter is replaced by rα exp(λωα ) and ωα is
the weight assigned by single collapsed state.

readers are referred to the original article [42]. Because we
have established the sMP theoretical framework for quantum
jump trajectories either with or without resetting, which is a
special case of non-Markov processes, we can directly apply
their algorithm to the current situation. The key ingredients of
the simulation are presented in Eqs. (29)–(33).

VI. SEVERAL EXAMPLES

A. Reset-free resonant two-level system

We first give an example of the CTCA by simulating
SCGFs in a reset-free open quantum system. To the best of
our knowledge, applications of the algorithm in open quan-
tum systems are rare in the literature. We choose a resonant
two-level system (TLS) whose SCGF has an exact expression
[1]. The quantum system is driven by a resonant field and
surrounded by an environment with inverse temperature β. In
the interaction picture, the MQME of the TLS [51] is

∂tρ(t ) = −i[H, ρ(t )] + r−
[
σ−ρ(t )σ+ − 1

2 {σ+σ−, ρ(t )}]
+ r+

[
σ+ρ(t )σ− − 1

2 {σ−σ+, ρ(t )}]. (48)

Here, H = −�(σ− + σ+)/2 represents the interaction Hamil-
tonian between the system and the resonant field, σ± are the
raising and lowering Pauli operators, � is the Rabi frequency,
and r± are the pumping and damping rates. The two rates
satisfy the detailed balance condition, r− = r+ exp (βω0), and
ω0 is the energy level difference of the two-level system.
There are two collapsed states: the ground state |0〉 and the
excited state |1〉. We select heat production as a time-extensive
quantity, the weights of which are

{ω00, ω01, ω10, ω11} → {ω0,−ω0, ω0,−ω0}. (49)

Because the WTDs and SDs of the simple system are exactly
known [1], the CTCA is easily implemented. Figure 2 shows
the simulated SCGFs under two sets of parameters. For com-
parison, exact numeric data are shown in the same figure. We
see that their agreement is very satisfactory.

B. Memoryless resetting

In the presence of resetting, we focus on a TLS in a vac-
uum; i.e., r+ = 0 in Eq. (48). A similar system was considered
by Perfetto et al. [32]. Unlike the previous discussions, which
fully rely on numerical schemes, we remain as analytically
accessible as possible. Here, there is only one collapsed state,
the ground state |0〉. Let the reset state be

|R〉 = a|0〉 + b|1〉. (50)

For simplicity, the parameters a and b are assumed to
be real numbers. We select the time-extensive quantity (6)
as the number of collapses to the ground state; that is,
the unique weight ω00 = 1. Performing direct calculations, we
obtain the Laplace transform of the reset-free MGF with the
initial state (50):

M̂0R(λ, v) = P̂R(v) + P̂0(v)

= Ŝ0
R(v) + Ŝ0

0 (v)

1 − eλ p̂0
0|0(v)

p̂0
R|0(v)e−λ, (51)
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FIG. 2. The open squares and circles are the SCGFs simulated by
the CTCA. The solid and dashed curves are the exact numeric data
calculated by Eq. (79) in Ref. [1]. Two sets of parameters are used:
for the solid curve and squares, r− = 1, r+ = 0.5, � = 0.8, and ω0 =
1; for the dashed curve and circles, r− = 1, r+ = 0.0, � = 0.8, and
ω0 = 1. The latter concerns a TLS in a vacuum. These parameters
were also applied in a previous paper; see Fig. 2 in Ref. [1]. In the
simulations, the number of clones is 2000, and the simulation time is
1500.

where the reset-free WTDs and SDs with the special initial
states |R〉 and |0〉 are connected by

Ŝ0
R(v) = Ŝ0

0 (v) − b2 r−
ξ 2 + 4μ2

= ξ 2 + r−(ξ + r−/2)/2 + 4μ2

ξ (ξ 2 + 4μ2)
− b2 r−

ξ 2 + 4μ2
, (52)

p̂0
R|0(v) = p̂0

0|0(v) + b2 r−(ξ − r−/2)

ξ 2 + 4μ2
,

= r−�2

2ξ (ξ 2 + 4μ2)
+ b2 r−(ξ − r−/2)

ξ 2 + 4μ2
, (53)

respectively, where ξ ≡ v + r−/2 and 16μ2 ≡ 4�2 − r2
−

(>0). If b2 is equal to zero, then Eq. (51) is the Laplace
transform of the reset-free MGF M̂0(λ, v).

To calculate the SCGF of large deviations of the open
quantum system with memoryless resetting, we substitute
Eq. (51) into Eq. (26) and simplify to obtain an algebraic
equation involving v:

ζ 3(v) − Kζ 2(v) + [
4μ2 − 1

2 Kr− + b2Kr−(1 − eλ)
]
ζ (v)

−�2
(
K + 1

2 r−eλ
) = 0, (54)

where ζ (v) = v + r−/2 + K . If the rate K is zero, then
Eq. (54) reduces the cubic equation for the SCGF of the
reset-free TLS in a vacuum (Eq. (C8) in Ref. [1]) and does
not involve the parameter b. It is expected that the zero rate
implies that resetting is absent from the dynamics of the
quantum system, and the long-time behavior of the system is
independent of the initial quantum state. The SCGF is solved
by finding the largest real root of Eq. (54). This is a cubic

algebraic equation and has an exact solution given by Car-
dano’s formula [52]. Considering that the formula is slightly
lengthy, in Fig. 3(a), we only show its exact numerical values
under several sets of parameters and compare them with the
data simulated by the CTCA. We see that the two methods are
indeed consistent with each other.

Equation (54) provides us with intriguing information
about the statistics of the counting current j. For instance,
through it, we can derive analytical expressions for the first
and second derivatives of the SCGF at λ = 0:

ϕ′(0) = ζ ′(0) = r−[�2 + 2b2Kζ (0)]

8μ2 − Kr− − 4Kζ (0) + 6ζ (0)2
, (55)

ϕ′′(0) = �2r−+4[K−3ζ (0)]ζ ′(0)2+2b2Kr−[ζ (0)+2ζ ′(0)]

8μ2+6ζ (0)2 − K[r− + 4ζ (0)]
,

(56)

where ζ (0) = K + r−/2. According to the large deviation
theory [50], Eq. (55) is the mean current, while Eq. (56)
indicates the fluctuation of the current in the long time limit
(the coefficient of diffusivity). In Fig. 3(b), we show their
values at different resetting rates with different reset states.
We see that at larger K values, all of them tend toward certain
values. At smaller and intermediate K values, however, their
behaviors are diverse and depend on the concrete values of the
parameters.

It is not trivial to present concise and clear explanations
for the various behaviors of the mean and fluctuation of the
counting current under general parameters, e.g., the nonmono-
tonic phenomena of the fluctuation with b2 = 0 and mean
current with b2 = 1/2 in Fig. 3(b). These complexities arise
from mutual matching and/or competition among many fac-
tors, including the resetting frequency, different WTDs with
respect to different reset states or collapsed states, etc. Hence,
the following discussion is restricted to several of the simplest
cases. We know that in the quantum jump trajectories, the
initial state of the deterministic quantum processes is either
a reset state or a collapsed state (here, only the ground state).
It takes a certain amount of time to evolve from these quan-
tum states to collapse [2]. We can prove that the higher the
probability (b2) of the excited state in these quantum states
is, the shorter the time 6. When the probability is negligible
in the reset state, resetting only decreases the rate of collapse.
This is because resetting interrupts the deterministic processes
from the collapsed state to the next collapse. Furthermore, the
time required for the deterministic process from this reset state
to the next collapse is almost the same as the time required
for the previous quantum process. Therefore, the more fre-
quently the quantum system resets, the smaller the rate at
which the system collapses. In contrast, if the probability of
the excited state is dominant in the reset state, then resetting
will increase the rate of collapse. Although resetting indeed
interrupts the deterministic processes from the collapsed state
to the next collapse, the time required for the deterministic

6The mean waiting time is τ̄R/0 = ŜR/0(0). Equation (52) immedi-
ately leads to this conclusion.
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FIG. 3. (a) The solid, dashed, and dotted curves are the SCGF data solved by Cardano’s formula. The symbols are the simulated data given
by the CTCA. The parameters are r− = 1, � = 0.8, and ω0 = 1, and the rates K are 5, 1, and 0.1, accordingly. The reset state is fixed at the
excited state |1〉; i.e., b = 1. The number of clones is 2000, and the simulation time is 1500. (b) The solid and dashed curves are the first and
second derivatives of the SCFG at λ = 0, respectively. The parameters b2 in the reset states are 1, 1/2, and 0 for the dark (upper), blue (middle),
and red (lower) curves, respectively. Inset: The curves of α and β; see Eqs. (59) and (60). The arrow indicates the z value of the parameters.

process from the reset state to the next collapse is shorter than
that of the previous quantum process. Overall, it still shortens
the time interval between the two collapses. Therefore, the
more frequently the quantum system resets, the higher the
rate at which the system collapses. Finally, if the resetting rate
is so frequent that resetting even interrupts the deterministic
processes from the previous reset state to the next collapse,
then it seems that the quantum system is almost “frozen” at
the reset state. The probability of a collapse from the reset
state during a small time interval �t is proven to be b2r−�t 7.
In this situation, the quantum jump trajectories are close to
the Poisson counting process with a constant rate b2r−. Ac-
cordingly, the fluctuation is equal to b2r−. These discussions
qualitatively explain the asymptotic behaviors of all curves
at very large K values and the mean current curves with
b2 = 0, 1 at smaller K values in Fig. 2(b).

The previous discussions can be treated in a quantitative
way. The asymptotic behaviors are easily seen from Eqs. (55)
and (56): when K → ∞, both ϕ′(0) and ϕ′′(0) tend toward
b2r−. At smaller K values, we use the Taylor expansion to
analyze the variation:

ϕ′(0) ≈ α

3
r− + z

2 + z
(b2 − α)K, (57)

ϕ′′(0) ≈ (2 − z)2 + 2z

(2 + z)3
r− + z[(2 − z)2 + 8]

(2 + z)3
(b2 − β )K,

(58)

7According to the Laplace initial value theorem, the WTD pR|0(t )
at time 0 is pR|0(0) = limv→∞ v p̂0

R|0(v) = b2r−; see Eq. (53).

where the dimensionless z is equal to r2
−/�2 (<4) and

α = 3

2 + z
, (59)

β = 28 − 34z + 3z2

(2 + z)[(2 − z)2 + 8]
. (60)

The first terms on the right-hand side of Eqs. (57) and (58)
are the mean and fluctuation of the counting current without
resetting, respectively. The dependence of α and β on z are
plotted in the inset of Fig. 2(b). For the parameters applied
in the figure (see the bold arrow therein), 0 < α < 1, β < 0,
and the curves of fluctuation increase at K = 0, while for the
curves of the mean current, there is a change of the slopes at
K = 0 from negative to positive. In addition, Eq. (57) implies
nonmonotonic features of the mean current when b2 is within
the interval (α/3, α), while Eq. (58) also implies that the
fluctuation curve with b2 = 0 must have a maximum value.

C. Memory resetting

To illustrate memory effects in the counting statistics with
resetting, we choose the Erlang-2 distribution with rate pa-
rameter K as the WTD of the resetting process:

Q(τ ) = K2τe−Kτ . (61)

Note that the mean rate of this distribution (the reciprocal of
the mean waiting time) is equal to K/2, and the variance is
equal to 2/K2. Substituting this distribution into Eq. (46), we
have

K2 d

dζ
M̂0R(λ, ζ ) + 1 = 0, (62)

ζ (v) = v + r−/2 + K , and the reset-free MGF with the ini-
tial quantum state |R〉 is given by Eq. (51). Although the
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FIG. 4. (a) The solid, dashed, and dotted curves are the SCGF data obtained by solving Eq. (62) by a numerical method. The symbols
are the data simulated by the CTCA. The parameters are r− = 1, � = 0.8, and ω0 = 1, and the rates K are 5, 1, and 0.1, accordingly. Here,
the reset state is set to the excited state. The number of clones is 2000, and the simulation time is 1500. Inset: A comparison between an
exponential distribution with rate 5 (dashed curve) and an Erlang distribution with rate parameter K = 10 (solid curve). Note that their mean
rates are the same, and the variance of the latter (2/100) is smaller than that of the former (1/25). (b) The squares and circles are the first and
second derivatives of the SCFG at λ = 0, respectively. Here, the reset state is the excited state. For comparison, we also replot the black solid
and dashed curves in Fig. 3(b) for the case of memoryless resetting. Note that we show the mean rate on the horizontal axis. Inset: Analogous
data where the reset state is the ground state.

equation is exact, a simplification shows that this is a sixth-
order algebraic equation about v, and a numerical scheme
must be used to find the largest real roots of v given λ. We
present the data for several K values in Fig. 3(a) and compare
them with the SCGF data simulated by the CTCA. We see that
their agreements are also satisfactory.

Similar to the memoryless-resetting case, Eq. (62) provides
useful information about memory effects on the mean and
fluctuation of the counting current. Rather than writing very
lengthy equations analogous to Eqs. (55) and (56), we directly
present their numerical values in Fig. 4(b) and the inset with
special reset states. To compare the data of the memoryless-
resetting case, we use the mean rate as the horizontal axis.
We find that these mean curves and fluctuation curves with
memory are similar to the previous ones without memory. At
smaller and adequately large mean rates, they almost overlap.
Their differences become apparent at intermediate K values:
the mean current and fluctuation with memory are larger than
those without memory if the reset state is the excited state,
while the opposite conclusion is obtained if the reset state is
the ground state; see the inset. This demonstrates the com-
plexity of the interactions between memory and the reset state
in quantum jump trajectories.

At adequately small and large K values, memory is
marginal in the counting statistics. The latter point is easily
seen since the quantum state is almost “frozen” in the reset
state, as resetting is very frequent. For smaller K , we apply
Taylor expansion again and find that the mean current has
the same expression as Eq. (57) except that the parameter
K therein is replaced by K/2. Because it is simply the mean
rate of the Erlang distribution, we explain the consistency of
the mean currents with memoryless and memory resetting.

Regarding the fluctuation, we obtain a slightly complicated
expression:

ϕ′′(0) ≈ (2 − z)2 + 2z

(2 + z)3
r− + z[(2 − z)2 + 8 + 3z]

(2 + z)3

×
[

b2 − 28 − (59/2)z + 3z2

(2 + z)[(2 − z)2 + 8 + 3z]

− b4 z(z + 2)

2[(2 − z)2 + 8 + 3z]

]
K

2
. (63)

The b4-term clearly indicates memory effects on the fluc-
tuations. Although Eqs. (58) and (63) are distinct, the
calculations show that their data are close, especially for the
parameters applied in the figure (given the same mean rate,
the values with memory are slightly smaller than the values
without memory).

VII. CONCLUSION

In this paper, we extend our previous sMP method for
determining the counting statistics of open quantum systems
to situations with memoryless and memory resetting. For
the former situation, because the composition of the random
events, which includes the collapses of the wave function
and the quantum reset state, is still a sMP, the method can
be directly applied by simply adding the reset state into the
set of collapsed states. For the latter situation, the compos-
ite stochastic process is no longer a sMP. Even so, because
resetting affects quantum processes only through the initial
quantum states instead of altering the quantum dynamics,
using probability formulas, we prove that the MGF of open
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quantum systems with memory resetting can be calculated by
relating it to the MGF of reset-free open quantum systems.
Although this conclusion agrees with the previous one, its
validity has been expanded to general counting statistics. A
tilted matrix equation that has not been previously discovered
is proposed. Finally, to simulate the large-deviation statistics
of general random time-extensive quantities, on the basis of a
set of probability formulas that can characterize the composite
stochastic process, we introduce the CTCA to open quantum
systems. To illustrate these theoretical results, we concretely
calculate the large-deviation properties and the SCGFs of
two-level quantum systems. On the one hand, we verify that
the CTCA is quite accurate by comparing the simulation data
to the exact analytical or numerical results. On the other
hand, we also find that the effects of resetting on quantum
systems can be very complex, even if resetting is memoryless.
The plausible reason is that the waiting-time distributions of
reset-free systems are not trivial at all; e.g., there are quantum
antibunching effects. The presence of resetting, especially
memory resetting, further increases this complexity. Hence,
quantitative formulas are more trustworthy than qualitative
arguments. For the relatively simple TLS and Erlang-2 dis-
tribution, the sMP method is applicable. It will be interesting
to investigate the applications of the sMP method in complex
quantum systems, e.g., open spin system [53–57], in both
reset-free and reset cases,
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APPENDIX A: DERIVATIONS OF EQS. (45) AND (47)

We rewrite Eq. (43) as

M(λ, t ) =
∞∑

N=1

∑
�RN

P[ �RN ]
N∏

I=1

M0R(λ, TI+1 − TI )

= S (t − T1)M0R(λ, t − T1) +
∫ t

T1

M0R(λ, T2 − T1)

×Q(T2 − T1)M(λ, t − T2)dT2. (A1)

The second equation is a consequence of explicitly writing out
the shorthand notation (44) and substitution of Eq. (40). Note
that T1 = 0 and the integral term is a convolution. Eq. (A1) is
called a renewal equation [41]. Taking the Laplace transform
in time on both sides of the equation, we derive

M̂(λ, v) = 1

2π i
(Ŝ ∗ M̂0R)(λ, v)

+ M̂(λ, v)
1

2π i
(Q̂ ∗ M̂0R)(λ, v). (A2)

Then, Eq. (45) is obtained. According to Eq. (16), the Laplace
transform of the reset-free MGF M̂0R with the special initial
state |R〉, from Eq. (A2) we can further derive the tilted matrix
Eq. (47).

APPENDIX B: RENEWAL EQUATION
OF THE DENSITY MATRIX

The reduced-density matrix of the quantum system at time
t can be expressed by the age structure [1]:

ρ(t ) =
M∑

α=1

∫ t

0
dτ pα (t, τ )U (τ )|φα〉〈φα|U †(τ )

+
∫ t

0
dτ pR(t, τ )U (τ )|R〉〈R|U †(τ ), (B1)

where U (τ ) is the time-evolution operator of the nonlinear
Schrödinger equation [2]. In Eq. (B1), pα (t, τ ) represents the
probability density that the quantum system starts from the
collapsed state φα at time t − τ and continuously evolves until
time t . Thus, the age of the system is τ . The meaning of the
probability density pR(t, τ ) is similar except that the system
starts from the reset state |R〉. It is easier to understand their
meanings by referring to Fig. 1.

Because of memory effects, the possibility of the contin-
uous evolution of a quantum state is affected by the time
interval s from the last reset to the current moment 8. Hence,
it is useful to write pα (t, τ ) in a detailed way:

pα (t, τ ) =
∫ t

τ

pα (t, τ, s)ds. (B2)

Following the idea of Eq. (37), we may temporally overlook
all collapses and focus only on the resetting process. Let the
probability density P(t, s) represent that there have been no
resets at time t since the last reset at time t − s. That is, the
time without resets is s. Then, according to the probability
theory, we can rewrite

pα (t, τ, s) = P(t, s)p0
Rα (s, τ ), (B3)

where p0
Rα (s, τ ) is the conditional probability density that

the quantum system continuously evolves until time s with
age τ (< s). Note that the subscript R on the right-hand side
denotes that the reset state |R〉 is the initial quantum state at
s = 0. Analogously, the other probability density in Eq. (B1)
is rewritten as

pR(t, τ ) = P(t, τ )S0
R(τ ). (B4)

Substituting Eqs. (B3) and (B4) into Eq. (B1) and rearranging
the integrals, we obtain

ρ(t ) =
∫ t

0
P(t, s)ρ0(s), (B5)

where

ρ0(s) =
M∑

α=1

∫ s

0
dτ p0

Rα (s, τ )U (τ )|φα〉〈φα|U †(τ )

+ S0
R(s)U (s)|R〉〈R|U †(s). (B6)

Equation (B5) is simply the renewal equation, and Eq. (B6)
is the reduced-density matrix solution to the MQME (1) with

8We introduced the parameter T in Sec. IV. These time parameters
are related by T = s − τ .
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the special initial density matrix |R〉〈R| [1], which is formally
equal to

ρ0(s) ≡ esL[|R〉〈R|]. (B7)

In fact, if the probability density P(t, s) is defined from
the beginning, then the desired equation can be intuitively

written out, as Perfetto et al. did previously [33]. Us-
ing the age structure of the resetting process, we can
further derive the generalized Lindblad quantum master
equation. Considering that this procedure is the same as
the previous ones [21,33], we do not show it in this
paper.
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