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Active learning prediction and experimental confirmation of atomic structure
and thermophysical properties for liquid Hf76 W24 refractory alloy
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The determination of liquid atomic structure and thermophysical properties is essential for investigating the
physical characteristics and phase transitions of refractory alloys. However, due to the stringent experimental
requirements and underdeveloped interatomic potentials, acquiring such information through experimentation
or simulation remains challenging. Here, an active learning method incorporating a deep neural network was
established to generate the interatomic potential of the Hf76 W24 refractory alloy. Then the achieved potential was
applied to investigate the liquid atomic structure and thermophysical properties of this alloy over a wide temper-
ature range. The simulation results revealed the distinctive bonding preferences among atoms, that is, Hf atoms
exhibited a strong tendency for conspecific bonding, while W atoms preferred to form an interspecific bonding.
The analysis of short-range order (SRO) in the liquid alloy revealed a significant proportion of icosahedral (ICO)
and distorted ICO structures, which even exceeded 30% in the undercooled state. As temperature decreased, SRO
structures demonstrated an increase in larger coordination number (CN) clusters and a decrease in smaller CNs.
The alterations of the atomic structure indicated that the liquid alloy becomes more ordered, densely packed, and
energetically favorable with decreasing temperature, consistent with the obtained fact: Both density and surface
tension increase linearly. The simulated thermophysical properties were close to experimental values with minor
deviations of 2.8% for density and 3.4% for surface tension. The consistency of the thermophysical properties
further attested to the accuracy and reliability of active learning simulation.
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I. INTRODUCTION

Investigating the atomic structure and thermophysical
properties of liquid alloys has always been a top priority
in studying liquid-liquid phase transition, amorphous for-
mation, and solidification [1–3]. However, obtaining these
properties for refractory alloys is challenging due to their
extremely high melting points. Refractory alloys are highly
valued in aerospace, military, and nuclear industry thanks to
their exceptional radiation and corrosion resistance, mechan-
ical properties, and thermostability [4,5]. Among them, the
Hf-W binary alloy is a representative refractory alloy system,
as Hf and W are the most commonly used refractory elements
in many refractory alloys [6]. Additionally, it has been found
that the Hf-W system has amorphous forming ability and large
spin Hall effect [7,8]. The thermophysical properties referring
to the density, specific heat, surface tension, and viscosity are
the most basic physical characteristics of liquid alloys [9–12].
Understanding the atomic structure and thermophysical prop-
erties is beneficial to comprehend the physical characteristics
and phase transitions of refractory alloys.

The measurement of the atomic structure and thermo-
physical properties of liquid refractory alloys, particularly
in their undercooling state, was previously considered al-
most impossible until the invention of electrostatic levitation
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technology (ESL) [13,14]. Nevertheless, for some refractory
alloys, the measurements are still not feasible due to the strin-
gent experimental requirements. Even with ESL technology,
the temperature range that can be obtained is not wide enough
to cover all regions from superheated to undercooled states.
In consequence, simulation has become a more efficient and
universal way to approach these properties.

Conventional simulation methods include molecular dy-
namics (MD) and ab initio MD (AIMD), which are unsuitable
for this task because MD relies on empirical potentials which
have not been fully developed for refractory alloys, while
AIMD is constrained to small time and space scales due to its
expensive computational cost. To solve these problems, ma-
chine learning interatomic potential (MLIP) methods [15–18]
have been developed. MLIP methods utilize the atom trajec-
tories generated by AIMD as a dataset to develop interatomic
potentials through machine learning. The potential integrates
with MD, providing simulations with both accuracy and effi-
ciency. The application of the deep neural network (DNN) in
MLIP has yielded promising outcomes in accurately describ-
ing properties and performances of alloys, such as describing
the martensitic transformations of NiTi shape memory alloy
[19] and the mechanical property under the fusion service
environment of pure W [20]. The DNN is also proved effective
in the simulation of liquid alloys. The liquid structure of the
Al-Cu-Ni system was accurately modeled [21]. Our group had
developed a DNN potential to simulate the thermophysical
properties and atomic structure of multicomponent Ti alloys
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[22,23]. Compared with solid alloys, simulating liquid alloys
requires higher computational demands, as it needs more
AIMD calculations. To enhance efficiency without sacrificing
accuracy, MLIP methods have incorporated active learning
that exploit the correlation between data and model uncer-
tainty to select the most informative samples for annotation
[24].

In this paper, we proposed an active learning method based
on the Deep Potential Generator (DPGEN) [25] to generate
a DNN interatomic potential of Hf76 W24 alloy efficiently.
Combining with this, a deep potential MD (DPMD) was con-
ducted to investigate the atomic structure and thermophysical
properties of Hf76 W24 refractory alloys. The accuracy and
reliability of the method were verified by comparing with the
simulated results from AIMD and experimental values using
the ESL technique. Additionally, an analysis of structural
features and short-range order (SRO) of the liquid alloy was
conducted.

II. METHODS

A. Materials and experiments

The Hf76 W24 eutectic refractory alloy was prepared by
melting pure Hf (99.99%) and pure W (99.99%) in an arc-
melting furnace, which was filled with Ar after being pumped
down to a pressure of 1.0×10−4 Pa. The samples were
∼2.4 mm in diameter and weighted ∼100 mg. The samples
were levitated between two vertical electrodes coupled with
four side electrodes in a chamber that was evacuated to
1.0×10−5 Pa. A continuous-wave SPI SP300 fiber laser with
a wavelength of 1070 nm was employed to heat the sample,
and the temperature was recorded using a Sensortherm GmbH
M322 2-color pyrometer. Images of the sample were captured
using a complementary metal-oxide semiconductor camera
under ultraviolet background light with a frequency of 90–120
Hz. The volume V of the sample was determined using these
images [26]. Then combined with the sample mass m, the
density ρ of the liquid alloy was calculated by ρ = m/V .

For surface tension measurement, the levitated and molten
sample was maintained at a specific temperature by adjusting
the laser power. An AC voltage of 600 mV was then super-
imposed on the high-voltage amplitude to induce oscillation
of the sample in an axisymmetric mode. Then the excitation
was turned off, the resulting transient-free decay curve was
detected by a THORLABS PDA100A2 amplified photoelec-
tric detector. The characteristic frequency was analyzed from
the decay curve using fast Fourier transform, and the surface
tension was then derived from the equation [27]:

ω2
2 = 2σ

π2ρr3
0

, (1)

where ω2 was the characteristic frequency for the second-
order oscillation, σ was the surface tension, ρ was the density
we measured before, and r0 was the semidiameter of the
sample.

B. Simulation details

The simulation process for the liquid alloy consisted of
three primary stages: preparation of the training dataset,

generation of the DNN potential, and acquisition of the ther-
mophysical properties and liquid structure.

To prepare the training dataset, VASP was employed for
AIMD simulations. A supercell consisting of 200 atoms was
created and heated up to 3000 K, well above the melting point.
It was then relaxed for 10000 steps to achieve an equilibrium
liquid alloy under periodic boundary conditions with a canon-
ical ensemble (NVT) and a Nosé-Hoover thermostat. The
volume of the supercell was adjusted to maintain an external
pressure of ∼0 kbar. Subsequently, the supercell was cooled
down and relaxed for 5000 steps at various temperatures:
2800, 2600, 2400, 2200, 1900, and 1500 K, generating the
training dataset. The Perdew-Burke-Ernzerhof gradient ap-
proximation and projector augmented-wave pseudopotentials
were used for the exchange-correlation functional, and only
the � point was sampled for the Brillouin zone with an energy
cutoff of 300 eV, a convergence threshold of 1×10−5 eV for
electronic iteration, and a time step of 3 fs.

DPGEN automatically and iteratively performed three
steps: exploration, labeling, and training. In the exploration
step, LAMMPS [28] was employed. The initial conformations
were selected from the training database randomly. The sys-
tem was set as an isothermal-isobaric (NPT) ensemble with
zero pressure, running for 10 000 steps with a sampling inter-
val as 20. In the labeling step, VASP was employed to carry out
the density functional theory calculations. Monkhorst-Pack
grids were used, where the k-point mesh was set with a sepa-
ration of 0.5 Å−1.

In the training step, the DeePMD-kit [29] was utilized for
the training of the DNN potential. In the DeePMD-kit, the
energy of the system can be expressed as a sum of energy of
each atom i: E = ∑

i
Ei. The value of Ei is fully determined by

the environment surrounding the ith atom, as most interactions
can be captured within a sufficiently large cutoff radius [30]:

Ei = Es(i)[Ri, {R j | j ∈ NRc (i)}], (2)

where NRc (i) denotes the index set of the neighbors of atom
i within the cutoff radius Rc. Therefore, the atomic energy
Ei can be obtained by training a neural network, where the
inputs are the positions of atom i and its neighboring atoms.
Considering the translational, rotational, and permutational
symmetries in the system, a coordinate transformation of the
atoms is needed before training, so a descriptor Di is intro-
duced:

Di = Di[Ri, {R j | j ∈ NRc (i)}], (3)

in a full radical and angular information considered system,
Dα

i j can be expressed as

Dα
i j =

{
1

Ri j
,

xi j

Ri j
,

yi j

Ri j
,

zi j

Ri j

}
, (4)

where Ri j is the distance between i and j, and xi j , yi j , and zi j

are the local coordinates. After these preparations, a DNN N
is introduced to map the descriptors to atomic energy:

Ei = N(i)(D
α
i j ). (5)

055310-2



ACTIVE LEARNING PREDICTION AND EXPERIMENTAL … PHYSICAL REVIEW E 108, 055310 (2023)

The force and virial are given by:

Fi = −
∑

j∈N (i),α

∂N(i)

∂Dα
i j

∂Dα
i j

∂Ri
−

∑
j �=i

∑
k∈N ( j),α

δi,a( j)
∂N( j)

∂Dα
jk

∂Dα
jk

∂Ri

−
∑
j �=i

∑
k∈N ( j),α

δi,b( j)
∂N( j)

∂Dα
jk

∂Dα
jk

∂Ri

−
∑
j �=i

∑
k∈Ñ ( j),α

δi,k
∂N( j)

∂Dα
jk

∂Dα
jk

∂Ri
, (6)


 = −
∑
i �= j

Ri j

∑
α

∂N(i)

∂Dα
i j

∂Dα
i j

∂Ri j

−
∑
i �= j

δ j,a(i)Ri j

∑
q,α

∂N(i)

∂Dα
iq

∂Dα
iq

∂Ri j
. (7)

The parameters {Wp
s , bp

s } of the DNN are determined by a
training process that minimizes the loss function L, which can
be expressed as

L = pε

N
�E2 + p f

3N

∑
i

|�Fi|2 + pξ

9N
‖�
‖2, (8)

where �E, �Fi, and �
 are root mean square errors (RM-
SEs) and pε , p f , and pξ are prefactors of energy, force, and
virial, respectively. The cutoff radius was set to 6 Å, and the
smooth cutoff radius was set as 5.8 Å to eliminate the discon-
tinuity caused by the cutoff radius [21,22,30]. The embedding
and fitting nets consisted of (25, 50, 100) and (240, 240,
240), respectively. An exponentially decaying learning rate
from 1.00×10−3 to 3.51×10−8 was applied. The DPGEN ran
nine iterations. The initial training dataset consisted of 10000
frames. During each iteration, 1000 frames were labeled and
incorporated into the training set for next iteration. In each
exploration step, a gradually decreasing temperature was set,
until the 95% of the picked-out frames in last exploration step
were all considered accurate.

Once the DNN potential was generated, LAMMPS was em-
ployed to perform the DPMD simulations. The simulation
consists of 10 976 atoms within a simulation box with max-
imum dimensions of 63.3×63.3×63.3 Å3. The system was
initially relaxed at 3000 K for 2×105 steps using an NPT
ensemble for with a time step of 1 fs. The pressure was set to
0. The temperature was then decreased from 3000 to 1500 K
at a cooling rate of 1012K s−1. At each temperature interval of
100 K, the system was equilibrated for 2×105 steps. Finally,
another 1×105 steps were performed to collect the quantities.
The density was then calculated using the simulation results
and the appropriate equation:

ρ = (nHf mHf + nWmW)/V, (9)

where nHf and nW are the numbers of Hf and W atoms, mHf

and mW are their absolute atomic masses, and V is the volume
of the simulation system. The surface tension was calculated
by the following equation [31,32]:

σ = V

2A

〈
Pxx − 1

2
(Pyy + Pzz )

〉
, (10)

where V is the volume, A is the area of liquid-vapor interface,
and Pxx, Pyy, and Pzz are the tangential components of the
pressure tensor.

III. RESULTS AND DISCUSSION

A. Thermophysical properties of liquid alloy

The comparison of the energy and force on x between
the DP and AIMD for the training and validation data is
illustrated in Fig. 1. The validation data are not included in
the training dataset. The energy and force generated by DP
are very close to AIMD, thereby validating the accuracy of the
training. The RMSE values for energy in training and valida-
tion are 2.15×10−3 and 3.67×10−3eV atom−1, respectively.
As for force, corresponding RMSE values are 2.25×10−1 and
2.47×10−1 eV Å−1.

The density and surface tension of the Hf76 W24 eutectic
refractory alloy were both measured and simulated, and the
results are presented in Fig. 2. The red solid circles represent
the experimental measurements, and the open squares and
triangles represent the results obtained by DPMD simula-
tions. The liquidus temperature of the alloy is TL = 2283 K.
The experimental and simulated results are in satisfactory
agreement, with only a small division of 2.8% in density and
3.4% in surface tension observed at the melting point. This
consistency demonstrated that the calculated DNN potential
is proficient in accurately predicting the macroscopic ther-
mophysical properties of the alloy system. However, due to
volatilization in overheating states, the experimental tempera-
ture range achieved is relatively narrow, from 2203 to 2449 K
for the density measurement and from 2253 to 2373 K for the
surface tension measurement, with a maximum undercooling
of only 131 K (0.06TL). Fortunately, the simulations did not
suffer from such issues, with a pretty wide temperature range
from 1500 to 3000 K. Within this range, the differences be-
tween the experiment and simulation were no more than 3%
for density and 3.4% for surface tension. The density of the
liquid alloy was fitted as followed:

ρESL = 13.58 − 7.01×10−4(T − TL), (11)

ρDPMD = 13.20 − 4.54×10−4(T − TL). (12)

The surface tension of the liquid alloy was expressed as

σESL = 1.46 − 2.15 × 10−4(T − TL), (13)

σDPMD = 1.41 − 1.39 × 10−4(T − TL). (14)

Both the density and surface tension demonstrated a
linear increase as temperature decreased, as observed in
both experimental and simulated results. Such behavior has
been extensively reported for various pure metals and alloys
[33,34], including W and Hf [13,14]. It can be attributed
to the reduction in thermal motion at lower temperatures,
which enhances atomic interactions while reducing the av-
erage interatomic distance, resulting in increased density.
Consequently, the enhanced atomic interaction increases
the energy requirement for an atom moving to the sur-
face from the interior, thus elevating the surface tension.
DPMD enables simulations of larger scales and longer time
scales while maintaining comparable accuracy with AIMD.
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FIG. 1. Correlation between ab initio molecular dynamics (AIMD) and deep potential (DP) data: (a) energy and (b) force.

By employing a larger system size, the finite-scale effect [35]
could be avoided, and the influence of thermal fluctuations on
simulation results could be mitigated. Additionally, a longer
simulation time ensures a thermodynamic equilibrium state
of the system, enhancing the accuracy of prediction. The
interatomic potential we developed provides a satisfactory
description of the Hf76 W24 alloy; however, its applicability to
other compositions within the alloy system remains limited at
present. In our forthcoming work, we plan to enhance the in-
teratomic potential by incorporating training data from diverse
compositions and nonequilibrium states, thereby achieving
comprehensive transferability across the entire alloy system.

B. Statistical features of the liquid alloy

Liquid alloys are typically characterized by a combination
of SRO and long-range disorder, and in some cases middle-
range order (MRO) has also been observed [36,37].

Pair distribution functions (PDFs) give the joint probability
of finding two particles at particular positions in the system,

defined as [38]

gi j (r) = V

NiNj

N∑
i=1

ni j (r,�r)

4πr2�r
, (15)

where i, j represents the type of the central atom and its
neighboring atom, and ni j (r,�r) is the number of atoms j in
the sphere shell centered on atom i from r to r + �r. At each
simulated temperature, Figs. 3(a)–3(d) compare the total and
partial PDFs obtained from both AIMD and DPMD. The open
circle representing AIMD in the figures closely aligns with
the solid line representing DPMD, proving the accuracy of the
simulation of the liquid structure. At 1900 K, the W-W atomic
pair exhibits the closest proximity of the first peak at 2.6 Å
and the highest peak at 3.1 Å among all atomic pairs, indicat-
ing that the distance between W-W atoms is shorter than other
pairs due to a smaller atomic radius of W (130 pm) compared
with Hf (144 pm). The simulation exhibits a considerable
resemblance to the experimental observed atomic structure
of Hf-W amorphous thin films prepared by ion-plasma sput-
tering [8]. Despite the difference in states, this comparison

FIG. 2. Thermophysical properties of liquid Hf76 W24 alloy at different temperature: (a) density and (b) surface tension.
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FIG. 3. Pair distribution functions (PDFs) of liquid Hf76 W24 alloy at different temperatures: (a) total PDFs, (b)–(d) partial PDFs, and
(e)–(f) height and location of first and second peaks in partial PDFs.

can still provide us with valuable information owing to the
correlation between the atomic structure of amorphous and
its liquid state [39]. Specifically, the positions of the first and
second peaks as well as the splitting of the second peak in the
PDFs show significant correspondence, indicating the pres-
ence of short- and middle-range clusters in the liquid atomic
structure. Figures 3(e) and 3(f) present more detailed statistics
of PDFs, illustrating the changes in peak height and peak po-
sition at different temperatures. The position of the first peak
remains relatively stable as the temperature decreases, while
the peak height increases significantly. Furthermore, the shift
in the center position of the second peak also provides direct
evidence of its splitting tendency in Fig. 3(f). This tendency
corresponds to the MRO clusters formed by the combination
of SRO clusters, indicating the increased stability of the liquid
structure, which is conducive to the formation of amorphous
phase [39,40].

To determine the chemical short-range order (CSRO) in the
liquid alloy, partial coordination numbers (CNs) and Warren-
Cowley parameters were calculated based on the partial PDF,
as shown in Fig. 4. The partial CN Zi j represents the number
of j atoms in the first nearest-neighbor distance of the central
atom i, defined as [38,41]

Zi j =
∫ rmin

0
4πr2ρ jgi j (r)dr, (16)

where rmin represents the position of first valley in partial PDF
gi j(r), and ρ j is the average number density of j atom. As

demonstrated in Fig. 4(a), NHf−Hf and NW−Hf increase as the
temperature decreases, while the changes in NW−W and NHf−W

are less noticeable and NW−W slightly decreases. Since the W
content in the liquid alloy components is much less than that
of Hf, NW−W and NHf−W are significantly smaller than NHf−Hf

and NW−Hf . The Warren-Cowley parameter αi j is utilized to
characterize the deviation of local chemical components from
a completely random solution within the nearest-neighbor
range. It is defined as [42]

αi j = 1 − Zi j/c jZ j, (17)

where Zi j is the partial CN, c j is the chemical component of
atom j, and Zi is the CN of the i atom which equals Zii + Zi j .
In a completely disordered system, αi j = 0. If αi j < 0, it
means that this type of pair is more likely to form, while
if αi j > 0, the probability of this type of pair forming is
small. Figure 4(b) illustrates that Hf atoms have a greater
tendency to bond with Hf atoms, while W atoms exhibit a
lower inclination to do so. The dash-dotted line serves as
a reference, indicating αi j = 0 in a completely disordered
liquid. As observed, αHf−Hf ∼ 0, indicating that this tendency
is not very prominent. In the system, W-W has the small-
est CN, and αW−W � 0, while W-Hf has a relatively large
CN, and αW−Hf is negative, indicating that W atoms are
more inclined to bond with different kinds of atoms. For Hf
atoms, bonding between the same types of atoms is more
preferred.
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FIG. 4. Bonding features of liquid Hf76 W24 alloy at different temperature: (a) partial coordination number and (b) Warren-Cowley
parameter.

The bond-angle distribution (BAD) function, which char-
acterizes the distribution of angles between two bonds in
ternary atoms, is commonly utilized to describe liquid struc-
ture and suggest the type of SRO. The bond angel θi jk between
ijk atoms is defined as [38]

θi jk = cos−1

(
r2

i j + r2
ik + r2

jk

2ri jrik

)
, (18)

where ri j , rik , and r jk are the bond length between the nearest
atoms i j, ik, and jk, respectively. The BADs are calculated by
the following equation [38]:

P(θ ) = 1∑N
i=1 Ni(Ni − 1)

N∑
i=1

Ni∑
j=1

Ni∑
k= j+1

δ(θ − θi jk ). (19)

After normalization, the BADs obtained by both AIMD
and DPMD were compared, as shown in Fig. 5. The curves
obtained from DPMD and AIMD simulations exhibit a high
degree of similarity, implying that DPMD is an effective
method for describing the liquid structure of the Hf-W system.
The BADs display two main peaks. The locations of the two
primary peaks are marked by the dash-dotted line in Fig. 5. As
temperature decreases, the peaks of BADs become sharper,
indicating the formation of more ordered structure at lower
temperature. The positions of the two peaks suggest the types
of SRO that exist in the liquid alloy [43–45]. The first peak
of the total BAD is situated at 58◦, while the second peak is
located at 108◦. As for Hf-W-Hf, the peaks are at 61◦ and
115◦, respectively, whereas for Hf-W-W, they are at 57◦ and
112◦. These distributions are close to the icosahedral (ICO)
structure with peaks at 63.4◦ and 116.4◦, indicating that the
liquid alloy contains the ICO and distorted ICO (dis-ICO)
structures. The BADs of Hf-Hf-W and W-Hf-W ∼53◦ and
100◦, respectively, suggest the presence of a body-centered
cubic (BCC) structure. The BADs of Hf-Hf-Hf and W-W-W
are attributed to the composite formation of face-centered
cubic, hexagonal close-packed, and ICO structures. The peak
located ∼150◦ indicates that a tetrahedron and some other

complex polyhedrons are likely to form and further contribute
to the degree of local order increasing.

C. SRO in the liquid alloy

The Honeycutt-Anderson (HA) common neighbor analysis
was introduced to provide a more detailed characterization of
the common neighbors of an atom pair and to offer a clear
atomic configuration of SRO. The HA analysis employs four
indices (i, j, k, l ) to describe the bonding structure of the
neighboring and central atoms [46]. For a central atom α and
one of its neighboring atoms β, i indicates the presence or
absence of a bond between α and β, j represents the number
of bonds shared by both α and β, k denotes the number of
bonds among these j atoms, while l is used to differenti-
ate cases where these exponents are still indistinguishable.
Figure 6 displays the atomic conformations selected from the
liquid alloys, with red atoms representing central atom α,
blue atoms representing neighboring atom β, and green atoms
representing those bonded to both β and α. The figure also
shows how the HA indices change as temperature decreases.
The results indicate that the most abundant type of structure
in the liquid alloy is the ICO structure, represented by the HA
index 1551, followed by the dis-ICO structure (HA indices
1541 + 1431) and then the BCC structure (HA indices 1661
+ 1441). The remaining types of structures are less abundant.
As temperature decreases, the number of regular ICO struc-
tures in the liquid alloy increases sharply from 18 to 38%,
while the number of BCC structures increases from 8 to 11%.
Conversely, the number of dis-ICO structures decreases from
19 to 15% due to the conversion of some dis-ICO structures
into ICO structures.

In the analysis of SRO in liquid structures, both simulation
time and system scale could have influences on the results,
particularly in deep undercooling states where sufficient equi-
libration time is required [47]. The statistical accuracy of
liquid structure factors can be enhanced with a large number
of atoms in the system. With DPMD, we can obtain more
sufficient simulation conditions, allowing for a system scale
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FIG. 5. Partial bond-angle distributions of liquid Hf76 W24 alloy at different temperatures: (a) Hf-Hf-Hf, (b) Hf-Hf-W, (c) W-Hf-W, (d)
Hf-W-Hf, (e) Hf-W-W, and (f) W-W-W.

up to 104 atoms, and the simulation time up to 102 ps, fulfilling
the requirements for simulations.

To further investigate the SRO in the liquid alloy
[48],Voronoi polyhedral (VP) analysis was employed to reveal
the atomic arrangement of them. VP is a convex polyhe-
dron defined by the perpendicular bisectors of the bonds
between the central atom and its nearest neighbors. VP is
described by a set of indices 〈n3, n4, n5, n6, · · · 〉, where ni

denotes the number of faces with i sides. The sum of ni is
the CN of the central atom. Figures 7(a) and 7(b) present
the top 10 VPs with the highest content in liquid alloys for
Hf and W centered atoms, and Figs. 7(c)–7(e) display the
CNs of each type of central atom. The atomic conformations

corresponding to their VP indices are also presented in Fig. 7,
where the red atoms represent Hf and the blue atoms rep-
resent W. The VP indices found in liquid alloys can be
roughly classified into two categories: ICO-like and others.
ICO-like include ICO and dis-ICO indices such as 〈0 0 12 0〉
and 〈0 1 10 2〉, while others include indices such as 〈0 3 8 2〉
and 〈0 4 6 3〉. As the temperature decreases, the content of
ICO-like VPs increases rapidly, surpassing the growth rate
of the other types. Simultaneously, the trend of total CNs
indicates an increase in the proportion of VPs with higher
CNs (CN = 13, 14, 15), while a decrease is observed for
those with lower CNs (CN = 10, 11, 12). This trend indicates
an increase in the orderliness and compactness of the liquid

FIG. 6. Honeycutt-Anderson (HA) analysis of liquid Hf76 W24 alloy and atomic conformations of typical indices.
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FIG. 7. Voronoi polyhedral (VP) analysis of liquid Hf76 W24 alloy at different temperature: (a) and (b) Hf and W centered VP indices and
(c)–(e) total and partial coordination numbers.

alloy, confirming the observed changes in thermal physical
properties with temperature [49]. Additionally, there are no-
table distinctions between VPs centered on W and Hf. VPs
centered on W have the highest content at a CN of 12, which
can exceed 30%, suggesting that they contain more ICO-like
type. The W-centered VP indices also confirm that ICO-like
clusters represented by 〈0 0 12 0〉 account for the largest per-
centage, and the change with temperature is substantial. The
Hf-centered VPs have higher CNs, with an average of 12.91
at 1500 K, while that with W-centered VPs is 11.63. Within
the Hf-centered VPs, CN = 15 accounted for at least 8%,
CN = 14 accounted for at least 17%. The variation of the
content of VPs with decreasing temperature is consistent with
the change of the total CN: The content of high coordination
clusters increases, while the content of low coordination clus-
ters decreases.

IV. CONCLUSIONS

In summary, we constructed the interatomic potential of the
Hf76 W24 refractory alloy applying an active learning method
incorporating a DNN. The potential was applied in DPMD to
investigate the atomic structure and thermophysical proper-

ties of the liquid alloy over a wide temperature range. The
comparison of the simulated atomic structure with AIMD
results verified the accuracy of the DNN potential, as both
exhibited consistent characteristics. The simulation showed
that the peak of the PDFs increased with the decreasing tem-
perature, indicating the enhancement of the orderliness of the
liquid alloy. The CNs and CSRO values demonstrated that the
local environment surrounding W and Hf atoms was distinct,
with W atoms tending to bond with Hf atoms, and Hf atoms
preferring to bond with other Hf atoms. The BADs suggested
the existence of SRO clusters in the liquid alloy. The type
and atomic configurations of the clusters were analyzed using
HA and VP, confirming the presence of a substantial num-
ber of ICO-like clusters in the liquid alloy. The content of
the ICO-like clusters increased substantially with decreasing
temperature. The CN of clusters centered on W is different
from that centered on Hf, the former has more clusters with
CN = 12 and the latter featuring a higher proportion of clus-
ters with CN values of 14 and 15.

The density and surface tension of the alloy were measured
using ESL technology. The simulated thermophysical proper-
ties were close to the experimental values with the difference
of 2.8% in density and 3.4% in surface tension. Both increased
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linearly as the temperature decreased. The change of liquid
atomic structure indicated that the liquid alloy became more
ordered, densely packed, and had lower energy when the
temperature decreased, which confirmed the change of ther-
mophysical properties. The consistency of the thermophysical
properties further proved the accuracy and reliability of active
learning simulation.
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