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Integrator for general spin-s Gross-Pitaevskii systems

Mudit Jain ,* Mustafa A. Amin,† and Han Pu ‡

Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

(Received 13 June 2023; revised 23 August 2023; accepted 13 October 2023; published 15 November 2023)

We provide an algorithm, i-SPin 2, for evolving general spin-s Gross-Pitaevskii or nonlinear Schrödinger
systems carrying a variety of interactions, where the 2s + 1 components of the “spinor” field represent the
different spin-multiplicity states. We consider many nonrelativistic interactions up to quartic order in the
Schrödinger field (both short and long range, and spin-dependent and spin-independent interactions), including
explicit spin-orbit couplings. The algorithm allows for spatially varying external and/or self-generated vector
potentials that couple to the spin density of the field. Our work can be used for scenarios ranging from laboratory
systems such as spinor Bose-Einstein condensates (BECs), to cosmological or astrophysical systems such as
self-interacting bosonic dark matter. As examples, we provide results for two different setups of spin-1 BECs
that employ a varying magnetic field and spin-orbit coupling, respectively, and also collisions of spin-1 solitons
in dark matter. Our symplectic algorithm is second-order accurate in time, and is extensible to the known
higher-order-accurate methods.
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I. INTRODUCTION

Physical systems described by the Gross-Pitaevskii equa-
tion (GPE)/nonlinear Schrödinger equation (NLSE) are ubiq-
uitous in many areas of physics, ranging from laboratory
systems such as ultracold atomic Bose-Einstein condensates
(BECs) [1], nonlinear optics [2–8], water waves [9–11], etc.,
to cosmological scenarios concerning the phenomenology
of cold dark matter [12–25]. In the case of BECs in the
laboratory, atoms are cooled and trapped using magnetic
or optical traps. With magnetic traps the various hyperfine
levels of the atoms are lost and the system can be de-
scribed using one-component (scalar) GPE/NLSE. The use
of optical traps, however, gives leverage over the different
possible hyperfine levels, resulting in the so-called spinor
BECs [26–28]. Such a system can be described by a multi-
component GPE/NLSE.1 Depending upon the atomic species
and the experimental setup, the different spin components
can have many types of both short-ranged and long-ranged
self-interactions (in addition to interactions with the external
trapping potential and magnetic field). For instance, the long-
ranged interaction could be mediated by the dipolar (∼1/r3)
interaction potential generated due to the spin density of
the Schrödinger field. The short-ranged self-interaction can
be both spin independent and spin dependent. The former
is the density-density interaction of type ∼ρ2 where ρ is
the total number density of the multicomponent Schrödinger
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1Throughout this work, we generically refer to the hyperfine state,

in the context of atomic, molecular, and optical (AMO) physics
systems, as spin.

field. The latter can come in different varieties. One such
spin-dependent interaction is the usual spin-spin interaction
of type ∼S · S, where S is the intrinsic spin density of the
field. Another spin-dependent interaction is the spin-singlet
interaction which characterizes collisions between two parti-
cle spin-singlet states. Besides such self-interactions, there are
other possible interactions such as the spin-orbit interaction.
So far, various higher spin condensates have been achieved
in laboratory experiments. For instance, see Refs. [29,30] for
spin-1/2, Refs. [26,31,32] for spin-1, Refs. [33–37] for spin-2,
and Refs. [38,39] for spin-3 condensates. Owing to their spin
(hyperfine) structure, such BEC systems are promising for
interesting effects such as topological spin textures [40,41],
quantum spin Hall effect and topological insulators [42–46],
atomic lasers [47,48], etc. See Refs. [28,49,50] and references
therein for detailed reviews on the physics of spinor con-
densates, and Ref. [51] and references therein for a review
of numerical methods relevant to spinor condensates. Some
more recent numerical works on spinor condensate can be
found in Refs. [52–54]. Understanding the behavior of such
higher spin systems from an analytical and computational
standpoint is therefore highly desired. In the cosmological
scenario, the GPE/NLSE is used to describe the cold dark
matter field, and can contain both the density-density and
spin-spin interactions (in the case of higher spin dark matter),
besides the usual gravitational interactions. For instance, in
the case of vector dark matter, both of these self-interactions
are present in the effective low-energy regime (Higgs phase)
of the Abelian Higgs model [25,55]. Even in the case of
massive spin-2 or bigravity constructions [56–62], there are
quartic self-interactions of the massive spin-2 degree of free-
dom [63], and can very well result in spin-spin interactions
in the nonrelativistic low-energy effective theory (besides the
density-density interactions). Also see Ref. [64] for a re-
cent ghost-free massive spin-2 construction involving affine
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connections. Our work here, therefore, can naturally find its
relevance in many cosmological and astrophysical scenarios.
In this paper, we present a three-dimensional (3D) numeri-
cal algorithm involving the split Fourier technique, to evolve
(a) arbitrary spin-s condensates containing both short- and
long-ranged quartic self-interactions, in addition admitting
(b) space- and time-dependent external vector fields B̄(x, t )
[but separable such that B̄(x, t ) = B(x) f (t )], leading to not
only spatially and time-varying Zeeman effects, but also (and
perhaps more importantly) giving rise to spin-orbit (SO) cou-
pling. Last, we present (c) an explicit spin-orbit coupling
term that couples the spin and the center-of-mass momen-
tum. The SO coupling, arising in setups involving multiple
lasers [30], and its effects have been gaining much interest
recently [65,66]. This work can be contrasted with the existing
literature, in which some work on this front already exists:
In Ref. [67], a similar split Fourier technique was employed
for spin-1 GPE containing both spin-spin and density-density
short-ranged self-interactions, along with a spatially uniform
linear and quadratic Zeeman term. In Ref. [68], the same situ-
ation was explored for a spin-2 system [69], with the addition
of the spin-singlet interaction term. More recently, in Ref. [70]
the authors presented a GPU-assisted approach to accelerate
solving two-dimensional (2D) spin-1/2 GPE/NLSE. Our work
in this paper differs from the existing literature in the three
points listed in the previous paragraph. Also, contrary to a
previous algorithm “i-SPin” laid out by some of us in Ref. [71]
where the n-component Schrödinger field had an SO(n) sym-
metry, systems of consideration in this paper are describable
by a (2s + 1)-component Schrödinger field, with components
characterizing the different spin multiplicity states. Viewing
the present algorithm in conjunction with this earlier work,
we have called the present algorithm i-SPin 2. Our symplectic
(unitary) algorithm employs the split-Fourier step technique
in which the field evolution over a time step is broken into
a half “drift” piece, followed by a “kick” piece, and then
another half drift piece. In the drift pieces, the field is evolved
using the drift Hamiltonian density that contains the usual
Laplacian term together with the SO coupling term. In the kick
piece, the field is evolved using the interaction Hamiltonian
density which contains all of the rest of the interaction terms.
By explicitly constructing the unitary evolution matrices in
both the drift and the kick steps, we present a symplectic
time-reversible algorithm. The accuracy of the field evolution
in this algorithm is O(ε2) (where ε is the time discretization
step), which can be upgraded towards higher-order symplectic
integrators that employ the split-step technique.

The paper is organized as follows. In Sec. II we begin
by laying out the general (nonrelativistic) spin-s Schrödinger
system containing all interactions of interest, including inter-
actions with external scalar and vector fields. Then in Sec. III
we work out the analytical solution for the field evolution due
to both the drift and kick Hamiltonian densities, with the most
nontrivial bit being the exponential of spin matrices. In Sec. 32
we present the general scheme of exponentiating arbitrary
spin-s matrices, and provide explicit results for spin-1, spin-2,
and spin-3 cases in Appendix B. With the analytical solution
at hand, the general algorithm scheme is provided in Sec. 35.
Our work has a broad domain of applicability, ranging from
AMO physics in the laboratory to self-interacting fuzzy dark

matter in cosmology. We discuss this in Sec. 40, and present
some simulation results for three example scenarios, demon-
strating the effects of some of the interactions of interest.
Section VII presents the summary of our work. In Appendix A
we present the conventional forms for the spin matrices for
spin-1 and spin-2 cases that are more suited for cosmology.
In order to demonstrate the symplectic and reversible nature
of our algorithm, in Appendix C, we provide the total num-
ber and spin conservation plots for our three example cases,
together with a reversibility plot for the cosmology case.

Units and conventions. Throughout the paper and unless
explicitly written, we work in natural units where h̄ = 1 = c.
We also assume Einstein summation convention.

II. SPIN-S GROSS-PITAEVSKII/SCHRÖDINGER SYSTEM

A. Action and equation of motion

Our system comprises a (2s + 1)-component Schrödinger
field � = (ψs, ψs−1, . . . , ψ−s) of mass μ, where different
components represent the various spin multiplicity levels.
More formally, � transforms as a vector or “spinor” in the
(2s + 1)-dimensional irreducible unitary representation of the
SO(3) group.2 For this system, we consider the following
general action up to quartic order in the field �, including
all the relevant self-interactions (to leading order in the non-
relativistic limit):

Snr =
∫

dt d3x

[
i

2
ψ†

n ψ̇n + c.c. − 1

2μ
∇ψ†

n · ∇ψn

− μρV (x) − γ S · B̄(x, t ) − Vnrel(ρ,S )

− ξ

2

1

(2s + 1)
|ψn Ânn′ψn′ |2

+ i gi j ψ
†
n [Ŝi]nn′ ∇ j ψn′

]
, (1)

with B̄(x, t ) = f (t )B(x), and

Vnrel(ρ,S ) = − 1

2μ2
[λρ2 + α (S · S )]. (2)

The first two terms in action (1) dictate the usual free field
evolution (of each of the field components ψm, where m ∈
[−s, s]). The third and fourth terms account for interactions
of the field with the external scalar trapping potential V (x)
and vector field B̄(x, t ), coupling to the number density ρ =
ψ†

n ψn and spin density S = ψ∗
n Ŝnn′ ψn′ , respectively.3 Here

2The quotation marks around “spinor” are to highlight that it is not
the fermion spinor that is usually referred to in the context of particle
physics and quantum field theory. We will drop the quotes in the rest
of the paper.

3Apart from the linear Zeeman term ∼ψ† B · S ψ , there could also
be a quadratic Zeeman term ∼ψ† (B′ · Ŝ)2 ψ which we do not con-
sider explicitly. While it is trivial to include if B′ is homogeneous,
for the nonhomogeneous case it should also not be difficult to in-
clude, using the general spin matrix exponential scheme presented
in Sec. 32 (applied towards exponentiation of the square of spin
matrices).
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Ŝx = x̂ · Ŝ (and similarly for y and z) are the [(2s + 1) × (2s +
1)]-dimensional spin matrices with the usual commutation
relations

[Ŝx, Ŝy] = iŜz with all cyclic permutations. (3)

The fifth term in action (1) accounts for quartic self-
interactions of the Schrödinger field, which can depend on
both number density and spin density [as seen in Eq. (3)
explicitly]. The sixth term in Eq. (1) accounts for the two-body
spin-singlet interaction, where the total spin multiplicity due
to both the incoming and outgoing states adds to zero. The
spin-singlet matrix is real and has the following properties:

Â−1 = Â = ÂT , Â Ŝi Â = −Ŝ∗
i , ψT Â Ŝiψ = 0 , (4)

and an explicit form for it is given ahead in Eq. (9). Finally,
the last (seventh) term in Eq. (1) accounts for SO coupling
where gi j are real constants, with i and j being spatial in-
dices. Specifically, gi j ∝ εi j3 (the Levi-Cività symbol) gives
the well-known Rashba SO coupling, usually studied in the
context of two-component BECs. Similarly, gi j ∝ |εi j3| gives
the Dresselhaus SO coupling. Action (1) leads to the following
equation of motion, the Schrödinger/Gross-Pitaevskii equa-
tion:

i∂tψn =
[
δnn′

(
− 1

2μ
∇2

)
+

(
μV (x) − λ

μ2
ρ

)
δnn′

+ γ f (t )B(x) · Ŝnn′ − α

μ2
S · Ŝnn′

+ ξ

2s + 1
Ânm ψ∗

mψm′ Âm′n′

− i gi j [Ŝi]nn′ ∇ j

]
ψn′ . (5)

We break the Hamiltonian density (the term in the brackets
above) into a drift and a kick piece as follows:

[Hdrift]nn′ ≡ δnn′

(
− 1

2μ
∇2

)
− i gi j [Ŝi]nn′ ∇ j ,

[Hkick]nn′ ≡
(

μV (x) − λ

μ2
ρ

)
δnn′ + γ f (t )B(x) · Ŝnn′

− α

μ2
S · Ŝnn′ + ξ

2s + 1
Ânm ψ∗

mψm′ Âm′n′ . (6)

Throughout this work, we work in the z basis. That is, the spin
matrix Ŝz is diagonal, with the eigenvalues m ∈ [−s, s] along
the diagonal. Explicitly, and more suited for AMO systems,
the spin matrices Ŝi and the spin-singlet matrix Â take the
following conventional forms, respectively:

[Ŝx]nn′ = 1

2
(δn,n′+1 + δn+1,n′ )

√
s(s + 1) − nn′ ,

[Ŝy]nn′ = 1

2i
(δn,n′+1 − δn+1,n′ )

√
s(s + 1) − nn′ ,

[Ŝz]nn′ = δn,n′ n, (7)

Ânn′ = (−1)s−nδn,−n′ . (8)

From a relativistic field theory or particle physics point of
view, on the other hand (more suited for cosmology), the spin

matrices take different forms. See Appendix A for details, and
Sec. VI B for a discussion of cosmological applications of our
work.

Long-range self potentials. The external potentials V and B̄
can also be easily appended with self-generated ones, suitable
for different applications. Explicitly for purposes in contem-
porary (ultra)light dark matter cosmology, V (x) → �(t, x),
where �(t, x) is the Newtonian potential, given by the Poisson
equation

∇2�(t, x) = 4πμGρ(t, x) . (9)

Similarly in the context of AMO systems where atomic dipo-
lar interactions are present, B̄(t, x) → ∇a(t, x), where a is a
scalar field obeying the following Poisson equation:

∇2a(t, x) = γ ∇ · S(t, x) . (10)

B. Conserved quantities and continuity equations

The only conserved quantity, associated with our non-
relativistic system (1), is the total particle number N (or
equivalently the total mass M = μN):

N =
∫

d3x ρ . (11)

Furthermore, the local continuity equations for the number
and spin densities are

∂tρ + ∇ · J ll = 0,

∂tS + Ŝnn′ (∇ · J n′n) = (γ f B × S ) + J ′, (12)

respectively, where J mn is a general Schrödinger current ma-
trix given by

J n′n ≡ i

2μ
[ψn′∇ψ∗

n − ψ∗
n ∇ψn′ ], (13)

and J ′ is the SO current term

J ′
i = i gk j εk�i ∇ jS� . (14)

In the spin continuity equation, the first term on the right-hand
side gives rise to the well-known spin precession effect, while
the second term dictates the SO coupling effect. For the case
when B̄ is time independent (meaning f = const), the total
energy in the system is also conserved. Furthermore, if B̄
and V are constants in both space and time and gi j = 0, the
total linear momentum and the parallel component of the total
angular momentum (parallel to B̄) are also conserved (with
orbital and spin angular momentum conserved separately).
Also, the magnitudes of the total orbital and spin angular mo-
mentum are (separately) conserved. Adding the self-generated
Newtonian potential or the dipolar potential does not change
these results.

III. EVOLUTION OF THE SCHRÖDINGER FIELD

We employ a split Fourier algorithm in which the evolution
of the Schrödinger field is broken into two parts: drift and
kick as dictated by the respective Hamiltonian densities in
Eqs. (7). In this section we present the general scheme of the
Schrödinger field evolution for arbitrary integer spin fields,
due to both the drift and kick Hamiltonian densities.

055305-3



MUDIT JAIN, MUSTAFA A. AMIN, AND HAN PU PHYSICAL REVIEW E 108, 055305 (2023)

A. Evolution due to the drift Hamiltonian density

This evolution [cf. Eqs. (7)] is dictated by the following
differential equation:

i∂tψn =
[
δnn′

(
− 1

2μ
∇2

)
− i gi j [Ŝi]nn′ ∇ j

]
ψn′ . (15)

Evidently, the evolution is most easily performed in Fourier
space. With ψ̃ (k) as the Fourier-transformed field (and eik·x as
the forward Fourier coefficient), we have

i∂t ψ̃n =
[
δnn′

(
k2

2μ

)
− gi j [Ŝi]nn′ k j

]
ψ̃n′ , (16)

giving

ψ̃n(t ) = e−i(t−t0 )k2/2μ[ei(t−t0 )gi j k j Ŝi ]nn′ψ̃n′ (t0) . (17)

Note that the order of the two exponentials here does not
matter since the respective operations commute. Nevertheless,
the most nontrivial task in the above is the matrix exponenti-
ation, needed for the SO coupling term. We present matrix
exponentials for the general spin-s case in Sec. 32 ahead.

B. Evolution due to the kick Hamiltonian density

Next comes the contribution from the kick Hamiltonian
density [cf. Eqs. (7)], dictating the following differential evo-
lution:

i∂tψn =
[(

μV − λ

μ2
ρ

)
δnn′ + γ f (t ) B · Ŝnn′

− α

μ2
S · Ŝnn′ + ξ

2s + 1
Ânm ψ∗

mψm′ Âm′n′

]
ψn′ . (18)

Here we have suppressed the explicit spatial dependence of
V and B to be concise in our notation. To get the analytical
solution to the above differential equation, we can handle the
four different terms on the right-hand side in steps. For this
purpose, it will be useful to define the following exponential

operators,

B̂nn′ (t, t0) = [e−iγ F (t,t0 ) B·Ŝ]nn′ ,

Ĝnn′ (t, t0) = [ei(α/μ2 )(t−t0 )S(t0 )·Ŝ]nn′ , (19)

where for ease of notation we have defined F (t, t0) ≡∫ t
t0

dτ f (τ ), and explicitly state the property

[eih(t ) v·Ŝ]T Â eih(t ) v·Ŝ = Â, (20)

where v is any (time-independent) vector. The above can be
seen to hold true on account of properties (6). To begin with,
first note that the number density is constant throughout the
kick evolution (19). This can be seen directly by recalling that
there are no Schrödinger currents in the kick step [cf. Eq. (13)
with J = 0]. To account for the evolution due to B, we plug
the following ansatz,

ψn(t ) = e−i(t−t0 )(μV −(λ/μ2 )ρ)B̂nn′ (t, t0)φn′ (t ), (21)

into Eq. (19), to have the remaining evolution due to the spin-
spin and spin-singlet self-interaction:

i∂tφn = − α

μ2
B̂†

n�(t, t0) [S(t ) · Ŝ]�m′ B̂m′n′ (t, t0)φn′

+ ξ

2s + 1
Ân�′ φ∗

�′φ� Â�n′φn′ . (22)

Here in the second line, we made use of properties (6), in order
to simplify the term [B̂†ÂB̂∗]n�′ = −[B̂†B̂Â]n�′ = −Ân�′ , and
also B̂m�[ÂB̂]mn′ = −[B̂†B̂]mn′ Âm� = −Ân′� = −Â�n′ . Now,
the matrix in the first term of Eq. (23) is nothing but the
backwards evolution of the spin density S(t ), giving the spin
density at the initial instant, S(t0). To see this, let us decom-
pose S(t ) and Ŝ into parallel and perpendicular components,
with respect to the external field B. Owing to the spin pre-
cession during the kick step, dictated by the only nonzero
(first) term on the right-hand side of the spin density conti-
nuity equation [cf. Eq. (13) with J = 0 = J ′], the parallel
spin density S|| does not change. However, the perpendicular
components of the spin density do evolve. Decomposing these
perpendicular components into raising and lowering pieces,
S+ and S− (using the usual convention of right-handed orien-
tation4), we get the following:

B̂†
m�(t, t0) [S(t ) · Ŝ]�n B̂nm′ (t, t0) =

[
S||(t0)Ŝ|| + 1

2
[eiBŜ|| F (t,t0 )][S−(t )Ŝ+ + S+(t )Ŝ−][e−iBŜ|| F (t,t0 )]

]
mm′

. (23)

This can be simplified further. First note that the spin preces-
sion throughout the kick step, due to B, goes as follows:

S+(t ) = S+(t0) eiBF (t,t0 ) ,

S−(t ) = S−(t0) e−iBF (t,t0 ) . (24)

4At any spatial location, calling the direction of B as x3, the per-
pendicular spin matrices Ŝx1 and Ŝx2 can be used to define raising and
lowering spin matrices as Ŝ± ≡ Ŝx1 ± iŜx2 . Consecutively, we also
define S± ≡ Sx1 ± iSx2 .

Upon using this together with the identity

[eiBŜ|| F (t,t0 )]Ŝ±[e−iBŜ|| F (t,t0 )] = Ŝ± e±iBF (t,t0 ) (25)

in Eq. (23), the time dependence of the spin density drops out,
giving

B̂†
m�(t, t0) [S(t ) · Ŝ]�n B̂nm′ (t, t0) = [S(t0) · Ŝ]mm′ . (26)

With this simplification, we now use the ansatz

φn(t ) = Ĝnn′ (t, t0) χn′ (t ) (27)
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in Eq. (22) [appended by Eq. (26)] to give

i∂tχn = ξ

2s + 1
Ân�′χ∗

�′χ� Â�n′χn′ . (28)

Here once again, we have used properties (6) to simplify the
terms [Ĝ†ÂĜ∗]n�′ = −[Ĝ†ĜÂ]n�′ = −Ân�′ , and Ĝm�[Â Ĝ]mn′ =
−[Ĝ† Ĝ]mn′ Âm� = −Ân′� = −Â�n′ . From the above equa-
tion for χ , one can first obtain the evolution equation for
the quantity q ≡ χT Âχ = ψT Âψ . [The second equality holds
true on account of property (23).] It simply rotates as a pha-
sor: q(t ) = q(t0)e−2i(t−t0 )ξρ/(2s+1). With this, the ansatz χ (t ) =
η(t )e−i(t−t0 )ξρ/(2s+1) can be used to get the following equa-
tion for η:

i∂tηn = ξ

2s + 1
(q(t0)Ân�′η∗

�′ − ρ ηn) . (29)

This has the solution5

ηn(t ) = Û ′
n�(t, t0)ψ�(t0) , (30)

where the operator Û ′ is given in Eq. (32) ahead [with the
initial condition ηn(t0) = ψn(t0)]. In summary, combining all
of the above pieces together, the full kick evolution becomes

ψm(t ) = Ûmn(t − t0) Û ′
n�(t − t0) ψ�(t0) , where

Ûmn(t − t0) = e
−i(t−t0 )

(
μV −

(
λ

μ2 − ξ

(2s+1)

)
ρ
)

× B̂m�(t, t0) Ĝ�n(t, t0),

Û ′
n�(t, t0) =

[
cos

(
ξρq

2s + 1
(t − t0)

)
δn�

+ i

ρq
sin

(
ξρq

2s + 1
(t − t0)

)

× (ρ δn� − Ânn′ψ∗
n′ (t0)ψ�′ (t0) Â�′�)

]
, (31)

and where B̂ and Ĝ are defined in Eq. (19), and ρq ≡√
ρ2 − |q(t0)|2 =

√
ρ2 − |ψn(t0)Ânmψm(t0)|2. This is our

main equation for the evolution of the field ψ under the
kick Hamiltonian density. It is important to note the or-
der of the exponentials B̂(t, t0) = e−iγ B·Ŝ F (t,t0 ) and Ĝ(t, t0) =
ei(α/μ2 )(t−t0 )S(t0 )·Ŝ in the above evolution equation. Unless B
and S are parallel, reversing the order leads to incorrect evo-
lution since B · Ŝ and S · Ŝ do not commute in general.

With the exact evolution for both the drift and the kick
steps, Eqs. (17) and (31), respectively, we now require the
analytical form for the matrix exponential e−iβ n·Ŝ for a general
spin-s system. Here β = βn could be any function of k or x
(relevant for SO drift and kick terms, respectively). For the
SO term in the drift evolution, β ni = −(t − t0)gi jk j , while
for the magnetic field coupling and spin-spin interaction in

5The solution can be obtained by noting that η̈m = −ω2ηm,
where ω = (ξ/2s + 1)

√
ρ2 − |q(t0)|2, which together with the

initial conditions ηm(t0) = ψm(t0) and η̇m(t0) = −(iξ/(2s +
1))(q(t0)Âm�′ψ∗

�′ (t0) − ρψm(t0)) [cf. Eq. (32)] gives the final solution
of Eq. (30) See Ref. [68] for the same analysis.

the kick evolution, we have β ni = γ F (t, t0)Bi and β ni =
−(α/μ2)(t − t0)Si, respectively. We pursue the relevant ex-
ercise in the next section.

IV. MATRIX EXPONENTIAL FOR GENERAL SPIN S

For any arbitrary spin s, the matrix exponential in general
must take the following form:

e−iβ n̂·Ŝ = I + i
s∑

�=1

(n̂ · Ŝ)2�−1

[
s∑

m=1

am� sin mβ

]

+
s∑

�=1

(n̂ · Ŝ)2�

[
s∑

m=0

bm� cos mβ

]
. (32)

Here am� and bm� are real coefficients and I the (2s + 1)-
dimensional identity matrix. The reason that the above form
must hold is threefold: (1) the conjugate transpose of the
exponential must be the same as β → −β; (2) all possible
frequencies, m ∈ [0, s], must appear in the expansion; and (3)
the maximum power required of the matrix (n̂ · Ŝ) is 2s, since
all higher powers of this matrix can be written as linear combi-
nations of I, (n̂ · Ŝ), (n̂ · Ŝ)2, and so on up to (n̂ · Ŝ)2s by virtue
of the Cayley-Hamilton theorem. With the above form, the
explicit values of the s2 number of am� and s(s + 1) number
of bm� can be determined by matching the Taylor expansion
of the exponential in β (only up to β2s) on the left-hand side,
with the similar Taylor expansion of the series form in the
right-hand side of Eq. (32). For this matching purpose, it is
easiest to work with n̂ = ẑ, since in our working z basis Ŝz

is diagonal and equal to the last expression in Eq. (7). Upon
performing this matching exercise, we get

s∑
�=1

p2(�−r−1)

[
s∑

m=1

am� m2r+1

]
= −1 ∀ p = {1, . . . , s}

and r = {0, 1, . . . , s − 1} (33)

from the odd terms in β (i.e., from the sine terms), while
s∑

�=1

p2�

[
s∑

m=0

bm�

]
= 0 ∀ p = {1, . . . , s},

and
s∑

�=1

p2(�−r)

[
s∑

m=0

bm� m2r

]
= 1

∀ p = {1, . . . , s} and r = {1, . . . , s} (34)

from the even terms in β (i.e., from the cosine terms). The
above two sets of linear equations can be solved separately
to get the coefficients a and b for an arbitrary spin-s system.
We note that our results are consistent with the previous work
on this subject [72–74]. In Appendix B we provide explicit
expressions for spin-1, spin-2, and spin-3 systems.

V. ALGORITHM

A. Algorithm summary

Equipped with the analytical solution for both the drift and
kick evolution along with arbitrary spin matrix exponential,
the full split-step Fourier algorithm proceeds as follows. Start-
ing with the field components ψm(x, t ) at time t , they are

055305-5



MUDIT JAIN, MUSTAFA A. AMIN, AND HAN PU PHYSICAL REVIEW E 108, 055305 (2023)

drifted through a time step ε/2 according to

i∂tψn =
[
δnn′

(
− 1

2μ
∇2

)
− i gi j [Ŝi]nn′ ∇ j

]
ψn′

⇒ ψ (1)
n (x) =

∫
k
F−1

k,x e−iε k2/4μ[eiε gi j k j Ŝi/2]nn′

×
∫

w

Fk,wψn′ (w, t ) . (35)

Here the symbol F represents Fourier transformation:∫
w
Fk,w h(w, t ) = ∫

d3w eik·wh(w, t ) = hk(t ). Similarly F−1

represents inverse Fourier transformation:
∫

k F
−1
k,x hk(t ) =∫

d3k
(2π )3 e−ik·xhk(t ) = h(x, t ).6

Then, every component is kicked through a time step ε

according to

i∂tψn =
(

μV − λ

μ2
ρ

)
ψn + γ f (t ) B · Ŝnn′ψn′

− α

μ2
S · Ŝnn′ψn′ + ξ

2s + 1
Ânm ψ∗

mψm′ Âm′n′ ,

⇒ ψ (2)
n (x) = Ûn�(ε) Û ′

�n′ (ε) ψ
(1)
n′ (x) , (36)

where the operators Ûmn(ε) and Û ′
mn(ε) are given by Eqs. (31),

with ρ, S, and ρq computed using Ψ(1). In the case where
V and f B are self-generated potentials [cf. Eq. (9) for
self-gravity in the cosmological context, and Eq. (10) for
self-dipolar field in the condensed matter context], they are
easily computed in Fourier space as7

V → �(x) = −4πμG
∫

k
F−1

k,x

1

k2

∫
w

Fk,wρ(w) ,

f B → ∇a(x) = −γ

∫
k
F−1

k,x

k
k2

[
k ·

∫
w

Fk,w S(w)

]
. (37)

Finally, the fields are again drifted through a time step ε/2:

i∂tψn =
[
δnn′

(
− 1

2μ
∇2

)
− i gi j [Ŝi]nn′ ∇ j

]
ψn′ ⇒ψn(x, t + ε)

=
∫

k
F−1

k,x e−iε k2/4μ[eiε gi j k j Ŝi/2]nn′

∫
w

Fk,w ψ
(2)
n′ (w).

(38)

6In practice, we work with a Cartesian cubic grid with spatial
resolution �x in each direction, with a finite volume V = (N�x)3 =
L3. This leads to

∫
k → V −1

∑
k with k = 2(�x)−1 sin(πn/N ), and

δ(3)(x − y) → V δx,y. Here the sine function is used to account for the
fact that the eigenvalues of the discrete difference operator in any ith
direction is 4(�x)−2 sin2(πni/N ). As long as the field dynamics do
not depend upon very high k modes on the lattice, which is anyways
a necessity for trustworthy evolution of any system on the lattice, an
equivalent definition of k = 2πn/L suffices as well. (Note that the
two definitions of k converge to one another for |n| � N .)

7In these computations, we always discard the zero momentum
mode for practical purposes. While we never encounter any incon-
sistencies or problems due to the exclusion of the k = 0 mode, it can
be nonetheless incorporated by employing different techniques. See,
for example, Refs. [75–77].

The half-drift steps in the set of operations ensure O(ε2)
accuracy, while successive computation of the kick ensures
reversibility. Since every operation is unitary, the full drift-
kick-drift algorithm is symplectic and conserves total particle
number. For cases with time-independent external potentials,
the total spin is also conserved.

The relevant matrix exponentials appearing in both the kick
and drift steps, for a general spin-s system, are obtained as
in Eq. (32), augmented with Eqs. (33) and (34) to get the
expansion coefficients. As examples, explicit expressions for
spin 1, spin 2, and spin 3 are given in Appendix B. Relevant
for cosmology and/or field theory, explicit expressions for
spin-1 and spin-2 matrices are given in Appendix A.

B. Courant-Friedrichs-Lewy condition

In order to get a reliable field evolution, it must be en-
sured that the fastest process occurring in the system is
sufficiently resolved. The Courant-Friedrichs-Lewy (CFL)
condition takes care of this by choosing a sufficiently small
time step ε. In the drift step there are two processes. One
is the usual free field evolution (due to the Laplacian term)
∼ei(ε/2μ)∇2/2, and another is the SO term ∼ei(ε/2)gs|∇|, where
we have replaced the spin matrix by s (for the maximum
spin multiplicity corresponding to the fastest frequency) and
g is the largest entry in the matrix gi j . On the other hand,
the kick evolution involves five different pieces. Two of
them are due to couplings with external (or self-generated
long-ranged) scalar and vector fields, giving ∼e−iεμV and
∼e−iεγ B f s, respectively. The other three are due to short-
range self-interactions of the Schrödinger field. These give
the factors ∼eiε(λ/μ2 )ρ and ∼eiε(α/μ2 )sS for density-density
and spin-spin interactions, respectively, and ∼e±iεξρq/(2s+1) for
the spin-singlet interaction. Here recall that ρq =

√
ρ2 − |q|2

with q = ψT Aψ , and once again we have replaced the spin
matrix in the exponent with the largest multiplicity (eigen)
value s. With all these six different pieces, the CFL condition
reads

ε = 2π δ min

[
μ

3
(�x)2 ,

�x√
3 s max[g]

, |μV |−1 , |γ s f B|−1

×
∣∣∣∣ λ

μ2
ρ

∣∣∣∣
−1

,

∣∣∣∣ α

μ2
sS

∣∣∣∣
−1

,

∣∣∣∣ ξ

2s + 1
ρq

∣∣∣∣
−1

]
. (39)

Here δ � 1 is a tuning parameter that dictates the amount by
which the fastest oscillation is sampled. In the above, we have
replaced ∇2 by its value on the discrete lattice,

∑3
i=1(�x)−2 ×

4 sin2(niπ/N ), and set n = N/2 along with
∑ → 3 in order to

maximize the sum over sine functions. For the demonstration
of the fidelity of the algorithm, we pick δ < 1/8 and �x small
enough so that min[· · · ] = μ(�x)2/3 throughout the duration
of the simulation.

VI. SCOPE AND APPLICATIONS

Here we discuss some of the applications of our system (1)
in a variety of different contexts. In order to demonstrate the
fidelity of our construction and scope of validity, we present
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some simulation results on both the cold-atom and cosmology
fronts.

A. Spinor quantum gases

In a quantum system, the interplay between the spin de-
grees of freedom and the spatial degrees of freedom often
leads to a variety of intriguing phenomena. Spinor quantum
gases represent an ideal platform to study such phenomena
and, indeed, they have been at the forefront of cold-atom
research in the past few decades. Here we will consider two
specific examples related to spinor BECs. In the first exam-
ple, the spinor BEC is subjected to an artificial monopole
magnetic field and confined in a shell trapping potential;
in the second, we consider an untrapped spinor BEC stabi-
lized by the combination of self-attraction and the spin-orbit
coupling. In both of these cases, we will present specific
ground states of the systems, by performing imaginary time
evolution.

1. Trapped spinor BECs in an effective magnetic monopole

We first consider the scenario outlined in Ref. [78]. Atoms
with hyperfine spin s are subject to a spherically symmet-
ric harmonic trap, together with a strong bias magnetic
field B0ẑ and a periodic quadruple magnetic field B1(1 −
4λ̃ cos ωt )[xx̂ + yŷ − 2zẑ]. The Zeeman effects due to the
bias field can be removed by transforming into the rotating
frame along the z axis (rotation frequency being equal to
the Larmor frequency ωL). Then, if ω = ωL and λ̃ = 1, the
magnetic field in the rotating frame has a time-independent
piece that is radially outward, mimicking a monopole field,
and a fast oscillating piece (with oscillating frequency ω =
ωL) that can be neglected. The effective Hamiltonian density
in the rotating frame (including self-interactions) turns out
to be

H = 1

2μ
∇ψ†

n · ∇ψn + μρ V (r) + γ S · B(r)

− 1

2μ2
[λρ2 + α (S · S )], (40)

leading to the following spinor Schrödinger equation:

i∂tψn =
[
δnn′

(
− 1

2μ
∇2

)
+

(
μV − λ

μ2
ρ

)
δnn′

+ γ B · Ŝnn′ − α

μ2
S · Ŝnn′

]
ψn′ . (41)

Here V (r) = ω2
T r2/2, B = r r̂, and γ = 2μBgF B1 (where ωT

is the harmonic trap frequency, gF is the Landé factor, and μB

is the Bohr magneton). Owing to the Zeeman coupling of spin
density S with B, we consider configurations where the local
spin vectors are polarized opposite to the B field. That is, the
spinor state is an eigenfunction of the spin operator along the
radial direction, and with eigenvalues m ∈ [−s, 0). The full
Schrödinger field thus takes the following form:

Ψ(r, t ) = φ(r, t )M(θ, ϕ)χ(m), (42)

where χ(m) is the eigenstate of the Ŝz operator with eigenvalue
m, and M(θ, ϕ) = e−iϕŜz e−iθ Ŝy is the unitary transformation

matrix that rotates χ(m) to “point” along the radial direction.8

With the above ansatz, the effective equation for the scalar
field φ takes the following form9:

i∂tφ = − 1

2μ

(
∇ − im

cot θ

r
ϕ̂

)2

φ

+
(

1

2
μω2

T r2 + γ mr +
(
s(s + 1) − m2

)
2μ r2

)
φ

− 1

μ2
ρ(λ + αm|m|)φ . (43)

Ignoring self-interactions for the moment, this dictates the
motion of a scalar particle of “electric charge” m, in the
background of a scalar potential equal to the second term in
the first line, and a magnetic monopole at the center [cf. the
vector gauge potential A(r) = (cot θ/r) ϕ̂]. To demonstrate
our algorithm, we present the ground state of the above sys-
tem for the spin-1 case and m = −1, with γ = 4(μω3

T )1/2.
For this purpose, we worked in units where μ = ωT = 1,
and evolved the Euclidized Schrödinger equation, i.e., t →
−iτ in Eq. (41), beginning with an arbitrary Gaussian
ansatz for φ [cf. Eq. (42)].10 With the convergence criterion
being

| ∫ d3x(Ψ(x, t + ε) − Ψ(x, t ))|
| ∫ d3x Ψ(x, t )| < 0.01 , (44)

we found convergence towards the ground state shown in
Fig. 1 around t ∼ 6 (with the time step being ε ≈ 0.06). The
presence of a cylindrical hole along the z axis is reflective of
the gauge potential A in the effective system for φ, and can
be thought of as a Dirac string. To validate the stationarity
and robustness of the obtained ground state, we evolved it in
real time and saw no variation (apart from the overall phase
rotation). Furthermore, due to the symplectic nature of our
algorithm, total mass and spin are conserved up to machine
precision. The associated plots are presented in Appendix C.
If γ � (μω3

T )1/2(s(s + 1) − m2)1/4(2m4)−1/4, the minima of
the scalar potential lies at r0 � −γ m/(μω2

T ) (with m < 0),
and the spinor field is expected to be tightly concentrated
within the spherical shell at this radius. The problem reduces
to that of a charged particle confined on a spherical surface
subject to a magnetic monopole of charge m, centered at the
origin [78].

8In our z working basis, χ(m) is a column vector with unity at the
mth position, rest zero, meaning it is the mth column of the matrix
M.

9Here we used the identity [eiαŜy ]Ŝz[e−iαŜy ] = Ŝz cos α − Ŝx sin α

(true for all cyclic permutations as well), along with
∑

i Ŝ2
i |χ〉 =

s(s + 1)|χ〉 and 〈χ|Ŝx,y|χ〉 = 0, to simplify expressions. We also
inserted the relationship S = |φ|2〈χ|M†ŜM|χ〉 = m|φ|2 r̂. Finally,
it is obvious that ρ = Ψ†Ψ = |φ|2.

10It is to be noted that in the imaginary time evolution, the total
“wavefunction” must be renormalized at every time iteration; oth-
erwise the total particle number dies out exponentially like e−E0τ ,
where E0 is the ground state energy.
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FIG. 1. A stationary state of the Hamiltonian density (41) with λ = α = 0, for a spin-1 system with m = −1 and γ = 4(μω3
T )1/2. Working

in units where μ = ωT = 1, the box length is L = 20 (in each direction), and the grid size is N3 = 613. With this, while �x = L/(N − 1) =
0.33, the time step is ε = 2π (μ/12)(�x)2 ≈ 0.06. The left-hand panel gives the full 3D visualization of the number density, whereas the
middle and right-hand panels are the number densities as seen in the y − z plane and x − y plane, respectively.

Inclusion of self-interactions. We also investigated the
effect of both the spin-dependent and spin-independent self-
interactions. The overall effect on the ground state was
as expected: when the self-interactions were attractive, the
number or spin density compressed, whereas for repulsive
self-interactions, the shape of the number or spin density
“swelled.”

2. Self-trapped BECs with spin-orbit coupling

Our second example concerns the existence of a self-
trapped spinor BEC with attractive interaction in free space.
Without any confining potentials such as a harmonic trap
in the BEC context or gravity in the cosmology context, it
is well known that in dimensions 2 and above, the GPE
system does not admit bound solitonic states with attractive
self-interactions only.11 However, a novel way to realize such
(quasistable) bound states in high dimensions without any
trapping potential was presented in Refs. [83,84] for a two-
component GPE system, where the stability is provided by
means of a SO coupling term. Generalizing the framework to
a general spin-s system, the energy is

H =
∫

d3x

[
1

2μ
∇ψ†

n · ∇ψn − 1

2μ2
(λρ2 + α (S · S ))

− i gi j ψ
†
n [Ŝi]nn′ ∇ j ψn′

]
. (45)

To simplify matters, here we only consider the case when the
SO coupling operator reduces to the helicity operator, i.e.,
gi j = gδi j giving gi j Ŝi∇ j = g Ŝ · ∇. In order to analyze the
structure of quasistable bound states (if any), consider field
solutions with some characteristic size R and total particle
number N . The three different energy terms, corresponding to

11Although such states can exist in one spatial dimension [79–82].

the usual pressure, self-interactions, and SO coupling, become

Hkin = ckin
N

μR2
,

Hself = − N2

μ2R3
(λcsi + αcsd ) ,

Hso = −gcso
N

R
, (46)

with the total energy equal to the sum of the three, H = Hkin +
Hself + Hso, and where the different c’s are positive constants.
It can be easily seen that for a fixed N , the energy function (as
a function of R) admits a local minimum at

μR = ckin

gcso
+ 1

gcso

(
c2

kin − 3gcso(λcsi + αcsd )N
)1/2

, (47)

implying N < c2
kin(3gcso(λcsi + αcsd ))−1 as the necessary

condition for its existence.12

In Fig. 2 we show a quasistable state obtained for Hamil-
tonian (45) (by evolving the field with imaginary time starting
from a similar initial condition as the previous example, to-
gether with renormalizing the field at every iteration), for a
spin-1 system. We note that the obtained state, when evolved
in real time, had some very mild time dependence. In order
to test the stability of this state, we changed the boundary
conditions to both absorptive and reflective (instead of peri-
odic, in which case both mass and spin are of course perfectly
conserved). With total energy � −0.8 and absorptive bound-
aries, the object only lost about 10−4% of its total norm within
∼33 oscillation cycles (in real time evolution). In Appendix C

12It must be noted that if self-interactions are absent, the assump-
tion of bound states and hence the scaling argument breaks down.
This is because in this case the Hamiltonian commutes with the
momentum operator, rendering any possible eigenstate of H to be
dispersive and/or nonstationary.
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FIG. 2. A stationary state of the Hamiltonian density (46) for a spin-1 system. Working in units where μ = 1, gi j = 2δi j , λ = 3, and
α = 0, the box length is L = 30 in each direction and the grid is N3 = 813. With this, while �x = L/(N − 1) = 0.375, the time step is
ε = 2π (μ/12)(�x)2 ≈ 0.074. The state has a cylindrical symmetry (about the z axis). The left-hand panel shows the number density as seen
in the x − z plane (or equivalently y − z plane), whereas the right-hand panel shows the number density in the x − y plane.

we provide mass and spin conservation plots for all three
boundary conditions.13

B. Cosmological and astrophysical systems

In the contemporary universe, dark matter can be described
by a classical, nonrelativistic, bosonic spin-s field [22]. The
action in Eq. (1) can be used to explore the dynamics of such
dark matter. In this section, we briefly explore the applica-
tions and limitations of using Eq. (1) and our corresponding
algorithm for exploring dark matter dynamics in an astrophys-
ical and cosmological context. For simplicity, we consider
the case where such dark matter only interacts gravitation-
ally with the rest of the standard model, but we will allow
for nongravitational self-interactions within the dark sector
itself.

Gravitational effects. If the spin-s field determines the
dominant energy density in a given region,14 then the po-
tential V (x) → �(t, x) can be thought of as the gravitational
potential due to the dark matter density itself, which is also
the dominant potential determining the dynamics of the dark
matter density. Similarly, the B̄(t, x) can be interpreted as
the gravitomagnetic field generated by the dark matter field
itself. Given our assumption of nonrelativistic dark matter, the

13It must be noted that in this case of SO coupling, the corre-
sponding self-source term J ′ = i∇ × S = p × S may lead to a
nonconservation of total spin, especially if the boundary conditions
are reflective. In this case, any field packet carrying some spin reflects
off from the boundary with a change in the direction of p, resulting
in a change in J ′.

14We assume that such a region is small compared to cosmolog-
ical scales, so cosmological expansion can be ignored. See Sec. 5
in Ref. [71] by some of us on how it can be incorporated in the
algorithm.

gravitomagnetic effects are expected to be small. Explicitly,
for a spatially localized clump of size R and mass M and
with maximal spin Mh̄/μ, the gravitomagnetic term is smaller
than the gravitational potential term in Eq. (1) by a factor of
λ2

c/R2 � 1, where λc = h̄/μc is the reduced Compton wave-
length of the underlying dark matter particle. We caution that
additional relativistic corrections beyond the ones included
in our action are also present and might be equally or more
important; a more careful analysis is warranted (similar to
Ref. [85] in the context of scalars). Furthermore, while there
is a spin-orbit coupling term due to relativistic corrections
in the gravitational system (see, for example, Refs. [86,87]),
it is not clear whether the spin-orbit coupling term used in
this paper can be directly mapped to that one. If the dark
matter field is a subdominant source of energy in a given
region, then potential V can be appended by stronger gravi-
tational potentials due to sources in the vicinity—including,
for example, a black hole. If also rotating, the B̄ could then
be the gravitomagnetic field of such a source. Such gravit-
omagnetic effects from a relativistic source can be probed
by our system. Nevertheless, care is needed to make sure
that we self-consistently include relativistic corrections to
the action as the dark matter field probes the associated
effects.

Including self-interactions. We now turn to nongravita-
tional self-interactions of the dark field. The implications of
such interactions in an astrophysical or cosmological setting
(in particular for higher bosonic fields) have been explored
to an extent in earlier papers by some of us [25,55,71]. We
review them briefly here, with an eye towards demonstrating
the impact of such interactions using our numerical algorithm.
For the scalar case with self-interactions and some associated
effects, see, for example Refs. [88–96]. The precise form of
pointlike self-interactions in the nonrelativistic limit is dic-
tated by the UV structure of the bosonic theory. At the quartic
level in the IR, both density-density and spin-spin interactions
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are possible. They are in fact present in some of the usual
constructions of interacting spin-1 field(s). See, for example,
Refs. [25,55], where the quartic interaction term of the vector
field Aμ takes the form ∼(AμAμ)2, resulting in α = −λ/3 in
the nonrelativistic (IR) limit. Even for the case of a massive
spin-2 field there are quartic self-interactions [56–62], and
it could very well be that both density-density and spin-spin
interactions are present in the IR.15 These interactions play a
significant role in determining the ground state of the system
at fixed particle number. In particular, solitons with different
spin multiplicities are degenerate in energy for fixed particle
number in the absence of self-interactions [22]. However, in
the presence of self-interactions the degeneracy gets broken
[25,55,71]. The physics of higher spin solitons, including their
emergence timescales and related applications (see, for exam-
ple, Refs. [97–100] for the scalar case and Refs. [101,102] for
the spin-1 case), merger dynamics and associated production
of gravitational waves (see, for example, Ref. [103] for the
scalar case and Ref. [104] for the complex spin-1 case), etc.,
can be strongly affected by pointlike self-interactions. There
can also arise important differences when considering merger
rates of solitons, as well as the eventual configurations of
merged objects. Such results are essential for related quan-
titative astrophysical predictions—including the small-scale
mass function in higher spin bosonic dark matter [23], the
generation of electromagnetic radiation from such merged
objects [105], etc.

Numerical examples with gravity and self-interactions Po-
larized ground states. Using our algorithm (with Euclidean
time evolution),16 we have verified that for a spin-1 field
with attractive self-interactions as well as gravity, the zero
spin-multiplicity soliton is the ground state. In the repulsive
interaction case, the ground state is the +1 (or −1) spin-
multiplicity soliton. This is consistent with our analytical
results in Refs. [25,55,71].

Soliton mergers. To explore the effect of self-interactions
on mergers, we carry out three simulations of binary soliton
mergers with identical initial conditions. In all three cases,
the initial solitons are identical, supported by gravitational
interactions alone, and with spin density pointing in the x
direction. Their centers are located along a diagonal of the
xyz coordinate system. See the top panel of Fig. 3. The time
evolution of the spin density in the x − y plane is shown for the
three simulations in the bottom two panels of Fig. 3 (time runs
downward). The left-most frames include only gravitational
interactions. The center frames include gravitational interac-
tion and the spin-independent part of the self-interaction, λρ2.
Lastly, in the right-most frames we show results with all three

15The precise value of the four-point coupling constant λ is dictated
by the UV scales. For the spin-1 case with a Higgs mechanism, λ ∼
g2μ2/M2

h , where g and Mh are the gauge coupling and Higgs mass,
respectively [25,55]. For the spin-2 bigravity case, λ ∼ μ2/m2

pl apart
from some overall constants [22,63].

16In using Euclidean time evolution to find the ground state, we
constantly renormalize the field at each time step. In the case where
nonlinearities are present, the value by which one renormalizes mat-
ters. For example, to construct a soliton with total particle number N ,
we renormalize the field by

√
N at every iteration.

interactions: gravity, spin-independent interaction λρ2, and
spin-spin interaction αS · S. We use α = −λ/3, consistent
with the low-energy effective theory of the Abelian (heavy-
)Higgs model [25,55]. In all three cases, gravity brings the two
solitons together. As the profiles overlap, the self-interaction
starts playing an important role. The differences in the merg-
ers are evident in the late time frames. It is likely that the
fraction of mass emitted during the merger, the timescale of
the merger, as well as the final merged object will differ in the
three cases (this will be pursued quantitatively elsewhere). We
have checked that, in all three cases, spin and mass are con-
served to machine precision, demonstrating that our algorithm
and the corresponding code deals with self-interactions appro-
priately. Corresponding plots are included in Appendix C.

VII. SUMMARY AND DISCUSSION

In this paper we have devised a symplectic algorithm
employing the well-known split-Fourier technique to evolve
arbitrary spin-s Gross-Pitaevskii systems that are relevant for
both AMO systems and astrophysics and cosmology. The
multicomponent or spinor Schrödinger field Ψ transforms as a
vector, in the (2s + 1)-dimensional (irreducible) unitary rep-
resentation of SO(3). With analytic closed-form expressions
for arbitrary spin matrix exponentials, we can simulate arbi-
trary spin-s nonlinear Schrödinger systems containing many
different types of field interactions of general interest. We
consider interactions up to quartic order in the field Ψ, and
to leading order in the nonrelativistic limit. At the quadratic
level, these include interactions of the field with external
scalar and vector potentials (both of which can be spatially
varying in general). For example, in the case of AMO systems,
the external potentials include harmonic traps and magnetic
fields, while in the case of cosmology they include exter-
nal gravitational potential generated by some source. At the
quartic level, we include several interactions, both long and
short ranged. For the long-range interactions, we can have
the dipolar (∼1/r3) self-generated potential in the case of
spinor AMO systems, and the Newtonian gravitational (∼1/r)
self-generated potential in the case of ultralight dark matter
in cosmology. For short-range (pointlike) interactions, we in-
clude both spin-independent and spin-dependent interactions.
The former is proportional to the square of the number density,
while the latter can be further subdivided into two types:
spin-spin interaction being proportional to the norm of the
spin density squared, and spin-singlet interaction involving
two-particle spin-singlet in and out states. Such interactions
are of interest in both AMO systems and integer-spin self-
interacting dark matter cosmology. Last, we also include the
well-known spin-orbit coupling term relevant for many AMO
systems targeted towards studying spinor BECs. We discussed
possible applications of our work in a variety of different
contexts, both in the study of spinor BECs in AMO physics
and dark matter cosmology. For demonstration purposes, we
present some simulation results on both of these fronts. For
the AMO case, we present ground states for two different
scenarios. In the first scenario, the spinor ultracold atomic gas
is subject to a synthetic “hedgehog” magnetic field along with
a radially symmetric harmonic trap. This leads to the trapping
of the field onto a spherical shell along with the emergence of
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FIG. 3. Spin density at different instants in the collision of two spin-1 solitons, as seen in the z = 0 plane. Working in units where μ = 1
and G = 1/8π , the box length in each direction is L = 25 and the grid size is N3 = 1013. Spatial discretization is �x = L/(N − 1) = 0.25,
while the time step is ε = 2π (μ/12)(�x)2 ≈ 0.03. At the start (top figure), two solitons, each of total “mass” 60, were only gravitationally
bound, stationary, and diagonally opposite in the x − y − z space. To capture the effects of gravity, spin-independent, and spin-dependent
interactions, we performed three simulations. In the left-hand panel, gravitational interactions were included, and pointlike interactions were
not. The center panel shows the same scenario but with the addition of spin-independent (attractive) interaction ∝ λρ2 (with λ = 0.03). Finally,
the right-hand panel shows the case when the spin-dependent interaction ∝ αS · S was also included (with α = −0.01). The impact of the
spin-independent and spin-dependent interactions are accurately captured by our numerical evolution. The two times at which the snapshots
(middle and lower panels) are shown are t ≈ 39.5 and t ≈ 45.2, respectively. For comparison, note that the gravitational free fall timescale
tdyn ≡ (r3/GM )1/2 ≈ 22.3, where r is the initial separation between the solitons.

Dirac strings due to an effective “magnetic monopole” field
(where the spin or hyperfine quantum number of the atoms
acts as the charge). In the second scenario, the spinor gas
has attractive quartic self-interactions and is only subject to
a spin-orbit coupling. Such a setup leads to the creation of
quasistable self-bound solitonic states owing to the balancing
of gradient pressure with the attractive self-interactions and
spin-orbit coupling induced attraction together. For the case
of cosmology, we present examples of binary mergers of
spin-1 solitons, with a focus on the role played by the dif-
ferent interactions: long-range gravitational self-interactions,

and short-range spin-independent and spin-dependent self-
interactions. We see features in the three collision cases which
are reflective of the distinct nature of each of the interactions.
The split-step Fourier method (also known as the partitioned
Runge-Kutta method) discussed in this paper is O(ε2) ac-
curate, where ε is the discrete time step.17 With the full

17See Sec. 4.3 of Ref. [101]. While the error at each step is of O(ε3),
the accumulated error grows and the full evolution of the field is only
O(ε2) accurate.
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Hamiltonian broken into drift and kick Hamiltonian pieces
[cf. Eqs. (7)], the accuracy of the integrator can be extended
by applying the kick and drift operations in succession, with
appropriately chosen coefficients in the respective exponents
[106]. We believe that the method we developed here can be
used in a wide range of fields.
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APPENDIX A: CONVENTIONAL SPIN MATRICES
FOR BOSONIC FIELD THEORIES

From a field-theoretic point of view, and specializing to-
wards massive vector (spin-1) and tensor (spin-2) cases, the
field components are usually expressed in a Cartesian ba-
sis. The spin angular momentum in the nonrelativistic limit
is [22]

Sk = s i εi jk[ΨΨ†]i j . (A1)

Here ε is the Levi-Cività symbol, and the quantity [ΨΨ†]i j =
ψiψ

∗
j for the vector, while [ΨΨ†]i j = ψikψ

∗
jk for the tensor

case. From this, we can obtain the spin matrices by decompos-
ing the field Ψ in the spin basis using the polarization vectors
and tensors [22]:

Ψ =
s∑

m=−s

ψm ε
(m)
s,n̂ . (A2)

The set {εm
s,n̂} is orthogonal and complete. That is, we have

Tr
[
ε

(m′ ) †
s,n̂ ε

(m)
s,n̂

] = δm′m ,∑
m

[
ε

(m)
s,n̂ ε

(m)†
s,n̂

]
i j

= 2s + 1

3
δi j . (A3)

Using ansatz (A2) in Eq. (A1), and identifying Sk ≡
ψ∗

m′ [Ŝ′
k]m′mψm, we get the following form for the spin matri-

ces:

[Ŝ′
k]mm′ = s i εi jk

[
ε

(m′ )
s,n̂ ε

(m) †
s,n̂

]
i j . (A4)

Working with the explicit forms of the polarization ten-
sors ε for the spin-1 and spin-2 cases, respectively, it can
be seen that the spin matrices (A5) indeed have the de-
sired Lie algebra of the SO(3) group, and the total spin
squared matrix is equal to s(s + 1) times the identity.
That is,

[Ŝ′
x, Ŝ′

y] = iŜ′
z with all cyclic permutations,

Ŝ
′ · Ŝ

′ = s(s + 1)IN×N , N = 2s + 1 . (A5)

In the next two sections we give the explicit forms for the
spin-1 and spin-2 cases.

1. Spin-1 case

In our working (z) basis, the polarization vectors ε take the
following conventional form [22]:

ε
(±1)
1,ẑ = 1√

2

⎛
⎝ 1

±i
0

⎞
⎠, ε

(0)
1,ẑ =

⎛
⎝0

0
1

⎞
⎠ . (A6)

Using these in Eq. (A5), we get the following explicit forms
for the spin matrices:

Ŝ′
x = 1√

2

⎛
⎝ 0 −1 0

−1 0 1
0 1 0

⎞
⎠ , Ŝ′

y = i√
2

⎛
⎝ 0 1 0

−1 0 −1
0 1 0

⎞
⎠,

Ŝ′
z =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ . (A7)

It can be seen that with the above, we do have relations (A5)
atisfied.

2. Spin-2 case

For the tensor case, the polarization tensors can be obtained
using the spin-1 polarization vectors as

ε
(±2)
2,ẑ = 1√

2

(
ε

(±1)
1,ẑ ⊗ ε

(±1)
1,ẑ

)
,

ε
(0)
2,ẑ = 1√

6

(
2ε

(0)
1,ẑ ⊗ ε

(0)
1,ẑ − ε

(1)
1,ẑ ⊗ ε

(−1)
1,ẑ − ε

(−1)
1,ẑ ⊗ ε

(1)
1,ẑ

)
,

ε
(±1)
2,ẑ = 1√

2

(
ε

(0)
1,ẑ ⊗ ε

(±1)
1,ẑ + ε

(±1)
1,ẑ ⊗ ε

(0)
1,ẑ

)
, (A8)

and take the following form [22]:

ε
(±2)
2,ẑ = 1

2

⎛
⎝ 1 ±i 0

±i −1 0
0 0 0

⎞
⎠, ε

(±1)
2,ẑ = 1

2

⎛
⎝0 0 1

0 0 ±i
1 ±i 0

⎞
⎠, ε

(0)
2,ẑ = 1√

6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (A9)

With these, the spin matrices evaluate to [cf. Eq. (A5)]

Ŝ′
x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0

−1 0 −
√

3
2 0 0

0 −
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Ŝ′
y = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

−1 0
√

3
2 0 0

0 −
√

3
2 0 −

√
3
2 0

0 0
√

3
2 0 −1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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Ŝ′
z =

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎞
⎟⎟⎟⎟⎠ . (A10)

Once again it can be easily seen that relations (A5) are satisfied.

APPENDIX B: EXPLICIT MATRIX EXPONENTIALS FOR SPIN-1, SPIN-2, AND SPIN-3 CASES

1. Spin-1 case

For spin-1 systems, the exponential matrix has the following analytical solution:18

e−iβ n̂·Ŝ = I3×3 − i(n̂ · Ŝ) sin β + (n̂ · Ŝ)2(−1 + cos β ) , (B1)

where

n̂ · Ŝ =

⎛
⎜⎜⎝

nz
nx√

2
− iny√

2
0

nx√
2

+ iny√
2

0 nx√
2

− iny√
2

0 nx√
2

+ iny√
2

−nz

⎞
⎟⎟⎠ . (B2)

2. Spin-2 case

For spin-2 systems, we have the following closed-form expression:

e−iβ n̂·Ŝ = I5×5 + i(n̂ · Ŝ)

(
−4

3
sin β + 1

6
sin 2β

)
+ (n̂ · Ŝ)2

(
−5

4
+ 4

3
cos β − 1

12
cos 2β

)

+ i(n̂ · Ŝ)3

(
1

3
sin β − 1

6
sin 2β

)
+ (n̂ · Ŝ)4

(
1

4
− 1

3
cos β + 1

12
cos 2β

)
,

where n̂ · Ŝ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2nz nx − iny 0 0 0

nx + iny nz

√
3
2 nx − i

√
3
2 ny 0 0

0
√

3
2 nx + i

√
3
2 ny 0

√
3
2 nx − i

√
3
2 ny 0

0 0
√

3
2 nx + i

√
3
2 ny −nz nx − iny

0 0 0 nx + iny −2nz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

3. Spin-3 case

For the spin-3 case, we get the following closed-form expression:

e−iβ n̂·Ŝ = I7×7 + i(n̂ · Ŝ)

(
−3

2
sin β + 3

10
sin 2β − 1

30
sin 3β

)
+ (n̂ · Ŝ)2

(
−49

36
+ 3

2
cos β − 3

20
cos 2β + 1

90
cos 3β

)

+ i(n̂ · Ŝ)3

(
13

24
sin β − 1

3
sin 2β + 1

24
sin 3β

)
+ (n̂ · Ŝ)4

(
7

18
− 13

24
cos β + 1

6
cos 2β − 1

72
cos 3β

)

+ i(n̂ · Ŝ)5

(
− 1

24
sin β + 1

30
sin 2β − 1

120
sin 3β

)
+ (n̂ · Ŝ)6

(
− 1

36
+ 1

24
cos β − 1

60
cos 2β + 1

360
cos 3β

)
,

(B4)

18For the spin-1/2 case where Ŝ = σ̂/2, the matrix exponential is the same as in Eq. (B3) with the replacements I3×3 → I2×2, n̂ · Ŝ → 2 n̂ · Ŝ,
and β → β/2 in the right-hand side of Eq. (B3).
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FIG. 4. Plot showing conservation of total particle number and spin magnitude (up to machine precision), for the state shown in Fig. 1.
In general this demonstrates satisfactory performance of our algorithm for handling a Zeeman term with arbitrary spatially dependent magnetic
field (with any overall time dependence). Note that the vertical is a logarithm of the fractional change in conserved quantities and that mass
and spin are conserved to one part in 1013.

where

n̂ · Ŝ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3nz

√
3
2 nx − i

√
3
2 ny 0 0 0 0 0√

3
2 nx + i

√
3
2 ny 2nz

√
5
2 nx − i

√
5
2 ny 0 0 0 0

0
√

5
2 nx + i

√
5
2 ny nz

√
3nx − i

√
3ny 0 0 0

0 0
√

3nx + i
√

3ny 0
√

3nx − i
√

3ny 0 0

0 0 0
√

3nx + i
√

3ny −nz

√
5
2 nx − i

√
5
2 ny 0

0 0 0 0
√

5
2 nx + i

√
5
2 ny −2nz

√
3
2 nx − i

√
3
2 ny

0 0 0 0 0
√

3
2 nx + i

√
3
2 ny −3nz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

In general with relations (34) and (35) for the coefficients appearing in the exponential of the spin matrices (33), and the
expression (8) for the spin matrices, we can easily get analytical forms for e−iβ n̂·Ŝ for any arbitrary integer spin system.

APPENDIX C: PERFORMANCE PLOTS

In this Appendix, in order to demonstrate the fidelity of our scheme, we present both mass and spin conservation for the three
cases presented in the main text. Figure 4 presents the fractional change in the total mass and norm of the total spin as a function
of time, when the obtained stationary state, as shown in Fig. 1 for the effective magnetic monopole case, is evolved through real
time. Figure 5 shows the same quantities for the quasistable state obtained for our spin-orbit coupling case (see Fig. 2), when
evolved through real time. Finally, in Fig. 6 we show the fractional change in total mass and norm of the total spin, for the case

FIG. 5. Plot showing conservation of total particle number for the quasistable state shown in Fig. 2. As mentioned in the main text, the
state has a very mild time dependence due to which it tends to dissipate energy towards the boundary. This effect is captured by imposing
absorbing boundary conditions leading to nonconservation of total particle number. For periodic boundary conditions, the total number is once
again preserved up to machine precision. As noted in the legend, the vertical axis is log(·) of respective quantities.
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FIG. 6. Same plot as Fig. 4, for the two spin-1 soliton collision scenario presented in Fig. 3, including gravitational self-interactions, and
both the density-density and spin-spin short-range self-interactions (corresponding to the right-most panel of Fig. 3). As seen in the plots, the
preservation of mass and spin in this case is at the order of 10−12.

of a two-soliton collision shown in Fig. 3 (with all interactions turned on), while in Fig. 7 we show the reversibility feature of
the algorithm (for the same collision scenario). Similarly as in Ref. [101], we have defined the reversibility factor, γ (t ), as

γ (t ) ≡
(

1

N

∫
d3x |Ψ+(x, t ) − Ψ−(x, t )|2

)1/2

. (C1)

Here N is the total rescaled mass (which is already conserved up to machine precision as shown above); the subscript “+”
denotes the forward evolved field starting from some initial condition Ψ(x, ti ) up to a final configuration Ψ(x, t f ), while the
subscript “−” denotes the reverse evolved field, starting from the initial condition Ψ(x, t f ) and time reversed (ε → −ε in the
simulation). As is evident, this factor gives a direct measure of the separation between the forward and backward field trajectories
in state space.

All of these curves reflects the fidelity of the symplectic and reversible nature of our algorithm, containing many different
types of field self-interactions that are relevant in both AMO systems and light-dark matter cosmology.

FIG. 7. A (logarithmic) plot of the reversibility factor γ (t ), for the two spin-1 soliton collision scenario for all interactions, where γ is
defined in Eq. (C1).
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