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Lead Green’s functions from quadratic eigenvalue problems without mode velocity calculations
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In quantum transport calculations, the proper handling of incoming and outgoing modes for retarded Green’s
functions is achieved via the lead self-energies. Computationally efficient and accurate methods to calculate the
self-energies are thus very important. Here we present an alternative method for calculating lead self-energies
which improves on a standard approach to solving quadratic eigenvalue problems that arise in quantum transport
modeling. The method is based on a perturbative analysis of the generalized Schur decomposition to determine
the relevant set of eigenvalues for transmitting modes. This allows us to circumvent finding the velocities of the
modes (left- or right-moving) that are needed in order to calculate the lead Green’s function from translationally
invariant Green’s functions. This saves computational time irrespective of the value of the imaginary part added
to the energy. We compare our method with two existing methods—a popular iterative method and a standard
eigenvalue method that explicitly calculates the velocities of the propagating modes. Our comparison shows that
both eigenvalue methods are more robust than the iterative method. Furthermore, the comparison also shows that
above a small threshold of propagating modes, the standard eigenvalue method requires extra computation time
over our perturbation method. This excess of computation time grows linearly with the number of propagating
modes.
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I. INTRODUCTION

A central quantity in quantum transport calculations are
the lead self-energies [1,2]. The self-energies play the role
of representing the asymptotic behavior of the system, which
in traditional scattering theory is composed of outgoing and
incoming wave solutions [3]. In the context of quantum trans-
port, the system under study is defined as the central part,
or scattering area, that determines the propagation through
the system, but the properties of the incoming and outgo-
ing modes are encoded in the self-energies [2]. In the usual
language of quantum transport, the region of space connect-
ing the scattering area to infinity is called the leads [4,5].
The self-energies are related to the Green’s functions of the
leads, which we will define in detail later. Once the leads
are attached to the scattering area, particles within the scat-
tering area can leak out, i.e., the states will acquire a finite
lifetime. The lifetime, and energy shift, due to the leads can
be extracted from the imaginary, and real, part of the self-
energies, respectively [6]. The self-energies are in general
complex-valued, even though the underlying Hamiltonians are
Hermitian and thus have real eigenenergies.

The self-energies are determined by the Green’s functions
(GFs) of the leads, often referred to as the surface GF. They
can be solved analytically for some simple cases where the
transverse and longitudinal directions are decoupled [2] or
when the matrices involved are small [7,8], but in general
they have to be calculated numerically. The methods to cal-
culate the lead Green’s function can be separated into two
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categories: (i) iterative methods and (ii) eigenvalue meth-
ods. The work horse of the iterative method, introduced by
Lopez-Sancho et al., calculates the surface GF using a deci-
mation method [9].

The eigenvalue method in connection with quantum trans-
port can be traced back to Ando [10], where a quadratic
eigenvalue problem was solved. The concept of removal
invariance was used to derive self-consistent equations for
surface Green’s functions [11] and also to derive quadratic
equations for the Green’s function [12]. The same quadratic
eigenvalue problem was formulated by Dy, Wu, and Spratlin
[13]. This method has also been applied to ab initio compu-
tational problems [14–16]. The method has been explained in
detail [17,18] and applied to numerous system [19–24]. The
wave-function method [25] is related to the eigenvalue method
of finding the surface Green’s functions [26].

In the eigenvalue method [14–17,19–21,27], the GF of the
half-infinite lead is obtained from the infinite system, where
Bloch’s theorem can be used. Converting the Bloch form
to the surface GF requires knowledge of the velocity of the
propagating modes, which have to be calculated separately to
identify which eigenvalues to use [18]. It was even pointed
out that a crucial step in the derivation may break down if two
propagating modes have zero velocity, although this seems not
to be a critical point for most realistic systems [18].

In this work, we will present an alternative, efficient, way to
determine which eigenvalues to use for solving the quadratic
eigenvalue problem without having to find the velocities of
the propagating modes. Our method follows the standard way
of solving the quadratic eigenvalue problem, but we will use
at the level of the generalized Schur decomposition (GSD) a
perturbation analysis to select which eigenvalues to use, thus
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FIG. 1. A half-infinite chain with sites l = 1, 2, 3, . . . where
each site is described by a matrix H and coupling V (V †) to the
right (left) side neighbor. An additional site is described by H0 and
coupling V0, and if H0 = H and V0 = V , then the Green’s function
on site 1 and 0 should be the same.

bypassing the velocity-finding part. The present method can
be used for any algorithm using GSD, such as for order N
methods [28], and also wave mode decomposition [29].

The paper is organized as follows. To clarify the underly-
ing concepts, a review of the standard quadratic method for
calculating self-energies is presented in Sec. II. In Sec. III, we
outline the standard solution approach, i.e., the GSD, for the
eigenvalue problem, and we introduce our method of eigen-
value selection. In the final section, we consider two test cases
in which we compare our method with the standard eigenvalue
method and the iterative method.

II. GENERAL SELF-ENERGY MODEL

Our starting point is a general tight-binding model repre-
sented in Fig. 1, which shows a half-infinite chain with sites
labeled l = 1, 2, . . . and all sites represented by a Hermitian
matrix H . The coupling between sites l and l + 1 is given by
the matrix V and, correspondingly, V † describes the coupling
between sites l and l − 1. The matrices V and H have the same
dimension N × N , where N can represent, e.g., the number of
transverse points in a 2D or 3D system [15,20], spin, or any
other internal degree of freedom, e.g., spd-orbitals [14–16].
The Green’s function for the chain (sites l � 1) is denoted
by Gc. The quantity of interest is the Green’s function for
site l = 1, i.e., [Gc]1,1 ≡ G1,1, sometimes called the surface
Green’s function. If a new site l = 0 is attached to the chain,
with on-site matrix H0 and coupling matrix V0 that describes
the coupling between l = 0 and 1, the Green’s function of site
l = 0 is given by

G0,0 = (E − H0 − V0G1,1V
†

0 )−1; (1)

see Appendix A for a detailed derivation. Note that the self-
energy due to the chain is defined as

�c = V0[Gc]1,1V
†

0 . (2)

If site l = 0 is identical to the other l > 0 sites, i.e., H0 =
H and V0 = V , then the chain is again a half-infinite chain
with identical on-site matrices H and couplings V and thus we
have that G0,0 = [Gc]1,1 ≡ G, and the equation for the surface
Green’s function, G, is then

G = (E − H − V GV †)−1, (3)

which reduces to a quadratic matrix equation

(E − H )G − V GV †G = I. (4)

Note that Eq. (4) is valid for any V or H , and specifically V
can be rank-deficient. For completeness, we point out that the
Green’s function in Eq. (4) would correspond to the (R)ight
Green’s function GR, and the corresponding equation for the
(L)eft Green’s function would be

(E − H )GL − V †GLV GL = I, (5)

which is structurally the same quadratic equation, the only
difference being the interchange of V and V †.

Equation (4) is a common starting point when calculating
the surface Green’s function. It is important, however, to keep
in mind that Eq. (4) is derived from an infinite matrix equa-
tion, whose solution relied on summing a geometric series
of the eigenvalues [13]. The series only converge when the
eigenvalues lie on or within the unit circle in the complex
plane [13]. This places a natural condition on the physically
relevant eigenvalues, which allows us to use efficient means
to calculate the Green’s functions.

Our goal is to directly solve this quadratic equation without
having to find the Green’s function of the infinite system
using translational invariance [17,18]. To construct the surface
Green’s function from the translationally invariant one, the
transmitting states on the unit circle have to be identified
and separated into left-moving and right-moving states [18].
This in turn requires additional computation time that grows
linearly with the number of eigenvalues on the unit circle, i.e.,
the number of transmitting states, which the current method
bypasses.

Equation (4) can be transformed into a standard quadratic
equation by right-multiplying with V †, which results in

V (GV †)2 − (E − H )(GV †) + V † = 0. (6)

This equation is the starting point of our analysis. Assuming
that GV † is diagonalizable, then it can be written as

GV † = U<�<U −1
< , (7)

where �< = diag{λn} is a diagonal matrix containing the
eigenvalues, and U< contains the eigenvectors as columns vec-
tors [30]. The < subscript is used here to emphasize that the
eigenvalues should fulfill |λn| < 1 [13,31]. Indeed, the inter-
site Green’s function Gn,0 can be written as (see Appendix B)

Gn,0V
† = (G0,0V

†)n+1 (8)

= U<�n+1
< U −1

< , (9)

which highlights that eigenvalues |λn| > 1 would lead to di-
verging solutions as a function of the intersite distance.

The remaining task is to find the eigenvalues and vectors in
Eq. (7). Inserting Eq. (7) into (6) and right-multiplying with
U< results in

VU<�2
< − (E − H )U<�< + V †U< = 0. (10)

The nth column (n = 1, 2, . . . , N) of the matrix in Eq. (10) is
given by (

V λ2
n − (E − H )λn + V †

)
xn = O, (11)

since U< = [x1, x2, . . . , xN ], where xn is a column eigenvec-
tor corresponding to eigenvalue λn [30]. This is a quadratic
eigenvalue problem that our aim is to solve. We can ob-
tain useful information about the eigenvalues λn by studying
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FIG. 2. Eigenvalues for the Schrödinger equation solved for a
two-dimensional wire with Rashba spin-orbit interaction as de-
scribed in Sec. IV with side length Ly. The energy E is measured
in the hopping parameter t and momentum k in inverse grid spac-
ing a−1. The dimension of the matrices V and H is N = 50. Parts
(a)–(c) show the 2N eigenvalues of the quadratic eigenvalue problem
for (a) E = 0.5E0, (b) E = 2E0, and (c) E = 6E0. Part (d) shows
the corresponding dispersion energies as a function of k, with the
dashed lines indicating E = 0.5E0, 2.0E0, and 6.0E0 showing the
number of propagating modes: (a) E = 0.5E0 has no propagating
modes, (b) E = 2E0 has four propagating modes, and (c) E = 6E0

has eight propagating modes.

the properties of Eq. (6). By right-multiplying Eq. (6) by
(GV †)−2U and taking the Hermitian conjugate, one obtains

U †V † − ((�∗)−1)U †(E − H ) + ((�∗)−1)2U †V = 0. (12)

Each line of the above equation is of the form

x†
n(V (1/λ∗

n )2 − (E − H )(1/λ∗
n ) + V †) = O, (13)

which shows, by comparison of Eqs. (11) and (13), that the
eigenvalues come in pairs (λn, 1/λ∗

n ). This result can be ob-
tained by looking at the characteristic polynomial [13]. This
means that it can be hard to distinguish between eigenvalues
in a given pair when they are close to the unit circle. For
eigenvalues on the unit circle, λn = eiθn = 1/λ∗

n, and only by
adding an imaginary part to E can they be distinguished,
i.e., which of the eigenvalues of the pair to keep in Eq. (7)
[13]. This behavior can be seen in Fig. 2, which shows the
eigenvalues for the Schrödinger equation solved on a two-
dimensional strip in the presence of spin-orbit interaction and
a perpendicular magnetic field [32,33]. The magnetic field is
used here to illustrate that the distribution of eigenvalues λ

does not have to be symmetric around the real axis. The value
of the magnetic field B is set by the ratio �c/Ly = 0.3, where

�c =
√

h̄
eB is the magnetic length. The details of the model will

be discussed in Sec. IV and Appendix C. Figure 2 shows the
eigenvalues for energies E/E0 (a) 0.5, (b) 2.0, and (c) 6.0 for
a two-dimensional wire with Rashba spin-orbit interaction as
described in Sec. IV. The number of eigenvalues lying on the
unit circle corresponds to the number of propagating modes
as seen in Fig. 2(d), where E/E0 = 0.5, 2.0, and 6.0 have
zero, four, and eight intersection points, respectively, with the
dispersion curves. Note that when counting the number of
intersections points, one has to account for spin (doubling of
eigenvalues).

III. SOLVING THE EIGENVALUE PROBLEM

The standard way of solving quadratic eigenvalue prob-
lems is to linearize the quadratic problem [30]. Since our
method of choosing the proper subset of eigenvalues relies
on the specific structure of the matrices and also the details
of the GSD [30,34], we will outline it here for completeness.
The quadratic eigenvalue problem in Eq. (11) can be rewritten
into the standard linear, generalized eigenvalue problem by
introducing a new vector u = (x, λx)T . This leads to a linear
problem with matrices twice the size,

λ

(
1 0
0 V

)(
x
λx

)
−

(
0 1

−V † [(E + iη) − H]

)(
x
λx

)
=

(
0
0

)
,

(14)

where we have introduced a positive infinitesimal imaginary
part iη to E , where η = 0+. This ensures that the resulting GF
is retarded, and for a negative infinitesimal imaginary part the
advanced GF is obtained. Equation (14) can be written more
concisely as

λBu − Au = 0, (15)

where the matrices A and B are defined as

A =
(

0 1
−V † [(E + iη) − H]

)
= A0 + iη

(
0 0
0 I

)
, (16)

where the matrix A0 is defined at the value of A at η = 0 and

B = B0 =
(

1 0
0 V

)
, (17)

where B = B0 since η does not appear in B. Note that B can be
singular if V is rank-deficient, which naturally occurs in, e.g.,
graphene nanoribbons [35,36]. As was discussed above, only
the eigenvalues with |λ| � 1 are physically relevant, and the
transmitting states with |λ| = 1 need to be analyzed carefully
to correctly identify which of those to include since only half
of the |λ| = 1 are allowed.

Perturbation analysis for |λ| = 1 eigenvalues

Determining which |λ| = 1 get pushed into the unit circle
is of vital importance for finding the proper surface Green’s
function. The starting point of the GSD is finding the unitary
matrices Q and Z and the triangular matrices T and S such
that [30]

Q†AZ = T, (18)

Q†BZ = S, (19)

which can be done using standard LAPACK routines, e.g.,
zgges, or any other standard numerical packages. Using the
definition of A0 and B = B0, we write

Q†
0A0Z0 = T0, (20)

Q†
0BZ0 = S0, (21)

which forms the starting point of our analysis. First we use
the properties of unitary matrices Q† = Q−1 and Z† = Z−1,
and we assume a small perturbation, i.e., we throw away all
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η2 terms. Defining

Q = Q0 + ηδQ, (22)

we write

Q†Q = (Q0 + ηδQ)†(Q0 + ηδQ)

= Q†
0Q0 + η[Q†

0δQ + (δQ)†Q0] + O(η2) ≡ I, (23)

QQ† = (Q0 + ηδQ)(Q0 + ηδQ)†

= Q0Q†
0 + η[Q0(δQ)† + δQQ†

0] + O(η2) ≡ I, (24)

which result in the conditions

Q†
0Q0 = Q0Q†

0 ≡ I, (25)

Q†
0δQ + (δQ)†Q0 ≡ 0. (26)

This matrix equation in Eq. (26) is fulfilled when

δQ = iQ0. (27)

The same holds for the unitary matrix Z , so we get

Q = Q0 + iηQ0 = Q0(1 + iη), (28)

Z = Z0 + iηZ0 = Z0(1 + iη). (29)

Now going back to the GSD in Eq. (18) for A, we obtain

Q†AZ = Q†
0(1 − iη)(A0 + iηI22)Z0(1 + iη)

= T0 + ηδT, (30)

which gives the conditions

T0 = Q†
0A0Z0, (31)

δT = iQ†
0I22Z0. (32)

Correspondingly for the B equation, we obtain

Q†BZ = Q†
0(1 − iη)BZ0(1 + iη)

= Q†
0BZ0

= S0 + ηδS, (33)

which gives the condition

S0 = Q†
0BZ0, (34)

δS = 0. (35)

The eigenvalues of the original problem are given by the ratio
[30]

λn = [T ]n,n

[S]n,n
(36)

and for the η = 0 case

λ0
n = [T0]n,n

[S0]n,n
. (37)

Since S = S0, we can write the eigenvalues in terms of the
perturbation as

λn = [T0 + ηδT ]n,n

[S0]n,n
= [T0]n,n + η[δT ]n,n

[S0]n,n
, (38)
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FIG. 3. Comparison of the time required to solve the graphene
nanoribbon problem with the standard eigenvalue method and the
perturbation eigenvalue method as a function of the number of con-
ducting bands Nbands.

where [δT ]n,n = [iQ†
0I22Z0]n,n. The eigenvalues on the unit

circle need to be considered separately, i.e., which are moved
inside the unit circle and which are not. The |λ0

n| = 1 eigen-
values are modified in the presence of iη such that their
length is

|λn|2 =
∣∣∣∣ [T0]n,n

[S0]n,n

∣∣∣∣
2∣∣∣∣1 + η

[δT ]n,n

[T0]n,n

∣∣∣∣
2

(39)

= 1 + 2ηR
{

[δT ]n,n

[T0]n,n

}
+ O(η2). (40)

Here the crux of the matter is that only the sign of the real part
of [δT ]n,n/[T0]n,n is needed, i.e., in determining which states
will get pushed inside the unit circle and which will be pushed
outside. This important point is the key result of our method,
i.e., we can uniquely identify which |λn| = 1 eigenvalues get
pushed into the unit circle without having either to calculate
the mode velocity or to use η explicitly. Once the eigenvalues
|λ0|2 = 1 are distinguished, the eigenvalues are rearranged
and the Green’s function can then simply be written as [see
Eq. (3.44) in [18]]

GV † = Z†
11Z12, (41)

where the subspace 1 is determined by having |λn| < 1, and
subspace 2 is determined by having |λn| > 1 [18]. Note that
we never need η explicitly, we simply use [δT ]n,n and [T0]n,n,
which are independent of η [27].

We can compare this method with the standard method
of choosing the propagating eigenvalues for the sign of the
velocity. Let us define Nsl as the number points in a slice (see
Fig. 4), Nbands as the number of propagating energy bands, and
Ts as the number of operations for a full QZ factorization. The
full QZ factorization takes Ts = 66(2Nsl )3 = 66 × 8N3

sl [30].

055304-4



LEAD GREEN’S FUNCTIONS FROM QUADRATIC … PHYSICAL REVIEW E 108, 055304 (2023)

a

a
Ly

(a)

a

a

(b)

Ly

FIG. 4. Schematics that show how the wires are discretized and
sliced. All slicings are along the y-direction. (a) The Rashba system
is discretized on a regular rectangular grid and sliced in slices that
are one grid point thick. (b) The graphene nanoribbon system is
discretized on a hexagonal grid defining the graphene structure, and
each slice is wide enough to contain one hexagon substructure.

Finding the velocity of a given mode takes

(
2

3
N3

sl × 2[iteraction]

)
4[spin×left+right]Nbands = 2 Nbands

3 × 66
Ts

= αNbands, (42)

where at least two iterations are needed to find the eigenvalues
[30], and 2

3 N3
sl operations are required to find the eigenvector

of each mode. Note that to find the transmitting eigenval-
ues, the original Schrödinger equation can be solved, not the
doubled problem in Eq. (14) [18]. Using Eq. (42), we can
deduce that for Nbands = 12, the total computation time will
increase by ≈10%, and for Nbands = 50 the computation time
will increase by half. Figure 3 shows a comparison of the
time required to compute the self-energy of the Rashba strip
(described below) with the standard method and the pertur-
bation method described above as a function of time. In the
figure, we see that the time required for the standard method
scales linearly with the number of propagating bands. From
the estimate in Eq. (42), one obtains αest = 2

3×66 Ts ≈ 0.010Ts,
and the numeric result is αnum ≈ 0.0099Ts. In contrast to
the standard method, the time required for the perturbation
method is constant with respect to the number of propagating
bands. So once the number of propagating bands becomes
substantial, relevant for, e.g., ab initio calculations [14], the
computational cost of calculating the velocities with the stan-
dard method becomes quite costly compared to our method.

IV. RESULTS

In the following, we will make a comparison [38] of the
two eigenvalue methods, which are described above, and
the Lopez-Sancho method [9]. As explained above, with the
eigenvalue method, Eq. (15) can be solved without explicitly
adding to the energy the infinitesimal complex part η. This
corresponds to using matrices A0 and B0 in Eqs. (16) and
(17). However, turning η to zero can result in the regular
eigenvalue method becoming unstable. This can be largely
fixed by Schur-factorizing. More difficult instabilities in the
eigenvalue calculations can be solved by reintroducing the
infinitesimal complex part η. Often roughly one order of mag-
nitude above the machine precision is enough. Note that in
these difficult cases, a nonzero η is required in calculating
the eigenvalues themselves. That is, they are not introduced
to separate eigenvalues internal and external to the unit circle
in the complex plane.

In our comparison, we will consider two cases of two-
dimensional half-infinite quantum wires of width Ly. The first
case is a wire with Rashba spin-orbit interaction [32,33]. The
second case is a wire constructed out of graphene armchair
nanoribbon [35,36]. Both systems are confined on the upper
and lower y-axis boundary with an infinite hard-wall potential.
Figure 4 shows how the wires are discretized and sliced into
connected subsystems.

In both cases, the η is varied from 1.0 × 10−16 (lower than
the machine epsilon) to 1.0 × 10−13 in steps of one order of
magnitude. Note that this is done for all three methods even
though it should not effect the reordering of eigenvalues for
the perturbation eigenvalue method. For both systems, we use
98 × 98 H and V matrices. The form of the matrices H and
V for the Rashba system is shown in Appendix C, and the
corresponding form for the graphene nanoribbon system can
be found in [36].

A. Rashba system

The first case that we consider is the calculation of
self-energy for a half-infinite wire of 2D electron gas in-
cluding a Rashba spin-orbit interaction corresponding to
kRLy = 1, see Appendix C, with the number of transverse
points Ny = 49 (which gives N = 2Ny = 98 due to spin).
We use all three methods to calculate the self-energy over
an energy range from E = 0 to 10E0 with an interval
of 0.05E0 between energy points, where E0 = h̄2π2/2mL2

y
is the energy of the lowest transverse eigenstate, in the
absence of Rashba interaction. Each method is repeated
10 times, and the minimum time required to calculate the self-
energy is recorded for each energy value. We also record the
backward error of the solution to Eq. (6) at each energy value
for all the methods. The results are shown in Fig. 5, where we
compare the results for all three methods—the perturbation
eigenvalue method, the standard eigenvalue method, and the
Lopez-Sancho method.

Figures 5(a), 5(b) and 5(c) show for reference the band
structure of the system. For the range of energy that we use,
there are three energy branches that correspond to the lowest
three branches of transverse modes of the system. The Rashba
field splits each branch into two energy bands. The time re-
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FIG. 5. Timing result and backward error as a function of energy for the Rashba system. The energy band of the system is shown for
reference in (a), (b), and (c). The timing results are shown in (d) for the perturbation eigenvalue method, in (e) for the standard eigenvalue
method, and in (f) for the Lopez-Sancho method. The backward error is shown in (g) for the perturbation eigenvalue method, (h) for the
standard method, and (i) for the Lopez-Sancho method. The insets in (d) and (e) highlight the difference in calculation time of the eigenvalue
methods at an opening of a new energy band.

quired to calculate the self-energy is shown in Figs. 5(d), 5(e)
and 5(f) for the perturbation eigenvalue method, the standard
eigenvalue method, and the Lopez-Sancho method, respec-
tively. Here all times are scaled in Ts, which corresponds to
the lowest value of time measured for the solution of the
eigenvalue methods. In Figs. 5(d) and 5(e), the insets highlight
the calculation time at an opening of a new energy band.

From Figs. 5(d) and 5(e) we see that the perturbation
eigenvalue method and the standard eigenvalue method re-
quire overall roughly the same amount of time to calculate
the self-energy of the system for this energy range. The per-
turbation eigenvalue method shows a negligible change in
time required to calculate the self-energy as a function of
energy. Upon close inspection [see the inset in Fig. 5(e)],
the standard eigenvalue method shows a stepwise increase
in time with energy. This step is repeated at the opening for
each band. Overall, the step structure of the calculation time
of the standard eigenvalue method starts by requiring slightly
less time than the perturbation eigenvalue method when there
are no energy bands open, but requiring more time with each

energy band that opens. This is because the calculation of the
velocities involves diagonalizing a subspace that grows with
the number of open energy bands. For this range of energy, the
Lopez-Sancho method outperforms both eigenvalue methods.
The time required for the Lopez-Sancho method to calculate
the self-energy is roughly half that of the eigenvalue methods.
The time is fairly stable within the energy range that contains
open bands, but it increases slightly with lower values of η.
However, the Lopez-Sancho method is not as stable as the
eigenvalue methods. This can be seen in Figs. 5(g), 5(h) and
5(j), which show the backward error, a measure of how well
the calculated solution fulfills the original equation, Eq. (4),
for each method. Figures 5(g) and 5(h) show that both of
the eigenvalue methods are very robust, producing solutions
with roughly the same low amount of backward error over
the whole energy range. However, the standard eigenvalue
methods show an increase in backward error at the opening
of new energy bands. This is not seen in the perturbation
eigenvalue method, and it is due to diagonalizing near-zero
velocity subspaces in the standard method that are close to
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FIG. 6. Timing results and backward error as a function of energy for the graphene nanoribbon system. The energy band of the system
is shown for reference in (a), (b), and (c). The timing results are shown in (d) for the perturbation eigenvalue method, in (e) for the standard
eigenvalue method, and in (f) for the Lopez-Sancho method. The backward error is shown in (g) for the perturbation eigenvalue method,
(h) for the standard eigenvalue method, and (i) for the Lopez-Sancho method.

being singular. In Fig. 5 we see that the backward error of the
solutions produced by the Lopez-Sancho method has more
fluctuations, and for some cases of low η values and high
energies it gives wrong solutions (backward error close to or
larger than 1).

B. Graphene nanoribbon system

Results from calculations of the self-energy of the
graphene nanoribbon case are shown in Fig. 6. The self-
energy of this system is calculated for energies ranging from
−5t to 5t with intervals of 0.05t between points, where t
is the hopping integral. Figures 6(a), 6(b) and 6(c) show
the energy bands of the system for reference. In Figs. 6(d),
6(e) and 6(f) we have the time required to calculate the self-
energy with the perturbation eigenvalue method, the standard
eigenvalue method, and the Lopez-Sancho method, respec-
tively. Note that the time is scaled in time units Ts that
correspond to the smallest calculation time for the eigenvalue
methods.

The backward error of the solution to Eq. (6) pro-
duced by the perturbation eigenvalue method, the standard
eigenvalue method, and the Lopez-Sancho method are shown
in Figs. 6(g), 6(h) and 6(i), respectively.

We see in Fig. 6(g) that the time required to find the
solution to Eq. (4) with the perturbation eigenvalue method is
fairly stable over the whole energy range, remaining slightly
above Ts. However, the time required for the standard eigen-
value method [see Fig. 6(h)] requires extra time proportional
to the number of open energy bands [see Fig. 6(b)]. For this
system, the Lopez-Sancho method is considerably slower, re-
quiring, as seen in Fig. 6(i), about two to three times more
calculation time. The solution time is also more scattered
due to the fact that the Lopez-Sancho method is an iterative
method.

The backward error of the two eigenvalue methods, seen in
Figs. 6(g) and 6(h), is very low over the whole energy range
except at energies E = −1t , 0t , and 1t . This is due to the fact
that the problem of finding eigenvalues is unstable at these
points. At the E = −1t and +1t points, the energy bands
form vertical structures, marked with orange in Figs. 6(a),

055304-7



THORGILSSON AND ERLINGSSON PHYSICAL REVIEW E 108, 055304 (2023)

6(b) and 6(c) and shown in the inset in Fig. 6(a), resulting
in the matrix E -H becoming rank-deficient. The instabilities
at energies E = −1t and +1t are resolved by adding η above
machine epsilon. However, the instability at E = 0 persists
but with lower backward error as η is increased.

In Fig. 6(i) we see that the backward error for the
Lopez-Sancho method is larger than 100 orders of magnitude
for many energy values with η < 10−14 and a few energy val-
ues with η < 10−13. Also for the Lopez-Sancho method, the
solution for the energy values E = −1t , E = 0t , and E = 1t
seems to be unstable and is not fully solved with higher η at
energy values E = −1t and 1t .

V. CONCLUSIONS

Here we presented an alternative method to calculate the
surface Green’s functions of infinite chains that are relevant
for transport in nanostructures. Our method does not require
finding the mode velocities, thus it saves computational time.
The computational time required to find the mode velocities

increases linearly with the number of transmitting bands,
which in the case of 50 modes leads to a 50% increase in
computation time to find the surface Green’s function. The
present method circumvents the velocity-finding step leading
to a fixed computational time irrespective of the number of
transmitting modes. We presented an outline of the compu-
tational methods, and we also performed detailed numerical
calculations comparing our method to the traditional velocity-
finding method and the Lopez-Sancho algorithm. In terms of
computation time and accuracy, the present method outper-
forms them both.
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APPENDIX A: SURFACE GREEN’S FUNCTION

The full Green’s function of the infinite chain is determined
by the equation

⎛
⎜⎜⎜⎜⎝

(E − H0) −V0 0 · · ·
−V †

0 E − H V 0

0 −V † (E − H )
... 0 . . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

G00 G0,1 G0,2

G1,0 G1,1 G1,2

G2,0 G2,1 G2,2

. . .

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

I 0 0

0 I 0

0 0 I
. . .

⎞
⎟⎟⎟⎟⎠, (A1)

where the Hamiltonian matrix is block-tridiagonal. The
vertical and horizontal lines indicate the submatrices for site
l = 0 and sites l > 0 and the coupling between them, which
is determined by V0. It is convenient to rewrite the above
equation on a 2 × 2 form,(

E − H0 −V

−V † EI − H

)(
G00 G0,c

Gc,0 Gc

)
=

(
I O

O† I

)
.

(A2)

Writing out the equations corresponding to block matrix ele-
ments (1,1) and (2,1) results in the following two equations:

(E − H0)G00(E ) − VGc,0(E ) = I, (A3)

−V †G00(E ) + (EI − H)Gc,0(E ) = O†, (A4)

from which we obtain obtain an equation for the Green’s
function of site l = 0,

(E − H0)G00(E ) − (V (EI − H)−1V †)G00(E ) = I. (A5)

By definition, the Green’s function of the l > 0 chain is given
by Gc(E ) = (EI − H)−1. Due to the fact that only the l = 1
block of V is nonzero, the triple matrix product VGcV † is
also only nonzero in the l = 1 block,

[VGRV
†]1,1 = V [GR]1,1V

† = V G1,1V
†. (A6)

Using Eq. (A6), we can rewrite Eq. (A5) as

((E − H0) − (V G1,1V
†))G0,0 = I, (A7)

which is Eq. (1) in the main text.

After Eq. (4) is converted into the standard quadratic form,
then the quantity that is obtained is GV †, which, after left-
multiplying by V (in the case when V = V0), results in Eq. (2)
for the self-energy. If the Green’s function itself is needed,
then Eq. (3) gives the G directly, and it does not require an
inversion of V .

APPENDIX B: INTERSITE GREEN’S FUNCTION

Having calculated G0,0V † = GV † via Eq. (6), all intersite
Green’s function elements Gn,0 can be subsequently calcu-
lated, starting from Eq. (A1) with H0 = H . First, we look at
column 1 and line 1 of Eq. (A1), which results in

(E − H )G0,0 − V G1,0 = I, (B1)

which, after right-multiplying with V †, can be written as

V G1,0V
† = (E − H )G0,0V

† − V † (B2)

= (I + V G1,1V
†G0,0)V † − V † (B3)

= V (G0,0V
†)2. (B4)

In Eq. (B3), we used Eq. (6) to rewrite

(E − H )G0,0V
† = I + V (G0,0V

†)2. (B5)

Since V is arbitrary, Eq. (B4) implies that

G1,0V
† = (G0,0V

†)2. (B6)

We now use induction to prove Eq. (8), i.e., that Gn,0V † =
(G0,0V †)n+1, for n � 1. The condition is trivially satisfied for
n = 0, and the equations leading to Eq. (B6) prove the n = 1
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case. Right-multiplying by V †, the equation in column 1 and
line n + 1 > 1 in Eq. (A1) results in

V Gn+1,0V
† = −V †Gn−1,0V † + (E − H )Gn,0V

†. (B7)

Inserting the inductive step for n and n − 1 on the right-hand
side of the above equation results in

V Gn+1,0V
† = −V †(G0,0V

†)n + (E − H )(G0,0V
†)n+1 (B8)

= −V †(G0,0V
†)n + [V † + V (G0,0V

†)2](G0,0V
†)n

(B9)

= V (G0,0V
†)2(G0,0V

†)n (B10)

= V (G0,0V
†)n+2, (B11)

which completes the proof, since V is arbitrary.

APPENDIX C: FORM OF Hsl AND Vsl

FOR THE RASHBA SYSTEM

The Rashba spin-orbit interaction in a 2D electron system
is described by the following Hamiltonian operator:

HR = − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
σ0 + α

i

(
∂

∂x
σy − ∂

∂y
σx

)
, (C1)

where h̄ is the Planck constant, m is the electron effective
mass, and α is the Rashba constant, which that character-
izes the strength of the spin-orbit coupling. The 2 × 2 spin
structure is determined by the standard Pauli matrices σ0, σx,
and σy. Assuming a hard-wall confinement in the y-direction
[see Fig. 4(a)], the number of lattice points Ny determines the

lattice parameter

a = Ly

Ny + 1
. (C2)

Using centered finite-difference relations (three-point stencil
for the second derivative and two-point stencil for the first
derivatives), the matrices Hsl and Vsl take the following form:

Hsl = E0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d b 0

b† d b 0

0 b† d b 0
. . .

0 b† d b

0 b† d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

Vsl = E0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c 0 0

0 c 0 0

0 0 c 0 0
. . .

0 0 c 0

0 0 c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C4)

where the 2 × 2 block matrices d , b, and c are defined as

d = 4
(Ny + 1)2

π2
σ0, (C5)

b = − (Ny + 1)2

π2
σ0 + i

LykR

π2
(Ny + 1)σx, (C6)

c = − (Ny + 1)2

π2
σ0 − i

LykR

π2
(Ny + 1)σy, (C7)

where kR = mα

h̄2 is the so-called the spin-orbit wave number, so
that LykR is a dimensionless parameter. The energy parameter

is given by E0 = h̄2π2

2mL2
y
.
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[33] B. K. Nikolić and S. Souma, Phys. Rev. B 71, 195328 (2005).
[34] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,

Texts in Applied Mathematics (Springer, New York, 2002).
[35] M. Wimmer, I. Adagideli, S. Berber, D. Tománek, and K.

Richter, Phys. Rev. Lett. 100, 177207 (2008).
[36] C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electron. 12,

203 (2013).
[37] J. Bezanson, A. Edelman, S. Karpinski, and and V. B. Shah,

SIAM Review 59, 6598 (2017).
[38] All calculations in this paper were performed using the

Julia computer language [37] and the code is stored in a
github repository https://github.com/gunnarth/Lead-Green-
s-functions-from-quadratic-eigenvalue-problems-without-
mode-velocity-calculations.

055304-10

https://doi.org/10.1103/PhysRevB.107.035306
https://doi.org/10.1002/pssb.200743359
https://doi.org/10.1103/PhysRevB.72.035450
https://doi.org/10.1103/PhysRevB.55.5266
https://doi.org/10.1016/j.jcp.2019.05.034
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1090/S0002-9947-1930-1501526-X
https://doi.org/10.1103/PhysRevB.82.245308
https://doi.org/10.1103/PhysRevB.71.195328
https://doi.org/10.1103/PhysRevLett.100.177207
https://doi.org/10.1007/s10825-013-0458-7
https://doi.org/10.1137/14100067
https://github.com/gunnarth/Lead-Green-s-functions-from-quadratic-eigenvalue-problems-without-mode-velocity-calculations

