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Three-dimensional reconstruction of granular porous media based on deep generative models
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Reconstruction of microstructure in granular porous media, which can be viewed as granular assemblies, is
crucial for studying their characteristics and physical properties in various fields concerned with the behavior
of such media, including petroleum geology and computational materials science. In spite of the fact that many
existing studies have investigated grain reconstruction, most of them treat grains as simplified individuals for
discrete reconstruction, which cannot replicate the complex geometrical shapes and natural interactions between
grains. In this work, a hybrid generative model based on a deep-learning algorithm is proposed for high-quality
three-dimensional (3D) microstructure reconstruction of granular porous media from a single two-dimensional
(2D) slice image. The method extracts 2D prior information from the given image and generates the grain
set as a whole. Both a self-attention module and effective pattern loss are introduced in a bid to enhance
the reconstruction ability of the model. Samples with grains of varied geometrical shapes are utilized for the
validation of our method, and experimental results demonstrate that our proposed approach can accurately
reproduce the complex morphology and spatial distribution of grains without any artificiality. Furthermore, once
the model training is complete, rapid end-to-end generation of diverse 3D realizations from a single 2D image
can be achieved.
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I. INTRODUCTION

Granular porous media, featuring packing of grains varying
in shape and size, play an assignable role in many engi-
neering applications, petroleum geology, and computational
material science in particular [1,2]. Experimental investiga-
tions have implied that granule morphological features have
great impacts on the physical performance of granular porous
materials, including permeability, elasticity, etc. [3–8]. Fast
and accurate establishment of structural models has been the
subject of intensive studies further investigating the physical
behavior of granular porous media.

Currently, there are two main methods for the acquisi-
tion of the microstructure of granular porous media: digital
imaging technologies and numerical simulation algorithms.
Just as the name implies, digital imaging methods utilize
advanced imaging devices to visually display the three-
dimensional morphological characteristics, which include
x-ray computed tomography (CT) scanning [9–11], focused
ion beam–scanning electron microscopy (FIB-SEM) [12–14],
and other techniques. Despite the significant improvement in
the accuracy of instruments, the contradiction between the
field of view and resolution remains a Gordian knot, in ad-
dition to the high cost and time-intensive efforts required.

It is, however, inescapable that costly and time-consuming
physical experiments based on real samples are insufficient
in many fields in which accurate analyses of the properties
require a large number of representative samples. With the
objective being to avoid a long collection process, numerical
reconstructions of granular porous materials have garnered
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considerable attention in the search for stochastic models
whose grain distribution and characteristics approximate real
conditions to improve our understanding of the macrophysi-
cal properties. Numerical simulation methods can be divided
into four kinds, i.e., process-based reconstruction methods
[15–17], object-based methods [18–23], statistical methods
[24–32], and deep-learning-based methods [33–38].

Process-based reconstruction methods tend to be mature
following decades of development and can build more realistic
models because fundamental concepts of natural formation
processes of materials can be mimicked, including grain
sedimentation and compaction and diagenetic rock transfor-
mations [15–17]. Although they are favorable, these methods
are restrained to application scenarios in which grains fuse
together in a certain simple manner and have the unrealistic
assumption that all grains are of regular shapes. Additionally,
such methods are computationally intensive and require ex-
tensive calibration to define separate rules for each type of
core with different formation processes.

Another widely used reconstruction approach for granu-
lar porous media is object-based methods in which grains
that make up the materials are considered to be individual
objects regardless of how they formed. In granular porous
media known as solid grain assemblies, the state would be
changed by a supply of external energy, which may cause the
grains to behave like a fluid [39]. The discrete element method
(DEM) is capable of characterizing the evolution of some
grain-scale quantities in granular porous media, facilitating
the understanding of bulk behaviors of interest. Therefore,
the DEM has become a mainstream method for studying the
transport and mechanical properties of these media [18–20].
However, the major drawback of the DEM is the potential
for inaccurate simulation results attributed to simplification
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FIG. 1. Schematic description of (a) the VAE and (b) the GAN.

of complexly shaped grains to relatively common regular ob-
jects, e.g., ellipsoids and spheroids. Although some research
has been dedicated to the utilization of irregularly shaped
grains [21–23], the capacity to reproduce realistic granules is
still limited when confronted by complicated geometries. In
addition, the number of simulated grains is restricted by the
computationally intensive nature of the DEM.

Statistical methods [24,25] are those that resort to func-
tional information, which can include statistical or morpho-
logical features extracted from images with the intention
of recreating structures and distributions of interest. The
simulated annealing method [26–28] and multipoint statis-
tics [29–32] are two representative mainstream approaches
that have achieved some impressive results. Despite the fact
that these methods can reconstruct a three-dimensional (3D)
model based on a single two-dimensional (2D) slice, the time
tends to increase exponentially as the size of the model in-
creases.

With the vast development and widespread application of
deep-learning technologies, scholars have gradually concen-
trated on introducing these methods into the reconstruction of
granular or porous media. For instance, Mosser et al. [33] first
utilized volumetric generative adversarial networks to achieve
three-dimensional image reconstructions of porous media;
then, Huang et al. [34] successfully generated granular porous
media at the grain scale using STYLEGAN [40]. However, most
of these methods concentrate on 3D-to-3D reconstructions
which map a latent noise vector to a 3D structure and require
a large number of 3D volumetric representations of media,
whereas 2D data are more accessible in practice.

In this study, motivated by the emergence of some novel
2D-to-3D reconstruction methods for porous media, we aim
to realize accurate and fast reconstruction of 3D structures
from a single 2D slice image [35–38]. In light of the strong
learning ability of complicatedly distributed data in deep gen-
erative models, particularly in the field of image generation,
the proposed method is based on two typical models: the vari-
ational autoencoder (VAE) [41] and the generative adversarial
network (GAN) [42]. This approach can reproduce irregular
grains with shapes as close as possible to those found in real
samples and generate the grain assembly. Consequently, the
reconstruction results can reflect the spatial distribution of real
particulate solids and provide approximately accurate basic
models for subsequent simulation experiments on physical
properties.

The rest of this paper is organized as follows: In Sec. II,
the principles of the two deep generative models are briefly
described, and then the framework, loss functions, and

structure of our approach are introduced in a comprehensive
way. Section III lists experimental datasets and the hyperpa-
rameter settings of networks and demonstrates the evaluation
criteria for reconstructions, following which experimental re-
sults and comparisons are presented. Finally, the paper ends
with conclusions in Sec. IV.

II. METHODOLOGY

In this section, we present a comprehensive introduction
to our proposed reconstruction algorithm for granular porous
media based on deep generative models. This includes an
overview of the main principles of our method, the design
of network architectures, and the loss functions. To provide
a better understanding of the motivation behind our approach,
a brief introduction to the fundamentals of the two models
involved is provided before we delve into the specifics of our
method.

A. Variational autoencoder

As a typical generative model, the VAE possesses two
parts, the encoder and the decoder. The former is applied to
extract features of the input image x and map the input image
x to a latent vector space z. After that, the latter decodes vector
z back to an image [41]. Figure 1(a) displays the schematic
diagram of the VAE.

Normally, the model is grounded on the assumption that
the latent space z obeys the standard normal distribution. The
encoder is modeled as a convolutional neural network with the
objective of fitting two parameters with normal distribution,
namely, the mean and variance, and then determining the
probability distribution qφ (z|x) of the input image x param-
eterized by φ. The decoder can be regarded as a generative
network with weight θ that can generate a fake image con-
forming to the probability distribution pθ (x|z) by using the
resampled vector z as input. The loss function of the VAE,
whose purpose is to minimize the reconstruction error and en-
force the posterior probability qφ (z|x) to follow the standard
normal distribution, is defined as follows:

LVAE = −Eqφ (z|x)[log pθ (x|z)] + DKL[qφ (z|x)||p(z)]

= Lpixel
like + Lprior,

(1)

where DKL is the Kullback-Leibler divergence.
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FIG. 2. An overview of our proposed framework. A is the input 2D slice from the target 3D structure B, and B̂ is the generated 3D structure.

B. Generative adversarial network

In recent years, because of the strong capability of data
generation, GANs have enjoyed immense popularity in the
field of computer vision. Unlike the VAE, GANs can generate
data that closely approximate real samples from a latent ran-
dom variable by learning high-dimensional, complex real data
distribution without any assumptions about the distribution.
The basic architecture of a GAN comprises two significant
parts known as the generator G and the discriminator D. The
general structure of a GAN can be seen in Fig. 1(b).

In simple terms, the working mechanism of GANs can
be described as a zero-sum game between the generator and
the discriminator. On the one hand, the generator makes a
great effort to reconstruct realistic data that are sufficient to
deceive the discriminator. On the other hand, the discriminator
gradually develops the ability to distinguish true from false
during training, and then the identification result is used as a
guide with the intention of improving the generator’s produc-
tion ability. After repeated alternate training, the reconstructed
result generated by G closely reproduces the distribution fea-
tures of real samples so that D cannot distinguish between
fake and real samples. Assuming z is a latent random variance
and x is the real sample, the loss function is defined as

min
G

max
D

V (G, D) = min
G

max
D

Ex∼pdata (x)[log D(x)]

+ Ez∼p(z){log[1 − D(G(z))]}, (2)

where pdata (x) and p(z) denote the probability distribution of
the ground truth x and the noise z, respectively. Equation (2)
shows that D tries to maximize V (G, D) by giving high scores
to real samples and low scores to fake ones, while G attempts
to deceive D by generating samples that can obtain a high
score from D. However, it is worth noting that the noise vector
z used as the input for the generator itself does not contain any
additional information about the training image.

C. The main idea of our method

In an effort to obtain a performance boost from deep
generative models with the respect to reconstruction of gran-
ular porous media, our idea is to take full advantage of the
VAE and GAN by integrating them into one model. Since a

traditional GAN is trained to generate fake images from a
noise vector with a random distribution lacking the feature
information of the real image, which contributes to the insta-
bility and difficulty of the training procedure, we substitute
the random noise with a hidden vector in the latent space
generated by an encoder in the structure of the VAE.

Given that macroscopic physical properties of materials
need a considerable number of samples to be accurately
predicted in practical application scenarios, it is of great
importance to train a model based on the true original 3D
microstructure that can generate 3D synthetic realizations
matched with statistical and morphological features directly
from 2D image data because 2D images are more accessible
than 3D data.

For these reasons, we develop a hybrid model combined
with the VAE and GAN whose function is to generate diverse
3D results from a given 2D input image of granular porous
media. An overview of our proposed framework is shown
in Fig. 2, from which it can be seen that the model com-
prises three neutral networks: the encoder E , the generator
G, and the discriminator D. With the intention of realizing
reconstructions from two to three dimensions, we extract the
underlying 2D image A of the 3D structure B as input to
the encoder, and then complex structure characteristics of
the image can be transformed into a latent vector (known
as zenc) following the probability distribution Q(z|A), with
which a noise vector (known as znoise) obeying a Gaussian
distribution was concatenated to gain diversity of outputs. As
a consequence, the synthesized vector contains the features
of the 2D input image, thereby providing prior information
for subsequent generator decoding. This ultimately facilitates
network training and optimization. Afterwards, the generator
attempts to recreate 3D structures from the latent vector as
accurately as possible with the assistance of the discriminator.
The above-mentioned content is the framework of the training
stage since the testing structure can be seen in Fig. 2(b). As
our GAN-based model is an end-to-end model, it can learn
the feature distribution of 3D training samples adequately
enough to quickly obtain more accurate predictions of real 3D
structures. More specific network structures will be explained
in detail in Sec. II E.
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FIG. 3. The architecture of our proposed approach.

D. Loss function

Here, we give detailed information about the loss functions
in this study. The standard losses of the VAE and GAN are
used. First, the loss of the VAE LVAE is given as follows:

LVAE = Lpixel
like + λklLprior, (3)

where the hyperparameter λkl controls the proportional weight
of the loss Lprior. As Eq. (1) demonstrates, Lpixel

like represents
reconstruction loss, which is employed to calculate the mean
square error loss (MSE) between the input 2D image and the
first top 2D image of the generated 3D structure; the loss Lprior

serves to evaluate the distance between two distributions,
Q(z|A) and N ∼ (0, 1).

Given the complex and diverse geometrical shapes of
grains in granular porous media, we introduce a pattern loss
Lpattern to the loss of G for the purpose of constraining the
generator to reconstruct 3D results possessing similar mor-
phological features. This loss [see Eq. (4)] quantifies the MSE
of pattern distributions in the correlative images of fake image
G(zenc, znoise ) and target y. More design details of this loss can
be found in Ref. [37]. Since the main object of this paper is the
grain rather than the pore, whose size is relatively larger, di-
lated convolution is chosen to capture the pattern for adequate
edge texture information about the granules, and the dilation
rate of the convolution is considered as a hyperparameter of
the network:

Lpattern = ‖ypattern − [G(zenc, znoise )pattern]‖2
2. (4)

The multiscale discriminator used in the model contains
three components (denoted D1, D2, and D3), so the loss of the

GAN in our framework can be specified as follows:

LD
gan = 1

3

∑
i=1,2,3

{E[log Di(yi )]

+ E(log{1 − Di([G(zenc, znoise )]i)}), } (5)

LG
gan = 1

3

∑
i=1,2,3

E(log{1 − Di([G(zenc, znoise )]i )}), (6)

where y1 denotes the target 3D image and y2 and y3 are
images obtained after downsampling the original image once
and twice; the same applies to [G(zenc, znoise )]i.

Then, the total loss of the generator is defined as

LG
total = λrec × Lpixel

like + λgan × LG
gan + λpattern × Lpattern, (7)

where λrec, λgan, and λpattern are hyperparameters that represent
the weight of each loss.

E. Network architectures

In this study, a volumetric version of the deep convolu-
tional generative adversarial network [43] was adopted as the
main framework. A module named self-attention was inserted
into both the encoder and generator. In the following, we will
elaborate on the architectures of the three networks which are
illustrated in Fig. 3, as well as the self-attention module.

The encoder is a neural network consisting of a sequence
of 2D convolutional layers because it deals with 2D image
data, which generally have dimensions of C × H × W , where
C, H , and W signify the channel, height, and width of the
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FIG. 4. The 3D self-attention module for the generator in our network. The self-attention module used in the encoder can be obtained by
reducing this framework by one dimension.

image, respectively. Encoding may be thought of as gradually
increasing the number of channels and downsampling the
image. In this approach, as we focus on 128 × 128 images,
the image is transformed into a 128 × 1 × 1 vector. Each
convolutional layer is followed by a batch normalization layer
and a leaky rectified linear unit activation layer, except the last
one, and a 2D version of the self-attention module is inserted
after both the first and second convolutional layers.

The purpose of the self-attention module used in our
network is to enhance the performance of the encoder and
generator, which is represented in Fig. 4. The image feature
maps x in the previously hidden layer are transformed into
two feature spaces f (x) = Wf x and g(x) = Wgx to calculate
attention as in Eq. (8), where βi j represents the degree of
participation in the ith location when the network synthesizes
the target jth volume,

β j,i = exp(si j )∑N
i=1 exp(si j )

, si j = f
(
xT

i

)
g(x j ). (8)

Subsequently, the third feature space h(x) = Whx is used to
acquire attention feature maps:

o j = v

( N∑
i=1

β j,ih(xi )

)
, h(xi ) = Whxi, v(xi ) = Wvxi. (9)

In the above formulations, Wf , Wg, Wh, and Wv are learned
weight matrices of 1 × 1 × 1 3D convolutions. Finally, with
a learnable scalar γ initialized as zero, the output of the
attention layer is calculated by

yi = γ oi + xi. (10)

With the assistance of self-attention modules, the network is
able to capture both long- and short-range dependences and
escape the localization limitation of convolution [44].

At the end of the encoding, the output of E is reshaped
into three dimensions and combined with a 3D noise vector,
after which the synthetic vector is fed into the generator. The
structure of G is arguably symmetrical to that of the encoder
except for the difference in dimensional space, as the input
of G is 3D data. The self-attention module in G depicted in
Fig. 4 is applied to make the generated images contain more
realistic details. After a series of 3D convolution operations,

the synthetic vector is finally decoded into a 3D output which
is then sent to the discriminator along with the target structure
to determine whether it is true or false.

The discriminator module D in the model is designed as
a multiscale discriminator consisting of three discriminators
(denoted D1, D2, and D3) with the same architecture but differ-
ent weights. Training samples the size of the original are fed
into D1, and the inputs of D2 and D3 are downsampled two and
four times from the original size, respectively. The multiscale
discriminator can recognize coarse to fine image features,
thereby guiding the generator to produce more realistic re-
sults. Each individual discriminator employs the architecture
of the PATCHGAN discriminator [45], which penalizes only the
structure at the scale of patches; in other words, the final
output of the discriminator is not a value but a matrix in
which each value corresponds to a perceptual field with a
specified size in the original graph. Accordingly, networks
can devote attention to the structure in local image patches
and model high-frequency details. Spectral normalization is
implemented in each convolutional layer of the discriminator
module in order to stabilize the training of the network by
making the layers satisfy the Lipschitz constant [46].

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset and parameter settings

In this part, we discuss experiments on three types of
granular porous media, i.e., a bead pack with regular spher-
ical grains, Fontainebleau sandstone with relatively rounded
grains, and Belgian fieldstone with irregularly shaped grains,
to validate the effectiveness of our approach.

Bead pack. The bead pack is an artificial core formed by
a number of uniform spheres stacked at random [47]. The
binary image consists of 5003 voxels with a resolution of
3 µm, and each sphere has a diameter of 50 voxels.

Fontainebleau sandstone. As a kind of sedimentary rock
resulting from the deposition of quartz grains followed by
consolidation, Fontainebleau sandstone is an ideal granular
system composed of monocrystalline quartz grains that have
been well rounded during prolonged transportation before
deposition [48,49]. This binary sample consists of 2253 voxels
with a resolution of 10 µm.
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FIG. 5. Acquisition process of the binary 3D structure of the Bel-
gian fieldstone. White represents grain phase, and black represents
pore phase.

Belgian fieldstone. The Belgian fieldstone sample was ac-
quired with the HECTOR micro-CT scanner with a 4 mm
diameter and is a type of sandstone rich in glauconite [50].
The Belgian fieldstone consists of many irregularly shaped
grains with sharp angles, most of which adhere together with-
out obvious borders. Grayscale 2D slice images extracted
from the original CT sequence images for a region of interest
are displayed in Fig. 5. As our attention is focused on two-
phase 3D reconstruction in this paper, the grayscale image was
separated into two phases: pore and grain.

The datasets for training are obtained by means of cropping
out images of a specific size from the associated original 3D
structure in a certain step. Moreover, it is noteworthy that the
extracted subvolumes should be larger than the representative
elementary volume (REV) because the REV is the minimum
unit which can effectively characterize physical properties of
porous media [51]. As a result, the original 3D structure is
sometimes downsampled before being cropped to meet re-
quirements when creating a dataset.

Because hyperparameters influence the performance of the
model to some extent, we list the determined settings for
the hyperparameters in the experiments after several trials in
Table I. In our study, all experiments were conducted on a
desktop with an i7-9700 CPU and NVIDIA GeForce RTX
2080 Ti GPU.

B. Evaluation criteria

In this section, we describe in detail the evaluation criteria
for reconstruction in this paper from statistical and morpho-
logical points of view.

1. The autocorrelation function

The autocorrelation function (ACF) is used to quantify
the spatial correlation of two points in the structure with an
indicator function I (x) which describes the probability that
two random points with a separation r = ‖r‖ belong to the
same phase:

I (x) =
{

1, x ∈ grain,
0, x /∈ grain, (11)

where x denotes the position in the medium. The formula for
the ACF is given by

R(r) = 〈[I (x) − φ][I (x + r) − φ]〉
φ − φ2

, (12)

where φ indicates the volume fraction of the grain phase.

2. Multiple-point connectivity

As the autocorrelation function previously described
can characterize only the relationship between two points,
multiple-point connectivity (MPC) is imported to describe
higher-order information about the image data. MPC can mea-
sure the spatial connectivity in the grain phase by means of
calculating the probability that a certain number of continuous
points along a given direction lie entirely in the same phase of
interest, which can be calculated as

F (h; n) = E{I (x) · I (x + h) · · · · · I[x + (n − 1)h]}

= E

⎧⎨
⎩

⎛
⎝n−1∏

j=0

I (x + jh)

⎞
⎠

⎫⎬
⎭, (13)

where h is a directionally determined unit vector and n is the
number of points involved in each calculation.

3. Grain morphology descriptors

The granular images, including the real samples and the
generated ones, were processed using AVIZO software [52]
with respect to grain attributes.

In general, the morphological parameters of grain are as
described below. The primary focus of our analysis is three-
dimensional grains.

Area3d. Area3d is the surface area of a grain in three-
dimensional space which is denoted as A3d .

TABLE I. Network configurations and hyperparameters.

Training image dataset

Parameters Bead pack Fontainebleau sandstone Belgian fieldstone

Training image size 1283 voxels 1283 voxels 1283 voxels
Size of the latent vector 128 128 128
Size of the noise latent vector 32 32 32
Encoder and generator filters 32 32 32
discriminator filters 16 16 16
Learning rate 4 × 10−4 4 × 10−4 4 × 10−4

Dilation rate 4 2 2
Loss weights λkl , λrec, λgan, λpattern 0.1, 10, 0.1, 1 × 106 0.1, 10, 0.1, 1 × 106 0.1, 10, 0.1, 1 × 106
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FIG. 6. Visual presentation of target and reconstruction samples of the bead pack and their corresponding split versions. The “Two-
Dimensional” section displays 2D slice images at layer 40, layer 80, and layer 120.

Volume3d. Volume3d is the volume of a grain in three-
dimensional space which is denoted as V3d .

Grain size. For a given grain, the equivalent diameter
(denoted as De) is obtained by taking the diameter of an
equivalent spherical grain with the same volume as the given
irregularly shaped grain. So the grain size is given by the
following expression:

De = 3

√
6 × V3d

π
. (14)

Sphericity. Sphericity is a measure of the degree to which
a grain approaches the shape of a perfect sphere. Sphericity,
denoted as �, is defined as the ratio of the surface area of a
sphere Ssphere with the same volume as the given grain to that
of the grain itself Sgrain [53] as Eq. (15) shows. Owing to the
isoperimetric inequality, the sphericity of grains is bounded by
1. Nonetheless, it is worth noting that the sphericity computed
in the study could be superior to 1 for certain small grains,
whereas the surface area of the grain is computed with chordal
approximations:

� = Ssphere

Sgrain
= π1/3 × (6 × V3d )2/3

A3d
. (15)

Elongation and flatness. As two form ratios, flatness index
(FI) and the elongation index (EI) [54] are quantifications of

the degree of grain flattening and grain elongation, respec-
tively. As symbols a, b, and c represent length, thickness, and
breadth with length, respectively, FI and EI can be expressed
as c/b and b/a.

C. Results and comparisons

In this part, we elucidate the reconstruction performance
of our method in the experiments conducted on three datasets
with significant differences in shape. To substantiate the ef-
fectiveness of our approach, both visual and quantitative
comparisons are displayed.

1. Bead pack reconstruction

First, we present experiments on bead pack samples
stacked by regular spherical grains whose visual presentation
is shown in the “Target” row of Fig. 6. We pick the bottom 2D
image of the target 3D structure as the input to the network
and generate 10 stochastic reconstructions for quantitative
analysis of statistical and morphological characteristics, one
of which is depicted in Fig. 6. In addition, with the aim of
identifying features of individual grains, we utilize the AVIZO

software to segment adhesive grains, and Fig. 6 shows the
corresponding results. Meanwhile, parameter analyses of the
pore network are also conducted in order to further validate
the effectiveness of our method. Specifically, we utilize the
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FIG. 7. Comparison of the average (a) the ACF and (b) MPC in the X , Y , and Z directions among the target, 10 reconstructions, and their
average.

network extraction technique introduced by Dong and Blunt
[49] to quantify the morphological characteristics of pores
which enables the extraction of the parametric geometry and
interconnectivity by simplifying the topologically disordered
pore and throat network. The distribution and volume of
the pores, along with the size and distribution of the throat
connecting the pores, are the primary factors influencing the

storage and transport properties of the microstructure. The
morphology of the pores is directly associated with the shape
factor. The pore connectivity is revealed by the coordina-
tion number and permeability. In addition, we calculate the
tortuosity [55] using the AVIZO software and Euler number
[56] with PYTHON library functions to obtain the topology
properties of the pore space.
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FIG. 8. Comparison of (a) the sphericity, (b) De, (c) surface area, and (d) volume of grains in the target and 10 reconstructions.
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TABLE II. Comparison of morphological parameters of the grain and pore in the bead pack.

Parameters Target Reconstruction Relative errors

Number of grains 49 51 4.08%
Volume fraction of grain phase 0.6275 0.6154 1.93%
Average sphericity of grains 0.8147 0.8118 0.35%
Average EI of grains 0.7845 0.7081 9.74%
Average FI of grains 0.4155 0.4164 0.22%
Average De of grains (mm) 9.683 × 10−2 9.364 × 10−2 3.30%
Average surface area of grains (mm2) 3.907 × 10−2 3.955 × 10−2 1.23%
Average volume of grains (mm3) 7.219 × 10−4 6.843 × 10−4 5.21%
Number of pores 39 58 47.69%
Number of throats 127 211 66.30%
Average shape factor of pores 0.0290 0.0289 0.43%
Average size of pore radius (mm) 2.130 × 10−2 1.992 × 10−2 6.50%
Average size of throat radius (mm) 9.661 × 10−3 8.772 × 10−3 9.72%
Average volume of pores (mm3) 4.942 × 10−4 3.483 × 10−4 29.53%
Average volume of throats (mm3) 13.51 × 10−6 8.269 × 10−6 38.80%
Average ratio of the radius size of the pore and throat 0.3182 0.3136 1.46%
Average coordination number 6.564 7.373 12.32%
Euler number of the pore phase −52 −51 1.92%
Tortuosity 1.338 1.388 3.74%
Absolute permeability (m2) 1.005 × 10−11 1.317 × 10−11 31.08%

From a visual point of view, the realization is highly consis-
tent with the real sample in terms of geometrical morphology,
except that not all the grains in the realization are perfectly

regular spheres, in contrast to the real sample, and some are
close to ellipsoids. As seen in Fig. 7, comparisons of the
average autocorrelation function and multipoint connectivity

FIG. 9. Visual inspection of the target and reconstruction samples of the Fontainebleau sandstone and their corresponding split versions.
The “Two-Dimensional” section displays 2D slice images at layer 40, layer 80, and layer 120.
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FIG. 10. Comparison of the average (a) the ACF and (b) MPC in the X , Y , and Z directions among the target, 10 reconstructions, and their
average.

in the X , Y , and Z directions among the target, 10 recon-
structions, and their average indicate that, by and large, the
generated results agree well with the target in the aspect
of statistical features. Not only that, but we also quantita-
tively analyze the morphological characteristics of grains, as
shown in Fig. 8, which demonstrates the closeness between

the respective distributions of four descriptors of grains in
the realizations and the target. Notably, the relative frequency
of small sizes in the distribution of the equivalent diameter,
surface area, and volume of grains in realizations is higher
than in the real sample due to the presence of some unde-
sired isolated small structures in the generated results. Some
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FIG. 11. Comparison of (a) the sphericity, (b) De, (c) surface area, and (d) volume of grains in the target and 10 reconstructions.
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FIG. 12. Visual inspection of the target and reconstruction samples of the Belgian fieldstone and their corresponding split versions. The
“Two-Dimensional” section displays 2D slice images at layer 40, layer, 80 and layer 120

important parameters of the granular porous media are cal-
culated and listed in Table II. The relative errors of the
parameters related to grains are no more than 10%, and the
majority of parameters with regard to the pores in the recon-
structions exhibit good consistency with those of the target,
with only a few exceptions. It should be pointed out that the
substantial differences observed in the number of pores and
throats, as well as the average volume of pores and throats,
between the reconstructions and the target are likely attributed
to the presence of undesired noise and incorrect segmentation
in the pore space. Finally, it is worth noting that the model,
once trained, takes only about 0.13 s for a 3D reconstruc-
tion when running on a desktop with an NVIDIA GeForce
RTX 2080 Ti GPU. To sum up, our approach demonstrates
high accuracy and efficiency in reconstructing structurally
simple media.

2. Fontainebleau sandstone reconstruction

Because the bead pack manifests a simple granular
porous media consisting solely of uniformly sized spherical
components, we next take Fontainebleau sandstone with a
comparatively rounded structure as the experimental object.
The 3D structure and 2D slice images are illustrated in Fig. 9.
Likewise, we generate 10 synthetic results for one input image
to verify the applicability of our method for this type of

medium. Comparisons including visual aspects and statistical
and morphological features are carried out between genera-
tions and the target for a comprehensive analysis.

Figure 9 suggests that the realization of our model is com-
posed of grains with a fairly rounded shape, which is in good
agreement with the actual sample. From the perspective of
statistical properties, the ACF and MCP curves of the target
and the average of the generated results (see Fig. 10) almost
exactly coincide. Additionally, the volume fraction of the
grain phase accounts for a mere 0.16% relative error, and
those of the target and the average of reconstructions are
0.6683 and 0.6693, respectively, which indicates the remark-
ably high accuracy attained through the proposed approach.
Furthermore, comparisons of the morphological parameters
of the grains are conducted to evaluate the reconstruction
ability of the model and are shown in Fig. 11 and Table III.
As can be seen from the data in Table III, the relative errors
of the calculated parameters are basically in the range of
0.1%−7.0%, whereas the average of the FI and surface area of
the grains in reconstructions are a bit different from those of
the target. The pore network of the structures is also analyzed
and presented in Table III. The small relative error, particu-
larly within 1.0% for the average shape factor and tortuosity,
demonstrates the excellent accuracy of our reconstruction
method. As illustrated in Fig. 11, although the general trend
of the distribution curves is consistent, there are more small-
sized grains in the reconstructions than in the target. This
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TABLE III. Comparison of morphological parameters of the grain and pore in Fontainebleau sandstone.

Parameters Target Reconstruction Relative errors

Number of grains 421 423 0.48%
Volume fraction of grain phase 0.6683 0.6693 0.16%
Average sphericity of grains 0.8341 0.8495 1.85%
Average EI of grains 0.5462 0.5128 6.12%
Average FI of grains 0.5089 0.5515 8.37%
Average De of grains (mm) 0.1693 0.1576 6.88%
Average surface area of grains (mm2) 0.1160 0.1256 8.35%
Average volume of grains (mm3) 3.213 × 10−3 3.133 × 10−3 2.48%
Number of pores 591 699 18.27%
Number of throats 2279 2571 12.80%
Average shape factor of pores 0.0295 0.0295 0.00%
Average size of pore radius (mm) 2.538 × 10−2 2.260 × 10−2 10.95%
Average size of throat radius (mm) 10.15 × 10−3 9.242 × 10−3 8.91%
Average volume of pores (mm3) 10.37 × 10−4 8.784 × 10−4 15.26%
Average volume of throats (mm3) 3.638 × 10−5 3.121 × 10−5 14.23%
Average ratio of the radius size of the pore and throat 0.2982 0.2903 2.63%
Average coordination number 7.716 7.358 4.63%
Euler number of pore phase −1118 −1277 14.22%
Tortuosity 1.497 1.506 0.57%
Absolute permeability (m2) 8.520 × 10−12 7.454 × 10−12 12.51%

issue will be further discussed and improved in our future
work.

3. Belgian fieldstone reconstruction

The demand for a more quantitatively reliable model per-
sists as a result of naturally occurring grains with irregular
and angular shapes in granular porous media. Finally, we
perform a reconstruction experiment on Belgian fieldstone
with a more complicated structure than the two samples
discussed previously. Figure 12 depicts one example of
such images and the corresponding generated realizations,
as well as the respective versions of grains being separated.
In addition, the statistical and morphological features of
the 3D structure are quantitatively evaluated (see Figs. 13
and 14).

Visually speaking, the 3D complex topology of the grains
has been comparatively well restored, illustrating the capa-
bility of our approach to reconstruct a 3D structure with a
similar spatial distribution of grains by thoroughly consid-
ering and leveraging the extracted feature information. With
respect to the statistical information shown in Fig. 13, the
results generated by our method are in good agreement with
the real sample. Figure 14 indicates that the overall trend
of the distribution curves is consistent between the recon-
structions and the target, although some differences in the
details do exist. As can be seen from Fig. 14(a), the results
generated by our method comprise more irregularly shaped
grains, which is consistent with the visual presentation in
Fig. 9. Figures 14(b) and 14(d) suggest that, in spite of the
similar volume distributions, the reconstructed results have a
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FIG. 13. Comparison of the average (a) the ACF and (b) MPC in the X , Y , and Z directions among the target, 10 reconstructions, and their
average.
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FIG. 14. Comparison of (a) the sphericity, (b) De, (c) surface area, and (d) volume of granules in the target and 10 reconstructions.

TABLE IV. Comparison of morphological parameters of the grain and pore in Belgian fieldstone.

Parameters Target Reconstruction Relative errors

Number of grains 501 469 6.39%
Volume fraction of the grain phase 0.6463 0.6418 0.70%
Average sphericity of grains 0.7959 0.7698 3.29%
Average EI of grains 0.5255 0.4866 7.40%
Average FI of grains 0.4968 0.5349 7.67%
Average De of grains (mm) 0.1597 0.1576 1.27%
Average surface area of grains (mm2) 0.1166 0.1278 9.61%
Average volume of grains (mm3) 2.747 × 10−3 2.872 × 10−3 4.57%
Number of pores 835 981 17.49%
Number of throats 3069 3607 17.53%
Average shape factor of pores 0.0298 0.0287 0.45%
Average size of the pore radius (mm) 2.303 × 10−2 2.152 × 10−2 6.55%
Average size of the throat radius (mm) 9.702 × 10−3 8.933 × 10−3 7.92%
Average volume of pores (mm3) 8.449 × 10−4 7.374 × 10−4 12.73%
Average volume of throats (mm3) 3.074 × 10−5 2.434 × 10−5 20.82%
Average ratio of the radius size of the pore and throat 0.3059 0.2947 3.67%
Average coordination number 7.353 7.358 0.07%
Euler number of the pore phase −2401 −3130 30.36%
Tortuosity 1.538 1.507 1.99%
Absolute permeability (m2) 7.882 × 10−12 6.611 × 10−12 16.13%
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TABLE V. Euler number and three associated Betti numbers.

Bead pack Fontainebleau sandstone Belgian fieldstone

Parameters Target Reconstruction Target Reconstruction Target Reconstruction

Euler number of the pore phase −52 −51 −1118 −1277 −2401 −3130
Zeroth Betti number β0 1 21 33 102 208 213
First Betti number β1 61 94 1160 1405 2688 3524
Second Betti number β2 8 22 9 26 79 181

higher relative frequency of De at small sizes than the real
3D image. A comparison of the morphological parameters
of the grain and pore in Belgian fieldstone are given in Ta-
ble. IV. It is noteworthy that, despite our main focus on grain
reconstruction in the media system, the parameters of the
pores in the generated results align well with those of the
actual sample.

D. Discussion

This paper presents a method for three-dimensional re-
construction of the granular porous media based on deep
generative models. In Sec. III C, the results and comparisons
conducted for three different types of samples with varying
grains demonstrate that, overall, the important parameters
related to the grain and pore exhibit good agreement with
the ground truth. In addition, due to our focus on grains,
the relative errors of grain-related parameters are generally
smaller than those of pore-related parameters.

In previous comparisons, our reconstructed results per-
formed well in terms of morphological parameters but slightly
worse in terms of the topological structure parameters such

as the Euler number. Sometimes two systems may have the
same Euler characteristic, but their topological structures can
differ significantly. Therefore, to further validate the ability
of our method to reproduce the topological structure of pore
networks, we introduce Betti numbers, which are topological
invariants. Their relationship with the Euler characteristic is
shown by the following formula:

χ = β0 − β1 + β2, (16)

where β0 is the zeroth Betti number, β1 is the first Betti
number, and β2 is the second Betti number. The three Betti
numbers describe the number of isolated objects, tunnels, and
cavities, respectively.

Since the Euler characteristic can be regarded as a linear
combination of Betti numbers, the utilization of Betti numbers
enables the provision of more comprehensive and detailed
information about the topology [57]. Hence, we additionally
calculate and compare the Betti numbers for all three sets
of samples, and the corresponding results are presented in
Table V. The findings reveal that the reconstructed samples
exhibit a higher number of isolated connected components,
tunnels, and enclosed solid cavities within the pore space.

TABLE VI. Comparison of the morphological parameters of the grain and pore in the bead pack before and after denoising.

Parameters Target Reconstruction Relative error Denoised results Relative error

Number of grains 49 51 4.08% 46 6.12%
Volume fraction of grain phase 0.6275 0.6154 1.93% 0.6178 1.55%
Average sphericity of grains 0.8147 0.8118 0.35% 0.8060 1.07%
Average EI of grains 0.7845 0.7081 9.74% 0.7165 8.67%
Average FI of grains 0.4155 0.4164 0.22% 0.4498 8.26%
Average De of grains (mm) 9.683 × 10−2 9.364 × 10−2 3.30% 10.21 × 10−2 5.44%
Average surface area of grains (mm2) 3.907 × 10−2 3.955 × 10−2 1.23% 4.260 × 10−2 9.04%
Average volume of grains (mm3) 7.219 × 10−4 6.843 × 10−4 5.21% 7.573 × 10−4 4.90%
Number of pores 39 58 47.69% 58 47.69%
Number of throats 127 211 66.30% 196 54.33%
Average shape factor of pores 0.0290 0.0289 0.43% 0.0292 0.69%
Average size of pore radius (mm) 2.130 × 10−2 1.992 × 10−2 6.50% 2.041 × 10−2 4.18%
Average size of throat radius (mm) 9.661 × 10−3 8.772 × 10−3 9.72% 8.970 × 10−3 7.15%
Average volume of pores (mm3) 4.942 × 10−4 3.483 × 10−4 29.53% 3.373 × 10−4 31.75%
Average volume of throats (mm3) 13.51 × 10−6 8.269 × 10−6 38.80% 9.963 × 10−6 26.25%
Average ratio of the radius size of the pore and throat 0.3182 0.3136 1.46% 0.3232 1.57%
Average coordination number 6.564 7.373 12.32% 6.793 3.49%
Euler number of the pore phase −52 −51 1.92% −57 9.62%
Zeroth Betti number β0 1 21 2000.00% 2 100.00%
First Betti number β1 61 94 54.09% 67 9.84%
Second Betti number β2 8 22 175.00% 8 0.00%
Tortuosity 1.338 1.388 3.74% 1.461 9.19%
Absolute permeability (m2) 1.005 × 10−11 1.317 × 10−11 31.08% 1.142 × 10−11 13.63%
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These differences indicate the limited capacity of our al-
gorithm to accurately replicate the topological structure of
pore networks in terms of Betti numbers. Drawing upon the
previously calculated parameters, we determine the possible
contributing factors for this performance could be small iso-
lated connected components introduced by our method that
can be considered unexpected noise, as well as the sensitivity
of Betti numbers to noise. In order to validate our estimation,
we select the bead pack sample set as an example and apply
a specific threshold for denoising. Subsequently, we compute
the parameters of the structure after eliminating the noise. The
findings in Table VI suggest that with the removal of some
small connected domains, most parameters exhibit minimal
changes in accuracy. However, parameters such as the Betti
number demonstrate a notable improvement in precision. Re-
garding how to optimize the algorithm to avoid excessive
noise, identify an appropriate threshold selection strategy, and
more accurately recover the topology of the pore networks,
these will be the focal points of our future work.

IV. CONCLUSION

It is well known that accurate and fast generation of three-
dimensional microstructures of granular porous media has
been a long-standing challenge, especially when the data
available for reference are scarce. To address this problem, a
hybrid generative model incorporating the VAE and GAN was
proposed to predict the entire 3D spatial distribution of the
media from a single 2D slice image. A self-attention module
was inserted in the network to better retrieve feature informa-
tion, and pattern loss was added to the total loss function to
enhance the quality of the synthesized structure. Our method
treats the medium as a whole to account for the statistical
properties of the overall system instead of treating simulated
individual grains separately. The stochastically simulated 3D
results for a specific type of granular porous medium from

a single 2D image indicate good performance of the pro-
posed approach from both visual impression and quantitative
analysis. Furthermore, high-quality reconstructions obtained
for three typical samples that each contained grains with
unique morphologies demonstrated the good applicability of
our method to different types of granular porous media. An-
other advantage of our method is that once the model has been
trained, it takes only a few tenths of a second to rebuild a
sample.

Although our method performs well in terms of reconstruc-
tion accuracy and efficiency, several limitations do need to be
addressed in the future. For instance, the number of small-
sized grains approximating noise is a bit too large, causing
the distribution curve of the grain morphological parameters
to be somewhat different from the real one. Moreover, the
ability of the network to learn the morphological character-
istics of granular porous media, especially those composed
of complicated granules, is not yet strong enough, manifested
by the variations in relation to the morphological parameters.
In our future work, we will strive for an object function that
can better characterize the geometry of granular porous me-
dia to constrain the network. In addition, the small isolated
connected components introduced by our method may have
a significant impact on some topological parameters such
as Betti numbers. Optimizing algorithms to avoid excessive
noise and accurately reproduce the topological structure of
pore networks is also one of our future goals.

The data underlying this paper are available on request.
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