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Thomson problem in the disk
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We investigate the classical ground state of a large number of charges confined inside a disk and interacting via
the Coulomb potential. By realizing the important role that the peripheral charges play in determining the lowest
energy solutions, we have successfully implemented an algorithm that allows us to work with configurations with
a desired number of border charges. This feature brings a consistent reduction in the computational complexity
of the problem, thus simplifying the search of global minima of the energy. Additionally, we have implemented
a divide and conquer approach which has allowed us to study configurations of size never reached before (the
largest one corresponding to N = 40 886 charges). These last configurations, in particular, are seen to display an
increasingly rich structure of topological defects as N gets larger.
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I. INTRODUCTION

In this paper we study the configurations of a large number
of classical Coulomb charges confined to the interior of a
disk (without loss of generality we assume unit radius). There
has been considerable interest in the past in studying this
system (see for instance Refs. [1–13]), particularly in relation
to the onset of Wigner crystallization. The equilibrium con-
figurations for this system are nonuniform and qualitatively
well described by a conformal crystal, with disclinations and
dislocations playing an important role in determining con-
figurations of minimal energy [8]. The regime N � 1, in
particular, is interesting because it may allow to compare the
low energy configurations solutions to the discrete problem
with approximations based on the continuum [14].

This problem can also be considered a variant of the more
famous Thomson problem, which concerns the equilibrium
configurations of a number of charges on the surface of a
sphere [15–26]. The charge density for the two systems, the
disk or the sphere, however, has a very different behavior: in
the former, the continuum charge distribution is nonuniform
and larger at the border, whereas in the latter the continuum
distribution is uniform. In both cases, however, the impossi-
bility to cover the whole region with hexagonal cells (as it
would happen on the infinite plane) leads to the appearance
of a fixed topological charge (12 for the sphere and 6 for the
disk), a direct consequence of Euler’s theorem of topology.
This charge is induced by the curvature for the case of the
sphere and by the geometrical frustration caused by the border
for the case of the disk. While the net topological charge
in each domain is constant, the structure of defects becomes
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increasingly rich as the density is increased (see in particular
Refs. [24,25] for the case of the sphere).

Both examples, Thomson’s problem inside the disk or
on the sphere, can be regarded as special cases of two
dimensional matter, i.e., systems of particles interacting with
a given potential (not necessarily Coulombian) on a frozen
topology. In this case, the topology of the surface induces
peculiar features in the ground state configurations of the
system [23,27–33].

The main goal of our work is to present efficient algorithms
for studying large configurations of Coulomb charges inside a
disk and then compare the numerical results obtained in this
way with the best results available in the literature. In addition
to this, the algorithms that we have devised also allow us
to extend our study to consider much denser configurations,
never before considered.

The paper is organized as follows. In Sec. II we describe
the numerical algorithms that we have devised, in Sec. III
we present the numerical results that we have obtained, and
finally in Sec. IV we draw our conclusions.

II. NUMERICAL ALGORITHM

We consider N charges inside a disk (for convenience we
set the radius of the disk to one) interacting via the Coulomb
potential; the total energy of this system is

E =
N∑

i=2

i−1∑
j=1

1

ri j
, (1)

with �ri ≡ (xi, yi ) and ri j = |�ri − �r j |.
It is well known that finding the global minimum of

Eq. (1) is prohibitively difficult for large values of N . This
feature is shared with problems of similar nature, such as the
Thomson problem on the sphere, which are known to be NP
hard [34,35]. In both cases, the number of local minima is
observed to grow exponentially with N (for a more general
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discussion it may be helpful to refer to [36–39]), making the
full exploration of the energy landscape associated with the
problem a very difficult task.

While one expects the problems to be of comparable dif-
ficulty and share some similar feature, the minimization of
Eq. (1) can be greatly facilitated by devising algorithms that
take advantage of specific properties.

The continuum limit of the solutions that minimize Eq. (1),
for instance, is a nonhomogeneous configuration with a den-
sity that is larger at the border [8] (conversely, for the
Thomson problem, the charges tend to distribute uniformly
as N → ∞). For finite N the global minimum of Eq. (1) cor-
responds to configurations with a number of border charges
that is proportional to N2/3 [7,8].

The efficiency of the numerical approach will be improved
if the algorithm is set to produce configurations with the
correct number of border charges from the start. Without
this condition a configuration with the correct number of
border charges will be generated with a certain probability
(which could become quite small if the system is large) and
require a larger number of trials to converge to the targeted
solution.

In general an algorithm will tend to produce a configuration
with a given number of border charges Nb with some proba-
bility: in our experience the probability distribution is almost
a Gaussian with the position of the peak showing sensitivity to
the initial random distribution being used. In particular, if the
initial random configuration is not selected appropriately, the
probability of producing a final configuration with the proper
Nb could be exponentially suppressed. In this case one needs
an exponentially large number of trials to get to the global
minimum. This exponential increase in difficulty, however,
can be avoided if the algorithm is capable from the start of
producing only configurations with the desired Nb, as done by
one of us in Ref. [13]. To avoid misunderstandings, fixing the
proper Nb makes the search exponentially more effective but it
does not make the problem trivial since the subset of solutions
with a given Nb also grows exponentially large as N grows.

In Fig. 1 we show the histograms for the frequency at
which configurations with given Nb are obtained starting from
a random configuration for N = 1000. As one can see from
this figure the choice of the initial random distribution greatly
affects the efficiency in producing configurations with the
appropriate number of border charges: only for the case of
points distributed according to the continuum distribution for
this problem the peak of the Gaussian is very close to the
optimal Nb, whereas in the other two cases the probability of
producing the correct Nb is very small.

With the previous experience accumulated in Ref. [13], we
have devised an algorithm that allows one to target configura-
tions with a given number of border charges. In what follows
we discuss the algorithm in some detail.

As a starting point, we must recognize that we are dealing
with a constrained minimization problem, because the charges
are confined to a disk. A point in the disk can, however, be
represented in polarlike coordinates as

(x, y) = sin2 t (cos u, sin u), (2)

where 0 � t � π/2 and 0 � u � 2π . By using this
parametrization we manage to transform our problem into

FIG. 1. Histograms showing the frequency at which configura-
tions with given Nb are obtained starting from a random configuration
for N = 1000. The points correspond to using random initial con-
figurations where the angles in the parametrization are chosen
uniformly random on 0 � t � π/2 and 0 � u � 2π (violet points),
the points are distributed uniformly on the domain (blue points), and
the points are distributed according to the classical charge density
(brown points). The vertical dashed line is the expected number of
border charges for the global minimum.

an unconstrained one, which is easier to handle. Notice that
Eq. (1) is now a function of 2N angles.

Assuming that we want Nb charges on the border, we may
use the parametrization of (2) in two different forms:

(x, y) = σ sin2 t (cos u, sin u), internal points,

(x, y) = (cos u, sin u), border points, (3)

where 0 < σ < 1 is a parameter that constrains the internal
points to the interior of the disk. The value of σ should
be determined empirically and in our experience σ ≈ 1 −

1
2
√

N
works very well1. A supplemental advantage of this

parametrization consists of reducing the total number of de-
grees of freedom (DOF) from 2N to 2N − Nb.

Once the total energy of the system is expressed in terms
of Eq. (3), one can look for its minima using standard pro-
cedures. In our case, we have implemented the minimization
following two different procedures: applying the truncated
Newton method (TN) to initial random configurations with
fixed Nb and using the basin–hopping (BH) method [41–44],
which is widely considered the most effective algorithm for
the search of global minima. As we will see in the next section,
where we discuss the numerical results, both algorithms turn
out to be very effective in finding good candidates for the
global minimum of the energy.

One of the goals of the present paper, however, is to try
to study configurations of much larger size than the ones
found in the literature. For such large N not only the mini-
mization process can be very timeconsuming but additionally,

1Choosing σ too small or too large will produce “artificial” equi-
librium configurations, i.e., configurations that are not at equilibrium
when σ is eventually set to one.
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round-off errors may become increasingly large, reducing the
effectiveness of our approach.

For these reasons we have implemented a divide and con-
quer (D&C) approach, where again the minimization can be
performed using TN or BH. It is worth describing our ap-
proach in some detail.

The approach consists of the following steps:
(1) Instead of performing the minimization over the whole

disk, one can select a smaller portion of it, such as a disk of
smaller radius, centered at a random point inside the unit disk;
we have found that it is convenient to use the classical charge
distribution inside the disk as the probability distribution for
such points.

(2) The original 2N − Nb DOFs can then be partitioned
into two sets of points, depending whether the points fall
outside or inside the smaller disk; in this case 2N − Nb =
Nout + Nin, where Nout and Nin are the numbers of external and
internal DOFs.

(3) The external points are fixed at their positions, while
the internal points are free to move and may be initially
perturbed to allow to generate a configuration out of equilib-
rium; because the equilibrium distribution of points inside the
disks is not homogeneous (as it would be for the Thomson
problem on the sphere), the amount of perturbation depends
on the position of the smaller disk (if this disk is close to
the border of the region, the perturbation should be smaller
to take into account the fact that charges are closer); the
energy functional is then split into three contributions: E =
Ein−in + Eout−out + Ein−out corresponding to the electrostatic
energy of the internal charges (Ein−in), of the external charges
(Eout−out), and to the interaction energy between internal and
external charges; typically we want Nin 	 Nout and as a result
we expect Ein−in 	 Ein−out 	 Eout−out. Notice that Eout−out

needs to be calculated only once at this stage, since it depends
on the DOFs which are kept fixed.

(4) While running the algorithm the radius of the smaller
disk can be progressively increased from some smaller value
(typically r = 0.1) to a larger one (typically r ≈ 1); these
values are not sacred but they should be changed, keeping in
mind that as one starts it is possible to find good improve-
ments to the energy while working with very few degrees of
freedom; as the algorithm advances, a larger number of DOFs
should be used to allow the change in energy to be safely
above round-off errors and thus provide sizable improvement
to the total energy.

(5) Upon minimization, a new configuration is found
where the internal points are in equilibrium (but this will
not necessarily correspond to an equilibrium configuration
of the whole system once all the DOFs are unfrozen): if the
energy Ein−in + Ein−out has a lower value, the configuration is
retained otherwise it is discarded.

(6) The new configuration thus obtained is compared
with the immediately previous configuration, identifying the
charge that has been most displaced in the minimization
process: if the displacement is above a threshold established
by the user, the center of the smaller disk is placed at this
point and the minimization process is repeated; we call this
step defect chasing, because sufficiently large changes in the
positions of the charges induce a change in the local struc-
ture of the Voronoi cells (while leaving the total topological

FIG. 2. Plot of the energy of the configuration of 1000 charges
obtained with repeated applications of the D&C algorithm, where
the last configuration is fed as starting configuration for the next run
(solid blue line). The dashed brown line is the norm of the gradient
of the configuration.

charge unchanged); if the minimization in the new region is
again successful, the defect chasing can be repeated until no
better minimum is found, or the displacement threshold is
not met.

(7) Repeat the process starting from the first step a large
number of times until the changes in the energy are suffi-
ciently small; the algorithm can also be stopped at any time, if
needed, and in that case a minimization on the full domain
should still be performed to make sure that the gradient is
small enough.

In [45] the reader can find an animation corresponding
to the application of the D&C algorithm to a configura-
tion with 2000 charges inside the disk. The red points
in the animation are the active DOFs in the minimization
process.

In Fig. 2 we show an example application of this algo-
rithm for the case of 1000 charges starting from a completely
random initial configuration. The final configuration is the
actual best minimum that we have found for this case. The
solid blue line is the quantity E − Emin, where Emin is the
lowest energy known for 1000 charges (in the present case it
also corresponds to the last value in the sequence of energies)
and the brown dashed line is the norm of the gradient of the
electrostatic potential. Remarkably, one can observe that as
the algorithm progresses it generates configurations of lower
energy with smaller (but nonzero) gradient. The norm of the
gradient is seen to undergo sudden changes in correspondence
of sizable drops in the energy.

One of the advantages of the D&C algorithm is the ability
to better explore the landscape without being easily trapped
by a local minimum, as it would happen if the minimization
would be carried out on the whole domain.

As we will comment later, all the records that we
have obtained for the configurations with N � 1000 cor-
respond to using the D&C algorithm, although we have
also intensively used the basin-hopping algorithm. In our
experience D&C outperforms a more standard approach
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for very large configurations of Coulomb charges inside
a disk2.

III. NUMERICAL RESULTS

We have used the algorithms described in the previous
section to calculate a large number of configurations: our data
include all configurations with N � 330 and selected ones
with larger N . The largest configuration that we have studied
is N = 40886, which is significantly larger that any other one
previously reported in the literature3.

In general, our calculations either reproduce or improve
all results in the literature for which numerical values are
available, but also extend to much larger N than previously
studied.

Understanding the particular features of these large config-
urations may be useful in assessing the effectiveness of the
models based on the continuum.

Worley [7] and Mughal and Moore [8] have found that
the number of border charges scales as Nb ∝ N2/3 for N � 1.
The argument to understand this behavior is straightforward:
assume that the charge is distributed according the continuum
density

ρ = N

2π

1√
1 − r2

, (4)

and calculate Nb as the charge contained in a circular annulus
of width δr and outer radius one

Nb = N
√

1 − (δr)2. (5)

Assuming that the border charges are evenly distributed on
the border we estimate the interparticle distance on the border
to be d = 2π/Nb; it is reasonable to expect that δr = 2πη

Nb
,

with η > 0. Upon substitution of this relation inside (5), and
assuming N � 1, one obtains the relation

Nb ≈ (4πηN2)1/3. (6)

We have fitted the observed values of Nb for the numerical
solutions with N � 5000 with the form

Nfit
b (N ) ≈ 2.84328N2/3 − 0.530196N1/3 − 2.32866. (7)

In Fig. 3 we display Nb/N2/3 as a function of N : here the
points represent the values obtained with the numerical cal-
culation, while the dashed curve represents the fit of Eq. (7).
In Fig. 4 we plot Nb(N + 1) − Nb(N ) as a function of N . This
quantity normally alternates between the values zero and one,
with sporadic repetitions which correspond to maintaining the
same Nb for three successive configurations, or, alternatively,

2Incidentally, motivated by our success we have also applied it to
the standard Thomson problem on the sphere, but in this case the
effectiveness of the D&C appears to be smaller, possibly due to the
absence of a border. Further experimentation for this case is needed.

3Unfortunately, Mughal and Moore [8] did not report the value of
the energy they found, so that a direct comparison of our result for
N = 5000 with theirs is not immediate. An indirect comparison can
however be made by noticing that the fit reported in [8] provides an
energy about 82.2 units above our best value.

FIG. 3. Nb/N2/3 as a function of N . The blue points are the
values obtained from the numerical calculation, the dashed red curve
corresponds to the fit.

increasing the Nb of one unit for three successive configura-
tions (the latter phenomenon however occurs only for rather
small, N = 74 being the last N where we have observed it).

For large N the fit of Eq. (7) can help to restrict the search
for optimal configuration to a rather small region of values of
Nb, thus allowing one to considerably speed up the numerical
calculation.

The energy of a configuration of N charges inside a unit
disk mutually repelling through the Coulomb potential for
N → ∞ is expected to behave as [4,7,8]

E (fit)(N ) ≈ κ1N2 + κ2N3/2 + κ3N + κ4

√
N + κ5 + . . . ,

(8)

where κ1 = π/4. Mughal and Moore have estimated the re-
maining coefficients in Ref. [8] using their numerical results.

The fit of our data from N = 100 to N = 5000 gives the
coefficients

κ2 = −1.5628,

κ3 = 1.0302,

κ4 = −1.0279,

κ5 = 5.1599,

(9)

FIG. 4. Nb(N + 1) − Nb(N ) as a function of N .
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FIG. 5. −(E (N ) − π

4 N2) as a function of N . The blue points are
the numerical results, while the red curve is the fit of Eq. (8) with the
coefficients given in Eq. (9).

which can be compared with those reported in Ref. [8]. In
particular, the values for κ2 and κ3 that we have obtained are
close to those of Mughal and Moore, whereas κ4 and κ5 are
rather different. We believe that in order to reach a reliable
determination of κ4 and κ5 one should have at one’s disposal
a larger set of numerical results than the one we have. Eq. (8)
should be intended to provide an approximate estimate of the
energy of the configurations at different N .

One expects that the charge distribution in the discrete
model approaches the continuum limit of Eq. (4) for suffi-
ciently large N . The charge density in the discrete model can
be obtained directly in terms of the Voronoi tessellation [14]:

ρ (discrete)(�ri ) = 1

Ai
, (10)

where Ai is the area of the Voronoi cell corresponding to the
ith charge.

We have found that at finite N the density can be described
very well by

ρ(r) = ρint (r) + ρb(r), (11)

where ρint (r) and ρb(r) are the densities of internal and border
charges, respectively, given by the expressions

ρint (r) = N − Nb

2π

1√
1 − r2

[α − (α − 1)(β + 1)(1 − r2)β/2],

ρb(r) = Nb

2π
δ(1 − r), (12)

where ∫
disk

ρint (r)d2r = (N − Nb),

∫
disk

ρb(r)d2r = Nb. (13)

The parameters α and β should be adjusted at each N to
provide the best fit of the numerical data and they should be
such that the continuum limit (4) is recovered for N → ∞. By
noticing that limN→∞ Nb

N = 0, we see that the density reduces
to Eq. (4) at large N if limN→∞ α = 1.

In Fig. 5 we plot the quantity −(E − πN2/4) and its fit.
In Figs. 6 and 7 we plot the charge density for the best

FIG. 6. Charge density for the optimal configuration with
500 point charges in the unit circle. The blue points are the values
obtained from the numerical calculation, the dashed red curve cor-
responds to Eq. (4), the dotted green line is the fit (12) for ρint (r):
ρint (r) = 327

2π

√
1−r2

(1.5147 − 0.0932257
(1−r2 )0.409437 ).

configuration that we have found for N = 500 and N = 5000.
The dashed red curve corresponds to the continuum density
of Eq. (4), whereas the dotted green curve is the fit (12) for
ρint (r).

In Fig. 8 we plot −Qint/Nb as a function of N , where Qint

is the total internal topological charge in the disk. From this
plot we see that Qint ≈ Nb/2; the reason for this behavior is the
fact that typically the Voronoi cells at the border of the disk are
pentagons and quadrilaterals, in an alternating sequence, with
possible sporadic repetitions of a pentagon (lower sequences)
or a quadrilateral (upper sequences).

In Fig. 9 we plot the topological charge contained from
zero to r, as a function of r. For r = 1, the topological charge
is Q(1) = Qtot = 6, as required from Euler’s theorem (the
dashed line corresponds to Q = 6). The topological charge
reaches a minimum very close to the border, after which it
rapidly grows finally reaching the final value at the border

FIG. 7. Charge density for the optimal configuration with 5000
point charges in the unit circle. The blue points are the values
obtained from the numerical calculation, the dashed red curve cor-
responds to Eq. (4), the dotted green line is the fit (12) for ρint (r):
ρint (r) = 2090

π

√
1−r2

(1.21875 − 0.0372972
(1−r2 )0.414748 ).
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FIG. 8. −Qint/Nb as a function of the number of charges.

Qtot = 6. Because the minimum is reached at the very last
layer of cells before the border, it actually corresponds to Qint

plotted in Fig. 9.
In Fig. 10 we plot the number of pentagonal, hexagonal,

heptagonal, and octagonal internal Voronoi cells as functions
of N , following the color scheme in Fig. 11. The dashed lines
are the fits

N (fit)
5 (N ) = 0.555351N2/3 − 2.10709 3

√
N,

N (fit)
6 (N ) = N − 5.43617N2/3 + 7.35492 3

√
N,

N (fit)
7 (N ) = 1.92787N2/3 − 5.16971 3

√
N,

N (fit)
8 (N ) = 0.079599N2/3 + 1.02801 3

√
N.

(14)

The particular choice of exponents in the fits is moti-
vated by the fact that N5 + N6 + N7 + N8 = N − Nb (we have
verified that N (fit)

5 + N (fit)
6 + N (fit)

7 + N (fit)
8 ≈ N − Nb). Addi-

tionally, with these fits we can obtain the approximate
behavior of the total internal topological charge:

Qint ≈ N (fit)
5 − N (fit)

7 − 2N (fit)
8

= −1.53172N2/3 + 1.0066 3
√

N, (15)

which reproduces quite well the observed values of Qint.

FIG. 9. Topological charge in a disk of radius r as function
of r for N = 5000.

FIG. 10. Number of pentagonal, hexagonal, heptagonal, and
octagonal internal Voronoi cells as functions of N .

Incidentally, Fig. 9 and the formula above disprove the
observation of [9], that Qint scales linearly with N . The reader
should also notice that N7 � N5: this is due to the fact that
the last layer of Voronoi cells before the border typically
contains a large number of heptagons (pentagons, on the other
hand, are present in large numbers on the border, but right
now we are only discussing internal cells so they do not
contribute to N5).

Although we have calculated a large number of configura-
tions, it is clearly impossible to show them all here, therefore
we will limit ourselves to show the largest configurations that
we have calculated, N = 1000 and 2000 in Fig 12, N = 5000
in Figs. 13 and 14, N = 10 000 in Fig. 15, N = 14 180 in
Fig. 16, and N = 40 886 in Fig. 174.

There are interesting aspects emerging from these figures:
although the internal topological charge is not appreciable
until getting sufficiently close to the border (see Fig. 9), in
the central part of the disk we observe rather long “chains”
of defects, typically sequences of heptagonal and pentagonal
Voronoi cells, which contribute to lowering the total energy.
The length of these “chains” also is seen to increase with
N . On the border of the disk, we typically see the presence
of pentagonal and quadrilateral cells, almost perfectly alter-
nating (for the largest configurations it is very difficult to
observe due to the tiny size of these peripheral cells). As we
mentioned earlier, this behavior is responsible for the scaling
of Qint ≈ 0.5Nb.

In particular we want to draw the attention of the reader
to Fig. 13, where we have plotted the two low energy

4The curiosity of the reader may be fulfilled by looking at all the
data of the configurations and the supplemental material of this paper
[40].

FIG. 11. Color scheme used for the Voronoi cells: the num-
ber within each square represents the number of sides of the
Voronoi cell.

055302-6



THOMSON PROBLEM IN THE DISK PHYSICAL REVIEW E 108, 055302 (2023)

FIG. 12. Best configurations with 1000 and 2000 charges found
with the D&C algorithm.

configurations obtained with the D&C algorithm for N =
5000 (the one in the upper plot is actually the lowest energy
configuration that we have found). Both configurations have
been generated in the same run of the algorithm and look the
same at first sight. Indeed, the structure of the defects that
are well separated from the border is very similar. In Fig. 14
we show a detail of the two figures, which clearly shows that
the defect structure close to the border is slightly different.
Small changes in the positions of the peripheral charges (not
necessarily on the border) can lead to sensible changes in the
local structure of the Voronoi cells, since in this region the
interparticle distance is quite small. These small changes may
also produce much larger changes in the total energy of the
system than changes performed in the central region. We re-
gard this behavior as a further manifestation of the importance
of the border in determining minimum energy configurations.

We also notice that all the Voronoi diagrams of these
figures contain at most octagonal cells (this contrasts with the
configurations in [9] which seem to contain nonagons as well).

Of course we don’t believe that all our configurations for
large N are actual global minima of the problem (the difficulty
of finding a global minimum for such large configurations
can only be underestimated) but we are confident that many
features of the configurations we have found may resemble
properties of the classical ground state.

As a final technical note we wish to mention that most of
the calculations have been carried out on a computer, AMD

FIG. 13. Best configurations (upper plot) and a low energy con-
figuration (lower plot) with 5000 charges found with the D&C
algorithm.

Ryzen 9 3950x, with 16 double core processors; on an Intel
Xeon E5-2640 with eight double core processors; and an
11th Gen Intel Core i7-1165G7 with 8 cores, and that our
programs have been implemented in python [48] with numba
[49]. It is also important to notice that the time of execution
of the algorithm (meaning the time needed to get sufficiently
close to an actual minimum of the potential) is typically
large because the algorithm has the tendency to avoid falling
on intermediate minima and produces at each iteration a
“metastable” configuration with a possibly small but nonzero
norm of the gradient (see for example Fig. 2). In addition to
this we should also point out that the time taken to complete
a single iteration within the algorithm may vary quite a bit,
depending on the size of the region where the minimization is
taking place.

IV. CONCLUSIONS

We have studied the Thomson problem inside a disk and
found a large number of configurations up to values of N
(number of charges) which had never been considered before
(N � 10 000). To be able to work with such gigantic con-
figurations we have devised a divide and conquer algorithm
that proves particularly efficient for N � 1000 (as a matter of
fact, all our best configurations for N � 1000 have been found
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FIG. 14. Detail of the plots in Fig. 13.

with D&C). For smaller N we have applied a minimization
algorithm that uses either the truncated Newton method (TN)
or the basin-hopping method. In all our numerical explo-
rations we have enforced that the minimization be carried out
with a fixed number of border charges (as originally done in
[13]), which allows one to considerably speed up the numeri-
cal calculation.

Obtaining low energy configurations of large numbers of
charges inside a domain is relevant for studying how the dis-
crete system is approaching the continuum limit and possibly
could allow a direct comparison with the models based on
the continuum. In this respect we have observed that the

FIG. 15. Best configurations with 10 000 charges found with the
D&C algorithm.

FIG. 16. Best configurations with 14 180 charges found with the
D&C algorithm.

charge density indeed tends to the expected continuum density
for large enough N . Finally, we have observed that the Voronoi
diagrams of the configurations become increasingly complex
as N grows, with the appearance of large chains of alternating
(pentagonal-heptagonal) cells; the topological charge of the
domain, however, is mostly concentrated close to the border
of the disk. We also found that the total internal topological
charge does not scale as N , as reported in [9], but rather as Nb.

Although our results are specific to the disk, they can
be generalized to study the Thomson problem in arbitrary
domains of the plane (or even domains with curvature), with
minor adaptations. We plan to conduct experiments on more
general domains in future work.
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