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Experimental investigation of the period-adding bifurcation route to chaos in plasma
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Since the characteristic timescales of the various transport processes inside the discharge plasma span several
orders of magnitude, it can be regarded as a typical fast-slow system. Interestingly, in this work, a special
kind of complex oscillatory dynamics composed of a series of large-amplitude relaxation oscillations and
small-amplitude near-harmonic oscillations, namely, mixed-mode oscillations (MMOs), was observed. By using
the ballast resistance as the control parameter, a period-adding bifurcation sequence of the MMOs, i.e., from
Ls to Ls+1, was obtained in a low-pressure DC glow discharge system. Meanwhile, a series of intermittently
chaotic regions caused by inverse saddle-node bifurcation was embedded between the two adjacent periodic
windows. The formation mechanism of MMOs was analyzed, and the results indicated that the competition
between electron production and electron loss plays an important role. Meanwhile, the nonlinear time series
analysis technique was used to study the dynamic behavior quantitatively. The attractor in the reconstructed
phase space indicated the existence of the homoclinic orbits of type �−. In addition, by calculating the largest
Lyapunov exponent (LLE), the chaotic nature of these states was confirmed and quantitatively characterized.
With the decrease in the ballast resistance, the return map of the chaotic state gradually changed from the nearly
one-dimensional single-peak structure to the multibranch structure, which indicates that the dissipation of the
system decreased. By further calculating the correlation dimension, it was shown that the complexity of the
strange attractors increased for higher-order chaotic states.

DOI: 10.1103/PhysRevE.108.055210

I. INTRODUCTION

It is widely believed that a nonlinear physical system far
from the thermodynamic equilibrium state can exhibit com-
plex dynamic behavior with regular or irregular structures
in the time and/or space domains. The existence of deter-
ministic chaos in laboratory plasmas has been extensively
demonstrated both experimentally and numerically over the
last decades [1–6]. Due to the existence of the negative
differential conductivity (NDC), the discharge plasmas work-
ing in the subnormal glow discharge regime can yield the
development of self-sustained oscillations regardless of the
presence of the external driving forces, which can be observed
by recording the macroscopic electrical signals [7–9]. The
charge-breakdown-discharge process is repeated within the
system during the manifestation of self-sustained oscillation.
Meanwhile, it has been also suggested that a variety of com-
plex bifurcations can be observed as the discharge parameter
changes. Several transition routes to chaos have been reported,
such as the period-doubling bifurcation sequence [10–13], the
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quasiperiodicity route [4,14–16], and the intermittent chaos
route [17–19].

In recent years, the research on nonlinear science has
mainly focused on the complex oscillatory dynamics in
more complex and realistic physical systems with multiple
timescales [20–23]. Since different mechanisms are active
during different phases of the system evolution, the system
will alternately undergo slow and fast motion, which will
cause a special periodic oscillatory state, namely, mixed-mode
oscillations (MMOs). The typical characteristic of MMOs
is that an oscillation period contains L large-amplitude os-
cillations (LAOs) followed by s small-amplitude oscillations
(SAOs). The corresponding oscillatory state is denoted by Ls.
The difference in the amplitude between LAOs and SAOs
is typically more than an order of magnitude. Since the first
discovery of MMOs in the Belousov-Zhabotinsky reaction, it
has been widely observed in electrochemical systems [24–26],
electric circuits [27–29], biological systems [30,31], laser dy-
namics [32–34], and many other physical systems [35,36].

During the alternating periodic-chaotic (APC) sequence,
as the name implies, the system will alternately exhibit both
periodic and chaotic oscillations with the change in the con-
trol parameters. This process can by considered as a typical
route to chaos of mixed-mode oscillations. As a typical dy-
namical system with multiple timescales for the participating
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modes, however, there are only a few reports in the literature
on the APC in the discharge plasmas. The first experimen-
tal observation of APC in discharge plasmas was reported
by Braun et al. [37,38]. By changing the control parame-
ter (which was the applied voltage in their work), an APC
sequence due to the Shilnikov homoclinic orbit losing its sta-
bility was obtained. The numerical simulation of the MMOs
and the transition from periodic to chaotic oscillations was
carried out by Hayashi by using a one-dimensional simple
fluid model and coupling the external circuit as the boundary
conditions [39]. In addition, the previously reported works
focused on only reporting experimental phenomena and there
is a lack of quantitative analysis of the oscillatory dynamics
of the system. Therefore, a deep understanding of the dy-
namic characteristics of MMOs in discharge plasma systems
is undoubtedly required. With the development of discrete
time series analysis techniques, it is possible to quantitatively
characterize complex oscillatory dynamics. Along these lines,
the goal of this work is to provide qualitative knowledge of the
characteristics of the MMOs in the discharge plasma system.
A new APC bifurcation sequence of the MMOs was obtained
in a low-pressure DC glow discharge system by varying the
ballast resistance, while the other discharge parameters were
fixed. The periodic windows caused by saddle-node bifurca-
tion were ordered in an arithmetic series, i.e., from Ls to Ls+1,
which is also known as the period-adding bifurcation. The ap-
pearance of the MMOs and the APC sequence was explained
as a result of the competition between the electron produc-
tion due to the inelastic collision ionization processes and
the electron loss due to the directional movement process to-
wards the anode. The time-series analysis tools, such as return
maps, phase space reconstruction, correlation dimensions,
and largest Lyapunov exponent were used to quantitatively
analyze the chaotic dynamic characteristics of the strange
attractor of the system.

This article is organized as follows: In Sec. II, a brief
description of the experimental apparatus is presented. In
Sec. III A, the mode transition processes of the dynamic
behavior were thoroughly analyzed. By adjusting the bal-
last resistance, the period-adding bifurcation sequence with
the alternating periodic-chaotic phenomenon is observed. In
Sec. III B, the time-series analysis techniques are introduced
to quantitatively analyze the oscillatory dynamics of the
chaotic region. Finally, the conclusions are summarized in
Sec. IV.

II. EXPERIMENTAL APPARATUS

In this work, the glow discharge was ignited between two
cylindrical hollow molybdenum electrodes in a glass tube.
The schematic diagram of the experimental setup with the
geometry size marked is presented in Fig. 1. The experi-
ments were performed with air as the background gas and the
working pressure was pumped to p = 15 Pa. The cathode was
grounded and the total voltage provided by a DC power supply
was fixed at 2100 V. In some previously reported works in
the literature, it has been demonstrated that when the control
parameters such as the ballast resistance or applied voltage,
are gradually changed, the dynamic behavior of the system
will exhibit a simple—complex—simple transition during the

FIG. 1. (a) Schematic illustration of the experimental setup.
(b) The geometry size of the discharge tube.

transition from the Townsend discharge to the glow discharge
[12,40]. In our current experiment, a variable resistor (ad-
justable from 0.1 to 1000 M�) Rb was connected in series
as a control parameter. The transition of the discharge from
the Townsend discharge to the glow discharge regime can be
achieved by adjusting the value of the ballast resistor. The
time series of the discharge voltage was recorded by a digital
oscilloscope (Keysight InfiniiVision 3034G) to characterize
the dynamic behavior of the system.

III. RESULTS AND DISCUSSION

A. Observation of period-adding bifurcation to chaos

In this section, the variation of the dynamic behavior of
the discharge system with the change in the control parameter
was provided. The experiment was started at a fairly high
ballast resistance (about several hundred M�). The system
was therefore in a stationary Townsend discharge regime
with a very low current. Figure 2 presents the time evolu-
tion of the discharge voltage at different ballast resistances.
The period-adding bifurcation sequence of the system with
the change in the control parameter, i.e., Rb, is described as
follows: With the ballast resistance Rb decreased to about 100
M�, the stationary discharge state lost its stability through
a Hopf bifurcation and the large amplitude relaxation oscil-
lations appear, as shown in Fig. 2(a). This oscillatory state
is named as 10, where Ls indicates one oscillation period
containing L LAOs and s SAOs as was mentioned above.
The LAOs correspond to the repetitive charging, breakdown,
discharging processes, which are microscopically manifested
in the periodic formation and dissipation of the cathode sheath
due to the existence of the negative differential conductivity
[41–43]. With the gradual decrease in Rb, the frequency of the
LAOs will be gradually increased due to the decrease in the
characteristic time of the charging phase, which can be clearly
identified in Fig. 2(b).

In addition, by comparing Fig. 2(a) with Fig. 2(b) and
the insets, it can also be observed that there are significant
differences in the shape of the single pulse, which could be
explained as follows: The loss of electrons is mainly due to
the electron flux towards the anode determined by the electric
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FIG. 2. The evolution of the discharge voltage at applied voltage U0 = 2100 V and pressure p = 15 Pa for the different values of the
ballast resistance (a) 10: Rb = 100 M�, (b) 10: Rb = 25 M�, (c) 11: Rb = 18.6 M�, (d) C (1,2): Rb = 16.8 M�, (e) 12: Rb = 16.4 M�, (f)
C (2,3): Rb = 15.9 M�, (g) 13: Rb = 15.7 M�, (h) C (3,4): Rb = 15.5 M�, (i) C (n,n+1): Rb = 15.2 M�, (j) 01: Rb = 15.1 M�. The insets in panels
(a)–(c) show the details of the voltage and current pulses in one period.

field and the density gradient while the production of electrons
is mainly due to the inelastic collisional ionization processes,
which corresponds to two characteristic timescales, namely
the characteristic time of electron loss tl and the characteristic
time of electron production tp, respectively. In the case of
higher Rb, the lower input power results in a relatively lower
electron density and inelastic collisional ionization frequency
during the discharge phase. Therefore, tp will be much higher
than tl and the electron production process could be negligible
as a slow process during the current pulse phase. As shown in
Fig. 2(a) and its inset, when the electrodes were charged to the
peak voltage, the gas gap was broken and the voltage dropped
rapidly by about 100 V. During this process, the electron

density first increased rapidly due to the electron avalanche
and the cathode sheath structure was formed, and then de-
creased rapidly due to the end of the current pulse until the
cathode sheath could no longer sustain and dissipate. Then the
system was charged like a capacitor until the breakdown volt-
age was reached again and the above process was repeated.

On the other hand, the electron avalanche effect will be
more significant in the discharge phase at lower Rb, leading
to a higher electron density. Therefore, tp is not much larger
than tl , and the inelastic collisional ionization process could
not be considered as a slow process and ignored, which would
weaken the electron loss. Therefore, the end of the falling edge
in each period of the waveform is more gentler. Meanwhile, it
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is worth noting that a relatively smooth rising edge appeared
at the beginning of the charging phase compared with the
case of high resistance [as shown in the gray area in the
illustration of Fig. 2(b)]. During the smoother rising edge,
the decrease in current density allowed the charging process
to begin and the voltage to rise. However, there were still a
relatively large number of electrons between the electrodes,
sufficient to distort the electric field and inhibit the dissipation
of the cathode sheath, which in turn hindered the voltage from
rising.

The 10 state will be maintained until Rb = 20.2 M�. As Rb

continues to decrease, there will be a critical value such that,
before the end of the discharge phase (corresponding to the
vicinity of the voltage nadir), tp will gradually approach and
finally become lower than tl , where an 11 periodic state arises,
as shown in Fig. 2(c) and the inset. In this case, although
the current pulse is terminated and the voltage begins to rise
gradually, the residual electron density remains high enough
for further avalanche ionization, causing the electron density
to rise again. When the electron density increases to a point
where the electron-loss process dominates, the discharge pro-
cess occurs again accompanied by a renewed drop in voltage.
Note that the peak value of this pulse will be lower than the
previous one due to the effect of the residual charge. Thus,
we can observe the appearance of a SAO following the LAO.
Subsequently, the residual charge particles are fully released
and the cathode sheath completely dissipates, restoring the
electric field to the undistorted state. Therefore, a typical
feature of the 11 periodic state is the emergence of a quasisi-
nusoidal SAO between the two adjacent LAOs, as can be seen
in Fig. 2(c). Frequency-locking due to competition between
different transport processes allows the periodic state to be
stabilized over a fairly wide range of control parameters. Fur-
ther bifurcations occur as Rb is continuously decreased and the
number of SAOs increases by one in a period-adding cascade
in each oscillation period while the number of LAOs remains
constant, because the effect of the ionization processes caused
by the residual charge particles becomes more significant and
more SAOs are required to release the residual charge parti-
cles that were not dissipated in the LAOs. The system will go
through 12 and 13 states successively, which can be seen as
Figs. 2(e) and 2(g).

Meanwhile, the APC phenomenon was observed between
two adjacent frequency-locking regions, which means that
a chaotic band C(n,n+1) will appear between the periodic
windows 1n and 1n+1. This phenomenon has been widely
observed and studied in many other physical systems [44–46].
Nonetheless, the APC in discharge plasma systems has been
scarcely reported in the literature. The APC phenomenon can
be clearly seen in the amplitude bifurcation diagram in Fig. 3.
As can be seen, the width of the periodic window decreases
with the decrease in Rb. Figure 2(d) shows that the discharge
time series of C(1,2) at Rb = 16.8 M�. As can be observed,
the oscillations are nonperiodic although the MMOs structure
is maintained. Moreover, the time evolution of the discharge
voltage for different Rb within C(1,2) is presented in Fig. 4.
When Rb is slightly below the critical value of the periodic
window 11, it can be seen from Fig. 4(a) that it resembles the
11 periodic state at a first glance. However, the laminar state
will be disrupted and rare irregular bursts with the 12 MMOs

FIG. 3. The amplitude bifurcation diagram. The yellow regions
correspond to the intermittently chaotic regions between the transi-
tions of two periodic oscillatory states.

structure will appear, as shown in the gray regions in Fig. 4(a),
which is a typical feature of Pomeau-Manneville intermittent
chaos [47]. The appearance of 12 MMOs structure bursts is
due to the fact that the residual charge particles are not fully
released after one SAO when Rb is decreased beyond the 11

frequency-locking region. With a further decrease in Rb, the
random bursts will become more and more frequent until the
transition to full chaos [see Fig. 4(b)]. If Rb is continued to
decrease after the transition to full chaos, the proportion of
the 12 MMOs structure bursts in the waveform will continue
to increase, as shown in Fig. 4(c), and the system will be even-
tually transferred to the 12 state after passing the critical value.
The emergence of the irregular bursts suggests that the chaotic
region is “bounded” by the saddle-node bifurcation on both
sides. The subsequent intermittently chaotic MMOs bands
C(2,3) and C(3,4) were also found between the corresponding
periodic windows, as shown in Figs. 2(f) and 2(h). Valuable
pieces of information can be also obtained from the time series
of the chaotic states. Particularly, there is a feature for an
arbitrary chaotic state C(n,n+1) that the time series contains

FIG. 4. The intermittently chaotic MMOs in C (1,2) at Rb =
(a) 16.9 M� (b) 16.8 M�, and (c) 16.7 M� corresponding to the
approximate 11 state but with rare bursts, fully chaos and approx-
imate 12 state but with rare bursts, respectively. The gray regions
correspond to the irregular bursts.
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FIG. 5. The FFT spectrum at ballast resistance Rb = (a) 25 M�,
(b) 15.1 M�.

the random mixture of several periodic states 11, 12, . . . , 1n+1.
This result is similar to the effect that takes place in the
electrochemical reaction described in the three-variable math-
ematical model [24,48] and in the experimental observation
of the peroxidase-oxidase reaction [49], which demonstrates
the correlation of the different multiple timescales physical
systems and the universality of chaos.

Due to the influence of the unavoidable noise and the
decrease in the width of the periodic window, the higher-order
1n periodic states (n > 3) were not observed. However, with
the further decrease in Rb, there is an increasing number of
SAOs separating two successive LAOs and higher-order 1n

MMOs structures can be observed in the evolution of the
discharge voltage. As can be seen from Fig. 2(i), the number
of the LAOs decreased while the corresponding number of
SAOs increased in one MMO unit and there exist up to 17

MMOs structures at Rb = 15.2 M�, which may indicate the
theoretical possibility of the existence of the higher-order
periodic windows. The state is called C(n,n+1), which means
the higher-order chaotic state with uncertain specific order.
Eventually, LAOs vanished completely and only SAOs existed
in the oscillation waveform, which suggests the system transi-
tion to the 01 state, as shown in Fig. 2(j). This is due to the fact
that in this case the electron production process is so strong
that the residual electron cannot be fully dissipated, and the
dynamic behavior of the system is determined by the competi-
tion between the electron production and loss processes, rather
than by the periodic formation and dissipation of the cathode
sheath due to the negative differential conductivity. Figure 5
presents the fast Fourier transformation (FFT) spectrum at
Rb = (a) 25 M� and (b) 15.2 M�, which corresponds to the 10

and 01 states, respectively. As can be ascertained from Fig. 5,
the harmonic component of the 01 state was significantly
reduced, which indicates the oscillation mode transition from
the relaxation oscillation to the near-sinusoidal oscillation.

The 01 state occupies an extremely narrow parameter range, as
shown in Fig. 3, and eventually, the oscillations disappeared
and the system transition to a stable glow discharge state took
place at about Rb = 15 M�.

B. Characterization of chaos by the time-series
analysis techniques

In this section, the main focus was led on the character-
istics of the chaotic behavior between the periodic windows
to deeply understand the characteristics and nature of MMOs.
Due to the extremely complex nature of the discharge pro-
cess, it is almost impossible to fully capture the dynamic
equations of the system. However, with the development of
nonlinear time series analysis techniques, it can be used to
reconstruct the phase space of the discrete time series to study
the complexity of the chaotic behavior.

First, the information of the discrete time series was ex-
tracted by recovering the attractor of the high-dimensional
phase space using the phase-space reconstruction method,
which is considered to be topologically equivalent to the
attractor of the original system according to Takens et al.
[50]. This method allows the experimentally obtained one-
dimensional discrete voltage time series x(t ) to be rewritten
as a m-dimensional vector X (t ) = (x(t ), x(t + τ ), . . . , x(t +
(m − 1)τ )) by selecting a specified embedding dimension m
and time delay τ . By using the phase-space reconstruction
technique, it is possible to reproduce the regular, and tan-
gible trajectories in high-dimensional space from complex
and irregular discrete time series. It is crucial to choose the
appropriate time delay τ and embedding dimension m to
restore the topological properties of the original system. In
this work, the time delay and embedding dimension were
estimated by using average mutual information (AMI) and
false nearest neighbor (FNN) algorithm [51], respectively.
Figure 6 displays the projection of the reconstructed chaotic
attractor at Rb = 16.8 M� in the reconstructed phase space,
where the embedding dimension m = 5 and the time delay
τ = 9�t .

According to the time series and the corresponding recon-
structed phase-space attractor, the dynamics of the system can
be described as follows: the trajectory slowly moves around
the saddle focus along the unstable manifold with a spiral
motion. After several cycles of rotation, the trajectory leaves
the vicinity of the saddle focus, which corresponds to the ap-
pearance of large amplitude relaxation oscillations, and then
is rapidly reinjected into the neighborhood of the saddle focus
along with the stable manifold. This process indicates the
existence of homoclinic orbits of type �− in the phase space
of the system [26]. Due to the slight change in the reinjection
trajectory for each cycle, this process will result in a difference
in the number of SAOs that is required to escape the saddle
focus, which could interpret the coexistence of the different
order MMOs structures.

It is well known that a typical characteristic of a deter-
mined chaotic system is its sensitivity to the initial state. In
other word, the two phase-space trajectories starting from
adjacent initial positions will quickly separate, which reflects
the unpredictability of the chaotic motion. As an example, the
time evolution trajectories of the two neighboring points in
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FIG. 6. The reconstructed attractor in the different phase planes for Rb = 16.8 M�. The embedding dimension m = 5 and the time delay
τ = 9�t ; �t is the sampling interval of the original series.

the reconstructed phase space at Rb = 16.8 M� was tracked,
as can be observed in Fig. 7. Here, the initial position was
marked by the black solid point and the black (solid) and
red (dashed) lines represent the time evolution of the trajec-
tories. The evolution time was T = 2.5 ms. As can be seen
intuitively from Fig. 7, the two trajectories almost overlap at
the beginning. As time passes, the trajectories were rapidly
separated and then exhibited completely different trends. The
above-mentioned result indicates that the system exhibits sen-
sitivity to a slight difference in the initial state. Then, a
quantitative analysis of the system’s chaoticity is presented.
The rate of separation of infinitesimally close trajectories
was characterized by using the Lyapunov exponent λ. For a
m-dimensional dynamic system, there will be m Lyapunov
exponents λ1, λ2, . . . , λm. It is almost impossible to deter-
mine all of the Lyapunov exponents because the governing
equations of the real dynamic system are generally not avail-
able. In practical applications, one is more concerned with the
largest Lyapunov exponent (LLE) λ1, which determines how
fast the trajectories diverge or converge. Rosenstein et al. pro-
posed a practical method to estimate the LLE by calculating

the average divergence rate of the nearest-neighbor point for
each point in the reconstructed phase space from the discrete
time series as follows [52]:

λ1(i) = 1

i�t

1

M − i

M−i∑

j=1

ln
d j (i)

d j (0)
. (1)

where i is the time step, �t denotes the sampling interval,
and d j (i) refer to the distance between the jth pair of nearest-
neighbor points after i time steps. Figure 8 presents the
average log divergence versus time at Rb = 16.8, 15.9, 15.5,
and 15.2 M�, which correspond to the chaotic states C(1,2),
C(2,3), C(3,4), and C(n,n+1), respectively. It can be seen that the
curve initially exhibits an approximately linear relationship,
corresponding to the exponential divergence characteristic
of the initial adjacent phase-space trajectories. This result
confirms the existence of deterministic chaos. With further
increase in time, the curve tends to be saturated, which is
due to the fact that the average divergence of the trajectories
has approached the characteristic scale of the attractor. The
red dashed lines indicate the results of the linear fitting for
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FIG. 7. The time evolution of the trajectories of the two phase-
space points that were initially very close to each other in the
different phase planes of the reconstructed phase space for Rb =
16.8 M�. The arrows indicate the direction of the flow.

the exponential divergence region and from the slope, where
the values of the corresponding LLE λ1 were 4.86, 2.31,
1.69, and 1.52, respectively. The existence of positive LLE
demonstrates signify the chaotic nature of the irregular time
series between the periodic windows. As a specific form of
the Poincaré map, the return map (also known as the next
maximal amplitude map) An × An+1 was constructed, where
An corresponds to the nth local maximum of the time series.
Figures 9(a)–9(d) illustrate the return map for Rb = 16.8, 15.9,
15.5, and 15.2 M�, respectively, which corresponds to the
chaotic states C(1,2), C(2,3), C(3,4), and C(n,n+1), respectively.
As can be seen from Fig. 9(a), the discrete data points are
concentrated on a curve with almost no “thickness.” The

FIG. 8. Average logarithmic divergence for Rb = (a) 16.8 M�,
(b) 15.9 M�, (c) 15.5 M�, (d) 15.2 M�, where the slope presents
the value of LLE.

FIG. 9. The return map for Rb = (a) 16.8 M�, (b) 15.9 M�,
(c) 15.5 M�, and (d) 15.2 M�.

return maps of C(1,2) state exhibit a one-dimensional unimodal
nature with a long tail to the right of the maximum, which is
a typical characteristic of MMOs systems [23,53,54]. These
results are in line with that the dynamics behavior observed
between the periodic windows in low-dimensional chaotic
oscillations. Meanwhile, for higher-order chaotic states, a
phenomenon that can be significantly observed in Figs. 9(b)–
9(d) is that the ratio of the height to the width of the hump
becomes larger while the steepness decreases. It is clear that,
with the decrease in the steepness of the hump, the probability
that an iterate to land on this region of the map function is
higher and more iterations are required to leave the channel
formed by the hump and the diagonal. Therefore, higher-order
MMOs structure will be observed in the higher-order chaotic
states. In addition, as can be also noticed in Figs. 9(b) and
9(c) compared with Fig. 9(a), the data points are no longer
concentrated on a certain curve and the multiple fold structure
appears. For the higher-order chaos state, the multiple folds
structure will be more apparent, as shown in Fig. 9(d). The
presence of the multiple folds structure as a result of the
finite dissipation implies an increase in the complexity of
the system. It is well known that the correlation dimension
Dcorr of the chaotic attractors is one of the most important
indexes to quantitative characterize the complexity of chaotic
systems. To this end, in this work, the Grassberger-Procaccia
method based on the reconstructed phase space [55] was used
to calculate the correlation dimension. For the m-dimensional
reconstructed phase-space system X (t ), the correlation
integral C(r) is defined as follows:

C(r) = 1

N2

N∑

i, j=1

�(r − |Xi − Xj |), (2)

where N is the number of the vector in the reconstructed phase
space and � refers to the Heaviside function. C(r) indicates
the proportion of the number of the correlated vector pair,
which is defined as the vector pair satisfied r − |Xi − Xj | > 0,
to all possible pairs in the reconstructed phase space. The
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FIG. 10. The effect of the embedding dimension m on the corre-
lation integral C(r) for Rb = (a) 16.8 M�, (b) 15.9 M�, (c) 15.5 M�,
and (d) 15.2 M�. The inset shows the correlation dimension Dcorr

versus the embedding dimension m.

relation of C(r) and Dcorr satisfied the following expression,

Dcorr = ln [C(r)]

ln r
. (3)

Figures 10(a)–10(d) presents the results of ln [C(r)] vs ln r
for the embedding dimension m in the range of 3–10 for Rb =
16.8, 15.9, 15.5, and 15.2 M�, respectively. Considering the
influence of the noise and the scale of the strange attractor, the
linear scaling is only valid in the intermediate region marked
by the dashed lines. Additionally, the relationship between
the slope in the linear scaling region and the embedding di-
mension m is shown in the inset. For a random system, an
increase in m leads to a corresponding increase in the slope.
On the other hand, for a deterministic chaotic system, as the
embedding dimension m increases, the slope converges to a
certain noninteger value, i.e., the correlation dimension Dcorr,
indicating the existence of the fractal structure of the chaotic
attractor. It can be seen from the inset that, as the embedding
dimension increased, Dcorr gradually increased and eventually
became stable. The calculated Dcorr at different ballast resis-
tances Rb are presented in Table I. It can be seen that the
correlation dimension increased for the higher-order chaotic
state, indicating that the dissipation of the strange attractor of
the system weakened and the complexity increased with the
decrease in Rb.

TABLE I. The correlation dimension Dcorr at different ballast
resistance Rb.

Rb 16.8 M� 15.9 M� 15.5 M� 15.2 M�

Dcorr 2.016 ± 0.025 2.303 ± 0.019 2.333 ± 0.022 2.519 ± 0.010

IV. CONCLUSIONS

In the present work, an experimental result was presented
showing complex dynamics in the subnormal glow discharge
regime of a DC glow discharge system. The experiment was
carried out using ballast resistance Rb as the control param-
eter. The dynamic behavior was characterized by recording
the discharge voltage and the period-adding bifurcations se-
quence of the mixed-mode oscillations state (10 → 11 →
12 → · · · → 1n → 01) was obtained. Meanwhile, an alter-
nating periodic-chaotic phenomenon was observed, i.e., the
chaotic oscillations appeared in the transitions between the
adjacent periodic states. More specifically, near the critical
value of the periodic window, regular periodic oscillations
were broken by irregular bursts due to the inverse saddle-
node bifurcation and the bursts took place more frequently
as the control parameters moved away from the bifurcation
point, which is a typical characteristic of Pomeau-Manneville
intermittent chaos.

The formation mechanism of the MMOs was discussed
and the results suggested that the appearance of LAOs was
caused by the periodic formation and dissipation of the cath-
ode sheath due to the existence of the negative differential
conductivity, while the appearance of SAOs was due to the
frequency locking caused by the competition between the
electron production due to the inelastic collisional ionization
processes and the electron loss due to the directional move-
ment process towards the anode. With the gradual decrease
of Rb, the competition between the two transport processes
became more pronounced, leading to an arithmetic increase in
the number of small amplitude oscillations. The intermittent
chaos beyond the frequency-locking region was due to the
residual charge particles not being fully released.

To delve deeply into the complex dynamics of the sys-
tem, the reconstructed strange attractor which is topologically
equivalent to the original system, was recovered by the
phase-space reconstruction technique. The emergence of
the mixed-mode oscillations was due to the existence of the
homoclinic orbits of type �− in the phase space of the sys-
tem. In this case, small amplitude near-sinusoidal oscillations
were detected, which correspond to the slow rotations along
with the unstable manifold around the saddle focus. During
the fast motion of the trajectory that is reinjected nearby
the saddle focus along with the stable manifold, the system
exhibited large amplitude relaxation oscillation. Due to the
differences in the location of trajectory reinjection along with
the slow manifold, the time series of chaotic state C(n,n+1)

consisted of a random mixture of different MMO structures
11, 12, . . . , 1n+1. Furthermore, the calculation of the largest
Lyapunov exponent and correlation dimension was carried
out for the chaotic oscillations between the different periodic
windows to quantitatively characterize the chaos. The posi-
tive largest Lyapunov exponent clearly indicated the existence
of the deterministic chaos. Moreover, the presence of the
multiple folds in the return map, as well as the results of
the calculation of the correlation dimension, implied the in-
crease in the complexity for higher-order chaotic states of the
system.
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