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Method of spectral response to stochastic processes for measuring
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The theoretical background of the nonperturbative method of spectral response to stochastic processes (SRSP)
for measuring the nonreciprocal interparticle effective interactions in strongly coupled underdamped systems
is described. Analytical expressions for vibrational spectral density of confined Brownian particles with a
nonreciprocal effective interaction are presented. The changes in the vibrational spectral density with varying
different parameters of the system (nonreciprocity, viscosity, ratios of particle sizes, and intensities of random
processes acting on each particle) are discussed using the example of a pair of nonidentical particles in a
harmonic trap. The SRSP method is compared to three other nonperturbative methods. The SRSP method
demonstrates an undeniable advantage when processing particle trajectories with errors in particle tracking.
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I. INTRODUCTION

A violation of the action-reaction symmetry in systems of
a different nature has recently become a hot topic of multiple
interdisciplinary studies [1–25]. On the mesoscopic length
scale, Newton’s third law can be formally broken when the
interactions between particles are mediated by a nonequilib-
rium environment which is also effectively taken into account
by means of dissipative forces and particle energy. Striking
examples of such systems are catalytically active [9,11,14,26–
28] and flowing [2,29–33] colloidal suspensions where the
nonreciprocity (asymmetry) of interaction may occur due to
diffusiophoretic forces acting on Janus particles [25–27] and
particles in colloidal mixtures [9,11,16], and due to deple-
tion forces [29–32] acting on closely spaced macroparticles
moving through a colloidal dispersion. Examples also include
charged microparticles in colloidal plasmas (also called com-
plex or dusty plasmas) [1,6,7,24,34–37] which can interact
nonreciprocally due to different dielectric properties of the
particles [38], due to shadowing of ion or neutral gas fluxes
[39–41] towards one particle by another one that differs in
size [42], and due to wake-mediated forces generated by the
flow of ions past particles [17,43–46]. The nonreciprocity of
interaction (interaction symmetry breaking) can significantly
affect self-organization, self-assembly, mass transfer, energy
redistribution, and nonequilibrium phase transitions.

The study of the nonreciprocal effective interactions is
a complicated experimental task. In colloidal plasmas, pair
interparticle interactions are typically explored in two-particle
systems, because the consideration of collective effects is
not required. Most existing methods require a special mod-
ification of an experimental setup [43,47–52], preliminary
measurements of external forces acting on particles [49],
and/or prior information on environment parameters and the
law of interparticle interaction [47,48,53]. An external per-
turbation of a particle system is a common approach for
exploring the nonreciprocal interactions in colloidal plasmas.

It can be caused by laser manipulations [43,48–51], or by a
low-frequency modulation of the electrode bias [47], or by
using a gravity-driven dynamic probe [52]. Analyzing the
dynamic response of the particles to the external perturbation
makes it possible to determine the interaction forces between
one pair of particles [43,49,50,52] and to evaluate whether
the interaction in a many-particle system is nonreciprocal or
not [48]. In addition to the requirements mentioned above,
external perturbations can lead to appreciable changes in the
investigated system.

Most nonperturbative methods lack the requirements and
drawbacks listed above [54–60]. In [54–56], a method based
on solving the inverse Langevin problem for an underdamped
system was proposed. This method has shown good results
when measuring the interparticle interaction forces in a quasi-
two-dimensional monolayer of microparticles suspended in
a radio-frequency (rf) produced plasma sheath [54,61–64].
However, this method is extremely sensitive to experimental
errors in determining the successive positions of particles in
space, which are used to calculate particle accelerations [61].
In [57,58], a method based on the determination of natural fre-
quencies using a system of equations for two linearly coupled
oscillators was proposed. However, this method does not take
into account the dissipative and random processes operating in
the system, which can lead to significant errors in determining
the characteristic frequencies even in underdamped systems
with nonreciprocal interaction [59]. In [59,60], a correlational
approach to study the nonreciprocal effective interactions be-
tween Brownian dust particles in a plasma was proposed. That
approach takes into account dissipative and random processes,
but may give incorrect results for systems whose spectra have
any processing artifacts or spurious modes. In [65], the effect
of nonreciprocal wake interaction on the vibrational spectra
of a pair of microparticles in an rf produced plasma sheath
was noted. Recently, nonreciprocal effective forces acting
between a vertically aligned particle pair in an rf produced
plasma sheath [17] and in a stratified glow DC discharge [66]
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have been studied in detail. For this, the spectral response
of the system to the stochastic processes occurring in it was
analyzed. In this paper, we present in depth the theoretical
foundations of the method used in Refs. [17,66].

Previously, analytical expressions for the vibrational spec-
tra of confined Brownian particles (particles with thermal
noise) were considered only for special cases: (1) for two
particles of the same size with different types of interparticle
interaction [67–71]; (2) for small-sized chain structures and
quasi-two-dimensional clusters consisting of identical parti-
cles with symmetric interaction [69–71].

Here we present the general equations for the vibrational
spectra of confined Brownian particles with nonreciprocal ef-
fective interactions (Sec. II). The inequality of particles in size
and mass is taken into account, as well as the inhomogeneity
of the external force field and heat sources responsible for
Brownian motion of particles. In Sec. III, a nonperturbative in-
verse problem method based on spectral response to stochastic
processes (SRSP) is proposed to determine interparticle and
external forces acting in a multiparticle system. The follow-
ing sections of the paper focus on a pair of nonreciprocally
interacting particles. Section IV is devoted to the numerical
simulation of the dynamics of the particle pair used to verify
the SRSP method. Section V presents a detailed analysis of the
spectral densities of a two-particle system and a comparison
of the effectiveness of various nonperturbative methods for
determining the nonreciprocal effective interparticle interac-
tion.

II. VIBRATIONAL SPECTRA OF CONFINED PARTICLES
WITH NONRECIPROCAL EFFECTIVE INTERACTIONS

UNDER THE INFLUENCE OF STOCHASTIC PROCESSES

A. Basic equations

Consider a stationary system consisting of N strongly cou-
pled particles with masses mi and charges qi, which are acted
upon in the direction γ (γ = X, Y, or Z) by external force
F (γ )

ext,i; interparticle interaction force F (γ )
ji acting from the jth

particle on the ith one; friction force with friction coefficients
νi and Langevin force F (γ )

ran,i, which is a source of stochastic
kinetic energy for particles. Assuming that the displacement
of particles ξ

(γ )
i from their equilibrium position under the

action of a random force F (γ )
ran,i is limited by small deviations,

we can obtain a linearization for forces in the chosen direction
for each of the degrees of freedom:

F (γ )
ji = 〈

F (γ )
ji

〉 + (
ξ

(γ )
i − ξ

(γ )
j

)(∂F (γ )
ji

∂ξ

)

= 〈
F (γ )

ji

〉 + (
ξ

(γ )
i − ξ

(γ )
j

)
mi f (γ )

ji , (1)

F (γ )
ext,i = 〈

F (γ )
ext,i

〉 + ξ
(γ )
i

(
∂F (γ )

ext,i

∂ξ

)
= 〈

F (γ )
ext,i

〉 + ξ
(γ )
i mi f (γ )

i , (2)

where the angle brackets 〈· · · 〉 denote time averaging; f (γ )
ji

and f (γ )
i are the derivatives of the specific interparticle and

external forces, that is, the stiffnesses of these specific forces.
Thus, we obtain a system of equations for particle displace-

ments ξ
(γ )
i :

d2ξ
(γ )
i

dt2
= − νi

dξ
(γ )
i

dt
+

⎛
⎝ N∑

j=1, j �=i

f (γ )
ji − f (γ )

i

⎞
⎠ξ

(γ )
i

−
N∑

j=1, j �=i

f (γ )
ji ξ

(γ )
j + F (γ )

ran,i

mi
. (3)

The particle displacement ξ
(γ )
i is the system’s response

to the stochastic (random) process F (γ )
ran,i. The spectral den-

sity S(γ )
ξi

of the random process F (γ )
ran,i is the Fourier cosine

transform for the corresponding autocorrelation function [72].
If F (γ )

ran,i satisfies the conditions for delta-correlated Gaussian
white noise:

〈
F (γ )

ran,i(t )
〉 = 0,

〈
F (γ )

ran,i(t )F (γ )
ran,i(t + τ )

〉
m2

i

= S(γ )
ξi

δ(τ ), (4)

then the spectral densities are S(γ )
ξi

= 2νiT
(γ )

i /mi, where T (γ )
i

is the temperature of the heat source for the particles. In this
case, the spectral density of the random process at the output
of the linear system is equal to the spectral density of the
random process at the input of the system, multiplied by the
squared modulus of the frequency transfer function of this
system [73]. Then the spectral response of the system to the
stochastic processes acting on it reads

G(γ )
ξi

(ω) =
N∑

j=1

2ν jT
(γ )
j

m j
M̄ (γ )

ξi
( j), (5)

where ω is the angular frequency of vibrations and M̄ (γ )
ξi

( j) are
the squared modules of the frequency transfer functions for
Eq. (3). The complete expressions for M̄ (γ )

ξi
( j) are presented

in Appendix A, which also provides a complete description
of the spectral density of the generalized linear system of
coupled oscillators. Using a similar approach to extract more
information about the system, it is easy to obtain the spectral
densities of combined (

∑N
j=1 ξ j) and relative (ξi − ξi+1) parti-

cle deviations; see Appendix C.
At the end of the section, we note that the spectral densities

G(γ )
Vi

of velocities V (γ )
i = dξ

(γ )
i /dt are related to the spectra

of the corresponding displacements by a simple relationship
[72]:

G(γ )
Vi

(ω) = ω2G(γ )
ξi

(ω). (6)

B. Two-particle system

The vibrational spectral densities of each of the particles in
the two-particle system take the form (for brevity, the indices
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“1” and “2” denote oscillations ξ1 and ξ2, respectively):

G(γ )
1 (ω) =

2ν1T (γ )
1

m1

[(
ω2 − f (γ )

2 + f (γ )
12

)2 + ν2
2ω2

] + 2ν2T (γ )
2

m2

(
f (γ )
21

)2

W (γ )
, (7a)

G(γ )
2 (ω) =

2ν2T (γ )
2

m2

[(
ω2 − f (γ )

1 + f (γ )
21

)2 + ν2
1ω2

] + 2ν1T (γ )
1

m1

(
f (γ )
12

)2

W (γ )
. (7b)

In addition to the vibrations of each particle, we consider their combined and relative vibrations [the indices “+” and “−”
mean combined (ξ1 + ξ2) and relative (ξ1 − ξ2) oscillations]:

G(γ )
+ (ω) =

2ν1T (γ )
1

m1

[(
ω2 − f (γ )

2 + 2 f (γ )
12

)2 + ν2
2ω2

] + 2ν2T (γ )
2

m2

[(
ω2 − f (γ )

1 + 2 f (γ )
21

)2 + ν2
1ω2

]
W (γ )

, (8)

G(γ )
− (ω) =

2ν1T (γ )
1

m1

[(
ω2 − f (γ )

2

)2 + ν2
2ω2

] + 2ν2T (γ )
2

m2

[(
ω2 − f (γ )

1

)2 + ν2
1ω2

]
W (γ )

. (9)

The denominator in formulas (7)–(9) reads

W (γ ) = [
ω2(ω2 − ν1ν2 − f (γ )

1 − f (γ )
2 + f (γ )

21 + f (γ )
12

) + f (γ )
1 f (γ )

2 − f (γ )
1 f (γ )

12 − f (γ )
2 f (γ )

21

]2 + ω2[ν1ω
2 + ν2ω

2

+ν2
(

f (γ )
21 − f (γ )

1

) + ν1
(

f (γ )
12 − f (γ )

2

)]2
. (10)

Note that combined oscillations (+) are oscillations of the center of mass with a double amplitude in the case of equal particle
masses.

If the particles have the same friction coefficients (ν1 = ν2 = ν), then expression (10) is simplified:

W (γ ) = {
ω4 + [

ν2 − 2
(
ω

(γ )
1

)2]
ω2 + (

ω
(γ )
1

)4}{
ω4 + [

ν2 − 2
(
ω

(γ )
2

)2]
ω2+(

ω
(γ )
2

)4}
, (11)

where ω
(γ )
i are the main frequencies of the system, determined by the following expressions:

(
ω

(γ )
1(2)

)2 = f (γ )
1 + f (γ )

2 − f (γ )
21 − f (γ )

12 ∓
√(

f (γ )
1 − f (γ )

2 − f (γ )
21 + f (γ )

12

)2 + 4 f (γ )
21 f (γ )

12

2
. (12)

If the particles have the same friction coefficients (ν1 = ν2 = ν), symmetrical interaction ( f (γ )
21 = f (γ )

12 = f (γ )
int ), and equal

noise intensities ( 2ν1T (γ )
1

m1
= 2ν2T (γ )

2
m2

= S(γ )), then the spectral densities of the particles are transformed:

G(γ )
1(2)(ω) = A(γ )

1(2)

ω4 + [
ν2 − 2

(
ω

(γ )
1

)2]
ω2 + (

ω
(γ )
1

)4 + A(γ )
2(1)

ω4 + [
ν2 − 2

(
ω

(γ )
2

)2]
ω2 + (

ω
(γ )
2

)4 , (13)

where

A(γ )
1 = S(γ )

2

(
1 − f (γ )

1 − f (γ )
2

D(γ )

)
, A(γ )

2 = S(γ )

2

(
1 + f (γ )

1 − f (γ )
2

D(γ )

)
, D(γ ) =

√(
f (γ )
1 − f (γ )

2 − f (γ )
21 + f (γ )

12

)2 + 4 f (γ )
21 f (γ )

12 .

Thus, the spectral density of particle displacements is a
superposition of the spectral densities of two classical damped
oscillators [72].

If the particles also have the same friction coefficients
(ν1 = ν2 = ν), symmetric interaction ( f (γ )

21 = f (γ )
12 = f (γ )

int ),
and equal stiffnesses of the specific external force ( f (γ )

1 =
f (γ )
1 = f (γ )

ext ), then the expressions for combined and relative
oscillations of particles (8) and (9) take the form of the spec-
tral density of the classical oscillator:

G(γ )
+(−)(ω) = 2ν

( T (γ )
1
m1

+ T (γ )
2
m2

)
ω4 + [

ν2 − 2(ω(γ )
+(−) )

2]
ω2 + (ω(γ )

+(−) )
4 , (14)

where frequencies ω
(γ )
+(−) are a special case of formula (12):

(ω(γ )
+ )

2 = f (γ )
ext , (15)

(ω(γ )
− )

2 = f (γ )
ext − 2 f (γ )

int . (16)

III. INVERSE PROBLEM (METHOD)

Applying the Fourier transform to the trajectories of
strongly coupled Brownian particles obtained in the exper-
iment, we get the spectral densities of particle oscillations,
as well as the spectral densities of combined and relative
oscillations (G̃(γ )

1 , G̃(γ )
2 , G̃(γ )

+ , and G̃(γ )
− in the case of two

particles). Here and below, the upper tilde means that the value
was measured in a numerical or laboratory experiment (in this
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work we will focus on the analysis of numerical results). By
approximating the spectral densities measured in the exper-
iment with the analytical formulas obtained in the previous
section, it is possible to determine not only the stiffnesses
f (γ )

ji of the specific interaction forces, but also the stiffnesses

f (γ )
i of the specific external forces acting on the particles

in equilibrium positions, as well as the friction coefficients
of particles in the medium νi and parameters T (γ )

i /mi. For
example, the approximation can be carried out by minimizing
the absolute residual with additional coefficients,

ρ =
∑

n

ς2
n

∑
j

[
G̃(γ )

n (ω̃ j ) − G(γ )
n (ω̃ j )

]2
, (17)

using the simplex search method of Lagarias et al. [74], where
ςn = maxm, j G̃(γ )

m (ω̃ j )/ max j G̃(γ )
n (ω̃ j ), and summation is per-

formed over all discrete frequencies ω̃ j , as well as over all
available spectra (i.e., for n = 1, 2, +, − in the case of two
particles). Additional coefficients ςn, which are the ratio of
the maximum oscillation amplitude among all spectra to the
maximum in the nth spectrum, allow us to take into account
the difference in the amplitudes G̃(γ )

n , since they can differ
by several orders of magnitude. Also, the operation of the
method is possible using the spectral densities of velocities
obtained both by direct calculation and by formal transforma-
tion of the particle displacement spectra taking into account
(6). Note that only one spectrum is sufficient for the successful
application of the method; however, the accuracy of deter-
mining the desired parameters will be noticeably lower, and
using the combined and relative displacement spectra makes
it possible to avoid incorrect sets of parameters [17]. We also
note that spectral densities were previously found for various
combinations of particle displacements in many-particle sys-
tems [69–71], which make it possible to obtain the spectra of
isolated harmonics of chain and quasi-two-dimensional sys-
tems with up to seven particles interacting with a symmetric
potential. However, complex combinations of displacements
instead of combined and relative displacements give almost
identical results for solving the inverse problem; moreover,
the use of combined and relative displacements is a more
universal approach, especially in the case of systems with a
large number of particles.

Also important are the data discreteness requirements for
constructing the spectral density. Note that, according to the
Nyquist-Shannon sampling theorem [75], the maximum fre-
quency value for the spectral density ωmax obtained as a result
of the discrete Fourier transform is determined by the exper-
imental data recording step �t : ωmax = π/�t . The spectral
step is determined by the duration of the transformed fragment
of the experiment recording �ω = π/N�t = ωmax/N , where
N is the number of analyzed time points (for example, the
number of frames on a video fragment of the experiment).
Thus, it is necessary to fulfill the condition ωw � �ω (ωw

is the full width at half maximum of spectral peaks); i.e., a
sufficient duration of the converted fragment is necessary to
avoid a distortion of the shape of the spectra [76,77]. However,
a decrease in �ω leads to signal noise and it is necessary to
use averaging of the spectra obtained for different fragments
of particle trajectories to improve the accuracy of the method.
We also note that for the two-particle system the condition

ωmax � max(ω(γ )
1 , ω

(γ )
2 ) must be met, i.e., a sufficient frame

rate of the video camera used in the experiment is required.

IV. NUMERICAL SIMULATION (VALIDATION)

The obtained analytical expressions for the spectral den-
sities and technique described in Sec. III were tested on the
results of numerical simulation in a wide range of parameters.
The numerical simulation of stochastic processes was carried
out by the Langevin molecular dynamics method. The proce-
dure is described in detail in Refs. [78–81].

The analytical expressions and the solution to the inverse
problem presented in the previous sections apply to many-
particle systems. Next, the analysis will focus on a pair of
particles with vertical alignment (relative to gravity), simu-
lating a system of dust particles in a gas-discharge plasma.
Vertical alignment was chosen because the nonreciprocity
effect is pronounced in this configuration [65,66].

A vertical pair consisting of generally nonidentical parti-
cles with masses mi, charges qi, friction coefficients νi, and
temperatures Ti, corresponding to the intensities of random
processes acting on the particles (Langevin thermostats), was
simulated. The case of identical particles (mi = m0, qi = q0,
νi = ν0, Ti = T0) was also considered. The particles were in
the gravity field compensated by the electric field E of a
linear trap with circular symmetry in the horizontal plane
with radial components E (X ) = αx, E (Y ) = αy and vertical
component E (Z ) = E0 + βz. Here x, y, z are the coordinates
along the corresponding axes (the Z axis is directed antipar-
allel to gravity), α and β are the magnitudes of the electric
field gradients, and the value of E0 is determined by the
balance of forces acting in the system. In accordance with
the field gradients, the characteristic frequencies of the trap
ω

(X )
t ≡ ω

(Y )
t = √

αq0/m0 in the transverse plane and ω
(Z )
t =√

βq0/m0 in the longitudinal. If the ith particle has m0 and

q0, then f (γ )
i = (ω(γ )

t )
2
. The following model parameters were

set: α/β = 4, ω
(Z )
t = 10 s−1, ω

(X )
t = 20 s−1, m0 = 10−10 g,

q0 = −0.5β�r3 = −4658e (�r = 0.1 cm is the average dis-
tance between particles; e is the elementary electric charge),
T0 = q2

0/150�r ≈ 0.21 eV. The selected model parameters
are typical for laboratory experiments with dusty plasmas
[17,61–63,66,82,83]. Note that under laboratory conditions
the temperature T0 can be higher than the temperature of the
buffer gas [17,84].

Typically, numerical simulations of the dynamics of dust
particles in a gas-discharge plasma are performed for the par-
ticles interacting via the point-wake model potential, which
is often used for a qualitative description of wake-mediated
forces generated by the flow of ions past charged particles
in plasma [6,7,60]. When a microparticle is immersed in a
low-pressure gas discharge, it acquires a significant negative
charge (typically, up to 103–104 elementary charges) and cre-
ates an ion wake due to the flow of ions passing by the particle
in the direction of the local electric field [44,45]. In the point-
wake model, a virtual oppositely charged particle is rigidly
bound to the real particle and affects only the neighboring
real particle, while the latter has no effect on the virtual one.
However, due to the peculiarities of the point-wake model,
the resulting particle system can be unstable, and this does
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not allow calculations to be carried out in a wide range of
parameters.

For simplicity and convenience, the nonreciprocity of the
interaction was modeled using the modified Coulomb interac-
tion:

F ji = εiqiq j
ri − r j

|ri − r j |3
, (18)

where ri is the radius vector of the ith particle, ε1,2 = 1 ∓ R,
and R is the dimensionless nonreciprocity parameter charac-
terizing the magnitude of the symmetry breaking of the inter-
action between particles (R = |〈F21〉 + 〈F12〉|/|〈F21〉−〈F12〉|)
[6,9]. This potential is convenient for modeling, since it allows
one to control the nonreciprocity when other parameters (in
particular, the interparticle distance) are fixed. In the case
of equality of the stiffnesses of the specific external forces [
f (γ )
1 = f (γ )

2 ; i.e., ω
(γ )
2 ≡ ω

(γ )
+ according to formula (12)] and

using (18), the variation of R preserves such a relationship
between the interaction forces that the frequency value ω

(γ )
1

(12) does not depend on R; that is, ω
(γ )
1 ≡ ω

(γ )
− . Thus, the

stiffnesses of the specific interaction forces have the following

values: f (X )
ji = Fji (�r)

mi�r = εi
qiq j

mi�r3 , f (Z )
ji = F

′
ji (�r)
mi

= −2εi
qiq j

mi�r3 .
In the case of identical particles with R = 0, it turns out
that f (X )

ext = 400 s−2, f (X )
int = 50 s−2, f (Z )

ext = 100 s−2, f (Z )
int =

−100 s−2, for external and interparticle forces.
When modeling, the integration step ranged from �t =

(40 max[ω(γ )
t ; νi])

−1
to (80 max[ω(γ )

t ; νi])
−1

, that is, from
1/800 to 1/8000 s, depending on the conditions of the prob-
lem. The recording of particle trajectories was performed after
reaching equilibrium in the system. The value of the ratio
� = ν/ω

(γ )
t varied from 0.005 to 10. In all considered cases, a

vertical configuration of particles was observed and the sim-
ulated systems were stable. The particle velocity distribution
functions corresponded to the Maxwell distribution.

The spectral density calculations were carried out for par-
ticle trajectories x(t), y(t), and z(t) using the fast Fourier
transform procedure in the MATLAB application package.

In a physical experiment, the finite spatial resolution of the
video camera, peculiarities of the procedure for recognizing
the particle image, and determining its center of mass lead to
an error in measuring the particle position in space. To simu-
late the measurement errors, the obtained particle trajectories
were distorted as follows:

ři = ri + N (0, p) (19)

where N (0, p) is a random number from the normal dis-
tribution with zero mean and standard deviation parameter
p ≈ 10−3 cm p/�r ≈ 10−2, which is the usual pixel size in
cameras used in real experiments.

V. RESULTS AND DISCUSSION

A. Influence of system parameters on the vibrational
spectral densities

1. Influence of nonreciprocity

Figures 1(a) and 1(b) show vibrational spectral densities
in a system of two particles with different nonreciprocity
parameters R; Fig. 1(c) shows a schematic representation

of a simulated pair of particles in an electrostatic trap in
the presence of gravity. The presented spectral densities
are normalized as follows: G̃∗(γ )

i = n(γ )G̃(γ )
i , where n(γ ) =

(νω
(γ )
t )

2
/S(γ ) = m0ν(ω(γ )

t )
2
/2T0. The notation i = 1 corre-

sponds to the lower particle experiencing a change in the
nature of the action (effective attraction) with increasing R.
First of all, we note that the interaction model (18) gives qual-
itatively similar results to the spectra obtained in experiments
[17,65,66]. Let us consider the general patterns: the mutual ar-
rangement of the peaks corresponding to the frequencies ω

(γ )
+

and ω
(γ )
− differs along the axes. This distinction is explained

by Eq. (16): in the case of f (γ )
int > 0, the peak ω

(γ )
− is closer to

zero than ω
(γ )
+ , which is observed along the X axis, and vice

versa. The value of f (γ )
int determines the distance between the

peaks, and since | f (Z )
int / f (Z )

ext | > | f (X )
int / f (X )

ext |, so the peaks are
located closer along the X axis, which complicates the visual
selection of peaks, especially with increasing R.

With an increase in the nonreciprocity, the amplitudes of
oscillations and, accordingly, the kinetic energy of particles
increase due to the work of nonreciprocal effective interpar-
ticle forces [1,6,85]. In particular, for the results presented
in Figs. 1(a) and 1(b), the ratio of the average kinetic en-
ergy of two particles to the Langevin thermostat temperature:
2ER=0.2/T0 ≈ 1.03, 2ER≈1/T0 ≈ 1.6, 2ER=2/T0 ≈ 3.3. At the
same time, the distribution of the pumped energy is nonuni-
form over the degrees of freedom, as well as between the
particles, for example, 2E (Z )

1,R=2/T0 ≈ 2.7, 2E (Z )
2,R=2/T0 ≈ 6.1,

which is in accordance with the previously obtained rela-
tions [7,69,86,87]. Such an uneven distribution of energy is
a typical situation for active systems [88], including those
with nonreciprocal interactions. Note that the expressions for
the spectral density, for example, (5), (7)–(9), and (13) and
(14), include precisely the temperatures of heat sources (preset
temperatures), and not the steady-state effective kinetic tem-
peratures of the particles.

Let us consider the individual spectra. The spectral den-
sity of relative displacements G̃(γ )

− is a single peak at any R
for the interaction models used in this study, and for model
(18) G̃(γ )

− remains unchanged; see Figs. 1(a) and 1(b). On
the spectrum G̃(γ )

+ , the appearance and further growth of the
second peak corresponding to ω

(γ )
− is observed with increasing

R, which is a clear manifestation of nonreciprocity. It should
be noted that the difference in the derivatives of the specific
external forces ( f (γ )

1 �= f (γ )
2 ) can also be manifested by the

appearance of a peak ω
(γ )
− in the spectrum of the combined

particle displacements; therefore, a sufficient condition for the
presence of nonreciprocity is the simultaneous presence of
the peak ω

(γ )
− in the spectrum of the combined displacements

and the absence of ω
(γ )
+ in the spectrum of the relative dis-

placements. The absence of the peak ω
(γ )
+ in the spectrum of

the relative displacements is the criterion f (γ )
1 = f (γ )

2 . Then
we consider the influence of external forces in more detail.
The spectra of particles G̃(γ )

1 and G̃(γ )
2 contain both peaks;

however, their amplitudes change nonlinearly with increasing
R: a decrease in the absolute value of the force |F21|, with
which the upper particle acts on the lower one, to zero (that
is, a change in R from 0 to 1) is reflected by a decrease
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FIG. 1. Normalized spectral densities G̃∗(γ )
n (n = 1, 2, +, −) for the friction coefficient ν = 3 s−1 and various values of the nonreciprocity

parameter R of two particles interacting with the force (18) (a) in the vertical direction γ = Z and (b) in the horizontal direction γ = X. The
black lines show the analytical solutions (7)–(9), the colored lines show the results of numerical simulation, and the dotted lines indicate the
main frequencies ω

(γ )
+ (15) and ω

(γ )
− (16). (c) Schematic representation of a simulated pair of particles in an electrostatic trap in the presence

of gravity.

in the peak ω
(γ )
− of the lower particle spectrum until it dis-

appears, and vice versa: the peak ω
(γ )
− of the upper particle

spectrum acquires the maximum amplitude relative to the

peak ω
(γ )
+ . With further growth of R, reverse processes occur,

since F21 changes sign (direction) and increases its absolute
value.
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Z

X

Z

X X

FIG. 2. Normalized spectral densities G̃∗(γ )
n of the two-particle system with different values of � = ν/ ω

(γ )
t and R = 0.2. (a) Displacements

of the upper particle (n = 2) and relative displacements of particles (n = −) in the vertical direction γ = Z, (b) displacements of the lower
particle (n = 1), and combined and relative displacements (n = +, −) for γ = X. Presented frictions: ν = 30 s−1 (�(Z ) = 3), ν = 15 s−1 (�(Z ) =
1.5), ν = 10 s−1 (�(Z ) = 2�(X ) = 1), ν = 3 s−1 (�(Z ) = 2�(X ) = 0.3), ν = 1 s−1 (�(Z ) = 2�(X ) = 0.1), ν = 0.3 s−1 (�(Z ) = 2�(X ) = 0.03). The
black lines show the analytical solutions (7)–(9), the colored lines show the results of numerical simulation, and the dotted lines indicate the
main frequencies ω

(γ )
+ (15) and ω

(γ )
− (16); in (a) the inset also shows a schematic representation for � = 3.

2. Influence of dissipation

The effect of friction on the vibrational spectral densities
is shown in Fig. 2 for the displacements of the upper parti-
cle, and combined and relative displacements depending on
� = ν/ ω

(γ )
t . For � � 1, the spectra are pronounced peaks

that are in good agreement with the analytical values (15) and
(16), but as friction increases, the peaks shift towards lower
frequencies [89]. As ϱ increases, the peaks also merge into
a single “hump” at ν/ | f (γ )

int / f (γ )
ext | > 10, which is especially

visible along the X axis due to the proximity of the peaks;
a further increase in friction leads to the degeneration of the
spectra to a maximum at zero for � > 1.5, see an example
in Fig. 2(a), where schematic representations are given for
� = 3. Thus, an increase in the friction value makes it difficult
to analyze the spectral characteristics of systems.

However, with an increase in friction, the significance of
the spectra of combined and relative vibrations increases,
since in the case of merging of peaks in the spectra of par-
ticle oscillations, the spectra of sums and differences make
it possible to show the peaks separately, which is especially
important when they are close together, and which simplifies
the analysis; see Fig. 2(b) ϱ = 0.5. A similar effect is also
present with an increase in R. However, the growing peak

ω
(γ )
− , which is responsible for the nonreciprocity, can worsen

the visual analysis of the spectrum G̃∗(γ )
+ ; see Fig. 1(b). Also

in the case of oscillation spectra close to degeneracy at zero,
the spectra of combined or relative vibrations can provide
information about one of the peaks [69,70]. For example, if
ω

(γ )
− > ω

(γ )
+ , then the spectrum of the difference G̃∗(γ )

− retains
the form of a peak; see Fig. 2(a) � = 1.5, and vice versa.
The influence of this effect is more pronounced, the farther
the peaks are from each other. However, in any case, as
friction increases, the displacement spectra degenerate into
a peak at zero; see the insets in Fig. 2(a). In this case,
using velocity spectra instead of displacement spectra can
help.

Figure 3 shows the velocity spectral densities for some
cases from Fig. 2(a). The velocity spectra are normalized:
G̃∗(γ )

Vi
= n(γ )G̃(γ )

Vi
, where n(γ ) = ν2/S(γ ) = m0ν/2T0. With

small friction, the velocity spectra are similar to the dis-
placement spectra, but with increasing friction, a difference
is noticeable. When the displacement spectra have already
degenerated into a maximum at zero, see the inset in Fig. 2(a)
(� = 3), the spectra of combined and relative velocities retain
their peak positions at unchanged frequencies; see Figs. 3(b)
and 3(c). Thus, due to the additional factor ω2 in Eq. (6), the
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Z Z Z

FIG. 3. Normalized spectral densities G̃∗(Z)
Vn

for different values of � = ν/ ω
(Z )
t and R = 0.2. (a) Velocity of the upper particle (n = 2),

(b) combined (n = +), and (c) relative velocities (n = −) in the vertical direction Z. Presented frictions: ν = 30 s−1 (�(Z ) = 3), ν = 10 s−1

(�(Z ) = 1), ν = 3 s−1 (�(Z ) = 0.3), ν = 1 s−1 (�(Z ) = 0.1). The black lines show the analytical solutions (7)–(9), the colored lines show the
results of numerical simulation, and the dotted lines indicate the main frequencies ω

(γ )
+ (15) and ω

(γ )
− (16).

velocity spectra expand the possibilities of analyzing spectral
characteristics.

3. Influence of heat sources

Consideration of the effects associated with the difference
in the particle parameters lets us begin with the difference
in the magnitude of heat sources (T (γ )

1 �= T (γ )
2 ). Figures 4(a)

and 4(b) show that the oscillation amplitudes of the particles
changed insignificantly, despite the fact that the values of the
preset temperatures differ for the particles by a factor of 3 and
9, respectively. This phenomenon is explained by the redistri-
bution of average kinetic energy between particles [68,90,91]
within one degree of freedom, which in the case of reciprocal
interaction (R = 0) is expressed as follows: 2(E (γ )

1 + E (γ )
2 ) =

T (γ )
1 + T (γ )

2 .
It is noteworthy that despite the larger temperature differ-

ence in Fig. 4(b) (9T (γ )
1 = T (γ )

2 = T0), the kinetic energies
of the particles in Fig. 4(a) (3T (γ )

1 = T (γ )
2 = 3T0) differ sig-

nificantly from each other: E (Z )
2 /E (Z )

1 ≈ 1.3 and E (X )
2 /E (X )

1 ≈
1.8, respectively, which is reflected in the differences in the
amplitudes of the spectral densities of particle oscillations.
This feature is explained by the efficiency of energy redis-
tribution, which, in the case of equality of derivatives for

external ( f (γ )
1 = f (γ )

2 = f (γ )
ext ) and interparticle ( f (γ )

21 = f (γ )
12 =

f (γ )
int ) forces, is determined by the value of the ratio | f (γ )

int / f (γ )
ext |;

conditionally, the larger the value, the stronger the redistribu-
tion [68,90,91], which is observed in our case (| f (Z )

int / f (Z )
ext | >

| f (X )
int / f (X )

ext |). Note that despite small differences in the ampli-
tudes of particle oscillations at main frequencies in Fig. 4(b),
the shape of the spectral densities is significantly differ-
ent. The spectra of combined and relative displacements
retain their shape, changing only the amplitude in proportion
to the value of S(γ )

1 + S(γ )
2 according to formula (14); see

Fig. 4(c).

4. Nonidentical particles

Figure 5 shows the effect of different friction coefficients
of particles (ν1 �= ν2) on the oscillation spectra in comparison
with the case of equal friction. The influence is similar to the
general change in friction (see Sec. V A 2), when the peaks
merge into one and subsequently degenerate into a maximum
at zero with increasing friction, see Fig. 5(a), and pronounced
peaks appear with decreasing friction; see Fig. 5(b). Note
that the changes are most pronounced in the spectrum of
the particle with a modified friction coefficient. In this case,
the spectra of combined and relative displacements undergo

X Z Z

FIG. 4. Normalized spectral densities G̃∗(γ )
i (i = 1, 2) and G̃∗(γ )

+ for particles with R = 0, ν = 3 s−1, and different Langevin thermostat
temperatures (T (γ )

1 �= T (γ )
2 ): (a) T (γ )

1 = T0, T (γ )
2 = 3T0, γ =X; (b) T (γ )

1 = T0/9, T (γ )
2 = T0, γ =Z; (c) the previously given temperature ratios

in the case of combined displacements of particles at γ = X. For comparison the case of G̃∗(γ )
1 ≡ G̃∗(γ )

2 and G̃∗(γ )
+ at T (γ )

1 = T (γ )
2 = T0 is also

shown. The black lines show the analytical solutions (7) and (8); the colored lines show the results of numerical simulation, the dotted lines
indicate the main frequencies ω

(γ )
+ (15) and ω

(γ )
− (16).
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Z X

FIG. 5. Normalized spectral densities G̃∗(γ )
i (i = 1, 2) for particles with R = 0 and different friction coefficients (ν1 �= ν2). (a) ν1 = ν0,

ν2 = 9ν0, γ = Z; (b) ν1 = ν0, ν2 = ν0/9, γ = X , where ν0 = 3 s−1. For comparison the case of G̃∗(γ )
1 ≡ G̃∗(γ )

2 for ν1 = ν2 = ν0 is also shown.
The black lines show the analytical solutions (7), the colored lines show the results of numerical simulation, and the dotted lines indicate the
main frequencies ω

(γ )
+ (15) and ω

(γ )
− (16).

insignificant changes: peaks thicken with a decrease in their
amplitude with increasing friction, and vice versa.

Figure 6 shows the effect of different particle sizes (a1 �=
a2), and the corresponding difference in the remaining pa-
rameters of the particles, that is, mass, charge, and friction
coefficients (mi ∼ a3

i , qi ∼ ai, νi ∼ 1/ai), on the spectral
oscillation densities. These changes affect the stiffnesses
of the specific forces acting on the particles. For parti-
cle sizes a1 = 4a2 = 4a0 and reciprocal interaction (R = 0)
we have f (Z )

1 = f (Z )
2 /16 = f (Z )

ext /16, f (Z )
21 = f (Z )

int /40, f (Z )
12 =

1.6 f (Z )
int . Such variations in stiffnesses lead to a change in the

main frequencies ω
(γ )
1(2) in accordance with (16), in contrast to

identical particles for which ω
(γ )
1 ≡ ω

(γ )
− and ω

(γ )
2 ≡ ω

(γ )
+ (in

Fig. 6, the frequencies have shifted closer to zero). First, we
note that inequality of the stiffnesses of the specific interac-
tion forces ( f (γ )

21 �= f (γ )
12 ) along with the equality f (γ )

1 = f (γ )
2

leads to the fact that the peaks ω
(γ )
+ on the particle oscillation

spectra have the same shapes and amplitudes, which can be
seen in Fig. 1, while the peak ω

(γ )
− of the ith particle de-

creases to visual indefinability with decreasing | f (γ )
ji / f (γ )

i j | at

| f (γ )
ji / f (γ )

i j | < 1. For the jth particle, both peaks are preserved,
which can be seen in Fig. 1 for the case of R ≈ 1, and the
changes in the spectra of combined and relative vibrations are
similar to those for varying R discussed above in Sec. V A
1. The difference in the stiffnesses of specific external forces
( f (γ )

1 �= f (γ )
2 ) at fixed f (γ )

ji leads to the fact that with increasing

Z X

FIG. 6. Normalized spectral densities of (a) G̃∗(Z )
i (i = 1, 2) and (b) G̃∗(Z )

− in the vertical direction Z for particles having different sizes
(a1 = 4a2 = 4a0) with corresponding changes in other parameters (m1 = 64m2 = 64m0, q1 = 4q2 = 4q0, 4ν1 = ν2 = ν0) at R = 0, α/β = 4,
ω

(X )
t0 = 20 s−1, ω

(Z )
t0 = 10 s−1, ν0 = 3 s−1. For comparison the case of G̃∗(γ )

1 ≡ G̃∗(γ )
2 and G̃∗(Z )

− for a1 = a2 = a0 is also shown. The black
lines show the analytical solutions (7) and (9), the colored lines show the results of numerical simulation, the dotted lines indicate the main
frequencies ω

(γ )
+ (15), ω

(γ )
− (16), ω

(γ )
1 , and ω

(γ )
2 (12).
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f (γ )
i / f (γ )

j > 1, the peak close to zero decreases for the ith par-
ticle to visual indefinability, and for the jth particle, the peak
far from zero decreases, while the second peak ω

(γ )
− and ω

(γ )
+

appears on the spectra of combined and relative vibrations,
respectively. Figure 6 illustrates the effect discussed here with
the example of unequal particles for which f (Z )

2 / f (Z )
1 = 16

and f (Z )
12 / f (Z )

21 = 64. In Fig. 6(a), only the peak closest to
zero remains in the spectrum of the lower particle (i = 1),
while both peaks are present in the spectrum of the upper
particle (i = 2). The second peak appeared on the spectrum of
relative displacements of particles, which is a manifestation
of the existing inequality in the derivatives of specific external
forces; see Fig. 6(b).

B. Validation of the force measurement technique and its
comparison with other methods

We have shown above that the spectral densities of a sys-
tem of interacting particles are a reflection of the parameters
characterizing the system, and their change leads to noticeable
transformations of the spectra. Therefore, solving the inverse
problem for the spectral densities makes it possible to deter-
mine the parameters of the system with high accuracy. Let
us consider the reconstruction of the stiffnesses of specific
forces in equilibrium positions of particles and friction co-
efficients with an example of a numerical experiment using
the proposed method and other nonperturbative methods and
their comparison. Note that in some cases, determining the
stiffnesses allows us to make a good estimate of the forces
themselves [17]. The analysis was carried out in a wide
range of parameters: the friction coefficient varied from 0.1
to 100 s−1, and for each friction a series of calculations was
carried out in the range of R varying from 0 to 10. Ultimately,
for each set of parameters � = ν/ ω

(γ )
t and R, the stiffnesses

of specific forces and friction coefficients were restored using
various methods, namely, the spectral response to stochastic
processes (SRSP) method using the velocity spectral densi-
ties described in Sec. III, the scanning mode spectra (SMS)
method [57,58], solving the inverse Langevin problem (ILP)
[54,56], and correlational analysis of random motion (CARM)
[59,60]. For each value of ϱ, the maximum recovery errors
were found among all the values of R. The above methods
were applied both for pure (un-noised) particle trajectories ob-
tained from the Langevin molecular dynamics simulations and
for the same trajectories with additional noise superimposed
on them, simulating experimental errors in determining the
positions of particles [see Eq. (19)]. The results obtained are
presented in Fig. 7 .

In Figs. 7(a) and 7(c) all the considered methods applied to
the pure trajectories demonstrate an expected deterioration in
the accuracy of force recovery with increasing friction, while
the ILP method shows the smallest error: less than 3% and
4.5% for the external and interparticle forces, respectively,
almost over the entire range of ϱ considered. Since friction
is not taken into account in the SMS method, it has the largest
error exceeding 10% at � > 0.6 and 0.1 for external and inter-
particle forces, respectively. The maximum error is ∼10% for
the SRSP method versus ∼30% for the CARM method.

Figures 7(b) and 7(d) present errors in determination of the
specific force stiffnesses in the two-particle system obtained
by applying different methods to the trajectories with addi-
tional noise due to the particle position measurement errors.
We point out that the accuracy of system parameter recovery
using the SMS and SRSP methods has not changed. Thus,
methods based on the analysis of vibration spectra are not
sensitive to the measurement random errors provided that the
data are sufficiently averaged. Note that the random error in
formula (19) shows up as a constant addition ∼p2�t [here p
is the standard deviation in (19) and �t is integration step in
simulation] on the spectral density of displacements, and as a
quadratic function ∼ω2 p2 �t in the velocity spectra, which is
only less than 0.1% and 1.5% of the amplitudes of the spec-
tral densities in the considered frequency range, respectively.
However, this measurement error is the main limitation for the
nonspectral methods (ILP and CARM): over the entire friction
range considered, the average recovery error is ∼25% for the
external forces, and ∼40% for the interparticle forces.

Determining friction from the pure trajectories shows the
following maximum error: ∼3% for the ILP, from 25% to
2.5% with increasing ϱ for the SRSP method, and from 0.5%
to 50% for the CARM method. However, in the case of the
noisy trajectories due to the particle position measurement
errors, the friction error of the SRSP method does not change,
but for the CARM method it increases to ∼39%, and ILP does
not recover friction at all.

Note that in the work of SRSP, a dependence of the re-
construction error on the value of R is observed: there is a
decrease in the error with an increase in the nonreciproc-
ity from R = 1. The greater ϱ is, the more pronounced is
the dependence: an example in Fig. 8 shows the errors in
determining the specific force stiffness in the X and Z direc-
tions at �(X ) = ν/ ω

(X )
t = 5 and �(Z ) = ν/ ω

(Z )
t = 10 where

ν = 100 s−1. As can be seen, there is a decrease in the error
of the specific interaction force stiffness: from 7.5% to less
than 3% for f (X )

ji , and from about 12% to less than 5% for

f (Z )
ji . This effect is associated with an increase in the absolute

values of the derivatives of the specific interparticle forces
| f (γ )

ji | with increasing R, which is also manifested visually
in an increase in the amplitude of the peaks; see Fig. 1. The
influence of R at large ϱ is described in more detail in Sec.
V A 2. An increase in the error of the specific external force
stiffness f (Z )

i is associated with a significant decrease in the
relative value of specific force derivatives in the Z direction:
( f (Z )

1 + f (Z )
2 )/(| f (Z )

21 | + | f (Z )
21 |) = 1 and 0.1 for R = 0 and 10,

respectively.
Note that microparticles immersed in a low-pressure gas

discharge acquire significantly higher effective kinetic tem-
peratures (up to 10–105 times) compared to the ambient
gas temperature [85,92–96]. It is assumed that high ki-
netic heating is a collective phenomenon associated with
wake-induced instabilities [36,96–102] and fluctuations of
microparticle charges [103–107]. However, the effective tem-
perature of even a single microparticle can be several times
higher than the ambient gas temperature quantifying the in-
tensity of classical Brownian motion [82,108,109]. The most
commonly discussed mechanism of stochastic heating of a
single dust particle in a plasma is the charge fluctuation

055207-10



METHOD OF SPECTRAL RESPONSE TO STOCHASTIC … PHYSICAL REVIEW E 108, 055207 (2023)

0.01%

0.10%

1.00%

10.00%

100.00%

0.01 0.1 1 10

E
rr
o
r

ν/ωt

SRSP

SMS

CARM

ILP

0.01%

0.10%

1.00%

10.00%

100.00%

0.01 0.1 1 10

E
rr
o
r

ν/ωt

SRSP

SMS

CARM

ILP

0.1%

1.0%

10.0%

100.0%

1000.0%

0.01 0.1 1 10

E
rr
o
r

ν/ωt

SRSP

SMS

CARM

ILP

0.1%

1.0%

10.0%

100.0%

1000.0%

0.01 0.1 1 10

E
rr
o
r

ν/ωt

SRSP

SMS

CARM

ILP

(a) (b)

(c) (d)

FIG. 7. Maximum errors in determination of the stiffnesses of the specific (a,b) external and (c,d) interparticle forces in the equilibrium
positions of particles for a system of two nonreciprocally interacting particles in a trap. For comparison, the four nonperturbative methods,
namely, the spectral response to stochastic processes (SRSP), the scanning mode spectra (SMS), the correlational analysis of random motion
(CARM), and the inverse Langevin problem (ILP) were applied both (a,c) for the pure particle trajectories obtained from the Langevin
molecular dynamics simulations and (b,d) for the same trajectories with additional noise superimposed on them, simulating experimental
errors in determining the positions of particles [see Eq. (19)]. For each ratio of ν/ωt , the maximum error was chosen among the results
obtained for the X and Z directions, and for particles with the nonreciprocity ranging from R = 0 to 10.

[34,82,87,94,105,107,110,111] caused by the granularity (dis-
creteness) and random nature of the incoming fluxes of ions
and electrons charging the particle [112–117]. Thus, the av-
erage kinetic energy in a system of particles is the sum of
effective thermal energy due to some translational noise and
additional energy supply due to collective effects.

Note that, unlike the other methods, SRSP allows us to
determine precisely the noise-induced temperatures of the
effective Brownian motion of particles (i.e., heat sources),
that can be smaller than the total effective kinetic temperature
of the particles. This feature is important in studying the
wake-induced heating of dust particles [6,69,86]. The SRSP
method also avoids the influence of systematic errors that are
manifested as “parasitic” modes, in particular, the movement
of a system of particles as a whole or any processing artifacts.
A preliminary analysis of the spectral density makes it possi-
ble to allocate for the SRSP method a frequency section with

only a useful signal, if this section is not superimposed by
“parasitic” modes.

VI. CONCLUSION

An analytical and numerical study of the spectral charac-
teristics of stochastic motion in an underdamped system of
confined particles with effective violation of the interparticle
interaction symmetry has been carried out.

A unique method of spectral response to stochas-
tic processes (SRSP) for diagnostics of interaction forces
between strongly coupled microparticles in a colloidal
plasma was proposed. We note the main advantages of the
method:

(i) absence of necessity for external perturbations of the
system and no special design of the experimental setup is
required;
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FIG. 8. Errors in determining the stiffnesses of the specific ex-
ternal f (γ )

i and interparticle f (γ )
ji forces in the equilibrium positions

of particles in the X and Z directions obtained by applying the SRSP
method to the particle trajectories at ν = 100 s−1 (ν/ ω

(X )
t = 5 and

ν/ ω
(Z )
t = 10).

(ii) absence of necessity for preliminary measurements
and assumptions about external fields, about the type of in-
teraction, and the particle sizes;

(iii) applicability to systems consisting of different sorts
of particles with different sizes, charges, and kinetic tempera-
tures, and with any type of interparticle interaction;

(iv) ability, along with the measurement of stiffnesses of
specific interparticle forces in equilibrium positions of parti-
cles, to determine the stiffnesses of specific external forces in
equilibrium positions and friction coefficients for each parti-
cle, which makes it possible to determine particle sizes using
the Epstein formula [118];

(v) possibility to determine the noise-induced tempera-
tures of the particles (thermal sources) corresponding to their
stochastic motion without taking into account the influence of
neighboring particles;

(vi) applicability to moderately overdamped systems in
case of sufficient nonreciprocity.

The comparison with other nonperturbative methods
showed significant advantages of the method, especially when

processing particle trajectories with errors in measuring their
positions in space.

In conclusion, we note that the SRSP method makes it
possible to quantitatively analyze interaction forces, allowing
us to study nonreciprocal systems of various natures. Also,
combined with the ability of measuring the noise-induced
kinetic temperatures of particles, the method permits exper-
imental testing of various theoretical and numerical heating
models, helping us pinpoint the exact mechanisms behind the
anomalous kinetic heating of particles.

ACKNOWLEDGMENT

This work was supported by the Russian Science Founda-
tion under Grant No. 19-12-00354.

APPENDIX A: BASIC EQUATIONS FOR A SYSTEM OF
COUPLED OSCILLATORS

Consider a generalized linear system of N asymmetrically
(nonreciprocally) coupled oscillators δi(t ) driven by some
processes Bi(t ):

d2δi

dt2
= −

N∑
j=1

ui j
dδ j

dt
+

N∑
j=1

ai jδ j + Bi, (A1)

where ui j are the generalized friction coefficients, and the
coefficients ai j depend on the physics of the problem being
solved. The processes Bi(t ) operating in the system (A1) are
characterized by the spectral density,

Si(ω) = 2
∫ ∞

0
〈Bi(t )Bi(t + τ )〉 cos ωτdτ, (A2)

and the cross-spectral density,

Si j (ω) = 2
∫ ∞

0
〈Bi(t )Bj (t + τ )〉 cos ωτdτ. (A3)

Angle brackets 〈· · · 〉 denote time averaging.
If the system (A1) is under the action of external periodic

forces Bi = Hi sin ωt , then forced oscillations of the form
δi(t ) = Mieiωt will occur in it, where the coefficients Mi are
determined from the system of linear equations AM = H:

⎛
⎜⎜⎜⎜⎝

−ω2 + iωu11 − a11 iωu12 − a12
... iωu1N − a1N

iωu21 − a21 −ω2 + iωu22 − a22
... iωu2N − a2N

· · · · · · . . . · · ·
iωuN1 − aN1 iωuN2 − aN2

... −ω2 + iωuNN − aNN

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

M1

M2

· · ·
MN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

H1

H2

· · ·
HN

⎞
⎟⎟⎠. (A4)

To solve this system, you can use the Cramer method [119]:

Mi = 1

det A
det

⎛
⎜⎜⎜⎜⎝

−ω2 + iωu11 − a11
... iωu1(i−1) − a1(i−1) H1

... iωu1N − a1N

iωu21 − a21
... iωu2(i−1) − a2(i−1) H2

... iωu2N − a2N

· · · . . . · · · · · · . . . · · ·
iωuN1 − aN1

... iωuN (i−1) − aN (i−1) HN
... −ω2 + iωuNN − aNN

⎞
⎟⎟⎟⎟⎠. (A5)

Assuming Hk = 1, and the remaining Hi = 0 in the expression for Ml , we can determine the frequency transfer function that
relates the impact on the kth particle with the response of the lth particle.
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Recall that if a stationary random process with a zero mean
value is fed to the input of a linear system, then the spectral
density G(ω) of the stationary random process at the output of
the linear system is equal to the product of the spectral density
S(ω) of the random process at the input of the system and
the square of the modulus of the frequency transfer function
|M|2 of this system [73]. If the process Bi acting in the system
(A1) on the ith oscillator is stationary, random with 〈Bi(t )〉 =
0, then the spectral density of forced oscillations of the ith

oscillator can be represented as

Gi(ω) =
N∑

j=1

S jM̄i( j) +
N−1∑
j=1

N∑
k= j+1

Si jM̄i( j, k), (A6)

where M̄i( j) = |Mi(ω, Hl,l �= j = 0, Hj = 1)|2, and M̄i( j, k) =
Mi(ω, Hl,l �= j = 0, Hj = 1)M∗

i (ω, Hl,l �=k = 0, Hk = 1) +
M∗

i (ω, Hl,l �= j = 0, Hj = 1)Mi(ω, Hl,l �=k = 0, Hk = 1) (“∗”
denotes a complex conjugate value).

APPENDIX B: SYSTEM OF TWO OSCILLATORS

We obtain a particular solution for the system (A1) for two oscillators:

G1(ω) = S1
[
(ω2 + a22)2 + u2

22ω
2
] + S2

(
a2

12 + u2
12ω

2
) − 2S12[(a12 + u22u12)ω2 + a12a22]

W
, (B1)

G2(ω) = S1
[
a2

21 + u2
21ω

2
] + S2

[
(ω2 + a11)2 + u2

11ω
2
] − 2S12[(a21 + u11u21)ω2 + a11a21]

W
, (B2)

where

W = [ω4 + ω2(u12u21 − u11u22 + a11 + a22) + a11a22 − a12a21]
2 + ω2[ω2(u11 + u22) + u22a11 + u11a22 − u12a21 − u21a12]

2
.

(B3)

If the relations for friction u11 = u22 = ν, u12 = u21 = 0 are known, then expressions (B1)–(B3) are simplified:

G1(2)(ω) = S1(2)[(ω2 + a22(11))
2 + ν2ω2] + S2(1)a2

12(21) − 2S12[a12(21)ω
2 + a12(21)a22(11)][

ω4 + (
ν2 − 2ω2

1

)
ω2 + ω4

1

][
ω4 + (

ν2 − 2ω2
2

)
ω2 + ω4

2

] , (B4)

where

ω2
1(2) = −a11 + a22

2
∓

√
(a11 − a22)2 + 4a12a21

2
. (B5)

APPENDIX C: SYSTEM OF INTERACTING BROWNIAN PARTICLES

The description of the system of interacting Brownian particles and the corresponding spectral densities (5) is presented in
Sec. II A. To obtain expressions (5), it is necessary to carry out calculations similar to Appendix A with respect to the new system
of equations obtained by transforming system (A1), for displacements ξ

(γ )
i with coefficients b(γ )

i j (δi → ξ
(γ )
i , ai j ≡ b(γ )

i j , uii ≡ νi,

ui j, i �= j ≡ 0). The coefficients b(γ )
i j are related to the values of the derivatives of the specific external and interparticle forces using

b(γ )
ii =

N∑
j=1, j �=i

f (γ )
ji − f (γ )

i , b(γ )
i j, i �= j = − f (γ )

ji . (C1)

Also, using a similar approach for the system of equations (A1), one can obtain the spectral densities of combined and relative
displacements of particles:

η
(γ )
1 = ξ

(γ )
1 − ξ

(γ )
2

· · ·
η

(γ )
i = ξ

(γ )
i − ξ

(γ )
i+1

· · ·
η

(γ )
N−1 = ξ

(γ )
N−1 − ξ

(γ )
N

η
(γ )
N =

N∑
j=1

ξ
(γ )
j . (C2)

055207-13



E. A. SAMETOV, E. A. LISIN, AND O. S. VAULINA PHYSICAL REVIEW E 108, 055207 (2023)

Thus, we obtain a new system of equations for η
(γ )
i with coefficients с

(γ )
i j (δi → η

(γ )
i , ai j ≡ с

(γ )
i j , ui j) under the influence of

new Langevin forces F
′(γ )

ran,i , while the coefficients ui j , с
(γ )
i j are related to the original νi, b(γ )

i j by systems of linear equations:⎛
⎜⎜⎜⎜⎝

−u11 − u1N u11 − u12 − u1N
... u1(i−1) − u1i − u1N

... u1(N−1) − u1N

−u21 − u2N u21 − u22 − u2N
... u2(i−1) − u2i − u2N

... u2(N−1) − u2N

· · · · · · . . . · · · . . . · · ·
−uN1 − uNN uN1 − uN2 − uNN

... uN (i−1) − uNi − uNN
... uN (N−1) − uNN

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−ν1 ν2 0
... 0 0

0 −ν2 ν3
... 0 0

· · · · · · · · · . . . · · · · · ·
0 0 0

... −νN−1 νN

−ν1 −ν2 −ν3
... −νN−1 −νN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c(γ )
11 + c(γ )

1N c(γ )
12 − c(γ )

11 + c(γ )
1N

... c(γ )
1i − c(γ )

1(i−1) + c(γ )
1N

... c(γ )
1N − c(γ )

1(N−1)

c(γ )
21 + c(γ )

2N c(γ )
22 − c(γ )

21 + c(γ )
2N

... c(γ )
2i − c(γ )

2(i−1) + c(γ )
2N

... c(γ )
2N − c(γ )

2(N−1)

· · · · · · . . . · · · . . . · · ·
c(γ )

N1 + c(γ )
NN c(γ )

N2 − c(γ )
N1 + c(γ )

NN
... c(γ )

Ni − c(γ )
N (i−1) + c(γ )

NN
... c(γ )

NN − c(γ )
N (N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(γ )
11 − b(γ )

21 b(γ )
12 − b(γ )

22
... b(γ )

1i − b(γ )
2i

... b(γ )
1N − b(γ )

2N

b(γ )
21 − b(γ )

31 b(γ )
22 − b(γ )

32
... b(γ )

2i − b(γ )
3i

... b(γ )
2N − b(γ )

3N

· · · · · · . . . · · · . . . · · ·
b(γ )

(N−1)1 − b(γ )
N1 b(γ )

(N−1)2 − b(γ )
N2

... b(γ )
(N−1)i − b(γ )

Ni
... b(γ )

(N−1)N − b(γ )
NN∑N

j=1 b(γ )
j1

∑N
j=1 b(γ )

j2
...

∑N
j=1 b(γ )

ji
...

∑N
j=1 b(γ )

jN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C4)

For the system under consideration, the spectral densities S(γ )
ηi have the following values: S(γ )

ηi,i �=N = S(γ )
ξi

+ S(γ )
ξi+1

, while

S(γ )
ηN = ∑N

j=1 S(γ )
ξ j

. If previously F (γ )
ran,i were independent, then F ′(γ )

ran,i have a cross-spectral density, S(γ )
ηiη j ,i �= j �=N = −S(γ )

ξk
, where

k = max(i, j) if |i− j| = 1; otherwise S(γ )
ηiη j ,i �= j �=N = 0, and S(γ )

ηiηN ,i �=N = S(γ )
ξi

− S(γ )
ξi+1

.

Transforming (A6), we obtain the spectral density distribution for η
(γ )
i :

G(γ )
ηi

(ω) =
N∑

j=1

S(γ )
η j

M̄ (γ )
ηi

( j) +
N−1∑
j=1

S(γ )
η jηN

M̄ (γ )
ηi

( j, N ) +
N−2∑
j=1

S(γ )
η jη j+1

M̄ (γ )
ηi

( j, j + 1). (C5)
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