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Formation and properties of spatially inhomogeneous plasma density gratings
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Volume plasma density gratings receive increasing interest since, compared to solid-state optical media, they
posses significantly higher damage thresholds. The gratings are produced by counterpropagating laser pulses
in underdense plasma. When analyzing their optical properties, usually they are assumed to be homogeneous
in space. The latter assumption, however, breaks down, especially when the gratings are produced by short
high-power laser pump pulses. Then, generically the plasma grating posses an inhomogeneous envelope which
results from the superposition of the pump pulses envelopes. The present paper discusses the effect of grating
inhomogeneity on reflection and transmission of probe pulses. A Gaussian plasma density grating becomes an
apodized grating which offers significant improvement over homogeneous gratings due to side-lobe suppression
while maintaining reflectivity and a narrow bandwidth. On the other hand, the reflected probe pulses receive
a chirp which depends on the spatial scale. For a Gaussian grating a cubic spectral phase appears. Numerical
particle-in-cell simulations are supported by theoretical analysis based on coupled mode equations as well as an
effective medium approach.
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I. INTRODUCTION

Nature has used photonic structures with periodically vary-
ing optical properties for about 500 million years to control
light [1]. Photonic effects are responsible for broadband light
reflectance in almost all biological systems [2]. The period-
icity in photonic structures leads to optical bands that are
analogous to the electronic bands in semiconductor physics
[3]. Spectroscopy based on photonic structures like diffraction
gratings inspired significantly modern science. Increasing un-
derstanding of the possibilities to manipulate the flow of light
stimulated several technological revolutions in signal pro-
cessing, communications, computing, physics, astrophysics,
biology, and even medicine [1].

With the invention of the laser, decades ago a new radiation
source entered the scene which enlarged the possible appli-
cations and opened completely new fields like fiber optics
and laser spectroscopy. Since then the demand for high-
power laser systems increased continuously. To avoid damage
of optical components in high-power laser systems, a tech-
nique called chirped pulse amplification was introduced [4].
Initially, pulse. stretching and compression were performed
almost exclusively by pairs of surface diffraction gratings [5].
The highest peak power follows from the optical threshold of
the compressor components. Compared to solid-state mate-
rials, plasma—being already ionized—does not suffer from
breakdown at extreme light intensities. Therefore, now more
and more plasma-based optical components come into the
center of interest.

*Author to whom correspondence should be addressed:
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Malkin and Fisch [6] were among the first authors who
proposed techniques to manipulate ultraintense laser pulses
in plasmas. Meanwhile, several groups developed the field of
high-intensity plasma photonics. Among them are those of
Refs. [7–10], to mention only some of them. Manipulating
light using plasmas became a growing field. Plasma para-
metric amplification [11–16] is part of the newly developing
domain of plasma optics, which eventually will pave the way
to high-intensity lasers [17–19]. During the past few years
plasma mirrors [20], wave- and q-plates [21,22], as well as
plasma-based polarizers [23–25] have showed already their
enormous potential as high-intensity photonic devices. Plasma
optical modulators [26], active plasma lenses [27–30], plasma
holograms [31–34], terahertz radiation sources [35], as well
as plasma-based beam combiners for very high fluence and
energy [36] are under active consideration.

Plasma gratings [37–39], also called plasma photonic crys-
tals [40–43], often represent the underlying structures for
novel optical components. A plasma photonic crystal can be
understood as a periodic modulation of the refraction index,
with the period close to half the wavelength of light [44].
It should be emphasized that once the basic realization in
plasma was clarified, many of the intriguing phenomena could
be uncovered in analogy to the well-established results for
optical crystals [45,46]. The formation of deep electron and
ion density gratings by the interaction of two counterpropa-
gating laser pulses was studied already at the beginning of
the century [37,47]. Since then, many fundamental properties
have been worked out [20,25,26,33,48–58].

The plasma photonic crystal itself has evolved into a
promising optical component being more or less ready for
applications [59–67]. The plasma grating is tunable since
its period can be varied when changing the angle between
the pump pulses. For high-power lasers, the production of
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chirped plasma gratings [68] is a major challenge for the
future. Chirped gratings may be produced by the interference
of a convergent laser pulse with a divergent one [5,69–76].
At present still another aspect is in the focus, namely spatial
inhomogeneity. A plasma does not allow to manufacture a
grating with sharp boundaries and quite homogeneous ampli-
tude. Typically, a grating is produced by intersecting pump
laser pulses. Their profiles determine the spatial envelope of
the produced grating. Thereby, grating structures with con-
stant grating periods but space-dependent envelopes appear
[68,77–79]. A strictly homogeneous plasma grating with con-
stant amplitude is an idealization whose limits should be
disclosed. This is the purpose of the present paper.

Particle-in-cell (PIC) simulations are, from the numerical
point of view, particularly suitable for revealing the advan-
tages and limitations of plasma gratings. But also several
analytical techniques, like optical wave mixing and cou-
pled mode approach [80,81], are available. The theoretical
toolbox is complemented by an effective medium approach
[5,78,82,83] which can be further refined for a plasma grating.
In comparison to a purely homogeneous grating, we aim to
investigate the advantages and disadvantages of spatial in-
homogeneities. Our focus lies on reflected pulses, as they
are typically used in compressors. Stimulated by the diverse
research on optical pulses in solid-state lattices and other di-
electric elements [45,46], we also anticipate significant effects
of the plasma structure on the reflection and transmission
properties.

The basis of our investigations relies on PIC simulations.
In order to better understand the fundamental phenomena
observed in these simulations, we employ simple analytical
models for interpretation.

The plan of the paper is as follows. We start with PIC
simulations of inhomogeneous gratings in Sec. II. The grating
structure is analyzed for two pump pulses in head-on colli-
sion. Due to the ponderomotive force, first a lattice appears
on the electron timescale. Later, the ions follow the space
charge field created by the nonuniformly distributed electrons,
building a transient plasma grating. The form of the latter
is interpreted by a simple fluid model. Next, in Sec. III, we
investigate the behavior of a probe pulse interacting with the
plasma grating. Transmission and reflection are reported. The
main focus of our investigation lies on the advantages of less
sharp grating edges (apodization) as well as on the phase
effects (chirp) caused by the inhomogeneity. The dynamics of
the probe pulses is first analyzed by coupled mode equations.
In Appendix we supplement the coupled mode analysis by an
effective medium approach. The latter is quantified through
a Wentzel-Kramers-Brillouin (WKB) analysis. The paper is
concluded by a conclusion and outlook.

II. INHOMOGENEOUS PLASMA DENSITY
GRATING EVOLUTION

A. Simulation results

To demonstrate the formation and discuss the proper-
ties of inhomogeneous plasma density gratings, let us begin
with results from one-dimensional PIC simulations using the
EPOCH code [84]. In the center of our simulation box we have

FIG. 1. Inhomogeneous plasma density grating at t = 1.5 ps
after the overlap of the 300 fs driving pump pulses of intensity
1015 W/cm2. The initial unperturbed plasma density n0 = 0.05nc

is shown as dashed line in the two insets. The resulting spatial
inhomogeniety of the modulation amplitude is apparent.

a slab of almost homogeneous hydrogen plasma with initial
density n0 = 0.05nc, where nc is the critical density following
from ω0 =

√
4πnce2/me, and ω0 is the laser frequency. To

the left and right of the plasma slab we have vacuum of
sufficient lengths to follow laser pulses leaving the plasma in
either direction. From both ends of the box, we simultaneously
launch pump pulses of wavelength λ0 = 800 nm and Gaussian
temporal profiles with full width at half maximum duration of
300 fs (of the electric field). The peak intensity of the pulses
is 1015 W/cm2. The spatial extent of the overlap region of the
two pulses is about 100 λ0, the length of the plasma slab is
300 λ0. Thus, the full pulse overlap region is contained in the
plasma, which is different from several previous studies. The
electron plasma temperature has been set to Te = 2.5 eV and
ion temperature to Ti = Te/10. We define t = 0 as the time
at which the maxima of the two laser pulses coincide in the
center of the plasma at x = 0. The simulation box is 1500 λ0

long and uses 26 cells per λ0. Per cell occupied by plasma we
have 200 macroparticles per species. The ion to electron mass
ratio is 1836, and the plasma is assumed preionized.

Once the laser pulses overlap, the ponderomotive force
due to the beat of the two laser pulses starts driving electron
density modulations with a spatial period of λ1/2, where
λ1 = λ0/N0 is the laser wavelength inside the plasma and
N0 = √

1 − n0/nc.
Figure 1 shows the electron plasma density at t = 1.5 ps.

The ion density at this time is almost identical to the electron
density, i.e., the structure is almost quasineutral. Due to the
temporal intensity profiles of the pump pulses, the pondero-
motive beat acquires a spatiotemporal dependence, which is
then subsequently imprinted into amplitude of the plasma
density modulation (see Sec. II B). The insets in Fig. 1 show
that the anharmonicity of the modulation is clearly different
at various locations inside the grating, whereas the period is
the same everywhere. In the wings, where the amplitude of
the grating is small, the modulation is almost harmonic and
close to symmetric about the unperturbed initial density. In
the center of the grating, the modulation amplitude is larger
and the anharmonicity is substantial. The thin density spikes
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reach up to 2.5n0, whereas the troughs have a density of
approximately 0.5n0.

A spatially more homogeneous grating has been achieved
in previous studies by shortening the plasma, such that the
plasma is much shorter than the overlap region of the two
pump pulses (i.e., only the center of the grating has been
considered). Then the density modulation has close to uniform
amplitude. The very thin underdense plasma slab, however, is
experimentally at least challenging to realize. Here we inves-
tigate the experimentally more realistic situation, where the
plasma is longer than the overlap region of the laser pulses,
resulting in the variation of the grating amplitude. As we
will show in the subsequent sections, this variation affects the
reflective properties of the plasma gratings.

B. Fluid model for plasma density grating evolution

Now we discuss a simple analytic model which explains
the main findings of the previous subsection. Very detailed
investigations of the nonlinear dynamics of homogeneous
laser-generated ion-plasma gratings do exist [41]. For the
discussion of inhomogeneity we start from a simplified ho-
mogeneous model [58]. It turned out that the latter model
describes the initial phase of the homogeneous situation quite
well.

We will normalize frequency ω by the pump frequency
ω0, time t by 2π/ω0 (approx. 2.67 fs), distances by the laser
wavelength λ0 in vacuum (800 nm), and wave numbers k by
k0 ≡ 2π/λ0. In plasma, the pump wave number is k1 = k0N0.
The mean density n0 will be used for density normalization,
while the velocity of light c is the velocity unit. Then 2k1x →
4πN0x in nondimensional form. A laser pulse propagates in
plasma with group velocity vg0 = cN0. Normalized vector
potentials �a = e

mec
�A are being used.

The single pulse pump envelopes are assumed as

pump envelope ∼ exp

[
− (x ∓ x0 ± vg0t )2

2〈x2〉
]
, (1)

where 〈x2〉 designates the mean square width of the pump
pulses. Initially, the two counterpropagating pumps are well
separated when centered around ±x0. Overlapping at later
times leads to the factor

Ea0a0 = e
− −x2

〈x2〉 e
− −v2

g0t2

〈x2〉 (2)

for the combined action if we reset the zero point of the
timeline accordingly. Then the factor Ea0a0 appears in the
ponderomotive potential during the head-on collision of two
oppositely propagating single pump pulses. In the following
the variation of the envelopes is assumed as slow on the λ0

scale. Produced by two pumps with amplitudes a0, the rapidly
varying part of the ponderomotive potential φp (here still in
dimensional form) is [56]

φp

mec2
≈ −1

2
a2

0Ea0a0 cos(2k1x − ϕ), (3)

where ϕ is a phase mismatch. Space charge effects create an
averaged electric field

〈Ex〉 ≈ −4πen0
ω2

b0

2k1ω2
pe

Ea0a0 sin(2k1x + ϕ), (4)

where we introduced the electron bounce frequency ωb0 =√
2a0ω0. Following Ma et al. [58] we may determine a fluid

velocity ui of ions from [56,58]

mi
∂ui

∂t
≈ Ze〈Ex〉. (5)

We set Z = 1. The nondimensional formulation, using the
units mentioned above and introducing

b = 2πa2
0N−1

0

me

mi
, h = 4πN0, (6)

follows as

∂ui

∂t
= −b e−N2

0 t2/〈x2〉 sin(hx) e−x2/〈x2〉. (7)

Actually, the pumps are highly active as long as t �√
〈x2〉/N0. However, since we are interested in the ion re-

action at larger timescales, approximately on the order of
t ∼ O(

√
mi
me

nc
n0

), we may make the simplified assumption that
the ion velocity remains constant at later times, at least in
the simplest approximation. Then, using

∫ ∞
−∞ e−N2

0 t2/〈x2〉dt =√
π〈x2〉
N0

, the zeroth-order result,

u(0)
i ≈ −b0 sin(hx) e−x2/〈x2〉, b0 = 2π

√
πa2

0

√
〈x2〉N−2

0

me

mi
,

(8)

will follow. However, a more accurate calculation is possible
starting from

ui = −b sin(hx) e−x2/〈x2〉
∫ t

−∞
e−N2

0 t ′2/〈x2〉dt ′. (9)

We let ourselves be guided by the formulation of Ma et al.
[58] for the density continuity equation,

∂n

∂t
+ ui

∂n

∂x
= −n

∂ui

∂t
. (10)

Note that with respect to sin(hx) and cos(hx) the exponential
function e−x2/〈x2〉 is slowly varying in space. We shall make
use of this fact when determining an approximate solution of
the initial value problem. We also introduce a new time τ via

dτ = dt
∫ t

−∞
e−N2

0 t ′2/〈x2〉dt ′, (11)

such that

τ =
∫ t

0
dt ′′

∫ t ′′

−∞
e−N2

0 t ′2/〈x2〉dt ′ (12)

for t � 0, leading to

τ (t ) =
√

π〈x2〉
2N0

t

[
1 + erf

(
N0t√
〈x2〉

)]
+ 〈x2〉

2N2
0

[e−N2
0 t2/〈x2〉 − 1].

(13)
Written in detail with respect to time τ , the approximate
equation for ion continuity is given by

∂n

∂τ
− b sin(hx) e−x2/〈x2〉 ∂n

∂x
≈ b h cos(hx) e−x2/〈x2〉 n. (14)
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To eliminate the coefficients h and b, we modify in the present
subsection the already nondimensional variables t and x to

t̃ = hb τ, x̃ = hx, (15)

obtaining

∂n

∂ t̃
− Ẽ sin(x̃)

∂n

∂ x̃
≈ Ẽ cos(x̃) n, (16)

with

Ẽ = e
− −x̃2

〈x̃2〉 , 〈x̃2〉 = h2〈x2〉. (17)

Next, we should familiarize ourselves with the following in-
tuitive picture. We have already assumed that the envelope
is slowly varying in space. That means we may introduce a
local (space-dependent) time T (and for aesthetic reasons also
X ≡ x̃), i.e.,

T = t̃ e
− x̃2

〈x̃2〉 , X ≡ x̃. (18)

This local time reflects the fact that pulses effectively interact
for different durations at different locations. The basic equa-
tion now becomes

∂n

∂T
− sin(X )

∂n

∂X
= cos(X ) n. (19)

We have replaced the approximate sign with an equality sign,
fully aware that we are only seeking an approximate solution.
As long as we do not care about the initial condition, the
solution of this quasilinear differential equation can be written
with an arbitrary function F as

n(X, T ) = F {− ln [csc(X ) + cot(X )] + T }
sin(X )

. (20)

At time T = 0, we propose the condition n(X, 0) = 1. With
z ≡ sin(X ) we obtain the relation

z = F

(
− ln

[
1 + √

1 − z2

z

])
≡ F ( f (z)). (21)

Thus, f (z) is the inverse of the function F (z). From

f (z) = F−1(z) with f −1(z) = 2ez

(ez )2 + 1
(22)

we obtain

F (Z ) = 2eZ

e2Z + 1
, (23)

leading to the result

n(X, T ) = 1

sin(X )

2eZ

e2Z + 1

∣∣∣∣
Z=T −ln [csc(X )+cot(X )]

. (24)

From a straightforward evaluation of the right-hand side the
final expression

n(X, T ) = 2eT 1 + cos(X )

[1 + cos(X )]2 + e2T sin2(X )
(25)

follows. Remember the definitions (15) and (18) which intro-
duce the inhomogeneous envelope at time t . They lead to

n(x, t )= 2eT 1 + cos(X )

[1 + cos(X )]2 + e2T sin2(X )

∣∣∣∣
X=hx,T =h b τ (t )e−x2/〈x2〉

.

(26)

TABLE I. Fourier-coefficients for the lowest-order harmonics of
the analytic solution for the plasma density (26) at t = 560. Note that
all βm vanish because of even symmetry of the plasma density n(x, t ).

m 0 1 2 3 4 5

αm(560) 2.000 0.89 0.40 0.18 0.08 0.03

Before we compare the analytical solution with a nu-
merical one, let us discuss an approximation that will be
used to evaluate the simple models presented in the sub-
sequent sections. In these models, we neglect deviations
from purely harmonic behavior, meaning we neglect higher
harmonics.

Clearly, the result (26) consists of several harmonic con-
tributions ∼ cos(mhx), m = 1, 2 . . . [and perhaps additional
odd parity parts ∼ sin(mhx)]. To estimate the significance of
each Fourier component, we define coefficients that depend
on time, namely

αm(t ) = 2

L∗

∫ L∗

0
cos(mx) n(x, t ) dx, (27)

βm(t ) = 2

L∗

∫ L∗

0
sin(mx) n(x, t ) dx, (28)

where L∗ = 1/2N0 is the periodicity of n(x, t ) when x is
measured in λ0. These coefficients are borrowed from the
homogeneous case, i.e., from n(x, t ) for 〈x2〉 → ∞. We assess
their importance, for example at time t = 560 (corresponding
to 1.5 ps), from Table I.

Using the Fourier coefficients, we construct the following
simple model for the inhomogeneous grating density,

nM
approx(x, t ) = 1

2
α0(t ) +

M∑
m=1

[αm(t ) cos(mhx)

+ βm(t ) sin(mhx)] e−x2/〈x2〉. (29)

It is found that even for low M Eq. (29) provides an excel-
lent approximation for n(x, t ). Equation (29) will be used to
evaluate the coupled mode equations and apply the effective
medium approach.

For a fixed value of n0/nc, as well as given pump ampli-
tudes a0 and widths 〈x2〉, there is still one free parameter,
which is time t . Figure 2 shows the density distributions for
n0/nc = 0.05, a0 = 0.0216, and 〈x2〉 = 2300. The left sub-
figure shows the analytic solution (26) for t = 560, while
the right subfigure shows the approximate solution (29) for
M = 3 at the same time.

Comparing the density obtained from the PIC simulation
(Fig. 1) to the result of the analytic model [Fig. 2(a)] we find
very good agreement. Modulation amplitude and asymmetry,
in terms of maximum and minimum density per period, are
very well reproduced. The analytic solution slightly overes-
timates the amplitude of the density modulation by a few
percentages, which is due to the approximation of almost
constant ion velocity ui.

055204-4



FORMATION AND PROPERTIES OF SPATIALLY … PHYSICAL REVIEW E 108, 055204 (2023)

(a) (b)

FIG. 2. Plasma grating structures for n0 = 0.05nc and 〈x2〉 = 2300. (a) The analytic result (26) at t = 560. (b) In comparison, the simpler
model (29) for M = 3. The dashed line in the insets represents the initial density of 0.05nc.

III. TRANSMISSION, REFLECTION,
AND PHASE OF A PROBE PULSE

The most prominent feature of a plasma density grating
is that it may act as a plasma photonic crystal to probe laser
pulses. In particular the use of plasma gratings as Bragg-type
mirrors for high-intensity laser pulses may be of interest. In
case of homogeneous gratings, a linear plane wave ansatz
gives insight into the dispersive properties for electromag-
netic wave propagation [40,43,46]. In this section we will,
at first, demonstrate the reflective properties of inhomoge-
nous gratings via simulations. Subsequently, coupled mode
equations are derived to explain these observations. In what
follows, the probe is always sufficiently short that the grating
dynamics can be neglected, i.e., the probe interacts with an
almost stationary grating.

A. Simulation results

In our simulation we consider a linearly polarized 30-fs
Gaussian probe pulse with maximum intensity 1015 W/cm2,
interacting with the grating shown in Fig. 1. The probe pulse
has the same central wavelength (800 nm) as the pulses driv-
ing the grating and is launched from the left boundary such
that its maximum reaches x = 0 at t = 1.5 ps. Figure 3(a)
shows the electric field of reflected and transmitted parts of
this laser pulse after the interaction. As reference and guide
for the eye, we also show the original probe pulse and the
position of the plasma grating in the simulation box. The

electric fields are normalized to the maximum electric field
Ez,0 of the incoming probe pulse.

The structure of the reflected and transmitted pulses is
determined by their spectral content and the phase relation
between the contained frequencies. The spectrum of incom-
ing, reflected, and transmitted pulses is shown in Fig. 3(b),
respectively. Only the central part (about 1

4 ) of the incoming
spectrum is reflected, and everything else is transmitted. Less
than 1% of the probe energy remains in the plasma. The
reflected spectrum has almost (super-)Gaussian form; hence,
if the reflected pulse was bandwidth limited, then it should
have about four times the duration of the incoming pulse. The
reflected pulse, however, now has the form of a pulse train
and is much longer than four times the initial duration. While
interacting with the grating, the spectral components undergo
a phase shift, which introduces a quadratic chirp, i.e., the grat-
ing has third-order dispersion. The transmitted pulse mainly
consists of all the frequencies that are not reflected but also
shows features of photon acceleration and deceleration (the
two horns at k ≈ k0 ± 0.01k0). The small surplus of energy
at these frequencies, compared to the incoming light, stems
from frequency conversion processes [85] affecting some of
the light in the band gap.

B. Coupled mode equations for reflection,
transmission, and phase

We now analyze the PIC results with the help of coupled
mode equations. An alternative method in the form of the

(a) (b)

FIG. 3. (a) Interaction of a 30-fs probe pulse (propagating to right) with the inhomogeneous plasma grating (indicated in the box center).
Shown are the electric fields of the incoming probe pulse [orange (gray) line] before the interaction, the reflected pulse (black line), and the
transmitted pulse [yellow (light gray) line]. (b) Spectrum of incoming (orange circles), reflected (black line), and transmitted [yellow (light
gray) line] electric field.
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effective medium approach is briefly outlined in the Ap-
pendix. First, we set up the equations. Subsequently they will
be solved with appropriate boundary conditions to determine
the transmission and reflection coefficients as well as the
phase of the reflected wave.

We consider a test wave E ∼ e−iωt with frequency ω such
that (before normalization)

d2E

dx2
+ k2 N2

N2
0

E = 0 (30)

with

k ≡ ωN0

c
, N =

√
1 − ω2

pe

ω2
. (31)

N is the refractive index and N0 is the reference index. Ob-
viously, when the test wave frequency approaches the pump
frequency, i.e., ω → ω0, we have

k → k1 ≡ ω0N0

c
, N → N0 =

√
1 − ω2

pe

ω2
0

. (32)

Introducing normalized quantities (as in Sec. II B) and the
(normalized) frequency mismatch � we find

� = ω − 1 � k2 ≈ k2
1 (1 + 2�) (33)

for |�| � 1. Also

N2 ≈ N2
0

{
1 +

[
1 − 1

N2
0

]
δne −

[
1 − 1

N2
0

]
2�

}
, (34)

and

k2 N2

N2
0

≈ k2
1

(
1 +

[
1 − 1

N2
0

]
δne + 2

N2
0

�

)
. (35)

The electron density variation δne is driven by the ponderomo-
tive force and may show the behavior as discussed in Sec. II.

In the following we present results using the approximation
(29) with M = 1 at time t = 560. Then (29) takes on the
particularly simple form

δne ≈ 1
2 A(x)(eiψ + e−iψ ), A(x) ≈ α1(t = 560) e−x2/〈x2〉

≈ 0.89 e−x2/〈x2〉, (36)

for

ψ = 2ξ + ϕ(ξ ), ξ = 2π

λ1
x, (37)

when the (dimensional) quantity λ1 = 2πc
ω0N0

, as well as the (di-
mensional) space coordinate x, are made dimensionless with
respect to λ0 = 2πc

ω0
. Obviously, ξ = 2πN0x = h

2 x. We allow
for an additional phase ϕ. The phase will become important
for chirped gratings. In the present case we can set ϕ = 0.
Then the (normalized) wave equation takes the form

d2E

dx2
+ (2πN0)2

{
1 + 2

N2
0

� + 1

2

[
1 − 1

N2
0

]
A(x)

× (ei4πN0x+iϕ + e−i4πN0x−iϕ )

}
E = 0. (38)

For the electric field E we make the ansatz

E (x) = a+(x)ei2πN0x + a−(x)e−i2πN0x, (39)

with slowly varying envelopes a±. Below we shall generalize
to carrier wave numbers k �= k0.

Within a slowly varying envelope approximation one ob-
tains for the amplitudes u and v, which are defined through

a+(x) = u(x)eiϕ/2, a−(x) = v(x)e−iϕ/2, (40)

the standard coupled mode equations
du(x)

dx
= i[σ (x) u(x) + κ (x) v(x)], (41)

dv(x)

dx
= −i[σ (x) v(x) + κ (x) u(x)]. (42)

Here

σ (x) = 2π

N0
�, (43)

κ (x) = πN0

2

(
1 − 1

N2
0

)
A(x). (44)

Now a few remarks concerning boundary conditions and
reflection as well as transmission coefficients. Since in nondi-
mensional form

2πN0(1 + �)x = 2πkx, (45)

we may introduce

σ = 2πN0� + σ̄ , ũ = u e−i2πN0�x, ṽ = v ei2πN0�x,

(46)

to obtain the test electric field (in nondimensional form) with
appropriate carrier wave number k,

E = ũ(x) e2π ikx + ṽ(x) e−2π ikx. (47)

This is the generalization of (39) for k0 → k. The correspond-
ing modified coupled mode equations are

dũ(x)

dx
= i[σ̄ (x) ũ(x) + κ (x) e−i4πN0�x ṽ(x)], (48)

d ṽ(x)

dx
= −i[σ̄ (x) ṽ(x) + κ (x) ei4πN0�x ũ(x)] (49)

with

σ̄ (x) = −2πN0

(
1 − 1

N2
0

)
�. (50)

When solving the coupled mode equations for a finite grat-
ing in the region −L � x � L we use the boundary conditions
ũ(−L) = 1 and ṽ(L) = 0. Then the reflection coefficient R
and the transmission coefficient T follow (for ϕ ≡ 0) via

r = v(−L)e−i2πN0�L → R ≡ |r|2 = |v(−L)|2,
t = u(L)e−i2πN0�L → T ≡ |t |2 = |u(L)|2. (51)

The solution of the coupled mode equations is numerically
simple. In Fig. 4 we present results for the the transmission
coefficient T and the reflection coefficient R, respectively.
The coefficients depend on the frequency shift �. Figure 4
shows the coefficients for M = 1 and α1 = 0.89 with 〈x2〉 =
2300, assuming a plasma density n0/nc = 0.05 and L = 150.
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FIG. 4. Solutions of the coupled mode equations for the trans-
mission coefficient T [orange (light gray) dashed line] and the
reflection coefficient R (black dashed line) in the region −0.02 �
� � 0.02. The model grating (29) is applied for M = 1 and A(x) =
0.89e−x2/〈x2〉 with 〈x2〉 = 2300. For the plasma density we have
n0/nc = 0.05 and L = 150. Solid lines with symbols are the re-
spective data obtained from a PIC simulation corresponding to
Figs. 3(a) and 3(b).

Note that the effective width of the inhomogeneous grating
is

√
〈x2〉 ≈ 48. Figure 4 additionally shows R and T , respec-

tively, as obtained from from the PIC simulation discussed
in Sec. III A. R and T are in this case obtained via the data
shown in Fig. 3(b). The reflected and transmitted amplitude
is normalized to the amplitude of the incoming spectrum,
respectively, for every frequency. Overall, we find a good
agreement of the coupled mode results with the PIC simu-
lation results.

Let us now focus on the reflected laser pulse shown in
Fig. 3(a). Its temporal profile is not only determined by the
spectral content, i.e., the spectrum of the incoming pulse
weighted by R(�) but also by the relative phase �(�) ∈
[−π, π ) of the modes. Instead of taking � = arg(r), we may
directly use � = arg(v(−L)), as the exp(−i2πN0�L) factor
only adds an additional linear phase variation with �, causing
only a temporal shift in the time domain. Figure 5 shows
the variation of � with �. For the region where R(�) > 0,
we fit �(�) with a cubic polynomial p(�) = 560� + 2.97 ×
106�3 and find very good agreement between fit and numer-
ically obtained curve. The cubic contribution to the phase is
related to quadratic chirp [86], which is the source for the
pulses trailing the main pulse after reflection [see Fig. 3(a),
black line].

To obtain the temporal profile of a probe pulse re-
flected off the inhomogeneous grating density, we first
determine the spectrum of the reflected pulse r p(�) =
I (�)R(�) exp(i�(�)), where I (�) is the spectrum of the
incoming probe pulse. Taking the inverse Fourier transform
of r p(�), we then obtain the temporal (and thus spatial) enve-
lope of the reflected pulse. In Fig. 6, we compare the electric
field of the reflected probe pulse of the PIC simulation [shown
in Fig. 3(a)] with the envelope obtained via the coupled mode
model (for the same parameters). Again, the coupled mode
result is very close to the result of the PIC simulation.

FIG. 5. Spectral phase �(�) (solid orange line) and cubic poly-
nomial fit (blue dashed line) for the same � region as in Fig. 4. The
fit is only obtained in the region, where R(�) is nonvanishing.

C. Comparison with a quasihomogeneous case

To highlight the qualitative differences between inhomo-
geneous and homogeneous gratings, we compare the results
obtained with those associated with homogeneous gratings.
The question, of course, is which homogeneous gratings to
compare with. We address this issue by increasing 〈x2〉 while
keeping all other parameters constant. If

√
〈x2〉 is significantly

larger than the given length L, then the grating is effectively
homogeneous. For a qualitative comparison, this constructive
approach seems meaningful enough to us.

1. Side-lobe suppression

On completing the paper, we learned that an analogy to
fiber gratings exists [87]. In that context, manufacturing meth-
ods are being discussed to photowrite Bragg gratings with
grading (apodization) of the refractive index variation to ap-
proach zero at the end of the grating. Apodization of the
refractive index change leads to side-lobe suppression in the

FIG. 6. Electric field of the 30 fs probe pulse reflected off the in-
homogeneous plasma density grating in Fig. 3(a) as obtained in PIC
simulation (light gray). The envelope of the electric field obtained
from the coupled mode model for the same parameters is shown by
the line [red (black)].

055204-7



G. LEHMANN AND K. H. SPATSCHEK PHYSICAL REVIEW E 108, 055204 (2023)

(a) (b)

FIG. 7. (a) Solutions of the coupled mode equations for the transmission coefficient T [orange (light gray) solid line] and the reflection
coefficient R (black line). The parameters are the same as in Fig. 4 except that 〈x2〉 = 100 000 is now much larger. The grating is nearly
homogeneous and we observe very pronounced side lobes. (b) Results for T and R obtained from a PIC simulation for the same parameters
as (a).

transmission-reflection spectrum while maintaining reflectiv-
ity and a narrow bandwidth. As we shall demonstrate now,
exactly the same happens in our present case.

In Fig. 7 we show results for reflection and transmission of
a probe pulse propagating in an almost homogeneous grating.
As mentioned already, homogeneity is established by chang-
ing 〈x2〉 of the pump pulses from 2300 to 100 000. All other
parameters are the same as in Sec. III. Clearly, side lobes
appear. The reduction of side lobes is an important aspect
in the design and optimization of signal processing systems
[87]. So even though it was not evident from the beginning,
the inhomogeneity in plasma gratings generated by narrower
pump pulses is now proving to be an advantage.

2. Third-order phase

In Sec. III, we found a third-order phase that implies a
quadratic chirp. To verify that this is indeed an inhomogeneity
effect, we will examine the transition to the homogeneous
situation. Figure 8 illustrates the important difference from the
result in Sec. III when we take the homogeneous limit. Again,
we compare the case 〈x2〉 = 2300 with 〈x2〉 = 100 000. In the
quasihomogeneous case, the phase is clearly linear as long as
we are not in the immediate vicinity of the band edge.

FIG. 8. Phase � = arg(r) for the same parameters as in Fig. 7,
i.e., in the quasihomogeneous case with 〈x2〉 = 100 000 as obtained
from the coupled mode equations. For comparison, the dashed line
originates from the inhomogeneous case depicted in Fig. 5.

Third-order spectral phase, as it appears in the Gaussian
grating of Sec. III, means a quadratic group delay versus fre-
quency. When the central frequency of a pulse arrives first, the
frequencies on either side arrive later. Two slightly different
frequencies cause intensity beats as function of time. So, as
appearing in the inhomogeneous case of Sec. III, the third-
order spectral phase contribution causes oscillations after the
main pulse. On the other hand, a linear spectral phase variation
only corresponds to a shift in time (delay) of the whole pulse.

IV. SUMMARY AND OUTLOOK

When plasma gratings are produced by counterpropagating
short laser pulses, generically the plasma grating is spatially
inhomogeneous since it results from the superposition of the
pump pulses envelopes. The effect of grating inhomogeneity
on reflection, transmission, and chirp of a (reflected) probe
pulse was studied in detail. Numerical PIC simulations were
supported by theoretical analysis based on coupled mode
equations as well as an effective medium approach.

At first, the generation of inhomogeneous plasma grat-
ings was analyzed via PIC simulations for two finite-duration
pump pulses undergoing head-on collision in a sufficiently
long plasma slab. The resulting plasma density gratings are
of fairly typical form. Over sufficient time, this form can
be predicted by a simple fluid model. The model displays
both the bottom-up asymmetry and deviations from simple
harmonic behavior. For analytical discussions we use a simple
harmonic approximation. Generalizations including higher
harmonics are possible. The approximation for M = 1 pro-
vides very good agreement with the PIC simulations, not only
qualitatively but also quantitatively. The reason for this good
correspondence lies in the fact that only the M = 1 mode
allows for an effective wave-number matching between the
incident and reflected wave [45].

Next we investigated the propagation of a probe pulse
interacting with the (inhomogeneous) plasma grating. Using
PIC simulations, transmission and reflection were determined.
Generically, we detected that the reflected pulse becomes
chirped. The phase is of third order, which induces a quadratic
chirp. In any case, in the Gaussian scenario, the side lobes
in the frequency dependent reflection and transmission coef-
ficients vanished, resulting in what we could interpret as an
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optimization of the grating design. The reasons for the ob-
served behavior could be uncovered through a simple coupled
mode model.

Possible future applications of plasma density gratings
such as mirrors, waveplates, polarizers, and possibly pulse
compressors will need to be aware of the introduction of what
will in most cases be a quadratic chirp to the reflected and
transmitted pulses. This could deteriorate achievable pulse
quality. On the other hand, the reduction of side lobes in the
spectrum can increase pulse quality for certain applications.

In the Appendix, we supplemented the coupled mode
analysis by an effective medium approach. The latter was
quantified within a WKB analysis. The dual analytical
modeling was conducted with the intention of providing
various strategies for future investigations that lead to sim-
ilar results. If a numerical solution of coupled differential
equations proves to be too computationally intensive at the
moment, then it becomes evident that the effective medium
approach can be fruitful, although it may not capture all intri-
cacies, such as spectrum side-lobe suppression, for instance.

It should be emphasized that both the coupled mode analy-
sis and the effective mode approach can be readily generalized
to other scenarios. Our particular focus lies on chirped plasma
gratings, where we see substantial potential for applications.
In particular, the generation of apodized plasma gratings with
linear chirp will be of great practical significance. We intend
to dedicate a separate paper to this specific area of research.
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APPENDIX: EFFECTIVE MEDIUM APPROACH

We may also analyze part of the PIC results with the help
of an effective medium approach. A comparison with the pre-
dictions from the coupled mode equations will be interesting.

First, in this Appendix, we set up the effective medium
model. Subsequently, the model will be solved in WKB ap-
proximation for a quantitative evaluation of the transmission
and reflection coefficients.

1. General outline

When introducing the combinations [77,78]

E eff = u + v, H eff = u − v, (A1)

εeff = σ + κ, μeff = σ − κ, (A2)

the coupled mode equations may be rewritten in

dE eff

dx
= i μeff H eff,

dH eff

dx
= i εeff E eff. (A3)

We clearly recognize the analogy to Maxwell’s equations for
the propagation of an electromagnetic plane wave with unit
frequency through a medium with dielectric permitivity εeff(x)

FIG. 9. Contour plot of the square of effective refractive in-
dex Neff. In the shaded area N2

eff � 0. Parameters are 〈x2〉 = 2300,
α1 = 0.89, and n0/nc = 0.05.

and magnetic permeability μeff(x) [78]. This suggests intro-
ducing an effective refractive index,

Neff = √
εeff · μeff. (A4)

In case of homogeneous and infinite arrays, clearly imaginary
Neff forbid wave propagation (band gap) while for real Neff

waves could propagate.
Let us first study the general behavior before we focus on

more specific details. We evaluate Neff for the model (41) and
(42), leading to

εeff = 2π

N0
� + πN0

2

(
1 − 1

N2
0

)
A(x), (A5)

μeff = 2π

N0
� − πN0

2

(
1 − 1

N2
0

)
A(x), (A6)

and

N2
eff ≈ 4π2

N2
0

�2 − π2N2
0

4

(
1 − 1

N2
0

)2

A2(x), A(x) = α1e
− x2

〈x2〉 .

(A7)

In Fig. 9 we present a contour plot of N2
eff. We recognize

different regions of behavior, depending on � and x. Within
the shaded area N2

eff � 0. When a wave with fixed � > 0 hits
the grating from outside, the wave (which initially propagates
freely) will decay in the shaded area. If the latter is finite, then
the wave emerges weakened into the open (transmission) and
is partially reflected.

2. WKB analysis

A discussion of the effective refractive index Neff allows us
to find the regions in ω for free wave propagation. In the other
areas, a wave may tunnel through the forbidden area. To quan-
tify the corresponding reflection and transmission properties,
we use a phase-integral (WKB) method [78].
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We assume that εeff as well as μeff are slowly varying in
space. When introducing

Ẽ eff = 1√
μeff

E eff, (A8)

H̃ eff = 1√
εeff

H eff, (A9)

we obtain for Ẽ eff and H̃ eff second-order differential equa-
tions which for slowly varying εeff and μeff approximately
reduce to

d2Ẽ eff

dx2
+ N2

eff(x) Ẽ eff(x) = 0, (A10)

d2H̃ eff

dx2
+ N2

eff(x) H̃ eff(x) = 0. (A11)

They have the standard Schrödinger form. Now we may fol-
low the well-known procedure for phase-integral solutions.
The WKB solutions lose their validity in the region close to
Neff = 0, i.e., at turning points x = x1 and x = x2 = −x1. For
our simple model (29) with M = 1, the turning points are

x1,2 = ±
√

〈x2〉
√√√√− ln

[
4|�|(

1 − N2
0

)
α1

]
(A12)

in the � region

−α1

4

(
1 − N2

0

)
� � � α1

4

(
1 − N2

0

)
. (A13)

The solutions at the different sides of the turning points
will be connected by the WKB connection formulas.

Matrix W (θ ), with

θ =
∫ x2

x1

|Neff| dx (A14)

integrated over the evanescent area x1 � x � x2, specifies the
connection. Matrix P is defined as the propagation matrix for
N2

eff > 0, and � is the impedance matrix needed to relate the
phase coefficients in the effective electric fields to the func-
tions u and v, respectively. All the matrix definitions belong
to the standard repertoire of quantum mechanics and will not
be derived here in detail. An excellent summary is provided
by Ref. [78].

Anticipating the explicit matrix forms as well as the con-
nection formula provided by the reference [78], we finally
obtain the result for u and v:

[
u(−L)
v(−L)

]
= �[Z (−L)] · P[φ(−L)] · W [θ ] · P−1[φ(L)] · �−1[Z (L)]︸ ︷︷ ︸

M

[
u(L)
v(L)

]
. (A15)

Here the phase factors are

φ(−L) =
∫ x1

−L
Neff dx, φ(L) =

∫ L

x2

Neff dx, (A16)

and the impedance Z should be determined from

Z2 = μeff(x)

εeff(x)
(A17)

at x = ±L. The propagation matrix is

P(φ) =
(

eiφ 0
0 e−iφ

)
, (A18)

where for φ the values φ(−L) and φ(L) have to be inserted.
The impedance matrix is

�(Z ) =
√|Z|
2Z

(
Z + 1 Z − 1
Z − 1 Z + 1

)
, (A19)

where in our case [μeff(±L) < 0, εeff(±L) < 0 for � < 0]

Z (x) = −
√

μeff(x)/εeff(x) ; (A20)

it should be used and evaluated at x = ±L.
Finally, the connection matrix is in our case [εeff(x1) =

εeff(x2) = 0 for � < 0]

W (θ ) =
[

eθ + 1
4 e−θ −i(eθ − i

4 e−θ )
i(eθ − i

4 e−θ ) eθ + 1
4 e−θ

]
. (A21)

Most interesting for the present application is the fact that
the elements of the matrix M

M =
(

1
t

r∗
t∗

r
t

1
t∗

)
(A22)

directly lead to the reflection coefficient R = |r|2 and the
transmission coefficient T = |t |2. Thus, one easily can de-
termine the transmission coefficient T and the reflection
coefficient R. Some typical results are shown in Fig. 10. They

FIG. 10. Effective medium results for the transmission coeffi-
cient T [orange (light gray) solid line] and the reflection coefficient
R (black dashed line) in the region −0.015 � � � 0.015. The eval-
uation is for the same parameters as in Fig. 9.
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approximate very well the results obtained by the coupled
mode equations shown in Fig. 4.

Naturally, the WKB method implies limitations in the
evaluation. It applies only to the shaded � region of
Fig. 9. Outside, the effective medium approach predicts
R = 0 and T = 1. We need well-defined turning points

x1 and x2. As a result, we have restricted the evalua-
tion in the figure to −0.011 � � � 0.011. Nevertheless,
the highly intuitive effective medium approach provides a
very good agreement with the PIC results in the regions
where the physically motivated analysis can be successful
at all.
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