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Plasmon dispersion and Landau damping in the nonlinear quantum regime
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We study the dispersion properties of electron plasma waves, or plasmons, which can be excited in quantum
plasmas in the nonlinear regime. In order to describe nonlinear electron response to finite amplitude plasmons,
we apply the Volkov approach to nonrelativistic electrons. For that purpose, we use the Schrödinger equation and
describe the electron population of a quantum plasma as a mixture of quantum states. Within the kinetic
framework that we are able to derive from the Volkov solutions, we discuss the role of the wave amplitude
on the nonlinear plasma response. Finally, we focus on the quantum properties of nonlinear Landau damping
and study the contributions of multiplasmon absorption and emission processes.
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I. INTRODUCTION

Landau damping of electron plasma waves was introduced
in 1946, in the frame of classical plasma physics, and plays
a central role in plasma theory [1–5]. Although quite well
understood in its linear formulation, the nonlinear regime of
Landau damping remains a problem of major mathematical
and physical importance [6–8], not only in plasmas but also
in self-gravitating systems [9,10]. Its quantum version was
introduced in the early 60’s of the last century [11,12], and
seems to play a more modest role in quantum plasma theory
[13,14]. Despite some progress in more recent years [15–17],
the nonlinear effects associated with quantum Landau damp-
ing, such as those associated with particle trapping, wave
satellites, and field harmonics, are still not well understood.
While the basic properties of quantum Landau damping can
be found in books [14] and review articles [18], a variety of
effects associated with the quantum nature of the plasmon
excitations remain to be tackled. For instance, it has been
recently reported numerically that quantum Landau damping
consists of a multiplasmon damping, and it can be understood
as a balance between emission and absorption of plasmons by
the plasma electrons [19].

In this paper, we propose an innovative approach to quan-
tum Landau damping in the nonlinear regime. Our method is
based on the used of Volkov (also known as Wolkow [20])
solutions to describe the single particle (test electron) states in
the presence of an electrostatic wave. A remarkable feature
of our approach is the fact of being, by construction, non-
perturbative in the wave amplitude. Volkov solutions to the
Dirac equation were originally obtained for relativistic quan-
tum particles in vacuum [21,22]. In recent years, they have
been extended to plasmas, where approximate solutions can
also be found [23–25]. These solutions can be used to describe
multiphoton and multiplasmon effects associated with inverse
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bremsstrahlung [26] and Compton scattering [27,28]. In the
following, we consider the nonrelativistic quantum plasma
case, where the Dirac equation is replaced by the Schrödinger
equation.

Previous studies of Volkov solutions of the Schrödinger
equation have focused on single-particle states in vacuum
[29–31]. Here, instead, we consider an electron plasma wave
with a finite amplitude. We use the single-particle Volkov so-
lutions in the presence of this wave and establish the electron
plasma population as a mixture of quantum states. This allows
us to describe the nonlinear plasma response to the electron
plasma wave. Such a description allows us to derive a new
dispersion relation where multiplasmon effects are included.
We then focus on the quantum properties of nonlinear Lan-
dau damping, and study the contributions of multiplasmon
absorption and emission processes. Our analytical results con-
firm and extend previous work, mainly based on numerical
solutions [16,19], and propose a new conceptual approach to
nonlinear plasma. Our results may certainly contribute to en-
large the discussion around wave-particle effects in nonlinear
waves in quantum systems, namely in the context of graphene
devices [32–35].

This paper is organized as follows. In Sec. II, we introduce
exact single-electron solutions driven by the plasma wave with
the help of the Volkov formalism. Then, in Sec. III, we obtain
a nonlinear dispersion relation for a generic equilibrium based
on the quantum (Wigner) kinetic equation. Finally, in Sec. IV
some conclusions are stated and applications in topical physi-
cal problems are motivated.

II. VOLKOV SOLUTIONS FOR NONRELATIVISTIC
ELECTRONS

We start from Schrödinger’s equation describing
single-electron states in the presence of an electrostatic
potential as

ih̄
∂

∂t
ψ =

[
− h̄2

2m
∇2 + eV

]
ψ, (1)
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where ψ ≡ ψ (r, t ) is the electron wavefunction and V ≡
V (r, t ) is the electrostatic potential associated with an electron
plasma wave with frequency ω and wavevector k that propa-
gates in the plasma. We now look for quantities varying in
terms of the proper time τ = t − k · r/ω, such that V (r, t ) =
V0 f (τ ), where V0 is the wave amplitude, and the function
f (τ ) describes the wave shape to be specified. Following the
Volkov procedure, we assume a solution of the form

ψ (r, t ) = �(τ ) exp(iθ ), θ = ke · r − ωet . (2)

Here, pe = h̄ke is the electron momentum and h̄ωe = p2
e/2m

the corresponding kinetic energy. This allows us to use
∂ψ

∂t
= (�′ − iωe�) exp(iθ ), (3)

with �′ ≡ ∂�
∂t = ∂�

∂τ
. Similarly, for the space derivatives, we

have

∇ψ =
(

ike� − k
ω

�′
)

exp(iθ ), (4)

and

∇2ψ =
(

k2

ω2
�′′ − 2i

(ke · k)

ω
�′ − k2

e �

)
exp(iθ ). (5)

Replacing this in Eq. (1), we get an evolution equation for �,
of the form

α2�′′ + ig�′ − G(τ )� = 0, (6)

with the following quantities

α2 = h̄2k2

2mω2
, g = h̄

(
1 − pe · k

mω

)
, G(τ ) = eV0 f (τ ).

(7)
These auxiliary quantities have a very clear physical meaning:
α2 represents the kinetic energy of a particle with the wave
momentum h̄k (the factor ω2 appear as to weight the second
time derivative); the factor g represents the deviation of the
particle velocity with respect to the wave phase velocity; and
the function G(τ ) is simply the potential energy. Equation (6)
can now be converted into a first order equation using

�(τ ) = �0 exp

[
−i

∫ τ

0
	(τ ′)dτ ′

]
, (8)

where �0 ≡ �(τ = 0) is a constant. We get the Riccati equa-
tion

−α2(i	′ + 	2) + g	 − G(τ ) = 0. (9)

We now assume a sinusoidal electrostatic wave in the medium,
such that G(τ ) = eV0 exp(−iωτ ). To the lowest order in the
wave amplitude V0, we can neglect the nonlinear term, and
we can derive the following particular solution for the eikonal
phase

	(τ ) =
∞∑

n=1

	ne−inωτ , (10)

with the first coefficients being given as

	1 = eV0

g − ωα2
, 	2 = α2

g − 2ωα2

(
eV0

g − ωα2

)2

,

(11)

	3 = 2α4

(g − 2ωα2)(g − 3ωα2)

(
eV0

g − ωα2

)4

, . . . .

The formal particular solution in Eq. (10) is not very useful
for the collective treatment we will perform below. As such,
in order to cast the nonlinear effects at first order in the wave
amplitude, we neglect terms of the order O(V 2

0 ). In order to
avoid unbounded (exponentially growing) solutions, we take
the real part of the phase in Eq. (10). Consequently, the formal
solution to Eq. (8) can be given in terms of the Jacobi-Anger
expansion, yielding the following bounded functions

�(τ ) � �0

∞∑

=0

i
J
(ξ )e−i
ωτ , (12)

where ξ = 	1/ω plays the role of a dimensionless electro-
static energy. This shows that the single electron states include
multiplasmon transitions (emission and absorption), that are
weighted by the wave amplitude V0, with probability |J
(ξ )|2.
Such effects will be explored below. This is justified as we
are interested in investigating stable solutions only. We notice,
nevertheless, that an alternative and more generic treatment
of the problem would require the solutions of the Mathieu
equation

α2ϕ′′ +
(

g2

4α2
− G(τ )

)
ϕ = 0, (13)

obtained from Eq. (6) upon the transformation ϕ(τ ) =
exp[igτ/(2α2)]φ(τ ). However, this would lead to formal dif-
ficulties preventing our analysis, since it does explicitly show
the multiplasmon characteristic of the nonlinear solution of
Eq. (12), as it will become apparent below. In the remainder
of this work, we are interested in recasting the effect of the
finite amplitude in the dispersion of the waves, and not in
investigating the solutions of single electrons.

III. NONLINEAR PLASMONS IN A QUANTUM PLASMA

According to Eqs. (2) and (12), we can characterize a given
electron state with velocity v = pe/m, in the presence of a
finite amplitude plasma wave, by a wavefunction of the form

ψv(r, t ) = �0 exp(iθv)
∞∑


=0

i
J
(ξ ) exp(−i
ωτ ), (14)

and describe the quantum fluid as a mixture of states [14] with
quasiprobability

W (r, v, t ) =
∫

dv′W0(r, v′ − v)Wv′ (r, t ), (15)

where θv = mv · r/h̄ − ωet is the test electron phase (the sub-
script v is simply introduced to render the dependence on
the electron velocity v more explicit), W0(r, v) is the equilib-
rium distribution at a given electron temperature Te (typically,
the Fermi-Dirac distribution), and the functions Wv(r, t ) are
Wigner functions defined by

Wv(r, t ) =
∫

ψv(r − s/2, t )ψ∗
v (r + s/2, t )eimv·s/h̄ ds. (16)

Let us now study the plasma dispersion using this nonlinear
function of the wave amplitude as the undisturbed distribu-
tion. For this purpose, we use the wave-kinetic equation for a
quantum plasma [14]

ih̄

(
∂

∂t
+ v · ∇

)
W = e

∫
dqV (q)[W − − W +]eiq·r, (17)
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where V (q) is the Fourier transform of the electrostatic poten-
tial created by the plasma, W ± = W (r, v ± vq, t ), and vq =
h̄q/2m. Here, we have∫

dqV (q)W (r, v ± vq, t )eiq·r

=
∞∑


=0

∫
dqV (q)W0(r, v ± vq)eiq·r

×
∫

ds|J
(ξ )|2eim(
+1)v·(r±s)/h̄

=
∞∑


=0

∫
dqV (q)W0[r, v ± (
 + 1)vq]eiq·r|J
(ξ )|2. (18)

Equation (17) must be consistent with the Poisson equation

∇2V (r, t ) = e

ε0
(|ψ (r, t )|2 − n0(r))

= e

ε0

∫
[W (r, v, t ) − W0(r, v)]dv, (19)

with n0(r) being the background ionic density forcing the
plasma quasineutrality. In order to obtain the kinetic disper-
sion relation, we perturb the Wigner-Poisson system as W =
W0 + W̃ and V = Ṽ , evolving as (W̃ , Ṽ ) ∼ exp(ik · r − iωt ).
Using the usual properties of the delta function in Eq. (18),
and replacing the dummy variables for the wavevector q →
k, we obtain, for the case of a homogenous equilibrium
W0(r, v) = n0G0(v),

−i(ω − k · v)W̃ = n0

∞∑

=0

G0[v − (
 + 1)vk]|J
(ξ )|2Ṽ (20)

and

−k2Ṽ = e

ε0

∫
W̃ dv. (21)

Finally, combining the latter, we get the nonlinear dispersion
relation

1 − mω2
p

h̄k2

∞∑

=0

∫
|J
(ξ )|2 G0[v − (
 + 1)vk] − G0[v + (
 + 1)vk]

(ω − k · v)
dv = 0. (22)

Integrating over the perpendicular velocity v⊥, and defining
the parallel Wigner function

G0(u) =
∫

G0(u, v⊥)dv⊥, (23)

where u is the particle velocity component along the direction
of wave propagation, we get

1 − ω2
p

∞∑

=0

(
 + 1)
∫

|J
(ξ )|2 G0(u)du

(ω − ku)2 − (
 + 1)2ν2
k

= 0,

(24)

where νk = h̄k2/2m is the recoil frequency. This is a gener-
alization of the usual quantum dispersion, when the Volkov
solutions are taken into account. In the limit of infinitesimal
wave amplitudes ξ → 0, we have

J0(ξ ) → 1, J
 �=0(ξ ) → 0, (25)

and we are reduced to the usual linear dispersion relation
of quantum plasmas, as obtained within the random phase
approximation (RPA) formalism [14,36]

1 − ω2
p

∫
G0(u)du

(ω − ku)2 − ν2
k

= 0. (26)

In the cold plasma approximation, where we can use G0(u) =
n0δ(u), the leading order correction to the plasmon dispersion
expression is implicitly given by

ω2 = ω2
p

∞∑

=0

(
 + 1)J2

 (ξ0)

ω2 − ν2
k

ω2 − (
 + 1)2ν2
k

+ ν2
k , (27)

where ξ0 ≡ ξ |pe=0 = eV0/h̄ωp. In the linear regime ξ0 → 0,
we simply get ω �

√
ω2

p + ν2
k [14,37], and at order O(ξ 2

0 ), we
get two modes ω � ω±, which, in the long wavelength limit,

read

ω+ � ωp

(
1 + |ξ0|2

2

)1/2

, ω− � νk

(
1 − 3

8
|ξ0|2

)
. (28)

This result expresses a remarkable feature, as depicted in
Fig. 1, which is intrinsic to the nonlinear nature of the
oscillations in the presence of a finite amplitude wave:

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

k�kp

�
p

FIG. 1. Dispersive properties of electron plasma waves with
finite amplitude. The dark dashed line corresponds to the linear dis-
persion relation obtained for V0 → 0, ω = √

ω2
p + ν2

k , while the light
dashed line is the single particle dispersion ω = h̄k2/m (see text).
The upper (dark solid line) and lower (light solid line) are the nonlin-
ear plasma modes obtained for a wave of amplitude V0 = 0.2h̄ωp/e.
The two nonlinear modes repel each other at the crossing point of
the linear modes k∗ = (4/3)1/4kp, with kp = √

ωp/h̄2m defining the
scale of the oscillations.
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the hybridization between the collective (gapped ω ∼ ωp)
mode and the single-particle (gapless ω ∼ k2) mode. At the
crossing point k∗ = (4/3)1/4kp, with kp =

√
ωp/h̄2m defining

the spatial scale of the oscillations in a quantum plasma,
the two modes repeal by the amount of 2	, where 	 =√

3ωp|ξ0|/4 plays the role of a Rabi frequency, in similar-
ity to what happens in quantum optics [38]. Indeed, such
avoided crossing has been recently identified in magnetized
plasmas interacting with axions [39]. We attribute this effect
to intricate wave-particle interaction that takes place in the
nonlinear regime: while part of the electrons participate in the
collective mode, oscillating alongside with the wave at fre-
quency ω = ω+ � ωp (corrected by the Volkov mode 
 = 0),
others remain trapped inside the wave, featuring essentially
single-particle motion ω = ω− � 2νk . A factor of two cor-
recting the value of the frequency, however, appears here as
this oscillation involves, at leading order, the exchange of two
plasmons 
 = ±1. Of course, multiple plasmon exchange is
also expected, but such effect is less important for weakly
nonlinear waves, for which the 
 = ±1 mixture is enough to
explain the physical picture of the wave-particle interaction.
The interplay of multiple plasmons in wave-particle problem
has been observed in numerical simulations [19]. We also
observe that the frequency shift to the linear plasma frequency
ωp in Eq. (28) is proportional to |ξ0| ∝ V0. This strongly
differs from the classical result, associated to electron trap-
ping at late stages of the wave-particle interaction, in which
trapping is proportional to

√
V0, and not to V0 as we obtain

here.
A more interesting situation concerns the isentropic decay

of plasmons in thermal plasmas Te �= 0, known as Landau
damping. Coming back to Eqs. (22) and (23), we make use
of the Landau prescription, in which the integral in u is
performed by forcing the contour L to pass below the pole
u = ω/k [13,40], and assuming that the frequency acquires a
small imaginary part ω → ω + iγ , such that

ε(k, ω) = 1 − mω2
p

h̄k2

∞∑

=0

(
 + 1)
∫
L

|J
(ξ )|2

× G0[u − (
 + 1)vk] − G0[u + (
 + 1)vk]

ω + iγ − ku
du

� 1 − mω2
p

h̄k2

∞∑

=0

(
 + 1)℘
∫

|J
(ξ )|2

× G0[u − (
 + 1)vk] − G0[u + (
 + 1)vk]

ω − ku
du

+ iπ
mω2

p

h̄k2

∞∑

=0

(
 + 1)|J
(ξ )|2
[

G0

(
ω

k
− (
 + 1)vk

)

× −G0

(
ω

k
+ (
 + 1)vk

)]
. (29)

Here, ℘ stands for the principal value of the integral, and the
last line of Eq. (29) has been obtained with the help of the
Plemelj formula limε→0(x ± iε)−1 = ℘x−1 ∓ iπδ(x). Finally,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�0.8

�0.6

�0.4

�0.2

0.0

kvF � p

�
p

FIG. 2. Plasmon Landau damping in the nonlinear quantum
regime. The lighter blue lines correspond to the linear case V0 =
0, while the darker lines are obtained for V0 = 0.2h̄ωp/e. In both
cases, dashed and solid lines correspond to EF = 0.75h̄ωp and EF =
1.10h̄ωp, respectively, showing the suppression of damping due to
quantum effects as well. For numerical illustration, we have chosen
a degeneracy parameter of EF /Te = 5, and defined vF = √

EF /m.

by expanding Eq. (29) at first order in γ , we obtain

γ = πω3
p

4k2

∞∑

=0


 + 1

vk
|J
(ξ )|2

[
G0

(
ω

k
+ (
 + 1)vk

)

− G0

(
ω

k
− (
 + 1)vk

)]
. (30)

The features of the nonlinear damping rate are depicted in
Fig. 2 for a degenerate plasma, in which the electrons follow
a Fermi-Dirac distribution

G0(ζ ) = 1

z−1eζ + 1
, (31)

where ζ = mu2/(2Te), z = eEF /Te is the fugacity, and EF is
the Fermi energy. As we can observe, for finite amplitude
waves, Landau damping is suppressed, as consequence of
electron trapping. Although somehow counter-intuitive—one
could naively believe that a finite amplitude wave tends to
interact more effectively with single electrons and, eventually,
damp its energy into the later—this result is well aligned with
previous results in the literature. In fact, the Bernstein-Greene-
Kruskal (BGK) modes, a class of exact nonlinear solutions in
collisionless plasmas, are known to be undamped [41]. More-
over, our results provide analytical support to the previous
numerical results of Brodin et al. [16,19], reporting on the
relevance of multiplasmon resonant wave-particle effects.

IV. CONCLUSIONS

In this paper, we have developed a theoretical framework
capturing the main aspects of the nonlinear Landau damping
of electron plasma (Langmuir) waves in the quantum regime.
By making use of a Volkov formulation of the problem, we
are able to derive a formal solution to the test particle driven
by a finite amplitude electrostatic wave of the plasma. The
subsequent statistical, self-consistent treatment of the plasma
electrons is obtained for Wigner function describing a mix-
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ture state, which evolves according to a quantum kinetic
equation of the Wigner-Moyal type. The crucial difference
with respect to standard applications of the Wigner-Moyal
equation in the study of plasma waves stems from the possi-
bility to consider finite amplitude waves, which now appears
as a parameter in the dispersion relation. We show that, in the
presence of finite amplitude waves, the nonlinear kinetic dis-
persion relation provides different modes, unlike in the case
of Langmuir waves. Such modes are hybridizations between
the (linear) Langmuir mode (now corrected by a quantity pro-
portional to the amplitude of the wave) and the single-particle
modes composed by the electrons that are not trapped by the
wave. The latter corresponds to a mode quasiparticle which
mass is controlled by the number of plasmons exchanged
between the electrons. Moreover, we have shown that Landau
damping in the nonlinear regime is strongly suppressed. This
is, again, a consequence of particle trapping, which prevents
particles from participating in the process of extracting en-
ergy from the wave. The calculations performed here are
in agreement with the numerical results performed on the
numerical simulation of Wigner-Moyal equation, Eq. (18),
while keeping the simplicity of the formulation. This is
a consequence of the versatility and power of the Volkov
approach.

Given the versatility of the present approach, we be-
lieve that our findings will stimulate further discussions
around nonlinear wave-particle interactions in general, and
around Landau damping in particular, in a plethora of sys-
tems featuring long-range interactions. First, there is a vast
set of condensed-matter platforms in which this formalism
can be applied and tested, namely two-dimensional plas-
monics in graphene and related materials [42–47], including
bilayer graphene, black phosphorus, and transition metal
dichalgogenides (TMDCs) [48], one-dimensional plasmas
in carbon nanotubes and metallic nanowires [49–51], and
three-dimensional Dirac materials such as Weyl semimetals
[52]. Eventual differences in regard to this work come from
the dispersive nature of the carries in the band theories,

which must be taken into account in the derivation of both
single-particle and kinetic (Wigner) equations. The strategy,
however, remains the same. Second, in self-gravitating sys-
tems, numerous quantum gravity studies are performed with
the help of Schrödinger-Poisson system, given the quantum
mechanical nature of the fields composing dark matter. For
instance, in Refs. [53,54] dark matter is treated as a Bose-
Einstein condensate, while a quantum kinetic formulation of
the problem has been put forward in Refs. [55,56]. Moreover,
classical self-gravitating phenomena, such as Jeans instability
and the formation of structures, are usually described by a
kinetic equation of the Vlasov type [10,57–59]. Indeed, at
a first glance, no quantum mechanics takes place here. The
important point lies, however, in the fact that the Vlasov
equation easily follows from the classical limit of the Wigner
equation, which can be formally obtained by setting h̄ → 0
in Eq. (17). Thus, multiple plasmon effects, such as those
patent in Eq. (24) and subsequent equations are, in principle,
possible in the context of self-gravitating phenomenology.
More precisely, the Jeans length λJ establishes the typical
length at which structures form; if nonlinear Landau damping
occurs as we here predict for plasmas, then important changes
may take in the correct definition of λJ , which would now be
determined through the competition between the Jeans insta-
bility (positive growth) and the damping (negative growth) of
normal modes.
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