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Spiral copropagation of two relativistic intense laser beams in a plasma channel
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The copropagation of two relativistic intense laser beams with orthogonal polarization in a parabolic plasma
channel is studied analytically and numerically. A set of coupled equations for the evolution of the laser spot
sizes and transverse centroids are derived by use of the variational approach. It is shown that the centroids of the
two beams can spiral and oscillate around each other along the channel axis, where the characteristic frequency
is determined both by the laser and plasma parameters. The results are verified by direct numerical solution of the
relativistic nonlinear Schrödinger equations for the laser envelopes as well as three-dimensional particle-in-cell
simulations. In the case with two ultrashort laser pulses when laser wakefields are excited, it is shown that the
two wake bubbles driven by the laser pulses can spiral and oscillate around each other in a way similar to the
two pulses. This can be well controlled by adjusting the incidence angle and separation distance between the two
laser pulses. Preliminary studies show that externally injected electron beams can follow the trajectories of the
oscillating bubbles. Our studies suggest a new way to control the coupling of two intense lasers in plasma for
various applications, such as electron acceleration and radiation generation.
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I. INTRODUCTION

The propagation of intense laser beams in plasma is
broadly interesting because of their relevance to laser-driven
accelerators [1,2], laser plasma-based undulators [3,4], ad-
vanced laser fusion schemes [5], etc. To guide the laser
propagation over a long distance, a preformed plasma channel
is usually used [6,7]. It is well known that if the laser pulse en-
ters the channel off-axis or under some angle, the laser beam
centroid will oscillate with an oscillation period about the
Rayleigh length range during its propagation [8]. In this case,
the wake bubble driven by an ultrashort laser pulse will follow
the trajectory of the laser. This leads to the trapped and accel-
erated electrons undergoing transverse betatron oscillations,
which produce tunable radiation in the x-ray range [9,10]. In
addition, centroid oscillations can also occur when multiple
laser beams interact with each other. When two relativistic
intense laser beams propagate in an underdense plasma, the
interaction features are determined by their polarization. For
the same polarization, Dong et al. found that two laser beams
can merge into one beam or split into three beams under dif-
ferent cases [11]. Huang et al. showed that distinct interaction
features, attraction, repulsion, and energy shift are induced by
controlling the relative phase between the two laser pulses
[12]. Particularly, for orthogonal polarization, by using the
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variational approach, Ren et al. illustrated the spiral motion
of two laser beams [13,14]. Wu et al. studied the oscillation
features by including both the relativistic electron-mass cor-
rection and the ponderomotive force effect [15]. These studies
suggest that two orthogonally polarized laser beams can spiral
or oscillate around each other without a plasma channel. In
this case, however, the mutual attraction force between the
two beams is very weak and easily destroyed by modulational
instability and kinetic effects [16]. Therefore, generally it is
difficult to clearly observe the spiral motion and oscillation
motion of the two beams in homogeneous plasma.

Even though the laser centroid oscillations are found in
previous studies when a single laser beam enters the plasma
channel off-axis [17,18] or when two laser beams copropagate
in homogeneous plasma, the propagation characteristics of
two laser beams in a parabolic plasma channel are not ex-
plored yet. In addition, it is not yet clear that the evolution
features of two wake bubbles, which are generated by two
laser pulses, oscillate transversely in a plasma channel. In this
paper, we focus on the copropagation of the two orthogonally
polarized laser beams in a parabolic plasma channel. We
address this problem analytically first based upon the enve-
lope equations described by the coupled relativistic nonlinear
Schrödinger equations (NLSE) and by resorting to the vari-
ational approach developed in Refs. [14,19]. This approach
gives the evolution equations of two laser beam centroids and
spot sizes. It is found that the two beams can spiral and oscil-
late around each other, where the frequency is determined by
laser-plasma parameters. The analytical findings are further
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confirmed by solving the coupled NLSE numerically as well
as by three-dimensional (3D) particle-in-cell (PIC) simula-
tions. Furthermore, we investigate the evolution features of
two wake bubbles driven by two relativistic ultrashort laser
pulses in a plasma channel. It is demonstrated that the evolu-
tion of the two bubbles can be controlled by adjusting the laser
conditions. Under the appropriate laser-plasma parameters,
the two bubbles can follow the trajectories of two laser pulses,
where the spiral motion or transverse oscillation motion of
the bubbles along the channel axis is found. In addition, we
show that externally injected electron beams can follow the
trajectories of the oscillating bubbles.

The paper is organized as follows. In Sec. II, the spiral mo-
tion and transverse oscillation motion of two laser beams are
analyzed using the variational approach. In Sec. III, 3D PIC
simulations and NLSE simulations are conducted to verify
the conclusions obtained in Sec. II. In Sec. IV, we extend our
studies to the short-pulse regime, where the evolution features
of two wake bubbles and externally injected electron beams
in a plasma channel are analyzed. A brief summary is given
finally in Sec. V.

II. THEORY MODEL ON THE LASER CENTROID MOTION

The density profile of a parabolic plasma channel [20] is
written as ne = n0(1 + αr2/r2

ch). Here n0 refers to the plasma
density along the channel axis, α describes the steepness
of the plasma channel, and rch denotes the transverse size
of the plasma channel. Our physical model is based on the
long laser pulse approximation starting from the Maxwell’s
equations. In the slowly varying envelope approximation and
paraxial approximation, the coupled relativistic NLSE equa-
tions [21,22] for two laser beams with orthogonal polarization

in a parabolic plasma channel can be written as(
2ik0

∂

∂z
+ ∇2

⊥ − k2
pα

r2

r2
ch

)
a1,2 = −k2

p

(
1 − n

γ

)
a1,2, (1)

which is given in the laser group velocity frame (z, τ, r)
with τ = t − z/vg and z the laser propagation direction. Here
∇2

⊥ = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator, k0 = ω0/c is
the wave vector of the laser beam, ω0 is the laser frequency,
c is the vacuum light speed, kp = ωp/c, ωp is the plasma
frequency, and r2 = y2 + x2. The lasers are described by the
complex amplitude of the electric field a1,2 = eE1,2/meω0c,
me is the electron rest mass, and γ =

√
1 + (|a1|2 + |a2|2)/2

is the relativistic factor. In order to avoid the nonphysical
value of the plasma density [22], the normalized density is
given by n = ne/n0 = max(0, 1 + k−2

p ∇2
⊥γ ), where we have

assumed the ions act as homogeneous positive background.
It is noted that our physical model has considered both the
relativistic effect and the ponderomotive expulsion of the
electrons. At the weakly relativistic approximation, n/γ ≈
1 − 1

4 (1 − ∇2
⊥)(|a1|2 + |a2|2). Substituting n/γ into Eq. (1),

one obtains the following equation:(
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It is impossible to obtain exact solutions to Eq. (2) be-
cause of the nonlinear terms. The approximate solution of
Eq. (2) can be obtained by using the variational approach.
By finding a Lagrangian density L and minimizing the action∫ ∞
−∞Ldzdxdy, one can reproduce Eq. (2). Such a Lagrangian

density is

L =
∑
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Next we choose the following trial function for each laser beam

a j = a0 j exp(−iφ j )exp{−i[kx j (x − Xc j ) + ky j (y − Yc j )]}exp
{
[(x − Xc j )

2 + (y − Yc j )
2]

(
ik0/2Rj − 1/W 2

j

)}
, (4)

where the amplitude a0 j , phase φ j , beam center (Xc j,Yc j ), perpendicular momentum (kx j, ky j ), radius of curvature Rj , and the
beam radius Wj are all real and are functions of z only. Substituting the trial function into Eq. (3) and integrating the Lagrangian
density over the xy plane, we obtain a reduced Lagrangian (additional details are presented in the Appendix)
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Here d is the distance between the centers of the two beams, d2 = (Xc1 − Xc2)2 + (Yc1 − Yc2)2. When the reduced action
is minimized, one can find the evolution equations of the beam parameters by the Euler-Lagrange equations for the reduced
Lagrangian density ∂L/∂β − (d/dz)∂L/∂β̇ = 0, where β is any parameter for the laser beam given in Eq. (4). Varying φ j

leads to power conservation d (a2
0 jW

2
j )/dz = 0. This prompts us to obtain a conserved quantity Pj = a2

0 jW
2
j . Varying Rj gives

Wj/Rj = dWj/dz. Varying Wj gives equations for the evolution of spot sizes
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The motion of the beam centroids can be obtained from varying (kx j, ky j ) and (Xc j,Yc j ). Varying (kx j, ky j ) lead to dXc j/dz =
−kx j/k0 and dYc j/dz = −ky j/k0. With the small angle approximation, we can obtain kx j/k0 = θx j and ky j/k0 = θy j . Here, θx j

and θy j are the beam’s initial incidence angle with respect to the x axis and y axis, respectively. While varying Yc j , one obtains
the following equations:
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Similar equations hold in the x direction. In a simplified case, assuming P1 = P2 = P = a2
0W 2, W1 = W2 = W , and a01 = a02 =

a0. After some straightforward algebra, one obtains the following equations of motion

d2�Xc

dz2
= −k2

p

k2
0

[
P

W 4

(
1

4
+ 2

W 2
− d2

W 4

)
exp

(
− d2

W 2

)
+ α

r2
ch

]
�Xc, (8a)

d2�Yc

dz2
= −k2

p

k2
0

[
P

W 4

(
1

4
+ 2

W 2
− d2

W 4

)
exp

(
− d2

W 2

)
+ α

r2
ch

]
�Yc, (8b)

where �Xc = Xc1 − Xc2, �Yc = Yc1 − Yc2, and d2 =
(�Xc)2 + (�Yc)2. We consider two simple types of solutions
to Eqs. (8a) and (8b). One possibility is that the distance
between the two beams d is a constant, that is, the two beams
spiral around each other. In this case, Eqs. (8a) and (8b) have
known solutions

�Xc = �Xc0 cos �slz + (�θx/�sl ) sin �slz, (9a)

�Yc = �Yc0 cos �slz + (�θy/�sl ) sin �slz, (9b)

where �Xc0 and �Yc0 is the initial centroid displacement with
respect to the x axis and y axis, respectively, �θx = θx1 − θx2,
�θy = θy1 − θy2, and �sl is the spiral frequency given by

�sl =
√

k2
pa2

0

k2
0W 2

(
1

4
+ 2

W 2
− d2

W 4

)
exp

(
− d2

W 2

)
+ k2

pα

k2
0r2

ch

.

(10)
Consider the most straightforward case of the spiral mo-

tion �Xc = (�θx/�sl ) sin �sl z, �Yc = �Yc0 cos �sl z, and let
�Yc0 = �θx/�sl . The physical picture is schematically shown
in Fig. 1. The two beams spiral around each other, and the
distance d is a constant. In addition, one notes that the spiral
frequency �sl is contributed by two terms, i.e., the two-beam

coupling term Nt = k2
pa2

0

k2
0W 2 ( 1

4 + 2
W 2 − d2

W 4 )exp(− d2

W 2 ) and the

plasma channel term Ct = k2
pα/k2

0r2
ch. In order to gain a full

view of the relative magnitudes of these two terms, we define
a ratio parameter ξ = Ct/Nt . It can be seen from Fig. 2(a)
that the ratio parameter ξ increases dramatically with the spot
size W and the plasma channel α/r2

ch. That is, the plasma
channel Ct is dominant when W and α/r2

ch are large enough.
Otherwise, the two-beam coupling term Nt is dominant. The
curves in Fig. 2(b) show the ratio parameter ξ as a function of
the separation distance d at different spot sizes. This indicates
that with the increase of separation distance between the two
laser beams, ξ can also increase, which means the two-beam
coupling term becomes weak rapidly. But the larger the spot
sizes, the slower the increase of the ratio parameter.

Another type of solution occurs when two copropagating
beams are parallel to each other. In this case, they will oscillate
transversely in a two-dimensional plane and the oscillation
is also coupled to the spot size evolution of Eq. (6). Since
the distance d is variable, one cannot obtain the oscillation
frequency �os as above. If the spot-size change is neglected,
one can obtain the �os by numerically solving the Eq. (7)
with the fourth-order Runge-Kutta method. Furthermore, our
analytical model neglects certain kinetic effects in the plasma,
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FIG. 1. Schematic of the spiral motion of two relativistic intense
laser beams with orthogonal polarization, where the laser electric
field is along the x axis for the p polarization and it is along the y
axis for the s polarization. The two lasers are launched obliquely into
a parabolic plasma channel, θx and θy are the angles between the laser
propagation direction and the space coordinate axes x, y.

such as electron acceleration and corresponding quasistatic
magnetic field generation [23], etc. Usually, these effects are
significant in plasma with moderate densities and laser inten-
sities, but relatively weak in tenuous plasma [24]. Thus, the
results described above should apply preferably in tenuous
plasma, for example, ne � 0.01nc.

III. 3D-PIC SIMULATIONS AND NLSE SIMULATIONS

In this section, 3D PIC simulations and NLSE simulations
are employed to test the validity of our theoretical analysis
and display the propagation characteristics of the two laser
beams directly. The 3D PIC simulations are conducted
using the EPOCH code [25]. The simulation box is of size
400 × 40 × 40 µm, which consists of 4000 × 200 × 200
cells and each cell contains 4 macro particles. In the NLSE
simulations, Eq. (1) is numerically solved with the algorithm
of the alternating-direction implicit method [26,27], where a
rectangular simulation box is used in the x-y plane with the

FIG. 2. (a) The ratio parameter ξ as a function of the spot size W
and plasma channel parameter α/r2

ch, where a0 = 0.25 and d = W .
Note that we use logarithmic coordinates for α/r2

ch and ξ , the white
line represents ξ = 1. (b) The ratio parameter ξ as a function of the
separation distance d for different spot sizes W , where a0 = 0.6 and
α/r2

ch = 1/400 µm−2.

FIG. 3. Isosurface of vector potential at a = a0/4 of the p-
polarized laser (red beam) and the s-polarized laser (blue beam)
obtained by PIC simulation (a) and NLSE simulation (b) for the
spiral motion. The lines on the box walls are projections of the
centroids. (c) Theoretical (green dashed line) result, NLSE simula-
tion (red solid line) and PIC simulation (black dash dot line) of the
centroid trajectory of the p-polarized laser in the y-z plane. The initial
laser parameters are a0 = 0.25, W0 = 3 µm, and d = 6 µm.

size of 40 × 40 µm. Apparently, from Eq. (6), it is not easy
to choose appropriate laser-plasma parameters to just satisfy
the stationary spot sizes requirement [18]. For simplicity, the
spot-sizes change is neglected; the spot sizes are assumed to
be constant as laser beams propagate. In the following 3D
simulations, we do find that the laser spot sizes are almost
unchanged. For the spiral motion, two linearly polarized
Gaussian laser beams, one with p polarization (laser electric
field is parallel to the plane of incidence) and another with s
polarization (laser electric field is perpendicular to the plane
of incidence), are obliquely launched into the simulation
box along the z axis. The initial transverse profiles of the
two laser beams are a1,2 = a0 exp(−[(y − Yc1,2)2 + x2]/W 2

0 ),
where the peak normalized vector potential a0 = 0.25, initial
laser spot size or the beam waist in vacuum W0 = 3 µm,
Yc1 = −Yc2 = 3 µm, and the separation distance d = 6 µm
correspondingly. The laser wavelength is set as λ0 = 1 µm,
the plasma density has a channel profile with n0 = 0.01nc,
and α/r2

ch = 1/16 µm−2. From Eq. (10), we can obtain the
spiral frequency (wavenumber) �sl = 0.025 λ0

−1 and the
spiral period �sl = 2π/�sl = 251.3 µm correspondingly.
Thus, we set the incident angle θx1 = −θx2 = 0.075.
In this case, ξ = 1.32e−4, implying that the two-beam
coupling term is very weak and the plasma channel term
is dominant. In the whole simulation process, the centroids
〈x〉i and 〈y〉i of the two beams are tracked, where 〈x〉i =
I−1
tot

∫ ∞
−∞ x|ai(x, y)|2dxdy, 〈y〉i = I−1

tot

∫ ∞
−∞ y|ai(x, y)|2dxdy,

and Itot = ∫ ∞
−∞ |ai(x, y)|2dxdy, which represents the total

laser energy.
The spiral motion is clearly shown in Fig. 3, where the

red beam is p-polarized and the blue beam is s-polarized.
The isosurface of vector potential is a = a0/4. Figures 3(a)
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FIG. 4. Isosurface of vector potential at a = a0/6 of the p-
polarized laser (red beam) and the s-polarized laser (blue beam)
obtained by PIC simulation (a) and NLSE simulation (b) for the
oscillation motion. (c) Theoretical (green dashed line) result, NLSE
simulation (red solid line), and PIC simulation (black dash dot line)
of the centroid trajectory of the p-polarized laser in the y-z plane. The
initial laser parameters are a0 = 0.60, W = 3 µm, and d = 2 µm.

and 3(b) correspond to PIC simulation and NLSE simulation,
respectively. The solid lines are the projections of centroid tra-
jectories on x-z and y-z planes. In Fig. 3(c), the green dashed
line shows typical trajectory of the laser centroid obtained
from Eqs. (9) and (10). The black line and red line represent
the centroid trajectories of p-polarized laser in the y-z plane
from PIC simulation and NLSE simulation, respectively. As
one can see, the spiral period is about 245 µm from the PIC
simulation and 251 µm from the NLSE simulation, which are
very close to the analytical solution �sl = 251.3 µm given by
Eq. (10). In the PIC simulation, because of the laser energy
depletion and laser deformation as the laser beams propa-
gate further, the period is slightly smaller than the theoretical
prediction.

When two beams propagate parallel to each other, they
will oscillate around each other. Simulation parameters are
as follows: a0 = 0.6, Yc1 = −Yc2 = 1 µm, W0 = 3 µm, n0 =
0.01nc, and α/r2

ch = 1/16 µm−2. In this case, the interac-
tion of two beams plays an important role in oscillation
frequency. It is shown from Figs. 4(a) and 4(b) that the two
beams attract, intersect, separate, and stably copropagate in
the plasma channel. By numerically solving the Eqs. (7a) and
(7b) with the fourth-order Runge-Kutta method, one finds that
the two beams have a cosinoidal oscillation motion, where its
oscillation frequency (wavenumber) �os = 0.0274 λ0

−1 and
oscillation period �os = 2π/�os = 229.4 µm, as shown with
the green dashed line in Fig. 4(c). In the PIC simulation, the
oscillation period is about 220 µm, which is slightly lower
than the theoretical results. We should point out that 3D
simulations are time-consuming and thus longitudinal grid
resolution (�x = 0.1 µm) is set a little low in our cases.
Therefore, the centroid trajectories from the PIC simulation
are not smooth due to some numerical errors. It is important

FIG. 5. Evolution of the p-polarized laser in the y-z plane for two
laser beams case (a) and for single beam case (b).The color bar is a0.
(c) Centroid trajectory of the p-polarized laser for the two beams
case (blue solid line) and for the single beam case (red solid line),
and theoretical result (blue dashed line).

to mention that although we ignore the change of the laser spot
sizes, the theoretical results agree well with the simulation
results, which indicates that the laser spot sizes remain almost
constant under our simulation parameters.

In examples shown above, the plasma channel effect is
dominant. We also investigate a case where the two-beam
coupling effect dominates. The simulation parameters are as
follows: a0 = 0.5, Yc1 = −Yc2 = 5 µm, W0 = 10 µm, n0 =
0.01nc, and α/r2

ch = 1/3600 µm−2. In this case, the channel
effect becomes rather weak and the two-beam coupling ef-
fect plays an important role in oscillation motion. By solving
Eqs. (7a) and (7b) numerically, one finds that the theoretical
oscillation period is about 2.58 mm, as shown with the dashed
line in Fig. 5(c). It is almost impossible for us to carry out a 3D
PIC simulation because of the huge amount of computation
resources required for this case. Therefore, we use NLSE
simulations to demonstrate the propagation characteristics of
the two laser beams. Figure 5(a) shows the evolution of p-
polarized laser beam in the y-z plane when there are two laser
beams; the oscillation period is 2.89 mm [see Fig. 5(c)], the
spot size evolves slightly in the whole process. As a com-
parison, the single laser case is also considered [Fig. 5(b)],
in which the oscillation period (about 3.77 mm) is much
increased compared to the two lasers case. This implies that
the oscillation period can be much reduced in the presence of
the two-beam coupling effect.

The above results show our theoretical model agrees well
with the simulations both for the spiral motion and oscillation
motion, especially for the case with strong channel effect.
However, our simulations show that the theoretical results
would slightly deviate from the simulation results when the
plasma channel term is relatively weak as compared to the
two-beam coupling term. In this case, there is a considerable
change in the beam spot sizes as found in the simulations,
which is difficult to be taken into account in our theoretical
model [see Eq. (6)]. This is similar to the findings in Ref. [15],

055202-5



HUANYU SONG et al. PHYSICAL REVIEW E 108, 055202 (2023)

FIG. 6. Isosurface of the plasma electron density profiles (at ne = 0.002nc) associated with the spiraling plasma bubbles generated by a
p-polarized laser (red color) and a s-polarized laser (blue color) at t = 40T0 (a), t = 260T0 (b), t = 480T0 (c), t = 700T0 (d), t = 900T0 (e),
t = 1140T0 (f), respectively. The projections on x-y plane show the spiral motion of the two bubbles.

where the interaction of two copropagating laser beams has
been studied in the homogeneous plasma.

IV. EVOLUTION OF TWO WAKE BUBBLES INSIDE
A PLASMA CHANNEL

Our theory and simulation shown in the previous sec-
tions are valid for long laser pulses. Now we extend our
studies to the regime of ultrashort intense pulses. When
an ultrashort, relativistic intensity laser pulse propagates in
plasma, the background electrons are expelled outward due
to the ponderomotive force of the laser pulse, generating
bubblelike wakefields [1,28]. If the laser pulse oscillates
transversely in a plasma channel, the bubble and trapped
electrons, if existing, will follow the trajectories of the laser
pulse, which can be used as a radiation source. Combined
Laguerre-Gaussian laser has been recently suggested to gen-
erate twisted wake structures, resulting in spiraling electron
trajectories around the twisted wakefield [29–31]. So far,
the evolution of these twisted wake bubbles generated by
regular linearly polarized laser beams has not been investi-
gated. In this section, by using 3D EPOCH code, we examine
the evolution features of two wake bubbles, which are gen-
erated by two orthogonally polarized laser pulses inside a
parabolic plasma channel with different laser conditions. The
simulations use a moving window. The simulation box is of
size 50 × 40 × 40 µm, which consists of 1000 × 400 × 400
cells and each cell contains 4 macroparticles. Two orthog-
onally polarized lasers are incident into the simulation box
at an initial separation distance d . The lasers have wave-
length λ0 = 0.8 µm and normalized laser vector potential
a1,2 = a0 exp[−(t − L0)2/L2

0]exp(−[(y − Yc1,2)2 + x2]/W 2
0 ),

with a0 = 1.4, L0 = 8.0T0, W0 = 5.5 µm, Yc1 = −Yc2 = 4 µm,
and the separation distance d = 8 µm, correspondingly. The
laser period T0 = 2π/ω0 ≈ 2.67 fs. The plasma density has
a parabolic profile with n0 = 0.003nc, α/r2

ch = 1/64 µm−2,

where nc ≈ 1.7 × 1021 cm−3 is the critical plasma density for
the laser pulses.

According to Eq. (9), if we set θx1 = −θx2 = 0.0292, the
two laser pulses can spiral around each other with the spiral
period �sl = 865.9 µm. In this case, the evolutions of the
two wake bubbles and the projections of the bubble cross
sections at different times are shown in Fig. 6, where the
isosurface of density ne = 0.002nc appears as two separate
ellipsoids. The red color represents the bubble generated by
the p-polarized laser and blue color represents the bubble gen-
erated by the s-polarized laser. As can be seen from Fig. 6(a),
shortly after the injection of the two laser pulses into the
plasma, two wake bubbles are formed at about t = 40T0.
Because of the spiral motion of the two lasers, the two bubbles
will also spiral around each other anticlockwise, as depicted
in Fig. 6(b). And then, the spiral copropagation of the two
bubbles remains stable in the plasma channel, as shown in
Figs. 6(c)–6(f). From Figs. 6(a) and 6(f), one sees that the
spiral period from the PIC simulation is about 855 µm, close
to that predicted by our analytical model.

When we set the incident angle θx1 = −θx2 = 0, the two
laser pulses can oscillate around each other with the oscil-
lation period �os = 809.5 µm according to Eq. (7). Typical
bubble evolutions and bubble cross sections at different laser
propagation distances are plotted in Fig. 7. It is shown from
Fig. 7(a) that the two wake bubbles are stably generated at
about t = 40T0. As the two lasers approach each other, the two
bubbles start to merge, as depicted in Fig. 7(b). At t = 280T0,
the two lasers completely merge into a single laser, accom-
panied by the merging of two bubbles into a single bubble
[Fig. 7(c)]. In the next stage, the two merged lasers start to
be separated and, correspondingly, the merged bubble also
gradually splits into two, as shown in Fig. 7(d). One sees
that the colors of the two bubbles are switched, because the
p-polarized laser is at the top and the s-polarized laser is at
the bottom at this time. And then, similar evolution occurs
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FIG. 7. Isosurface of the plasma electron density profiles (at ne = 0.002nc) associated with the oscillating plasma bubbles generated by a
p-polarized laser (red color) and a s-polarized laser (blue color) at t = 40T0 (a), t = 140T0 (b), t = 280T0 (c), t = 550T0 (d), t = 800T0 (e),
t = 1070T0 (f), respectively. The projections on x-y plane show the oscillation motion of the two bubbles.

again with the bubbles merging and separating [Figs. 7(e)
and 7(f)]. After that, the process described above is repeated
periodically until the laser pulses become strongly distorted
and depleted. Furthermore, it is noted from Figs. 7(a) and 7(f)
that the oscillation period of the two bubbles is about 800 µm,
which is consistent with our analytical model.

The above results show that with appropriate laser and
plasma parameters, spiraling or oscillating motion of two
plasma bubbles can appear and their period can be con-
trolled. In principle, the trapped electrons, if existing, will
undergo transverse betatron oscillations in wakefields, which
lead to the betatron radiation in the x-ray range. As the radi-
ation power and frequency are proportional to the number of
trapped electrons, betatron oscillation amplitudes, and periods
[3,32], the spiraling or oscillation copropagation of the two
laser pulses/plasma bubbles provide additional control of the
betatron radiation power and frequency spectra.

As an example, we illustrate the copropagation of two
trapped electron bunches in two separated plasma bubbles,
which carry out betatron oscillations in a plasma channel.
To reduce simulation time and concentrate on the study
of the trajectories of trapped electrons in such oscillating
plasma bubbles, we simply consider externally injected elec-
tron beams by using two-dimensional PIC simulations. The
beams have transverse size of 0.5 µm and longitudinal length
of 1.2 µm. The simulation box is of size 40 × 40 µm,
which consists of 1000 × 400 cells and each cell contains
36 macroparticles. We take the peak amplitude a0 = 1.8, the
pulse duration L0 = 6.7 f s, other parameters such as plasma
density, laser spot size, and their separation distance are the
same as shown above in this section. Figure 8(a) illustrates
the evolution of the laser field (dark blue), plasma density
(red), and externally injected electrons (brown) at different
positions. At the beginning of the interaction, the externally
injected electrons are trapped at the back of the bubbles.
Following the merging of the bubbles, the two bunches

approach each other and gradually merge [Fig. 8(b)]. And
then, the merged bubble gradually splits into two; the merged
electron bunch also separate and follow the trajectories of
the two bubbles [Figs. 8(c) and 8(d)]. After that, the process
described above is repeated periodically until the electrons
enter the dephasing region.

V. DISCUSSION AND SUMMARY

It should be pointed out that, in the case of highly rel-
ativistic laser intensity with strong bubble effects as shown
in Sec. IV, our analytical model is less accurate. How-
ever, we still observe the spiral motion or oscillation motion
of the two wake bubbles with their period approximately

FIG. 8. Distribution of absolute value of the transverse laser
electric fields (dark blue, in units of E0), electron density ne (red
background, in units of nc) and externally injected electrons (brown)
at t = 40T0 (a), t = 240T0 (b), t = 460T0 (c), t = 600T0 (d).
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consistent with our analytical model. We have also considered
the small separation distance between the two laser pulses,
e.g., d = 4.0 µm. The interesting finding is that, instead of
following the trajectories of the two laser pulses, the two wake
bubbles attract each other, always merging to a single bubble
along the channel axis. The above phenomena can also be
found in the case with a higher laser intensity of a0 = 2.0.
In this case, more complicated bubble structures are formed
[33]. In addition, we find that it is better to keep Yc/W < 1 in
our simulations. Otherwise, the laser pulses may experience
severe deformation and no stable bubble structures can be
formed [34]. Finally, we believe that electron injection and
the radiation properties in such two wake bubbles are an
interesting issue as well. To avoid excessive expansion of our
current paper, we leave the details for future studies.

In summary, the copropagation of two orthogonally po-
larized laser beams in a parabolic plasma channel has been
investigated analytically and numerically. It is found that the
variational approach correctly predicts the period of spiral
motion and oscillation motion for the typical propagation
distances in our investigation, both in good agreement with
3D PIC simulations and NLSE simulations. In this way, it is
possible to manipulate the propagation dynamics of two laser
beams by controlling laser-plasma parameters. For ultrashort
laser pulses, it is shown that by controlling the incidence angle
and initial separation distance between the two laser pulses,
distinct evolution features of the two wake bubbles, such as
spiraling, merging, and splitting periodically, are illustrated
with their period well described by our analytical model.
Moreover, externally injected electrons inside the bubbles
can follow the motion of laser centroids. This may provide
the possibility to control the electron acceleration process in
plasma, which could be interesting for optimizing the proper-
ties of associated x-ray radiation.
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APPENDIX

In this Appendix, we present some auxiliary calcula-
tions leading to the Lagrangian of Eq. (5). Compared with
Ref. [14], the plasma channel effect and ponderomotive force
effect are considered in this study. The Lagrangian den-
sity of plasma channel effect can be written as Lchan =∑

j=1,2 k2
pα(x2 + y2)|a j |2/r2

ch, here |a j |2 = a2
0 jexp{−2[(x −

Xc j )2 + (y − Yc j )2]/W 2
j }, j = 1, 2. Using the Gaussian inte-

gral
∫ ∞
−∞ e−α(x−x1 )2

x2dx = √
π (1 + 2αx1

2)/2α3/2 and after
some integral operation, we obtain the integrated Lagrangian

Lchan =
∑
j=1,2

αk2
pa2

0 jW
2
j

(
W 2

j + 2X 2
c j + 2Y 2

c j

)/
2r2

ch.

The Lagrangian density of ponderomotive force effect can be
written as

Lpond =
∑
j=1,2

−k2
p∇⊥|a j |2 · ∇⊥|a j |2

8
− k2

p∇⊥|a1|2 · ∇⊥|a2|2
4

.

The integrated Lagrangian of the first term is −k2
pa4

0 j/4.
For the second term, using the Gaussian integral∫ ∞
−∞ eα(x−x1 )2+β(x−x2 )2

x2dx =
√

π
−(α+β ) e

αβ

α+β
(x1−x2 )2

and after
some complicated integration, we obtain the integrated
Lagrangian

−k2
pa2

01a2
02W

2
1 W 2

2

W 2
1 + W 2

2

exp

( −2d2

W 2
1 + W 2

2

)

×
[

2

W 2
1 + W 2

2

− 4d2(
W 2

1 + W 2
2

)2

]
.

Here d2 = (Xc1 − Xc2)2 + (Yc1 − Yc2)2.The derivation of
other terms is identical with Ref. [14].
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