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Boundary-bound reactions: Pattern formation with and without hydrodynamics
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We study chemical pattern formation in a fluid between two flat plates and the effect of such patterns on the
formation of convective cells. This patterning is made possible by assuming the plates are chemically reactive
or release reagents into the fluid, both of which we model as chemical fluxes. We consider this as a specific
example of boundary-bound reactions. In the absence of coupling with fluid flow, we show that the two-reagent
system with nonlinear reactions admits chemical instabilities equivalent to diffusion-driven Turing instabilities.
In the other extreme, when chemical fluxes at the two bounding plates are constant, diffusion-driven instabilities
do not occur but hydrodynamic phenomena analogous to Rayleigh–Bénard convection are possible. Assuming
we can influence the chemical fluxes along the domain and select suitable reaction systems, this presents a
mechanism for the control of chemical and hydrodynamic instabilities and pattern formation. We study a generic
class of models and find necessary conditions for a bifurcation to pattern formation. Afterwards, we present
two examples derived from the Schnakenberg–Selkov reaction. Unlike the classical Rayleigh–Bénard instability,
which requires a sufficiently large unstable density gradient, a chemohydrodynamic instability based on Turing-
style pattern formation can emerge from a state that is uniform in density. We also find parameter combinations
that result in the formation of convective cells whether gravity acts upwards or downwards relative to the reactive
plate. The wave number of the cells and the direction of the flow at regions of high/low concentration depend
on the orientation, hence, different patterns can be elicited by simply inverting the device. More generally, our
results suggest methods for controlling pattern formation and convection by tuning reaction parameters. As a
consequence, we can drive and alter fluid flow in a chamber without mechanical pumps by influencing the
chemical instabilities.
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I. INTRODUCTION

Chemical pattern formation in reaction–diffusion systems
has been of interest since Turing’s original paper on chem-
ical morphogenesis [1]. Turing demonstrated that nonlinear
reactions with sufficiently asymmetric diffusion rates between
chemical reagents can have unstable homogeneous steady
states; concentration fields tend to approach steady, inhomo-
geneous distributions. His paper is a classical example of
how breaking symmetry can cause a dissipative process such
as diffusion to result in more order. The characteristics of
a diffusion-driven instability are that the reaction–diffusion
system possesses a homogeneous steady state that is linearly
stable to small homogeneous perturbations of the concentra-
tion fields but unstable to spatially varying perturbations. For
a two-reagent reaction–diffusion system given by

∂Q

∂t
= f (Q, R) + ∇2Q, (1a)

∂R

∂t
= g(Q, R) + D∇2R, (1b)

for which there exist constants Q∗, R∗ satisfying f (Q∗, R∗) =
0 = g(Q∗, R∗), the Turing conditions for pattern formation
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can be summarized as

fQ + gR < 0, fQgR − fRgQ > 0,

D fQ + gR > 0, fQgR − fRgQ <
(D fQ + gR)2

4D
,

where subscripts denote partial derivatives evaluated at the
homogeneous steady state Q = Q∗, R = R∗. Together, these
conditions require D �= 1 for pattern formation to occur. Con-
ditions for Turing instabilities in systems of more than two
reacting and diffusing components have also been determined
[2].

Recent extensions of Turing-style instabilities include ac-
tive membrane models or bulk–surface reaction–diffusion
systems [3–5]. Among many interesting properties, these
works generally require smaller critical diffusion ratios for
pattern formation. In particular, Levine et al. [3] presented
a model with a critical diffusion ratio of one. This result
differs from the classical Turing instability, which generally
requires large ratios of diffusion coefficients, suggesting that
patterning may be easier to realize than the classical model
predicts.

In early experiments that demonstrated chemical Turing
patterns, reactions took place in a gel reactor [6,7]. One of the
reasons for this was to suppress convection of the reagents,
which could alter the stability of Turing patterns [8,9] or give
rise to other chemohydrodynamic instabilities in more general
settings [10–16].
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While many chemical reactions take place in bulk fluid,
it is also possible to restrict reactions to occur only at a
solid boundary by immobilizing the necessary enzymes on
the walls of the chamber. We use the term “boundary-bound”
to refer to such reactions. A combination of theoretical and
experimental work has shown that, through buoyancy effects,
boundary-bound chemical reactions can produce fluid flow
speeds on the order of micrometers per second in enclosed
chambers with a fluid depth of around 1 mm [17–19]. A
benefit of using boundary-bound reactions as opposed to bulk
reactions is that enzymes can be immobilized in customizable
patterns, allowing the generated flow fields to be controlled.
It has been proposed and demonstrated that the fluid flow in-
duced by immobilized enzymes and catalysts can be used for
performing tasks such as transport of microparticles and as-
sembly of complex microstructures [20,21]. Moreover, having
controlled time-dependent flow would allow effective mixing
[22], which is notoriously challenging in microfluidic devices.

The boundary-bound reaction systems mentioned above
relied on an imposed symmetry breaking, either by introduc-
ing reagents at one side of the chamber or by immobilizing
enzyme on part of the bottom surface. This generates a
horizontal density gradient, which leads to convective fluid
flows. Fluid flows can also be achieved through chemohy-
drodynamic instabilities that spontaneously break horizontal
symmetry in a manner similar to the classical Rayleigh–
Bénard and Rayleigh–Taylor instabilities. Bdzil and Frisch
[23] performed a linear stability analysis of a layer of fluid be-
tween horizontal plates, one of which catalyzes a dissociation
reaction. It was shown that such systems exhibit instabilities
that are formally equivalent to the Rayleigh–Bénard problem
in the limit of high reaction rates but have lower thresholds
for instability at finite reaction rates. Subsequent theoretical
studies also described oscillatory instabilities and convective
cells in the same system [11,13]. A different reaction system
exhibiting chemoconvection was studied experimentally and
theoretically by Bees et al. [10].

Apart from oscillations arising from chemohydrodynamic
instabilities, there are examples of oscillatory chemical reac-
tion systems, such as the Belousov–Zhabotinsky reaction [24].
Shklyaev et al. showed that an oscillating system of boundary-
bound chemical reactions can exhibit enhanced amplitudes
of oscillation or altered frequencies when coupled to fluid
advection via buoyancy effects [25]. The feedback between
chemical reactions and fluid flow also leads to the potential
to regulate reactions by imposed and self-generated flows;
theoretical modeling has demonstrated that reaction-induced
convection increases reaction rates [26] and oscillatory chem-
ical systems can exhibit amplified oscillations in the presence
of resonant oscillatory flows [27].

Other works studying chemohydrodynamics have also fo-
cused on oscillatory behavior, traveling waves [14], or designs
where the chemical reagents are initially separated with a
shared fluid interface [15,16,28]. The latter works have also
demonstrated how simple linear reactions in the bulk can
produce spatiotemporal patterns when a hydrodynamic effect
is included. We direct interested readers to De Wit et al. [12]
for a review.

In contrast, our present work considers a horizontally uni-
form system with boundary-bound reactions on one or two of

the confining horizontal plates. We focus on diffusion-driven
chemical instabilities as a mechanism for breaking symmetry
and obtaining horizontal patterns. We also investigate chemo-
hydrodynamic instabilities by combining this reaction system
with buoyancy forces associated with the concentrations of
chemical species. Parallels in this design can be drawn from
classical fluid instabilities such as Rayleigh–Bénard convec-
tion, the Rayleigh–Taylor instability, and the double diffusive
instability [29,30]. Here, the chemical reagents play the same
role as the temperature and salt gradients, which produce
various convective instabilities.

To begin, we derive the necessary conditions for the exis-
tence of a Turing-style diffusion-driven instability in a class
of boundary-bound reactions; to our knowledge this is the
first analysis of this kind for these models. By considering a
reaction that admits a Turing instability we make it possible
for the chemical instability to influence the fluid behavior
and present an alternative mechanism for the formation of
convective cells. The analytical results are demonstrated nu-
merically with a focus on mechanisms for controlling the
pattern forming instability. When the hydrodynamic effect is
included, we find that Turing-style instabilities are a subcase
of the buoyancy-driven instability and that control of the
chemical instability translates to control of the formation of
convective cells. We also present a system that is chemically
stable in the absence of buoyancy forces, has no density vari-
ations in the marginally stable steady state, and still admits a
buoyancy-driven instability past a critical Rayleigh number.
This is neither a purely chemical instability nor a classical
Rayleigh–Bénard instability where a notion of a heavy top
and light bottom in the background state exists. Finally, we
find parameter combinations that result in the formation of
convective cells whether gravity acts upwards or downwards
relative to the reactive plate. The wave number of the cells
and the direction of the flow at regions of high/low concentra-
tion depend on the orientation, hence, different patterns can
be elicited by simply inverting the device. These latter two
results highlight the unique characteristics of the formation of
convective cells in chemohydrodynamics.

II. GENERAL MODEL

We consider a domain consisting of a fluid between two flat
plates. We will assume that these plates are separated by a ver-
tical distance H that is small relative to their horizontal length.
As a consequence, we treat the domain as unbounded in the
horizontal directions. The model formulation is identical in
two and three spatial dimensions apart from the physical units
of some parameters. A simple two-dimensional schematic is
provided in Fig. 1 for the specific models considered in this
manuscript. We investigate two different models which we
refer to as the full reaction and the separated reaction. To mo-
tivate these two classes of models, we note that it is reasonable
to supply a constant, continuous source of reagents to the sys-
tem if long-lived behavior is desired. Experimentally, reagents
could be introduced through a membrane or hydrogel, or as
a reaction product from a precursor species that is assumed
to remain in excess. In our models, we assume that reagents
enter through one of the horizontal plates with a constant
flux. There is also one horizontal plate that is catalytic where
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FIG. 1. Schematic for the boundary-bound reaction models in-
vestigated in this work. In both cases, the reactions occur on the
surface of the top plates. The separated reaction is derived from the
full reaction by breaking off the constant fluxes and moving them to
the lower plate.

concentration-dependent reactions take place. The term “full
reaction” refers to the model in which the constant fluxes
occur at the same boundary as the other reactions. We use the
term “separated reaction” when the constant fluxes are placed
on the opposite boundary to the other reaction terms.

If we assume that density variations in the fluid are pro-
duced by the presence of two chemical reagents (Q, R) and
that these density variations are small, then the resulting fluid
flows can be modeled using the Boussinesq approximation for
the incompressible Navier–Stokes equations. We will assume
that the reagents undergo exponential decay in the bulk with
rate constants (ηQ, ηR), diffuse with rates (dQ, dR), and are
advected by the fluid flow. Therefore, the bulk behavior can
be modeled via

DQ

Dt
= −ηQQ + dQ∇2Q, (2a)

DR

Dt
= −ηRR + dR∇2R, (2b)

ρ0
Du
Dt

= −∇p + μ∇2u + ρ0g(βQQ + βRR)ez, (2c)

∇ · u = 0, (2d)

where D
Dt = ∂

∂t + u · ∇ denotes the convective derivative op-
erator, ρ0 is the fluid density in the absence of reagents, p is
the fluid pressure, μ is the dynamic viscosity of the fluid, g
is the signed acceleration due to gravity (g < 0 for gravity
acting downwards), and βQ and βR are the solutal expan-
sion coefficients for Q and R, respectively. At the boundary,
the enzyme-driven reactions (or other processes that add or
remove regents) are described by chemical fluxes. In combi-
nation with the no-slip condition for the fluid flow, the full set
of boundary conditions is

−dQ
∂Q

∂z

∣∣∣∣
z=0

= f0(Q, R), dQ
∂Q

∂z

∣∣∣∣
z=H

= f1(Q, R),

−dR
∂R

∂z

∣∣∣∣
z=0

= g0(Q, R), dR
∂R

∂z

∣∣∣∣
z=H

= g1(Q, R),

u

∣∣∣∣
z=0

= 0, u

∣∣∣∣
z=H

= 0. (3)

We nondimensionalize the system using the scalings

x = H x̂, t = H2

dQ
t̂, Q = QsQ̂,

R = RsR̂, u = dQ

H
û, p = d2

Qρ0

H2
p̂, (4)

where Qs and Rs are arbitrary concentration scales
that will be determined by reactions at the bound-
aries. Letting βmax = max{|βQQs|, |βRRs|}, the dimensionless
parameters are

D = dR

dQ
, η̂Q = H2

dQ
ηQ, η̂R = H2

dQ
ηR, Sc = μ

ρ0dQ
,

Gr = ρ3
0 gβmaxH3

μ2
, δQ = βQQs

βmax
, δR = βRRs

βmax
. (5)

Here, Sc is the Schmidt coefficient, Gr is the Grashof num-
ber, and D is the diffusion ratio between the two chemical
reagents. By defining δQ and δR relative to the maximum
modulus of the reagent expansion coefficients, we ensure that
one of δQ or δR is equal to ±1 and the other is bounded
in absolute value by 1. In Sec. IV we will refer to the
case where |δQ| = 1 or |δR| = 1 as Q- or R-driven flow,
respectively.

Applying our nondimensionalization and dropping the hats
on dimensionless variables, Eq. (2) becomes

DQ

Dt
= −ηQQ + ∇2Q, (6a)

DR

Dt
= −ηRR + D∇2R, (6b)

Du
Dt

= −∇p + Sc∇2u + Sc2Gr(δQQ + δRR)ez, (6c)

∇ · u = 0. (6d)

The boundary conditions for the nondimensionalized system
are

−∂Q

∂z

∣∣∣∣
z=0

= γ f0(Q, R),
∂Q

∂z

∣∣∣∣
z=1

= γ f1(Q, R)

−D
∂R

∂z

∣∣∣∣
z=0

= γ g0(Q, R), D
∂R

∂z

∣∣∣∣
z=1

= γ g1(Q, R),

u

∣∣∣∣
z=0

= 0, u

∣∣∣∣
z=1

= 0. (7)

Here, we view γ as a general positive scaling for the chemical
fluxes at the boundaries.

Suppose that the system has an unpatterned (i.e., the
concentration and pressure fields depend only on the
z coordinate and not on horizontal coordinates) steady
state without flow. We perform a linear stability analy-
sis around this steady state considering a perturbation of
the form

Q(x, t ) = Q0(z) + εQ1(x, t ), R = R0(z) + εR1(x, t ),

u(x, t ) = εu1(x, t ), p(x, t ) = p0(z) + εp1(x, t ). (8)

The resulting system can be simplified by eliminating the
pressure term and dropping the horizontal dynamics. Details

055103-3



AIDEN HUFFMAN AND HENRY SHUM PHYSICAL REVIEW E 108, 055103 (2023)

of this technique can be found in Appendix A. Considering
the ansatz, ⎡

⎢⎢⎣
Q1(x, t )
R1(x, t )
u1,z(x, t )
p1(x, t )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q(z)
r(z)
w(z)
p(z)

⎤
⎥⎥⎦eλt+i(kxx+kyy), (9)

where u1,z is the vertical component of u1, we obtain the
perturbation problem:[

d2

dz2
− (λ + ηQ + k2)

]
q = w

dQ0

dz
, (10a)

[
d2

dz2
−

(
λ + ηR

D
+ k2

)]
r = w

dR0

dz
, (10b)

[(
d2

dz2
− k2

)2

− λ

Sc

(
d2

dz2
− k2

)]
w = k2Ra(δQq + δRr),

(10c)

where k2 = k2
x + k2

y and Ra = GrSc is the solutal Rayleigh
number, subject to the boundary conditions,

−dq

dz

∣∣∣∣
z=0

= γ ( f0,Q q + f0,R r),

dq

dz

∣∣∣∣
z=1

= γ ( f1,Q q + f1,R r),

−D
dr

dz

∣∣∣∣
z=0

= γ (g0,Q q + g0,R r),

D
dr

dz

∣∣∣∣
z=1

= γ (g1,Q q + g1,R r),

w

∣∣∣∣
z=0,1

= 0,

dw

dz

∣∣∣∣
z=0,1

= 0. (11)

In Eq. (11) and below, the notation h j,C represents the partial
derivative of the function hi with respect to C evaluated at
the unpatterned steady-state concentrations Q = Q0( j), R =
R0( j), for all combinations of functions h = f , g, boundaries
j = 0, 1, and concentration labels C = Q, R. For two spatial
dimensions, we remove the y variable and set ky = 0.

To begin, we assume that the Rayleigh number is small
and that the density variations are negligible. This assumption
reduces the problem to studying pattern formation without
convection.

III. PATTERN FORMATION

When it exists, the general solution to Eq. (10) without flow
is of the form

q(z) = a1 cosh(
1,λz) + a2 sinh(
1,λz), (12a)

r(z) = b1 cosh(
2,λz) + b2 sinh(
2,λz), (12b)

w(z) = 0, (12c)

where


1,λ =
√

λ + ηQ + k2, (13a)


2,λ =
√

λ + ηR

D
+ k2. (13b)

Below, we use the notation 
i to indicate the values of 
i,λ

with λ = 0, for i = 1, 2. The boundary conditions (11) can
be expressed as a homogeneous linear system of four equa-
tions in ai, bi. This system must be degenerate for nontrivial
solutions to exist.

Consider the case where reactions for both Q and R occur
at a shared (upper) boundary so that f1 and g1 have nonzero
partial derivatives. At the bottom boundary, we will assume
that f0 and g0 are constant (possibly zero), implying that their
partial derivatives vanish. Given λ and k, the resulting system
of equations has a nontrivial solution if and only if

0 = γ 2 det(J1) cosh(
1,λ) cosh(
2,λ)

− γ [D
2,λ cosh(
1,λ) sinh(
2,λ) f1,Q

+ 
1,λ sinh(
1,λ) cosh(
2,λ)g1,R]

+ D
1,λ
2,λ sinh(
1,λ) sinh(
2,λ), (14)

where J1 =
[

f1,Q f1,R

g1,Q g1,R

]
.

Expressed in this form, we can show that D �= 1 is nec-
essary to make a finite wave number the most unstable mode.
Suppose that there exist a (possibly) complex λ and real k > 0
that satisfy Eq. (14) with Re(λ) � 0. Then, any other pair
(λ′, k′) such that 
i,λ(k) = 
i,λ′ (k′) for i = 1, 2 would also
satisfy Eq. (14). From Eq. (13), we note that defining λ′ =
λ + k2 and k′ = 0 satisfies this requirement. Since Re(λ′) >

Re(λ), the long wavelength instability k′ = 0 is more linearly
unstable.

If we are concerned with transitions from a steady unpat-
terned state to a steady pattern with finite wave number, then
we restrict ourselves to the case where λ is real. Close to such
a transition, we may assume that 
1,λ and 
2,λ are real and
positive. Treating the entries of J1 as independent parameters
and assuming that det(J1) �= 0, then Eq. (14) reduces to a
quadratic equation for γ . Requiring that the global flux γ be
real, we obtain the condition that either f1,R has the same sign
as g1,Q or ∣∣∣∣ f1,Q − 
1,λ tanh 
1,λ

D
2,λ tanh 
2,λ

g1,R

∣∣∣∣
� 2

√
− 
1,λ tanh 
1,λ

D
2,λ tanh 
2,λ

f1,R g1,Q. (15)

We seek marginally stable solutions, i.e., those with λ = 0.
For the special case ηR = 0, Eq. (14) can be rearranged to
obtain an explicit formula for the diffusion ratio when a given
wave number k > 0 is marginally stable,

Dc(k) = γ (
1g1,R tanh 
1 − f1,Qg1,Rγ + f1,Rg1,Qγ )

k(
1 tanh 
1 − f1,Qγ ) tanh k
, (16)

which we refer to as the critical diffusion ratio for the wave
number k.
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FIG. 2. (a) Unpatterned steady-state concentration profiles for the full reaction on the upper boundary. (b) Unpatterned steady states for
the separated reaction. In both cases, a = 0.2, b = 2, and ηQ = γ = D = 1.

Assuming positive diffusion coefficients, we seek a posi-
tive value for Dc(k), which requires that

(
1 tanh 
1 − f1,Qγ )[
1g1,R tanh 
1 − γ det(J1)] > 0.

(17)

A critical diffusion cannot be found if this inequality is not
satisfied for some k.

In Sec. III B, we will present two examples of the case
above with a shared boundary for reactions. If we consider
an alternative setup where g0 and f1 have nontrivial partial
derivatives while g1 and f0 are constant (nonconstant reactions
on opposite boundaries), then we would obtain the necessary
condition for solutions with λ ≈ 0 that either f1,R has the same
sign as g0,Q or∣∣∣∣ f1,Q − 
1,λ tanh 
1,λ

D
2,λ tanh 
2,λ

g0,R

∣∣∣∣
> 2

√
− 
1,λ tanh 
1,λ

D
2,λ cosh(
1,λ) sinh(
2,λ)
f1,Rg0,Q, (18)

and under the same conditions we used in the derivation of
Dc(k) above, the critical diffusion ratio for this setup is posi-
tive only if

(
1 tanh 
1 − f1,Qγ )[
1g0,R tanh 
1 − γ det(J2)] > 0,

(19)

where J2 =
[

f1,Q f1,Rsech(
1 )
g1,Qsech(k) g1,R

]
.

A. Limiting cases of constant and linear reactions

In the simple case of the reaction function f1 being constant
(independent of concentrations Q and R), Eq. (14) reduces to

γ g1,R cosh 
2,λ − D
2,λ sinh 
2,λ = 0. (20)

If this condition is satisfied for some λ and finite wave number
k, then it is also satisfied for other values λ′ and k′ if


2,λ′ = 
2,λ =
√

λ + ηR

D
+ k2 ;

in particular, the wave number k′ = 0 has a solution with
λ′ = λ + Dk2 > λ. We conclude that no short wavelength in-
stability will become unstable before a long wavelength one.
A similar argument can be made in the case where g1 is a
constant function.

The next simplest classes of reaction functions f1, g1 are
linear in reagent concentrations. While it is possible for Tur-
ing instabilities to occur in these cases, the linearly unstable
eigenfunction mode would grow without bound, leading to
unphysical behavior. Linear reactions are, therefore, only
valid models within restricted regimes; more complete mod-
els include nonlinear terms that prevent concentrations from
becoming negative or growing without bound [31].

With these considerations, we study a classical example
of a nonlinear reaction system known to give rise to Turing
instabilities in the following section.

B. Schnakenberg–Selkov examples

We present two explicit examples in a two-dimensional
domain that correspond to the setup in Fig. 1 with nonlinear
reactions for both species on the upper boundary. In both
cases, we assume ηR = 0 and thus Dc(k) is determined by
Eq. (16). The reaction occurring on the upper plate is based on
the Schnakenberg–Selkov [32,33] reaction system so that the
rates of flux (with physical dimensions of amount of substance
per unit length per unit time) are modeled by

f (Q, R) = α − k−1Q + k2Q2R, (21a)

g(Q, R) = β − k2Q2R. (21b)

We assume that α, β, k−1 and k2 are all positive so there is no
confusion about which terms are influxes or out-fluxes. This
is nondimensionalized by taking

Q =
√

k−1

k2
Q̂, R =

√
k−1

k2
R̂, γ = Hk−1

dQ
,

η̂Q = H2

dQ
ηQ, a =

√
k2

k3
−1

α, b =
√

k2

k3
−1

β. (22)

Dropping the hats on the nondimensionalized variables,
Eq. (21) becomes

f (Q, R) = γ (a − Q + Q2R), (23a)

g(Q, R) = γ (b − Q2R). (23b)

Placing the entire reaction on the upper boundary at z = 1
yields the first example, and serves as an example of a full
reaction presented in Fig. 1:

f1(Q, R) = a − Q + Q2R, g1(Q, R) = b − Q2R,

f0(Q, R) = 0, g0(Q, R) = 0. (24)
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Note that these functions are scaled by the parameter γ for
the rates of reaction, as defined in Eq. (7). The steady state is
given by

Q0(z) = γ
a + b


Q sinh 
Q + γ cosh 
Q
cosh(
Qz), (25a)

R0(z) = b

Q0(1)2
, (25b)

where 
Q = √
ηQ.

In the second example, we will place the constant (a, b)
terms on the bottom boundary which gives an example of a
separated reaction:

f1(Q, R) = −Q + Q2R, g1(Q, R) = −Q2R,

f0(Q, R) = a, g0(Q, R) = b, (26)

The steady state is

Q0(z) = γ

Qa cosh (
Q(z − 1)) + 
Qb cosh (
Qz) − aγ sinh (
Q(z − 1))


Q(
Q sinh 
Q + γ cosh 
Q)
, (27a)

R0(z) = b(
Q sinh 
Q + γ cosh 
Q)2

γ 2(a + b cosh 
Q)2
+ γ b

D
(1 − z). (27b)

The steady-state concentration profiles for the two examples
are presented in Fig. 2 for fixed parameter values. There
are some key differences between the two examples. For the
separated reaction, we find that Q0(z) is minimized within
the bulk, while for the full reaction, it is minimized at the
nonreactive boundary. Additionally, R0(z) is constant in the
full reaction and linear in the separated reaction.

The partial derivatives appearing in the linearized bound-
ary conditions are the same for both examples, namely,

f1,Q = 2Q0(1)R0(1) − 1, f1,R = Q0(1)2,

g1,Q = −2Q0(1)R0(1), g1,R = −Q2
0(1). (28)

Note that, from Eqs. (25) and (27), Q0(1) and R0(1) are guar-
anteed to be positive for a, b, γ > 0. It follows that f1,R and
g1,Q have opposite signs, so real values for γ require condition
(15) to be satisfied.

Substituting Eq. (28) into inequality (17), we find that the
second term on the left hand side is negative and hence, the
first term must also be negative for the inequality to hold. For
the full reaction, substituting in the boundary concentrations
from Eq. (25) leads to the condition for positive values of
Dc(k) that b > a and

γ > γ1(k) := 
1(a + b) tanh 
1 − 2
Qb tanh 
Q

b − a
. (29)

For the separated reaction, we use Eq. (27) to obtain the
conditions for positive values of Dc(k) that b cosh(
Q) > a
and

γ>γ2(k) := 
1(a + b cosh 
Q) tanh 
1 − 2
Qb sinh 
Q

b cosh 
Q − a
.

(30)

Since 
1 = 
Q when k = 0, we have that γ1(0) < 0 and
hence, γ1(k) < 0 for all sufficiently small positive wave num-
bers. Similarly, γ2(k) < 0 for all sufficiently small positive k.
Additionally, both γ1 and γ2 increase monotonically to +∞
with k so that for any fixed γ > 0, there is a critical wave
number kc,i > 0 at which γ = γi(kc,i ), for i = 1, 2. Hence,
positive values of Dc(k) exist for all k between 0 and kc,i

but not for any wave number greater than kc,i. In Fig. 3 we
compare Dc(k) between the two examples. In both cases, after

substituting Eq. (28) into Eq. (16), Dc(k) can be expressed as

Dc(k) = γ Q0(1)2(
1 tanh 
1 + γ )

k[2γ Q0(1)R0(1) − γ − 
1 tanh 
1] tanh k
.

(31)

We note that Q0(1) and R0(1) depend on a, b, γ , and ηQ, but
do not depend on D or k. By considering the ratio of Dc(k)
given by Eq. (31) for full and separated reactions over the
range of reaction parameter values and wave numbers where
Dc(k) is positive for both, it is possible to show that the critical
diffusion ratio for the full reaction is strictly larger than for the
separated reaction, as shown in Fig. 3(a) for one parameter
set. As a consequence, instabilities can arise with smaller
diffusion ratios under the separated reaction compared with
the full reaction. Moreover, we show that kc,1 < kc,2 for fixed
model parameters. Suppose that γ = γ1(kc,1) = γ2(kc,2) and

let 

(i)
1 =

√
ηQ + k2

c,i denote the value of 
1 corresponding

to the threshold wave number kc,i for i = 1, 2. Rearranging
Eqs. (29) and (30), we have that



(2)
1 tanh 


(2)
1 − 


(1)
1 tanh 


(1)
1

= 2b
Q

[
sinh 
Q

1

a + b cosh 
Q
− 1

(a + b) cosh 
Q

]

+ 2aγ

(
1

a + b
− 1

a + b cosh 
Q

)
, (32)

which is positive if a, b, γ , 
Q > 0. Since 
1 tanh(
1) in-
creases monotonically with k, we conclude that kc,2 > kc,1 and
hence, a larger range of wave numbers can be made unstable
using the separated reaction system compared with the full
reaction.

1. Pattern forming regions and oscillations

An example of the patterned state emerging when a finite
wave number becomes unstable in the full reaction system
without flow is shown in Fig. 4(a). Since we are interested in
using the chemical instabilities to influence convective ones,
we focus our attention on parameters (a, b). Varying these
parameters can be interpreted as changing the rate of influx
of reagents through a selectively permeable boundary, or the
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FIG. 3. Comparison of critical parameter values for the full and separated Schnakenberg–Selkov reaction systems. (a) Critical diffusion
ratio as a function of wave number k. (b) Minimum critical diffusion ratio, Dmin,c, as a function of ηQ. We also mark the critical diffusion ratio
for the classical Turing instability with the Schnakenberg–Selkov reaction system under the same conditions. (c) Global flux thresholds γ1(k)
and γ2(k) for the full and separated reactions. In all cases, (a, b) = (0.2, 2.0). When unspecified, ηQ and γ are set to 1.

rate of production of the reagents from precursors through
boundary-bound reactions.

We perform several steps to classify each (a, b) pair in
Figs. 4(b) and 4(c). First, we calculate the critical diffu-
sion and use it to solve for the critical decay for chemical
oscillations, see Appendix B for a discussion on chemical
oscillations in the model. If the critical decay rate for oscil-
lations is greater than the corresponding reaction parameter,
ηQ,c > ηQ, then it follows that the oscillatory mode is stable
at the critical diffusion ratio. However, if ηQ,c � ηQ, then it is
unstable or marginally stable at the critical diffusion. Hence,
we classify the regions where ηQ,c < ηQ as oscillatory. We
also provide a snapshot of the patterns formed for supercritical
diffusion ratios in each example in Figs. 4(a) and 4(d).

From Fig. 4, we note that there are three regions of the a–b
parameter space where we respectively expect stable unpat-
terned states, oscillatory behavior, and steady patterned states
to emerge. Thus, we have control over the chemical instability
by varying the influxes at the boundaries, (a, b). Interestingly,
oscillations are only expected to occur for small values of a
and for b within a bounded interval that depends on a. Steady
patterns can emerge for larger values of a and b, provided that
the diffusion ratio D is large enough. Below a certain value
of D, the oscillatory mode is unstable whenever the patterned

state is marginally stable so we do not expect steady patterns.
Comparing the behavior of the full and separated reaction
systems [Figs. 4(b) and 4(c), respectively], we observe that
for any value of D, a larger region of a–b parameter space sup-
ports oscillations or patterns. Apart from scaling, the regions
of parameter space are qualitatively the same for the full and
separated systems.

IV. BUOYANCY-DRIVEN INSTABILITIES

If the Rayleigh number is not negligible, then we cannot
omit the momentum equation in Eq. (6) and must consider the
full expression in Eq. (10). In the absence of a diffusion-driven
instability, each reagent can produce convective cells through
a mechanism similar to the classical Rayleigh-Bénard insta-
bility and similar to the buoyancy-driven instability described
for a linear boundary-bound dissociation reaction [23]. In
Sec. III we discussed limiting cases with constant or linear
reactions and highlighted the importance of the nonlinear
reaction terms. In light of this, we will focus on the role
the diffusive instability plays for the examples presented in
Sec. III B and use the case where D = 1 to remove the effect
of differences in diffusion coefficients, which is a hallmark of
traditional Turing instabilities. Recall in Sec. III we showed

FIG. 4. (a) Concentrations relative to unpatterned steady state, taken after the system reaches a steady patterned state for the full
Schnakenberg–Selkov reaction with D = 5.1 and (a, b) = (0.2, 2.0). (b) Pattern forming regions for the full reaction against various (a, b).
Contours indicate the minimum critical diffusion ratio for pattern formation. No patterns are expected below the line a = b. (c) Pattern
forming regions for the separated reaction, with contours for the minimum critical diffusion ratio. No patterns are expected below the line
a = b cosh(
Q). (d) Concentrations relative to the unpatterned steady state, taken after the system reaches a steady patterned state for the
separated reaction with D = 4.2 and (a, b) = (0.2, 2.0). We fix the reaction parameters (ηQ, γ ) = (1, 1) in all cases.
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FIG. 5. (a) Comparison of RaQ
max,c for Q-driven flow (δQ, δR ) = (1, 0) and RaR

min,c for R-driven flow (δQ, δR ) = (0, 1) for various diffusion
ratios. (b) The variation of RaQ

min,c with D and δR for the full reaction system. Reaction parameters are held constant at a = 0.2, b = 2, ηQ = 1
and γ = 1. (c) RaQ

min,c as a function of Dmin,c(a, b) for various δR. We take (a, b) along the line between (0.268, 2.085) and (0.352, 2.19) and
(γ , ηQ, D) = (1, 1, 7). The dashed line indicates where the system transitions from pattern forming to nonpattern forming without buoyancy
forces. (d) Critical wave number for convective cells as a function of γ . We fix (a, b, ηQ ) = (0.2, 2, 1).

that in the absence of buoyancy forces the system with D = 1
has no finite wavelength instability.

We again search for marginally stable states (λ = 0) with
ηR = 0 so that Eq. (10) reduces to[

d2

dz2
− (ηQ + k2)

]
q = w

dQ0

dz
, (33a)

(
d2

dz2
− k2

)
r = w

dR0

dz
, (33b)

(
d2

dz2
− k2

)2

w = k2Ra(δQq + δRr). (33c)

If both of the steady-state concentrations are constant, then
the reagent concentrations are unaffected by the flow in the
linearized system; the linear stability would be identical to
that of the system without buoyancy effects. For chemohy-
drodynamic interactions to occur at first order, one of ηQ or
ηR must be nonzero, or the model should include a nontrivial
in-flux through the nonreactive plate so that these gradients
can be nonzero. By construction, both the full and separated
Schnakenberg reactions described in Sec. III B satisfy these
conditions. We will refer to a value of Ra that satisfies Eq. (33)
as a critical Rayleigh number for the wave number k, denoted
Rac(k). We solve for Rac(k) using a shooting method [34]
applied to Eq. (33). The boundary conditions are obtained
by calculating Eq. (11) for the examples in Sec. III B. From
our numerical results, we find that the function Rac(k) has at
most one local maximum [see Appendix C, Fig. 8(a)], which
we refer to as the maximum critical Rayleigh number and
denote by Ramax,c, and at most one local minimum, denoted
Ramin,c and referred to as the minimum critical Rayleigh
number. We expect the unpatterned state to become unstable
and transition to steady patterns with finite wave number as
the Rayleigh number increases above the minimum critical
Rayleigh number or decreases below the maximum critical
Rayleigh number. The existence and values of these minima
and maxima depend on parameters such as δQ, δR, D, and γ .
We discuss the performance of the estimates obtained by this
shooting method procedure in Appendix C.

In Sec. II we introduced the notion of Q-driven flow with
δQ = 1. This corresponds to when Q has a larger effect on

the buoyancy force at similar concentrations compared to R
at similar concentrations. Letting δR = 0, we find that there
is a maximum but no minimum critical Rayleigh number.
The maximum, RaQ

max,c, increases with D. It is negative, then
zero, and positive when the diffusion ratio is respectively
below, equal to, and above the minimum critical diffusion
ratio, Dmin,c := mink Dc(k) [Fig. 5(a)]. Note that Dmin,c is
the diffusion ratio at which the system is marginally stable
without flow. When D < Dmin,c, the unpatterned state is stable
without flow but a finite wave number can be brought to
marginal stability with flow if gravity acts downward (i.e., the
Rayleigh number is negative). In this case, coupling with fluid
flow serves to destabilize the unpatterned state. Conversely,
when D > Dmin,c, the system without flow is unstable but can
be stabilized by flow if gravity acts upwards.

The effect of fluid flow is reversed when δQ = 0,

δR = 1; we find that there is a minimum critical Rayleigh
number, RaR

min,c, that is positive when D < Dmin,c and neg-
ative when D > Dmin,c so flow is destabilizing below the
minimum critical diffusion ratio if gravity acts upwards and
flow is stabilizing above the minimum critical diffusion ratio
if gravity acts downwards. The fact that instabilities can be
induced by buoyancy effects when δQ = 0 and δR = 1 is inter-
esting because the concentration field R, and hence the fluid
density, is spatially uniform in the unpatterned steady state.
This contrasts with Rayleigh–Bénard instabilities, in which
the instability occurs when the vertical gradient in density at
the steady state exceeds a threshold.

The stabilizing and destabilizing effects of Q and R com-
bine when δQ and δR are both nonzero, as shown in Fig. 5(b).
For instance, given a fixed diffusion ratio D < Dmin,c, the
maximum critical Rayleigh number for δQ = 1 becomes more
negative as δR increases because the stabilizing effect of R
(when gravity acts downwards) offsets the destabilizing effect
of Q.

In Sec. III, we discussed how traveling along paths in (a, b)
allow us to control the various chemical instabilities. The
relationship between Rac and Dmin,c makes it possible to con-
trol the convective instability not only by changing gradients,
but also by varying Dmin,c through the parameters (a, b). In
Fig. 5(c), we do precisely this along a line of (a, b) values
and plot it for various δR with a fixed D. This plot illustrates
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FIG. 6. (a) Critical Rayleigh number for the separated reaction with various diffusion ratios, reaction parameters are a = 0.2, b = 2.0,
ηQ = 1, γ = 1 subject to Q-driven flow (δQ, δR ) = (1, 0). The critical diffusion ratio is Dc ≈ 4.02. The wave numbers and Rayleigh numbers
in panels (b) and (c) are marked with open circles. (b) Simulation of unstable system for separated reaction with negative Rayleigh number,
Ra = −4600, marked in panel (a) and D = Dc/2 ≈ 2.01. (c) Simulation of unstable system for separated reaction with positive Rayleigh
number Ra = 5700 marked in panel (a) and D = Dc/2 ≈ 2.01.

the relationship between Dmin,c and Ra and demonstrates how
δR makes the system more or less sensitive to changes in
Dmin,c(a, b). This effect could be predicted from Figs. 5(a)
and 5(b) since the corresponding R-driven flow is stable or
unstable depending on whether we are left or right of Dmin,c.

Whereas for the classical Rayleigh-Bénard instability the
critical wave number is fixed, for Turing pattern formation, it
can be tuned by the reaction rate. This parameter corresponds
to our γ , which can be interpreted as the enzyme density on
the reactive plate. Our model shares this characteristic that the
critical wave number depends on γ , as shown in Fig. 5(d).
Similar to classical Turing pattern formation, we find a posi-
tive correlation between γ and the critical wave number.

When we consider the separated reaction, we see other
interesting behaviors. Focusing on Q-driven flows, in Fig. 6(a)
we plot the critical Rayleigh number, RaQ

c (k), for various
wave numbers and diffusion ratios. We find that it is possible
for both minimum and maximum critical Rayleigh numbers
to exist, with different associated critical wave numbers. For
example, when D = Dc/2, there is a positive minimum critical
Rayleigh number and a negative maximum critical Rayleigh
number. Between these Rayleigh numbers, the unpatterned
state is stable and outside this interval, patterns emerge, il-
lustrated in Figs. 6(b)–6(c). As demonstrated, different modes
can be made unstable depending on the orientation of the
domain relative to the direction of gravity. We suspect that
this behavior occurs because there is a local minimum of Q in
the bulk at the steady state [see Fig. 2(b)]. As a result, the con-
centration gradient changes sign within the domain, allowing
it to become unstable regardless of the direction of gravity.
We noted above, however, that concentration gradients at the
steady state are not a requirement for instabilities.

V. CONCLUSIONS

We presented boundary-bound reactions and their capacity
for chemical and convective pattern formation. We showed
that the two types of instabilities are coupled such that
buoyancy effects can induce chemical patterns and chemical

patterns induce convective flows. For specific cases, we deter-
mined necessary conditions for pattern formation in terms of
the reaction parameters. We illustrated these results by consid-
ering two examples, both based on the Schnakenberg–Selkov
reaction system. The critical diffusion ratio was reduced by
increasing the bulk-decay ηQ, similar to results for active-
membrane models. We further discussed how the instabilities
could be controlled through the constant boundary flux terms
(a, b).

Since the chemical instabilities were a subcase of the
buoyancy-driven instabilities, this provided a natural transi-
tion for discussing mechanisms for controlling the convective
instabilities that form. We also discussed how the parameter
γ , which in practice could be easily tuned through enzyme
concentrations or temperature, can be used to change the
unstable wave number for the convective pattern. Moreover,
we observed how the sensitivity to changes in Dmin,c(a, b) is
influenced by the ratio δQ/δR.

Unique to boundary-bound reactions are the nonlinear
boundary conditions that influence the buoyancy of the fluid.
These nonlinearities were essential for producing behavior
like the buoyancy-driven instability without steady-state den-
sity gradients. The use of chemical reagents also made it
possible to present a system where the formation of convective
cells took place independent of the direction of gravity. We
presented this as a system which can be used for detecting
the orientation of the device. For instance, in Figs. 6(b) and
6(c) the direction of flow near the peaks and troughs changes
depending on the direction of gravity. By measuring the flow
field near the boundary as well as the concentration, we can
determine which instability is present and as a consequence
its orientation. The unstable wave numbers are also different
depending on the direction of gravity. This responsiveness to
orientation means it may be possible to design microfluidic
devices which change their behavior by a simple act of turning
them upside down, rather than stopping altogether.

We opted to consider reaction parameters that can be
thought to physically represent the amount of material
pumped into the domain, or the rate of the reaction at the
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boundary. The latter is often tuned by changing the enzyme
density on the surface. In both cases, we demonstrate how
one might design systems where the flow fields are controlled
via the reaction parameters. Recent work in the design of
reaction–diffusion programs provides some freedom in reac-
tions that occur along the boundary. By designing reactions
with properties of interest, such as traveling waves or other
pattern forming instabilities many other phenomena should be
possible. We believe that boundary-bound reactions can facil-
itate the design of microfluidic devices with novel complex
and self-regulating functionality.
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APPENDIX A: REDUCED EQUATIONS
FOR BOUNDARY-BOUND REACTIONS

Substituting Eq. (8) into Eq. (6) we collect the first-order
terms:

∂Q1

∂t
= −ηQQ1 + ∇2Q1 − w

dQ0

dz
, (A1a)

∂R1

∂t
= −ηRR1 + ∇2R1 − w

dQ0

dz
, (A1b)

∂u1

∂t
= −∇p1 + Sc∇2u1 + Sc2Gr(δQQ1 + δRR1)ez.

(A1c)

The only term driving fluid flow is the buoyancy force. There-
fore, the stability of Eq. (A1) is dependent on the stability
of the reduced system containing only the vertical velocity
component. Omitting the horizontal flow components, if this
reduced system is unstable, then the global system will be
as well. To eliminate the pressure term, we consider the

FIG. 7. Critical values of the decay rate ηQ for the full reaction,
where long wavelength chemical oscillations become marginally
stable as a function of (γ , D) with (a, b) = (0.2, 2) fixed.

divergence of both sides of Eq. . By applying the incompress-
ibility condition, we obtain the equations

∇2 p1 = Sc2Gr

(
δQ ∂Q1

∂z
+ δR ∂R1

∂z

)
. (A2)

Differentiating with respect to z, we obtain

∇2 ∂ p1

∂z
= Sc2Gr

(
δQ ∂2Q1

∂z2
+ δR ∂2R1

∂z2

)
. (A3)

We now have an equation for the Laplacian of ∂ p1

∂z which we
can use to eliminate the pressure term. In particular, by taking
the Laplacian of the vertical (z) component of Eq. , we obtain

∂

∂t
(∇2u1,z ) = − ∇2 ∂ p1

∂z
+ Sc∇4u1,z

+ Sc2Gr∇2(δQQ1 + δRR1). (A4)

Substituting Eq. (A3) into this gives

∂

∂t
(∇2u1,z ) = Sc∇4u1,z + Sc2Gr∇2

H (δQQ1 + δRR1), (A5)

where ∇2
H = ∂2

∂x2 + ∂2

∂y2 is the horizontal Laplace operator. Af-
ter substituting the ansatz for the perturbation we can recover
Eq. (10).

APPENDIX B: ON OSCILLATORY INSTABILITIES

In Turing’s analysis [1], he was able to determine con-
ditions where chemical oscillations are not possible. Our
analysis does not address the stability of the horizontally
uniform mode k = 0. However, long-wavelength chemical os-
cillations are generally possible and should be expected since
they are present in the classical Schnakenberg–Selkov dynam-
ics. To show their existence, we suppose that the height of the
fluid chamber is small compared with other length scales and
consider the vertically averaged version of Eqs. (24) and (26),
obtaining for both:

∂Q

∂t
= γ (a − Q + Q

2
R) − ηQQ + ∇2

H Q, (B1a)

TABLE I. Comparison of an analytical estimate and the bisection
algorithm for the minimum critical diffusion for the full reaction.
Reaction parameters used are (a, b, γ ) = (0.2, 2, 1). Results are
rounded to three decimal places.

Decay Diffusion estimate Bisection algorithm Relative error

0.01 38.472 38.653 0.469%
0.1 28.514 28.558 0.156%
0.2 21.286 21.319 0.156%
0.3 16.445 16.419 0.156%
0.4 13.065 13.086 0.156%
0.5 10.624 10.641 0.156%
0.6 8.809 8.823 0.156%
0.7 7.428 7.439 0.156%
0.8 6.353 6.363 0.156%
0.9 5.022 5.511 0.156%
1.0 4.818 4.825 0.156%
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FIG. 8. Critical Rayleigh numbers and diffusion ratios for the full reaction system with Q-driven flow (δQ, δR ) = (1, 0). Except where
explicitly varied, reaction parameters are (a, b, ηQ, γ ) = (0.2, 2, 1, 1). (a) Critical Rayleigh number as functions of wave number for various
diffusion ratios between 1 and Dc ≈ 4.82, obtained by a shooting method. (b) Comparison of the maximum critical Rayleigh number obtained
by determining the local maxima of the functions in panel (a) with estimates from the bisection method. (c) Critical diffusion estimates vs ηQ,
where Ra = 0, compared with estimates from the bisection method.

∂R

∂t
= γ (b − Q

2
R) + D∇2

H R. (B1b)

The homogeneous steady states are given by

Qs = γ (a + b)

γ + ηQ
, (B2a)

Rs = b(γ + ηQ)2

γ 2(a + b)2
. (B2b)

Linearizing this equation at the steady state we consider a
long-wavelength oscillatory instability. The Jacobian for the
system is

J =
[
−(γ + ηQ) + 2γ QsRs γ Q

2
s

−2γ QsRs −γ Q
2
s

]
. (B3)

A quick calculation shows that det(J ) > 0 when γ > 0.
Hence, a Hopf bifurcaton can occur when Tr(J ) passes
through zero [35]. The trace is

Tr(J ) = 2b(ηQ + γ )

(a + b)
− γ 3(a + b)2

(ηQ + γ )2
− (ηQ + γ ), (B4)

which is zero when b > a and the decay rate ηQ takes the
critical value

ηQ,c = γ

(
a + b

3
√

b − a
− 1

)
. (B5)

When ηQ > ηQ,c, we find Tr(J ) > 0 yielding an unstable fo-
cus. This implies the existence of chemical oscillations, which
we would also expect to occur in the unaveraged system.

In Fig. 7 we consider the critical decay for chemical
oscillations in the full reaction. The estimates are obtained
numerically by setting k = 0 and assuming the form λ = iω
for some real ω in panel (10), without the fluid momentum
equation. We optimize over the (ηQ, ω)-plane to find the crit-
ical values of ηQ as a function of (γ , D). The plot shows that
γ increases the critical value of ηQ, which we could infer
from Eq. (B5), and simultaneously shows that D decreases the
critical value, something that was not captured by the above
vertically averaged analysis.

APPENDIX C: COMPARISON OF NUMERICAL AND
ANALYTICAL ESTIMATES FOR CRITICAL VALUES

We implement a bisection algorithm comparing our esti-
mates to simulations to test the critical diffusion and critical
Rayleigh number estimates for the full reaction. Each simu-
lation is done using Dedalus [36], a pseudospectral method
to solve Eq. (2), with a third order semi-implicit backwards
difference method [37]. To define initial bounds, we initialize
the bisection algorithm with a 1% perturbation above and
below the critical values, or ±1 when the critical value is
zero; we verify that the unpatterned steady states are unsta-
ble and stable, respectively, at the two bracketing points and
widen the window as needed. To determine whether patterns
have formed, we calculate the amplitude of the pattern at the
boundary and use it to implement stopping conditions. The
simulation is stopped if the rate of change in the amplitude
is sufficiently small relative to its size or the amplitude is
smaller than a cutoff, both of which were on the order of
10−8 or smaller. Additionally, a maximum time was set to
end simulations if neither of these conditions were reached.
Once the simulation was finished, we compared the final

TABLE II. Comparison of the shooting method estimate and the
bisection algorithm for RaQ

max,c for the full reaction with Q-driven
flow with various diffusion ratios D and fixed reaction parameters
(a, b, ηQ, γ ) = (0.2, 2.0, 1, 1). Results are rounded to three decimal
places.

Diffusion Estimate Bisection algorithm Absolute error

1 −1999.659 −1996.534 3.124
1.424 −1767.331 −1765.570 2.761
1.848 −1546.015 −1543.599 2.415
2.273 −1328.441 −1326.365 2.075
2.697 −1111.122 −1109.386 1.736
3.121 −892.542 −891.148 1.394
3.545 −672.156 −671.106 1.050
3.969 −449.864 −449.162 0.702
4.393 −225.758 −225.406 0.352
4.818 0 0.044 0.044
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amplitude of the pattern to our cutoff; we classify the sys-
tem as unstable if it is larger and use this to update the
bounds. This means the algorithm generally overestimates the
critical parameters slightly, as it cannot distinguish between
stable states and patterns with amplitudes below the cutoff.
We bisect the interval five times, to obtain an accuracy of

∼0.156% assuming that the upper and lower bounds were
accepted. We report the final midpoint values and correspond-
ing deviations from the estimates obtained analytically or via
the shooting method in Tables I and II. The similarity be-
tween the two critical estimates suggests that our calculations
are accurate.
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