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This paper theoretically investigates surface acoustic waves (SAWs) which emerge within the continuous
spectrum of bulk Bloch waves in piezoelectric one-dimensional phononic crystals. Accordingly, these SAWs may
be treated as an example of the bound states in the continuum (BIC). The equations which determine the existence
of such BIC-SAWs have been derived. Unlike SAWs in the frequency intervals forbidden for bulk Bloch waves,
BIC-SAWs are governed not by a single purely real dispersion equation but by sets of equations, so BIC-SAWs
prove to be robust only to a consistent change of a definite number of free parameters characterizing the wave
propagation. The form of the derived equations allows the establishment of the conditions on the frequency and
other parameters under which the BIC-SAW exists. The number of conditions depends on the number of bulk
waves in the frequency interval under consideration. In the case of generic crystallographic symmetry, there are
three, five, and seven conditions which have to be fulfilled for a BIC-SAWs to coexist with one pair, two pairs,
and three pairs of bulk Bloch waves, respectively. It is shown that the crystallographic symmetry may reduce the
number of conditions to two, three and four, respectively. Numerical computations confirm analytic results.
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I. INTRODUCTION

During last time in various areas of physics there has been
a permanent interest in the investigation of a special type
of eigenmodes called bound states in the continuum (BIC).
These states emerge in different systems both discrete, such
as isolated atoms or resonator structures, and continuous, e.g.,
in usual solids. Specific features of BICs is that they are
localized within a domain and have frequencies falling into
the continuous spectrum of waves freely propagating in the
surrounding space [1–12].

Surface acoustic waves (SAWs) are an example of one-
dimensional bound states in solids in the sense that they
are localized near the boundary along the normal to it, so
that their amplitudes vanish in the depth of substrates [13].
Usually SAWs exist outside the frequency intervals of bulk
waves. For instance, these are the Rayleigh wave in isotropic
homogeneous substrates and the Love wave in an isotropic
layer deposited on an isotropic substrate. However, SAWs
may emerge within the spectrum of bulk waves as well. Such
BIC-SAWs are also called supersonic SAWs with the fact in
mind that their velocity proves to be larger than the velocity
along the boundary of bulk waves of certain branches. Ac-
cordingly, SAWs in the range of bulk wave nonexistence are
called subsonic since their velocity is less than the bulk wave
velocities.

It has been discovered, mainly by numerical computations
aimed at searching for leaky SAWs with minimal attenuation,
that BIC-SAWs exist in various structures [13–24]. BIC-
SAWs may arise owing to crystallographic symmetry, e.g.,
when the sagittal plane coincides with the plane of symmetry
since then either the BIC-SAW are in-plane polarized whereas

bulk waves are purely shear polarized or vice versa. However,
a more curious option is when the BIC-SAW and bulk waves
possess all the three components of mechanical displacement
and traction.

In Refs. [25–29], an analytical method has been devel-
oped to analyze subsonic SAWs in a variety of structures
of generic crystallographic symmetry without necessity of
solving explicitly even the wave equation. It has allowed
the establishment of the maximum number and, in cer-
tain cases, the existence conditions of subsonic SAWs on
nonpiezoelectric, piezoelectric, and multiferroic half-infinite
homogeneous substrates [25,26,30–32] and on the contact
of two half-infinite media [24,33–36]. In Refs. [37–41], this
method has been generalized to SAWs in forbidden zones
of one-dimensional (1D) phononic crystals. These SAWs are
counterparts of subsonic SAWs in homogeneous media in that
they emerge in frequency intervals forbidden for the existence
of delocalized freely propagating Bloch waves.

The BIC-SAW problem proves to be more involved be-
cause the number of localized modes at frequencies allowed
for bulk waves is less than the number of boundary con-
ditions. However it has been possible to establish certain
general properties of BIC-SAWs, such as the conditions
constraining the existence of BIC-SAWs on half-infinite ho-
mogeneous substrate [42,43] and on nonpiezoelectric 1D
phononic crystals [44]. In Refs. [20,21,23,45], the number of
equations governing BIC-SAWs for certain symmetric orien-
tations of nonpiezoelectric and piezoelectric substrates coated
with layers as well as for generic orientations of nonpiezo-
electric substrates coated with layers has been established.
It should be mentioned that in phononic crystals BIC-SAWs
can exist when all the materials are elastically isotropic, in

2470-0045/2023/108(5)/055003(13) 055003-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5250-097X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.055003&domain=pdf&date_stamp=2023-11-21
https://doi.org/10.1103/PhysRevE.108.055003


A. N. DARINSKII PHYSICAL REVIEW E 108, 055003 (2023)

contrast to the case of homogeneous isotropic half-infinite
substrates.

The present paper analyzes the existence conditions for
BIC-SAWs in piezoelectric 1D phononic crystals. It is worth
noting that even in the case of weak piezoeffect this problem
cannot be approached via a perturbation theory applied to the
equations derived earlier in [44] for BIC-SAWs in nonpiezo-
electric phononic crystals. Due to piezoelectric coupling an
additional mode, the mode of electric potential, is involved
in BIC-SAWs and additional boundary conditions have to
be fulfilled, so it is impossible to decide without a special
analysis whether these changes entail additional constraints
on the existence of BIC-SAWs.

Our paper is organized as follows. In Sec. II, certain
properties of plane waves are discussed. In Sec. III, the bound-
ary conditions are formulated. Sections IV and V derives
equations on BIC-SAWs and analyze the number of condi-
tions on the existence of these waves in phononic crystals.
In Sec. VI, it is shown that the crystallographic symmetry
may reduce the number of conditions for BIC-SAWs. In
Sec. VII, numerical computations of BIC-SAWs branches
are discussed. These computations validate the conclusions
obtained analytically in previous sections. Section VIII sum-
marizes the results. The appendices give relations used in
Secs. IV–VI.

II. PLANE WAVES IN LAYERED MEDIA

Let a piezoelectric medium occupy the half-space z ≡
nr > 0, where r is the radius vector and n is a unit vector.
We assume that this medium is inhomogeneous only along
the direction of n and consider electroacoustic waves(

u(r, t )
ϕ(r, t )

)
=

(
A(z)
Φ(z)

)
ei[k(mr)−ωt], (1)

which propagate along the direction of the unit vector m
(m⊥n) with the frequency ω and wave number k. The func-
tions A(z) and Φ(z) describe, respectively, the dependence
of the mechanical displacement u(r, t ) and electric potential
ϕ(r, t ) on z = nr.

The traction F(z) = σ̂n, where σ̂(z) is the tensor of stresses
produced by wave (1), and the projection D(z) = nD of the
electric displacement D(z) may be found in parallel with A(z)
and Φ(z) by solving the system of eight equations [26,31,38]

1

i

dξξξ

dz
= N̂ξξξ, (2)

where N̂ is an 8×8 matrices (see Appendix A) and ξξξ is an
eight component vector column

ξξξ (z) =
(

U
V

)
, U (z) =

(
A
Φ

)
, V (z) =

(
L
D

)
, (3)

where D = iD and L = iF.
In layered structures N̂(z) = N̂ j for z j−1 < z < z j , where

N̂ j is the N̂ matrix of the jth layer occupying the space z j−1 <

z < z j . The vector ξξξ (z) is a continuous function of z because it
is assumed that the rigid contact is realized at all the interlayer
boundaries. Therefore a solution to (2) for z > 0 lying inside

the jth layer can be written in the form

ξξξ (z) = M̂z(z)ξξξ 0, (4)

where ξξξ 0 = ξξξ (0) and M̂z(z) is a transfer matrix,

M̂z(z) = ei(z−z j−1 )N̂ j

j−1∏
s=1

eihsN̂s , (5)

where hs is the thickness of the sth layer. In 1D phononic
crystals partial solutions to (2) are classified by linking them
to eigenvectors of the transfer matrix M̂ of unit cell,

M̂ = M̂z(l ) =
n∏

j=1

eih j N̂ j , (6)

where n is the number of layers per period and l = ∑n
j=1 h j

is the length of period. This link is established by letting ξξξ 0 =
ζζζ α , where ζζζ α is the eigenvector of M̂ corresponding to an
eigenvalue γα . In this case, the vector ξξξα (z) = M̂z(z)ζζζ α at the
edge zn = nl of the nth period takes the value ξξξα (zn) = γ n

αζζζ α .
If |γα| �= 1, then the amplitude of the mode α decreases

(|γα| < 1) or increases (|γα| > 1) by factor |γα| per period. In
total there can be at most four |γα| < 1 and four |γα| > 1, see
Appendix A. The modes with |γα| < 1 will be called D modes
(decaying modes) and labeled by α = 1, 2, . . .

If γα = eiθα , where θα is a purely real phase, then the partial
mode α of type (1) acquires only the phase shift by θα after
having passed the unit cell. Hence, such Bloch modes are
characterized by purely real Bloch wave numbers kα = θα/l
and propagate freely across the phononic crystal, like bulk
waves in a homogeneous medium, so we will call them B
modes. They occur in pairs of modes of which the energy
fluxes have opposite directions along the normal to the layers.
We will assign the subscripts im (incident) and rm (reflected)
to the modes of the mth pair with understanding that the
modes im and rm, respectively, carry the energy towards the
surface and towards interior of the half-infinite structure (see
Appendix A). There can be up to four pairs of B modes in an
allowed zone, i.e., the index m can be m = 1, 2, 3, or 4.

III. BOUNDARY CONDITIONS

We assume that outside the phononic crystals is a free
space (vacuum). In this case wave (1) is accompanied by a
wave of electric potential ϕv (r, t ) = dvekz+i[kx−ωt] in the free
external space (z < 0), where dv is a complex amplitude and
x = mr. The direction of propagation is the axis X (Fig. 1).

A surface wave is sought for in the phononic crystal as a
linear combination of D modes ξξξα (z) = M̂z(z)ζζζ α ,

ξξξ saw(z) =
4−n∑
α=1

bαξξξα (z) = M̂z(z)
4−n∑
α=1

bαζζζ α, (7)

where n is the number of pairs of B modes. The coefficients
bα are determined from the boundary conditions at z = 0
which are written in terms of the components of the vector
ξξξ saw(0) = ∑4−n

α=1 bαζζζ α . If the phononic crystal is formed of
homogeneous layers then, in the general case, ξξξ saw(z) in the
jth layer is a linear combination of the eight partial solutions
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FIG. 1. Geometry of propagation. As an example, the phononic
crystal composed of two alternating layers is depicted. The half-
space z < 0 is the vacuum.

ξξξ
( j)
α eip( j)

α z of (2), where ξξξ
( j)
α and p( j)

α , α = 1, . . . , 8, are the
eigenvectors and eigenvalues of the matrix N̂ j . In conse-
quence, in layers ξξξ saw(z) changes with z in an involved way
but on the period boundaries zn = nl one has ξξξ saw(zn) =∑

α bαγ n
αζζζ α , so the global trend of the z-dependence is

ξξξ saw(z) ∝ |γ |z/l , i.e., ξξξ saw(z) tends to zero as |γ |z/l ≡ e−Im(kb)z

with increasing z, where |γ | ≡ |eikbl | = max(|γα|) < 1 and kb

is a complex Bloch wave number with Im(kb) > 0.
A BIC-SAW may involve at most three D modes or two

D modes or one D-mode in a phononic crystal within the
frequency interval where one pair of B modes exists or
two or three pairs of B modes exist, respectively. We will
use the notation BIC-SAW1, BIC-SAW2 and BIC-SAW3,
where the digit is the number of pairs of B modes coexisting
with the BIC-SAW.

The boundary conditions at z = 0 require the vanishing of
the traction and the continuity of the potential and z compo-
nent of the electric displacement. Thus the peculiarity of the
BIC-SAW problem is in the fact that there are less localized
modes to form BIC-SAWs than the number of boundary con-
ditions. In the present case, there are five boundary conditions
whereas a BIC-SAW may involve at most four modes, namely,
ϕv (r, t ) and not more than three D modes in the phononic
crystal. As a consequence of this peculiarity, BIC-SAWs are
determined by several equations. When analyzing systems of
equations, we will use the implicit function theorem [46]. The
essence of this theorem is as follows. Suppose that m func-
tions fi(τ), i = 1, . . . , m, of m + n variables τ = τ1, . . . , τm+n

vanish at the point τ0 = τ1,0, . . . , τm+n,0. Suppose that the
Jacobian, i.e., the determinant J of the m × m matrix with
elements Ji j = ∂ f j/∂τi, i, j = 1, . . . , m, is different from zero
at τ0. In this case the system fi(τ) = 0, i = 1, . . . , m, al-
lows m variables τ1, . . . , τm to be found as functions of
τm+1, . . . , τm+n in the vicinity of τ0. In other words, one
can assert that the system fi(τ) = 0, i = 1, . . . , m, yields m
conditions on m + n variables τ provided that J �= 0. When
J = 0, the solutions does not need to exist for τ �= τ0, so one
cannot make a definite conclusion regarding the actual number
of conditions.

In what follows, we will write the boundary conditions in
terms of five component vectors

Sα =
(

Vα

�α

)
, Sv =

⎛
⎝ 0

−iε0k
1

⎞
⎠. (8)

The vectors Sα , α �= v, are formed of the components of
vectors ζζζ α . The components of these vectors have the same
meaning as those of the vector ξξξ (3) but we use somewhat
different notation,

ζζζ α =
(

Uα

Vα

)
, Uα =

(
Aα

�α

)
, Vα =

(
Lα

Dα

)
. (9)

The vector Sv characterizes the mode ϕv (r, t ). Its first three
components (traction) 0 are zeros, the fourth component is
the z component of the electric displacement produced at
z = 0 by unit potential (fifth component) times the imaginary
unity. Introducing Sv we take into account the definition of Dα

in (9).
The symbols τ = τ1, . . . , τn and τ0 = τ1,0, . . . , τn,0 will

denote, respectively, the set of parameters specifying the con-
ditions of wave propagation and a root of the system of
equations under consideration. By parameters we mean fre-
quency, wave number k, orientation angles, etc.

IV. BIC-SAWS AND LEAKY SAWS

In a frequency interval where n pairs of B modes exist
a leaky SAW (pseudo-SAW or else quasi-BIC-SAW) may
involve n modes carrying the energy towards the interior
of the substrate, i.e., n modes labeled by the subscripts rm,
m = 1, . . . , n, and 4 − n D modes. Correspondingly, this wave
is sought for in the phononic crystal as a linear combination

ξξξ lsaw(z) =
4−n∑
α=1

dαξξξα (z) +
n∑

m=1

drmξξξ rm (z) (10)

of partial modes ξξξβ (z) = M̂z(z)ζζζ β (cf: (7)). The coefficients
dβ are determined from the boundary conditions on the exter-
nal surface which yield the equality

4−n∑
α=1

dαSα +
n∑

m=1

drm Srm = dvSv, (11)

where at least one of drm , m = 1, . . . , n, does not vanish.
At first glance, it is natural to analyze the existence of BIC-

SAWs starting from the dispersion equation for leaky SAWs.
However this way does not yield results. As an example, we
consider BIC-SAW1s.

In the presence of one pair of B modes, (11) reduces to

3∑
α=1

dαSα + dr1 Sr1 = dvSv, dr1 �= 0, (12)

and a leaky SAW turns into a BIC-SAW1 if dr1 = 0, i.e., if the
B-mode is excluded. By combining the fourth and fifth lines
in (12) we write this equality in the form ẐrεU = 0, where
U = ∑3

α=1 bαUα + br1 Ur1 ,

Ẑrε = Ẑr − ε0kÎ′′. (13)
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In (13), Ẑr is the 4×4 matrix which expresses the vectors
Vα in terms of Uα , α = r1, 1, 2, 3, namely, Vα = −iẐrUα , so
Ẑr = iV̂Û−1, where Û and V̂ are 4×4 matrices of which the
columns are the vectors Uα and Vα , α = r1, 1, 2, 3, respec-
tively, and Û−1 is the inverse matrix Û. The 4×4 matrix Î′′
has the single nonzero element I ′′

44 = 1.
Solutions of (12) occur at frequencies fulfilling the equa-

tion det Ẑrε = 0. By taking into account (8) and (9), det Ẑrε

can be cast into the form

det Ẑrε = det B̂ε

det Û
, B̂ε = Sr1123v. (14)

Here and below the symbol Si jklm stands for the 5×5 matrix
of which the columns are the vectors Sα , α = i, j, k, l, m,
ordered in accordance with the order of subscripts in Si jklm,
e.g., Sr1 and S1 are the first and second columns, respectively,
of Sr1123v .

In the presence of B modes, Ẑrε is a non-Hermitian ma-
trix, so det Ẑrε is a complex valued function and usually
det Ẑrε = 0 has complex roots ωc = ω − iω′ specifying leaky
SAW frequencies. When the root is purely real, i.e., ω′ = 0
and hence there are no losses, one obtains a BIC-SAW, since
if (12) holds true for purely real frequencies then from the law
of the energy conservation it follows that dr1 = 0. [Formally
dr1 = 0 at ω′ = 0 can be proved by using (A6)–(A9).]

The purely real parameters determining the existence of
BIC-SAW1s have to satisfy the system of two equations

Re(det Ẑrε ) = Im(det Ẑrε ) = 0 (15)

but its Jacobian necessarily vanishes since by (B5)

∂ det Ẑrε

∂τ j
= aQj, j = 1, 2, . . . , (16)

where Qj is a purely real quantity and the factor a is the
same for all the derivatives, so the rows of the Jacobian are
linearly dependent. Hence we cannot establish the number of
conditions for the existence of BIC-SAW1s. The same is valid
for BIC-SAW2s and BIC-SAW3s.

Note that (15) is equivalent to the equality ω′ = 0. Since
ω′(τ) cannot change sign, it is unclear if in the general case
ω′ = 0 only at secluded points τ0 or there is a continuous set
of points at which ω′ = 0. The results obtained below reveal
that ω′ vanishes on continuous subsets of the parameter set τ.

V. BIC-SAWS IN THE CASE OF GENERIC
CRYSTALLOGRAPHIC SYMMETRY

A suitable system of equations may be derived as follows.
Let a linear combination involving n pairs of B modes and
4 − n D modes be such that for each of the pairs of B modes
the amplitudes of the modes rm and im, m = 1, . . . , n, are
equal. This linear combination satisfies the boundary condi-
tions when

4−n∑
α=1

bαSα +
n∑

m=1

bqm Sqm = dvSv, (17)

where Sqm = Sim + Srm [cf. (11)]. By combining the fourth and
fifth rows we bring (17) into the form

ẐqεU = 0, Ẑqε = Ẑq − ε0kÎ′′, (18)

where U = ∑4−n
α=1 bαUα + ∑n

m=1 bqm Uqm , Uqm = Uim + Urm .
The matrix Ẑq is defined by the relations Vα = −iẐqUα, α =
q1, 1, 2, 3, or α = q1, q2, 1, 2, or α = q1, q2, q3, 1, and Vqm =
Vim + Vrm . Hence Ẑq = iV̂Û−1, where Û and V̂ are the 4×4
matrices of which the columns ar the vectors Uα and Vα ,
labelled by the above subscripts.

Further, we introduce the vector

ζζζ s ≡
(

Us

Vs

)
=

4−n∑
α=1

bαζζζ α +
n∑

m=1

bqmζζζ qm , (19)

where ζζζ qm = ζζζ im + ζζζ rm . By virtue of (A6)–(A9) for arbitrary
values of bα and bqm ,

ζζζ †
s T̂ζζζ s = U†

s Vs + V†
s Us = iU†

s (Ẑ†
q − Ẑq)Us = 0, (20)

wherefrom it follows that Ẑq and hence Ẑqε are Hermitian
matrices because Us is an arbitrary vector [cf. Ẑrε (13)].
Therefore det Ẑqε is a purely real function, so (17) holds true
if the single condition det Ẑqε = 0 is satisfied. A BIC-SAWn
(n = 1, 2, 3) exists provided that all the coefficients bqm , m =
1, . . . , n, vanish. In the general case, bqm ’s are complex valued
functions.

A. BIC-SAW1

In (17) n = 1, so the variables τ j , j = 1, 2, . . . , have to
fulfill three equalities:

det Ẑqε = 0, Re(bq1 ) = 0, Im(bq1 ) = 0. (21)

Let us write det Ẑqε and bq1 in the form

det Ẑqε = det B̂qε

det Û
, B̂qε = Sq1123v,

bq1 = 1

2
det B̂∗

q, B̂q = Sq112vq′
1
. (22)

B̂∗
q is the complex conjugate matrix B̂q of which the last

columns is Sq′
1
= Si1 − Sr1 . The expression of det Ẑqε follows

from the definition of Ẑqε and of the vectors Uα , Vα , and Sα .
To derive expression (22) for bq1 we insert Si1 = (Sq1 + Sq′

1
)/2

and Sr1 = (Sq1 − Sq′
1
)/2 in (B1) and multiply the resulting

identity from the right by the vector S with components
Si = εi jklmS∗

q1, jS
∗
1,kS∗

2,l S
∗
v,m. This yields

3∑
α=1

bαSα + b7S7 + bq1 Sq1 = dvSv, (23)

where bq1 is given by (22),

bα = det B̂∗
α, B̂α = Sq112vβ, α = 1, 2, 3,

b7 = − det B̂∗
qε, dv = −det B̂v

2iε0k
, B̂v = Sq112vv∗ , (24)

the last column in B̂α , α = 1, 2, 3, is the vector Sβ , β =
α + 4, and v∗ in Sq112vv∗ means that the last column is S∗

v .
If det Ẑqε = 0 then, due to the expression of det Ẑqε given
in (22), b7 = 0 and (23) reduces to (17) with m = 1. [In
deriving the above expressions it was assumed that S �= 0.
The vector S vanishes when the four five component vectors
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Sα , α = q1, 1, 2, v, are linearly dependent. This may happen
at certain particular values of parameters rather than in the
general case.]

Suppose that system (21) has a root τ0. The derivatives of
det Ẑqε and bq1 at τ0 are given in Appendix C. They are cal-
culated in a way similar to that described in Appendix B. The
Jacobian Jτ1τ2τ3 of (21) is constructed from these derivatives
with respect to three variables τ1, τ2 and τ3. Our examination
of Jτ1τ2τ3 did not reveal any fundamental reason why Jτ1τ2τ3

must be equal to zero, such as rows or columns being always
linearly dependent or all elements of a row or a column being
necessarily zero [cf. Jτ1τ2 of (15)]. Hence we can conclude
that Jτ1τ2τ2 does not vanish unless some additional conditions
are imposed, e.g., on material constants. Correspondingly, the
implicit function theorem allows us to conclude that in the
general case three conditions has to be fulfilled for a BIC-
SAW1 to occur, so, when searching for BIC-SAW1s, one has
to have three free parameters which will be found as functions
of a fourth one. This conclusion is supported by computations
presented in Sec. VII. They confirm that Jτ1τ2τ3 �= 0. With
Jτ1τ2τ3 �= 0, the system of equations (21) is solvable in the
vicinity of point τ0 and determines three functions τi(τ4),
i = 1, 2, 3, specifying branches of BIC-SAW1s.

B. BIC-SAW2 and BIC-SAW3

In the case of BIC-SAW2, we have five equations,

det Ẑqε = 0, Re(bqm ) = 0, Im(bqm ) = 0, (25)

where m = 1, 2,

det Ẑqε = det B̂qε

det Û
, bqm = 1

2
det B̂∗

qm,

B̂qε = Sq1q212v, B̂qm = Sq1q21vq′
m
, m = 1, 2, (26)

the last column of B̂qm is Sq′
m

= Sim − Srm . Expressions (26)
are derived similarly to (B3) and (22).

Suppose that five equalities (25) holds true at the point
τ0. The Jacobian Jτ1...τ5 is constructed from the derivatives of
det Ẑqε and bqm with respect to five variables τ j , j = 1, . . . , 5.
These derivatives are given in Appendix C. The examination
of Jτ1...τ5 reveals that Jτ1...τ5 , similar to Jτ1τ2τ3 , does not van-
ishes unless some additional special conditions are obeyed.
Therefore, by the implicit function theorem in the general case
five conditions have to be satisfied for a BIC-SAW2 to exist.
Numerical computations confirm this fact (Sec. VII).

As applied to BIC-SAW3, system (25) involves seven
equations (m = 1, 2, 3) and by referring to the implicit func-
tion theorem we deduce that generally seven conditions must
be fulfilled for a BIC-SAW3 to emerge. However, we cannot
confirm this conclusion by numerical computations (see the
discussion in Sec. VIII).

VI. CRYSTALLOGRAPHIC SYMMETRY

The crystallographic symmetry may reduce the number of
conditions for the existence of BIC-SAWs. Assume that either
all the layers have the plane of symmetry (“P”) or all the layers
have the two-fold symmetry axis (“2”). In addition, let all the
layers be oriented identically in such a way that the vectors
n and m, which specify the geometry of propagation of wave

(1), are oriented in accordance with one of the following four
options.

(1) n⊥P, (2) n‖2, (3) m⊥P, and (4) m‖2. (27)

It is worth noting that for these orientations, excluding orienta-
tions fulfilling additional conditions, the D and B modes have
all the components of the mechanical displacement and trac-
tion and are piezoactive. Therefore the boundary conditions
on the external surface mix the D and B modes, so, despite
the symmetry, it is not obvious that BIC-SAWs can arise in
these cases.

When the structure assumes orientations (27), the eigen-
vectors of the transfer matrix possess specific properties, see
(D6)–(D8). From (D6) and the equality K̂2 = 1 it follows that
ζζζ ∗

qn
= K̂ζζζ qn and ζζζ ∗

q′
n
= −K̂ζζζ q′

n
, where ζζζ q′

n
= ζζζ in − ζζζ rn . There-

fore, in view of (D3) and (D4),

S∗
qn

= �̂sSqn , S∗
q′

n
= −�̂sSq′

n
, �̂s =

(
�̂ 0̂′

0̂′t −1

)
, (28)

where �̂s is a 5×5 matrix, �̂ is the 4×4 matrix (D3) and the
symbol 0̂′ stands for the 4×1 column of zeros. The S-vectors
of D modes obey the relations

S∗
β = �̂sSα, (29)

where the modes α and β correspond to the complex conju-
gate eigenvalues γ ∗

α = γβ . If γα is purely real then α and β

label the same mode, i.e., β = α in (29).
Substituting (28) and (29) in the matrix B̂∗

q (22) yields

bq1 = ± 1
2 det(�̂sB̂q) = ∓ 1

2 det B̂q = ∓b∗
q1

, (30)

the sign ± indicates that the insertion of (29) can change the
sequence of columns in the matrix.

Thus bq1 is either a purely real or purely imaginary function
and hence two equations, rather than three (21), condition the
existence of BIC-SAW1s,

det Ẑqε = 0, bq1 = 0. (31)

By analogy, equations (25) simplify to

det Ẑqε = 0, bqm = 0, m = 1, 2, or m = 1, 2, 3, (32)

where bqm are either purely real or purely imaginary functions,
that is, the number of equations for BIC-SAW2 and BIC-
SAW3 turns out to be three and four rather than, respectively,
five and seven as it is in the case of arbitrary geometry of
propagation.

We find that the Jacobians of (31) and (32) generally does
not equal zero, so by referring to the implicit function theorem
we conclude that two, three and five conditions must be met,
respectively, for the existence of BIC-SAW1s, BIC-SAW2s,
and BIC-SAW3s with orientations (27).

VII. NUMERICAL EXAMPLES

This section presents the results of numerical computations
confirming our conclusions regarding BIC-SAWs. Namely,
there are two and three conditions for the existence of a
BIC-SAW1 at orientations (27) and in the general case,
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respectively. There are three and five conditions for the ex-
istence of a BIC-SAW2 at orientations (27) and in the general
case, respectively.

It turns out that the equations derived in the previous sec-
tions allow the establishment of the number of conditions for
the existence of BIC-SAWs but they are not convenient for
numerical search of BIC-SAW branches. An alternative way
is to search for BIC-SAWs via searching for leaky SAWs with
vanishing imaginary part ω′, i.e., via equations

det Ẑrε = 0, ω′ = 0. (33)

This way proves to be technically convenient.
The impedance Ẑrε for BIC-SAW1s is given in (13). In the

case of BIC-SAW2s Ẑrε reads similarly but the impedance Ẑr

is expressed in terms of the matrices Û and V̂ of which the
columns are the vectors Uα and Vα , α = r1, r2, 1, 2, where
the indices r1 and r2 label two reflected B modes.

Since ω′ is of definite sign, solving (33) implies finding
complex roots ωc = ω − iω′ of det Ẑrε = 0 and searching for
global minima ω′ = 0 by varying an appropriate number of
parameters. The required number of variable parameters has
been established in Secs. V and VI.

We always check that found SAWs are in fact BIC-SAWs.
The point is that solutions of (33) may converge to SAWs in
the domain where B modes are absent. Note that in certain
cases it is worth using the solution of equations from Sec. IV
or V found in the linear approximation as the initial guess
point for equations (33) when computing BIC-SAW branches
in the vicinity of a known solution in order to improve the
convergence of minimization. [The linear approximation for
equations (33) does not exist because of the quadratic depen-
dence of ω′ on parameters in the neighborhood of ω′ = 0.]

A. BIC-SAW1

We consider a 1D phononic crystals formed of alternating
GaSb and InAs layers. It is supposed that the structure is
grown in the [001] direction of GaSb and InAs single crys-
tals of which the symmetry group is 43m. Correspondingly
the layers are piezoelectrics, the boundary is the (001) plane
and the normal n is parallel to the rotation-inversion axis 4.
Therefore the geometry of propagation corresponds to case 2
in (27) because the axis 4 includes the axis 2. We denote by
GaSb/InAs and InAs/GaSb a half-infinite phononic crystal
where the exterior layer is GaSb and InAs, respectively, and
assume that the GaSb and InAs layers are of equal thickness
h. The material constants are taken from site [47].

We will search for BIC-SAW1s by solving equations (33).
In accordance with Sec. V, the complex frequency ωc is to
be found from the first equation as a function of one variable
parameters in parallel with minimizing ω′ by varying this
parameter.

Let us vary the angle α which specifies the propagation
direction on the surface and is counted off of the [100] direc-
tion. By solving the fist equation in (33) we find leaky SAWs.
Figure 2 shows the leaky SAW branches (curves I and II)
on InAs/GaSb and GaSb/InAs in a zone where a pair of B
modes exists. Curves I and II represent the dependence of the
dimensionless parameter ωH/v0 on the angle α for kH = 2,

FIG. 2. Branches of leaky waves in InAs/GaSb (curve I) and
GaSb/InAs (curve II) on the (001) surface for kH = 2. The right-
hand border is α = 45◦. Circles on curves I and II mark BIC-SAW1s.
Digits 1,2,3 label domains where 1,2,3 pairs of B modes exist,
respectively. At each point (α, ωH/v0 ) all the B modes have the
frequency ω and wave number k = 2/H . There is no B modes in
the blank domain.

where ω is the real part of the leaky wave frequency, H = 2h
is the period and the velocity v0 is put equal to 3330 m/s.

The imaginary part of the leaky SAW frequency vanishes
for the angles α ≈ 18.307◦ and α ≈ 37.712◦ in GaSb/InAs
as well as for the angle α ≈ 30.963◦ in InAs/GaSb (ω′/ω <

10−15, see Fig. 3). Hence at these angles the leaky SAW turns
into the BIC-SAW1 since, as it has already been mentioned
in Sec. IV, ω′ = 0 implies that the boundary conditions are
fulfilled by a linear combination involving only D modes. The
dependence of the amplitude of the BIC-SAW1, which arises
at α ≈ 18.307◦, on the distance from the external surface of
the phononic crystal is depicted in Fig. 4.

Two circles at the edge α = 45◦ of Fig. 2 mark two
BIC-SAW1s which can be called symmetry protected. In

18.2 18.25 18.3 18.35 18.4 18.45 18.5
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

α  (degrees)

ω
’/ω

FIG. 3. Imaginary part ω′ of the leaky wave frequency in
the neighborhood of the angle α = 18.307◦ vs α at kH = 2 in
GaSb/InAs.
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FIG. 4. Amplitude |A| = √
A†A of mechanical displacements A

of the BIC-SAW1 existing for α = 18.307◦ in GaSb/InAs vs the
normalized distance z/H from the surface, where H is the period.
Small ripples are due to changes of the wave field inside layers.

this case the sagittal plane is the plane of symmetry of the
structure. Within domain 1 in this plane all the D modes
prove to be sagittaly polarized and piezoactive whereas the
B modes are shear horizontally polarized and nonpiezoactive,
so the boundary conditions just cannot mix D modes and B
modes. Note that the D modes forming BIC-SAW1s at α �=
45◦ as well as the B modes in domain 1 for α �= 0◦, 45◦ are
piezoactive and have all the three components of mechanical
displacement and traction.

Calculations reveal that the Jacobian of equations (31) with
respect to ω and α does not vanish at the point of the existence
of BIC-SAW1 found for α ≈ 18.307◦, so a BIC-SAW1 branch
may be found in the form of the dependence of ω and α on
a third parameter. Figure 5 shows ω(k) and α(k) computed
by (33) and ω′ is minimized by varying α for a given k.
Note that the same dependences calculated through the linear

FIG. 5. The BIC-SAW1 branch in GaSb/InAs on the (001) sur-
face in the neighborhood of the angle α = 18.307 . . .◦ The wave
number k changes in the vicinity of the value 2/H . The angle α and
the value of ωH/v0 are shown as functions of kH .
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FIG. 6. The BIC-SAW1 branch in GaSb/InAs near the SAW
existence point (15.667◦, 10.081◦, 6◦), kH = 2 and ωH/v0 = 1.671.
The β dependencies of α and kH are computed for γ = 6◦.

approximation of equations (31) differ hardly from lines in
Fig. 5.

Let us consider the case of generic orientations of layers.
As the initial orientation, we take the one where the vectors n
and m are along the [001] and [100] directions, respectively,
i.e., along the Z and X axes. The orientation of each layer is
characterized by three angles α, β, and γ which specify three
consequential rotations about the axes Z , the new X , and the
new Y , respectively. However, in the cases considered in this
section the orientation of all the layers changes identically.

In particular, the BIC-SAW1 existing on the (001) plane of
the GaSb/InAs phononic crystal at the angle α ≈ 18.307◦ and
kH = 2 (see Fig. 2) gives rise to the BIC-SAW1 branch. Note
that the Jacobian Jω,kH,α of Eqs. (21) with respect to ω, kH and
α vanishes for symmetric orientations of the type (α, 0, 0). At
the same time, the Jacobian with respect to ω and the angles
α and β is not zero. Therefore one may calculate the BIC-
SAW1 branch in the form of the dependencies of ω, α and β

on the angle γ for a fixed kH = 2 by solving equations (33)
and minimizing ω′ by varying α and β. When searching for
BIC-SAW1s, the orientation was changed as follows. First the
rotation was performed about the axis Z at the angle α, then
about the new axis X at the angle β and finally about the new
axis Y at the fixed angle γ .

With β, γ �= 0, the Jacobian Jω,kH,α of equations (21) does
not vanish. Accordingly, having fixed, for instance, the angle
γ , it is now convenient to search for ω, kH and α as functions
of the angle β. An example of such dependencies calculated
by equations (33) are shown in Figs. 6 and 7. The same lines
may be calculated via linear approximation of equations (21).
The lines ω(β ) and kH (β ) obtained by these two methods
almost merge. The lines α(β ) are slightly different, see Fig. 7.

B. BIC-SAW2

Since our aim is to confirm conclusions of Secs. V and VI
regarding BIC-SAW2s, we may use InAs and a fictitious ma-
terial, modified GaSb (m-GaSb), in which the elastic moduli
c44 and c66 of GaSb are replaced by c44 = c66 = 47.5 GPa.
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FIG. 7. Angle α vs angle β computed by equations (33), line 1,
and by linear approximation of equations (21), line 2, for γ = 6◦.

The symmetry of m-GaSb is 222 with axes twofold symmetry
axes along [100], [010], and [001] directions.

First assume that all the layers are oriented likely, [100]
and [001] directions are along the axes X and Z , respectively,
the axis Z is the normal to the surface. Since a change of c44

and c66 does not affect the spectrum of modes propagating
and polarized in the plane XZ, in the InAs/m-GaSb phononic
crystal, like in the InAs/GaSb one, in the interval of ωH/v0

from 1.61 to 1.77 there are four sagittally polarized B modes,
see the spectrum in Fig. 2 for α = 0. Around the X axis there
is a zone with four B modes. It is similar to the left-most
zone 2 adjusted to the X direction (α = 0) in Fig. 2. At
the same time, in contrast to InAs/GaSb, in InAs/m-GaSb
a shear horizontally (SH) polarized piezoactive SAW emerges
at ωH/v0 = 1.685 along the axis X . Such a BIC-SAW2 exist
thanks to the separation of the modes propagating in the plane
perpendicular to the axis 2 into sagittally polarized modes and
SH-polarized modes. (In the XZ plane, i.e., for α = 0, the
moduli c44 and c66 affect only SH modes.)

This symmetry protected SH BIC-SAW2 helps us to find
branches of BIC-SAW2s for one of the types of orienta-
tions (27), n‖2, and for general orientations in a phononic
crystal with unit cell containing four layers InAs1/m-
GaSb2/InAs3/m-GaSb4 of equal thickness. The superscript i
numbers layers, the orientation of the ith layer is described
by the angles (αi, βi, γi ) which specify the consequential
rotations about the axis Z , new axis X , and new axis Y ,
respectively.

Let βi = γi = 0 and i = 1, . . . , 4. With αi �= 0, i.e., at rota-
tion about the axis Z ‖n‖2, the geometry of propagation is of
the type n‖2. The SH BIC-SAW2 turns into the leaky SAW
when, e.g., α1 �= 0. According to Sec. VI, in the case n‖2
the existence of BIC-SAW2s constraints three parameters, in
particular, ω, α2 and α3, which may be found as functions of
the angle α1 via Eqs. (33) and minimization of ω′ by varying
α2 and α3, see Figs. 8 and 9. The quadratic dependence of
ω on α1 is related to the symmetry of acoustic properties
with respect to the plane XZ which is perpendicular to the

FIG. 8. Angles α2 and α3 specifying the BIC-SAW2 branch vs
angle α1 (angle α4 equals zero). The orientation is of the type n‖2,
kH = 2 and H is the sum of the thickness of only two layers.

symmetry axis 2, so the equivalence of the cases ±α1 results
in ω(α1) = ω(−α1) and α2,3(α1) = −α2,3(−α1).

Let now αi = βi = 0, i = 1, . . . , 4, γ1 = γ3 = 8◦, and
γ2 = γ4 = −8◦. The SH BIC-SAW2 still exists in the plane
XZ which remains perpendicular to the axis 2 (if |γi| > 12◦
then the SH SAW falls into an interval with two B modes,
thereby becoming SH BIC-SAW1). When α1 �= 0, the ge-
ometry of propagation proves to be of the general type and,
according to Sec. V, five conditions have to be fulfilled for a
BIC-SAW2 to exist. We chose ω, αi and βi, i = 2, 3, as the
parameters to be determined for a given α1 and, when solving
equations (33), we minimize ω′ by varying four angles, αi

and βi, i = 2, 3, with α4 = β4 = 0. The BIC-SAW2 branch
obtained in the form of the dependence of ω, αi and βi,
i = 2, 3, on α1 is shown in Figs. 9–11.

0 0.5 1 1.5 2
1.674

1.676

1.678

1.68

1.682

1.684

1.686

α
1
  (degrees)

ω
H

/v
0

 

 

1
2

FIG. 9. BIC-SAW2 frequency vs angle α1 for kH = 2, where H
is the sum of the thickness of two layers. Curve 1 - BIC-SAW2 for
orientation n‖2 and angle α4 = 0. Curve 2 - BIC-SAW2 for general
orientations.
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FIG. 10. Angles α2 and α3 specifying the BIC-SAW2 branch vs
angle α1. The orientation is of general type, kH = 2 and H is the sum
of the thickness of only two layers.

VIII. CONCLUDING REMARKS

In this paper, the equations governing the existence of
BIC-SAWs in piezoelectric 1D phononic crystals have been
derived in the form which has allowed us to establish
the number of conditions securing the occurrence of such
SAWs. Numerical computations validate the conclusions
drawn from analytic considerations. The computed branches
of BIC-SAW1 and BIC-SAW2 are depicted in Figs. 5–7 and
Figs. 8–11, respectively.

BIC-SAWs are robust only under consistent changes of
parameters, unlike SAWs in frequency interval forbidden for
B modes, i.e., for delocalized freely propagating Bloch modes.
Indeed, the surface impedance in forbidden intervals proves
to be a Hermitian matrix [37,38], so SAW frequencies obey
a single purely real dispersion which allows one to determine
the frequency as a continuous function of all the parameters

FIG. 11. Angles β2 and β3 specifying the BIC-SAW2 branch vs
angle α1. The orientation is of general type, kH = 2 and H is the sum
of the thickness of only two layers.

specifying the problem. Therefore an arbitrary variation of
parameters merely changes the frequency. On the contrary,
according to Secs. V–VII the existence of BIC-SAWs is gov-
erned by a set of equations. In consequence, when solving the
BIC-SAW problem, one finds not only the frequency but also
a number of parameters as functions of the other parameters,
so not all the parameters specifying the BIC-SAW propagation
can be varied arbitrarily.

The number of conditions for the existence of BIC-SAWs
depends on the number of B modes in a given frequency
interval. In the presence of one pair of B modes, a BIC-
SAW1 emerges provided that the parameters of the problem
satisfy three equalities. In other words, in the general case
a BIC-SAW1 is determined not only by the frequency but
also by two more parameters, such as the wave number and
one orientation angle specifying the geometry of propagation.
The crystallographic symmetry may decrease the number of
conditions to two.

The occurrence of BIC-SAW2s in the intervals where two
pairs of B modes exist is more severely conditioned, since the
number of decaying modes, which might form such SAWs,
decreases. Five equations have to be solved to find five pa-
rameters, including frequency, for which BIC-SAW2s exist.
Owing to the crystallographic symmetry the number of equa-
tions may be reduced to three.

Note that in nonpiezoelectric materials the partial solutions
of system (2) split into six solutions associated with elastic
modes with vanishing components corresponding to the po-
tential and electric displacement and two solutions associated
with purely electrostatic modes in which the displacement
and traction components vanish. This splitting entails the
similar splitting of the eigenvectors of the transfer matrix
into two independent groups consisting of six eigenvectors
and two eigenvectors. As a result, in accordance with defi-
nitions of vectors (8) and (9), matrices split into 3×3 diagonal
blocks relevant to the SAW problem and 2×2 or 1×1 diag-
onal blocks formed of potentials and electric displacements
of electrostatic modes which are irrelevant to the problem
under consideration. For instance, this fact can be deduced
from (22)–(24) assuming that with vanishing piezoeffect the
modes α = 1, 5 go to electrostatic modes and hence the first
three components of the vectors S1,5 and U1,5 equal zero
in this limit. Thus, the method used in the present paper
allows the reproduction of the results for BIC-SAWs in non-
piezoelectric phononic crystals obtained in [44] by a different
method.

Comparison with results obtained in Ref. [44] reveals that
the piezoelectric effect does not entail additional conditions
for the existence of BIC-SAW1s and BIC-SAW2s. In non-
piezoelectric media BIC-SAW3s cannot emerge because there
is no mode to form a surface wave if there are three pairs
of bulk modes. In piezoelectrics an extra acoustoelectric lo-
calized mode exists, so in principle a BIC-SAW3 is allowed.
However its appearance looks to be an exceptional case not
only because of the large number of constraints (seven and
four in the general case and for certain symmetric orientations,
respectively) but also because the piezoelectric effect must
be very strong. Anyway we could not find an example of
BIC-SAW3.

055003-9



A. N. DARINSKII PHYSICAL REVIEW E 108, 055003 (2023)

ACKNOWLEDGMENT

The author thanks V.I. Alshits for helpful discussions. This
work was performed within the State Assignment of FSRC
“Crystallography and Photonics” RAS.

APPENDIX A

According to Refs. [26,31],

N̂ = −
(

N̂11 N̂12

N̂21 N̂t
11

)
, (A1)

where

N̂11 = k(nn)−1(nm), N̂12 = (nn)−1,

N̂21 = k2[(mn)(nn)−1(nm) − (mm)] + ρω2Î′, (A2)

are the 4×4 matrices built from 4×4 matrices (ab) of which
elements are contractions of the three-component vectors
a, b = n or m with the material tensors of the medium,
namely, (ab)IJ = akEkIJlbl , I, J = 1, . . . , 4, where EkIJl =
cE

kIJl , I, J = 1, 2, 3, Ek4Jl = ekJl , J = 1, 2, 3, EkI4l = elIk ,
I = 1, 2, 3, and Ek44l = −εS

kl . The symbol Î′ denotes the 4×4
matrix with three unit elements I ′

ii = 1, i = 1, 2, 3, the other
ones being zero.

Due to (3) the lossless condition divP = 0 yields

Pz = −ξξξ †T̂ξξξ/4 = const, (A3)

where Pz is the z component of the time averaged energy flux
P, the symbol † stands for Hermitian conjugation,

T̂ =
(

0̂ Î
Î 0̂

)
, (A4)

is a 4×4 matrix formed of the zero and identity 4×4 matrices
0̂ and Î. From (2) and (A3), it follows that (T̂N̂)† = T̂N̂. The
same equality also follows from the explicit expression of the
matrix N̂.

The transfer matrix M̂ (6) satisfies the identity

M̂−1 = T̂M̂†T̂, (A5)

which follows from the relation (T̂N̂)† = T̂N̂. Due to (A5)
the eigensolutions (γα,ζζζ α ), α = 1, . . . , 8 of the eigenvalue
problem for the matrix M̂ occur in pairs of two types [38,48].
The first one is a pair of eigenvalues γα and γα+4 such that
γα+4 = 1/γ ∗

α , |γα| �= 1, and then the eigenvectors ζζζ α and ζζζ α+4

are orthogonal to the other six eigenvectors in the sense

ζζζ
†
βT̂ζζζ α = ζζζ

†
βT̂ζζζ α+4 = 0, β �= α, α + 4, (A6)

but ζζζ
†
α+4T̂ζζζ α �= 0, so one can put

ζζζ
†
α+4T̂ζζζ α = 1. (A7)

The second type of eigenvalues is γα = eiθα and γα+4 =
eiθα+4 , where θα and θα+4 are purely real phases, so this pair
corresponds to a pair of B modes. In this case, owing to (A5)

ζζζ
†
βT̂ζζζ α = ζζζ †

νT̂ζζζ α+4 = 0, β �= α, ν �= α + 4, (A8)

but ζζζ †
αT̂ζζζ α �= 0 and ζζζ

†
α+4T̂ζζζ α+4 �= 0. In view of (A3) we can

put

ζζζ
†
in

T̂ζζζ in = 1, ζζζ †
rn

T̂ζζζ rn = −1. (A9)

Thus due to (A6)–(A9) the completeness relation of the eigen-
vectors of M̂ in the interval, where m pairs of B modes exist,
reads as follows:

4−m∑
α=1

(ζζζ α ⊗ T̂ζζζ ∗
α+4 + ζζζ α+4 ⊗ T̂ζζζ ∗

α )

+
m∑

n=1

(ζζζ in ⊗ T̂ζζζ ∗
in − ζζζ rn ⊗ T̂ζζζ ∗

rn
) =

(
Î 0̂
0̂ Î

)
, (A10)

where the symbols ⊗ and ∗ denote the dyadic multiplication
and complex conjugation.

APPENDIX B

Let us prove (16). Suppose that (15) has a root τ0. First, we
derive expressions of the amplitudes dα , α = 1, 2, 3, v, of the
partial modes forming the BIC-SAW1. Due to definitions (8)
and (9) from (A10) it follows that

3∑
α=1

(Sα ⊗ S∗
α+4 + Sα+4 ⊗ S∗

α ) + Si1 ⊗ S∗
i1

− Sr1 ⊗ S∗
r1

= 1

2iε0k
(S∗

v ⊗ S∗
v − Sv ⊗ Sv ). (B1)

Multiply (B1) from the right by the vector S with com-
ponents Si = εi jklmS∗

r1, jS
∗
2,kS∗

3,l S
∗
v,m, i, j, k, l, m = 1, . . . , 5,

where εi jklm is the 5×5 antisymmetric tensor, ε12345 = 1, Sa,i

is the ith component of Sa. We obtain

3∑
α=1

dαSα + d5S5 + di1 Si1 = dvSv, (B2)

where

dα = det B̂∗
α, B̂α = Sr123vβ, β = α + 4,

α = 1, 2, 3, d5 = − det B̂∗
ε , di = det B̂∗

i , (B3)

B̂i = Sr123vi1 , dv = −det B̂∗
v

2iε0k
, B̂v = Sr123vv∗ ,

B̂∗
j is the complex conjugate matrix B̂ j , the subscript v∗ in

Sr123vv∗ indicates that the last column is S∗
v and B̂ε is defined

in (14).
When det Ẑrε = 0, and hence d5 = 0, for purely real pa-

rameters, di1 also vanishes because di1 �= 0 would contradict
the law of energy conservation. Therefore dα , α = 1, 2, 3, and
dv (B3) at τ0 are the amplitudes of D modes and of the mode
ϕv (r, t ) which together form the BIC-SAW1.

Now let us calculate ∂ det Ẑrε/∂τ j . In view of (14)
det B̂ε = 0 at the point τ0, so it is required to calculate
∂ det B̂ε/∂τ j which are obtained by replacing consequently
the column Sα in B̂qε by ∂Sα/∂τ j . Due to (A6)–(A9), the latter
can be represented as a linear combination of S-vectors,

∂Sα

∂τ j
=

3∑
β=1

(
ζζζ

†
βT̂

∂ζζζ α

∂τ j

)
Sβ+4 + · · · . (B4)

After the substitution of (B4), and of ∂Sv/∂k = (Sv − S∗
v )/2k

when τ j stands for the wave number k, some of the deter-
minants entering ∂ det B̂ε/∂τ j vanish because of the linear

055003-10



SURFACE ACOUSTIC WAVES IN THE CONTINUOUS … PHYSICAL REVIEW E 108, 055003 (2023)

dependence of their columns. The result can be cast into the
form

∂ det Ẑrε

∂τ j
= iQ j

d1 det Û
, (B5)

where

Qj = i
3∑

α=1

3∑
β=1

(
ζζζ †

αT̂
∂ζζζ β

∂τ j

)
d∗

αdβ − ε0|dv|2

= i

(
ζζζ

†
DT̂

∂ζζζ D

∂τ j

)
− ε0|dv|2. (B6)

The term ε0|dv|2 enters (B6) if τ j ≡ k, dα’s and dv are given by
(B3) and ζζζ D = ∑3

α=1 dαζζζ α . We have also taken into account
that due to (A6)

∑3
α=1

∂dα

∂τ j
(ζζζ †

DT̂ζζζ α ) = 0.

Due to (A6) ζζζ
†
DT̂ζζζ D = 0 for arbitrary purely real variables.

In consequence the product ζζζ
†
DT̂ ∂ζζζ D

∂τ j
is purely imaginary, so

Qj is a purely real quantity.

APPENDIX C

The derivatives of det Ẑqε and bq1 (22) at τ0 can be cast into
the form

∂ det Ẑqε

∂τ j
= iQ j

b3 det Û
,

∂bq1

∂τ j
= 1

2g∗
q′

1

(
∂ζζζ

†
G

∂τ j
T̂ζζζ B

)
, (C1)

where

Qj = i
3∑

α=1

3∑
β=1

(
ζζζ †

αT̂
∂ζζζ β

∂τ j

)
b∗

αbβ = i

(
ζζζ

†
BT̂

∂ζζζ B

∂τ

)
, (C2)

ζζζ B =
3∑

α=1

bαζζζ α, ζζζ G =
∑

α=1,2,q1,q′
1

gαζζζ α, (C3)

bα’s are given by (24) gα = det Ĝ∗
α , Ĝα = S712vβ, α = 1, 2,

and Ĝα = S712vα , α = q1, q′
1, and β = α + 4 for α = 1, 2. In

(C2) we have taken into account the fact that due to (A6)∑3
α=1

∂bα

∂τ
(ζζζ †

BT̂ζζζ α ) = 0. Note that the addend -ε0|dv|2 arises
in Qj entering ∂ det Ẑqε/∂k and the addend det Ĝv/4k, where
Ĝv = Sq112vq′

1
, enters ∂bq1/∂k.

In the case of BIC-SAW2 the calculation of the derivatives
of det Ẑqε and bqm (26) results in the expressions

∂ det Ẑqε

∂τ j
= iQ j

b2 det Û
,

∂bqm

∂τ j
= 1

2gqm

(
∂μ†

qm

∂τ j
T̂ζζζ B

)
, (C4)

where

Qj = i

(
ζζζ

†
BT̂

∂ζζζ B

∂τ j

)
, ζζζ B =

2∑
α=1

bαζζζ α,

bα = det B̂∗
α, α = 1, 2, (C5)

the matrix B̂α is obtained from B̂qm (26) by replacing the
last column Sγ by Sα+4, μq1

= ∑
α aαζζζ α , μq2

= ∑
β cβζζζ β , the

summation in μq1
and μq2

is carried out over α = 1, q1, q2, q′
1

and α = 1, q1, q2, q′
2, aα and cα are determinants of 5×5 ma-

trices formed of S-vectors similarly to the above introduced

5×5 matrices, gq1 ≡ a∗
q′1 and gq2 ≡ c∗

q′1. One more term ap-

pears in ∂ det Ẑqε/∂k and ∂bqm/∂k because of the dependence
of Sv (8) on k.

APPENDIX D

The effect of the crystallographic symmetry on the proper-
ties of the eigenvalues and eigenvectors of the transfer matrix
in nonpiezoelectric periodic structures was analyzed in [49].
The same problem for piezoelectric structures may be ap-
proached similarly.

Owing to crystallographic symmetry the material constants
and hence the matrix N̂ are invariant under certain trans-
formations. For the cases listed in (27), the transformation
matrices not changing the material constants may be written,
respectively, in the form

(1) �̂1 = Î − 2n ⊗ n, (2) �̂2 = Î − 2(m ⊗ m + t ⊗ t),

(3) �̂3 = Î − 2m ⊗ m, (4) �̂4 = Î − 2(n ⊗ n + t ⊗ t),
(D1)

where t = n × m. [Without piezoeffect options 1 and 2 in (27)
are equivalent and so are options 3 and 4].

Using the fact that �̂2
j = Î, j = 1, 2, 3, 4, we find that

the 4×4 matrices (nm), (nn) and (mm) (A2) satisfy the
relations

(nm) = −�̂(nm)�̂, (nn) = �̂(nn)�̂,

(mm) = �̂(mm)�̂, (D2)

where

�̂ =
(

�̂ j 0
0t 1

)
, j = 1, 2, 3, 4, (D3)

and 0 is the 3×1 column of zeros. Hence due to (A2)

N̂ = −K̂N̂K̂, K̂ =
(

�̂ 0̂
0̂ −�̂

)
. (D4)

Let all the layers of the phononic crystal be oriented iden-
tically in accordance with one of the options listed in (27). In
this instance the matrix K̂ is the same for all the layers, so, by
virtue of (D4) and (A5) and the fact that K̂ = K̂−1, the transfer
matrix M̂ (6) satisfies the relations

M̂∗ = K̂M̂K̂, M̂−1 = T̂K̂M̂t K̂T̂. (D5)

From (D5) it follows that if γα is an eigenvalue of the matrix
M̂ then γ −1

α is also an eigenvalue and if γα is an eigenvalue
then γ ∗

α is the eigenvalue corresponding to the eigenvector
K̂ζζζ ∗

α , where ζζζ α is the eigenvector corresponding to γα .
As a result, the eigenvalues associated with a pair of B

modes α = in and α = rn are complex conjugate, γrn = γ ∗
in .

By virtue of the fact that K̂T̂K̂ = −1, we may put

ζζζ rn = K̂ζζζ ∗
in (D6)

With this, the normalization relation (A9) holds true.
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The eigenvalues associated with D modes may be purely
real or complex. If γα is purely real then the eigenvalue
γα+4 = 1/γ ∗

α is also purely real and we have to put

ζζζ α = K̂ζζζ ∗
α, ζζζ α+4 = −K̂ζζζ ∗

α+4 (D7)

so as not to violate (A7). If γα is complex then there exist one
more complex eigenvalue γβ = γ ∗

α and we put

ζζζ β = K̂ζζζ ∗
α, ζζζ β+4 = −K̂ζζζ ∗

α+4. (D8)
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