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Proportions of conical motifs: Optimal packing via the spherical image
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We present a scheme for calculating the shape of two well-known conical motifs: the d-Cone and the
e-Cone. Each begins as a thin, flat disk, before buckling during loading into a deformed shape with distinctive,
asymmetrical conical features and a localised apex. Various deformed equilibrium models rightly assume a
developable shape, with a particular focus on determining how much of the disk detaches from how it is
supported during buckling; they are, nevertheless, extensively curated analytically, and must confront (some,
ingeniously) the question of singular, viz., infinite properties at the conical apex. In this study, we find an
approximate description of shape that reveals the extent of detachment, from an analogous mobile vertex that
packages optimally according to its constraints. To this end, we further develop the usage of Gauss’s Mapping
and the associated spherical image, which has been used previously, but only to confirm known properties
of deformed shape. Despite the simplicity of our approach, remarkably good predictions are availed, perhaps
because such problems of extreme deformation are geometrically (rather than equilibrium) dominated.
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I. INTRODUCTION

We are familiar with making a cone, i.e., a conical surface,
by removing a sector, e.g., using scissors and a paper card, and
joining the exposed edges together smoothly; or by cutting a
radial line and pulling the surfaces from either side to create
an overlapping sector, which is easier to secure with, say, glue.

A larger sector angle, γ in Fig. 1(a), sets a steeper
cone, Fig. 1(b), and vice versa. Bending the original disk
into a cone requires effort set by the constitutive proper-
ties of the material and final shape, which is singly curved
across straight-line generators radiating from the apex. Sur-
face points sharing the same latitudinal circle have the same
radius of surface curvature, r1, which, from [1], is measured
normal to the generator from the cone axis; see Figs. 1(c) and
1(d). When the circle radius is r, then

tan α = z/r, sin α = r/r1 ⇒ 1/r1 = (sin2 α/ cos α)/z,

(1)

where 1/r1 is the curvature directly, and α is the conical
semiangle relative to the horizontal.

Clearly, infinite curvature cannot occur at the apex where
z = 0, even if it appears to be sharply defined. Moving to-
wards the apex, maximal material strains rapidly increase
according to the product of curvature and t/2, where t is the
through-thickness: for example, a moderate semiangle of 30◦
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sets a limit of z ≈ 15t on the strain being smaller than 1%;
any closer, z < 15t , and the strain is larger.

Furthermore, the elastic bending strain energy density is
proportional to (1/r1)2 from the usual linear material con-
stitution. The total energy stored is thus dominated by the
apical region, whether or not plasticity features, which makes
the deformation effort uncertain. However, a steeper cone has
commensurately higher curvature at a given depth from the
apex and is, clearly, “more” deformed: the increase in (non-
linear) bending strain energy density also outstrips the (linear)
decrease in surface area—after sector removal—to which it
applies.

Our story begins at this point and in Fig. 1(e), which shows,
crudely, two circular figures traced on the top of a sphere of
unit radius, or unit sphere. Each circle stems from mapping
unit vectors normal to every conical generator moving around
the apex on, say, a latitudinal circle in both cones in Fig. 1(a).
Since every unit vector along a generator has the same ori-
entation, the choice of latitudinal circle does not matter; and
the size of each circular spherical image reflects the steepness
(viz., deformation) of each cone.

The surface area of each spherical image, which is also
highlighted, is equal to the angle (in radians) of the removed
sector, where the unit radius of sphere avails consistent dimen-
sions. This result, and the mapping technique, is the outcome
of a “Remarkable Theorem” by Gauss (described in detail
in [1]), whatever the outline shape of the image.

A simple proof for the circular variety first notes that the
dashed perimeter length in the cut disk, (2π − γ )R, becomes
the latitudinal circle of 2πr. Hence, r/R, which is equal to
cos α in Fig. 1(c), is also equal to 1 − γ /2/π , which sets γ =
2π (1 − cos α). Auxiliary coordinates, x and θ , in Fig. 1(f)
set the area of an elemental annulus on the unit sphere to be
(2πx)(1δθ ). Noting that sin θ = (x/1) (“1” for unit radius),
the integration is performed between limits of zero and α to
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FIG. 1. Forming a cone from a flat disk, and associated geometrical concepts. (a) Two disks after removing differently sized sectors, where
γ2 > γ1, now bent around and joined along the sector edges to form cones; (b) the γ2 cone is steeper. (c) Typical straight-line generator (bold)
from apex, with normal unit vector, n; (d) formal geometry of conical surface [assuming infinitesimal thickness, and cf. R from (a)]: r1 is the
radius of surface curvature and α is a semiangle. (e) Mapping of unit normals on a given latitudinal circle moving around the cone apex onto
the surface of a unit sphere for both cones from (b), with corresponding circular spherical images: larger circle, steeper cone; smaller, shallower
cone. (f) Auxiliary geometry for calculating the surface area of spherical images from (e), which form spherical “caps” in (g). Forming a cone
instead by folding the disk along equispaced radial lines, (h), to give a faceted vertex approximation: the change in orientation of unit normals
(black) to each facet is equivalent to the rotation angle between them, vectored along their connecting fold lines (light gray). (i) Top: plan-view
of shallow spherical image from mapping the unit normals (black) from (h), with corresponding rotation vectors (light gray) superposed as a
vector diagram centered on the apex node (center circle). The latter vectors can be added in sequence around the apex, bottom, to form the
same spherical image, rotated by 90◦.

yield a spherical area equal to γ . Thus, the cone made from the
larger sector angle, γ2, initially has a larger spherical image
than the one from γ1, Fig. 1(g).

Let us now adjust these expectations in light of general
images later, in three ways. The first deals with a shallow
cone, made by removing a narrow sector. Its small spherical
image sits atop the unit sphere, skirting the tangent plane
at the pole; the difference, thus, between the true spherical
area and that of the projection of the image onto this plane is
negligible, and a much simpler calculation. The approximate
area in the present circular case is πα2, which is no more than
1% different from the true value when α is less than 20◦, for
example.

The second adjustment builds on the first. Consider form-
ing each cone by folding along radial lines rather than by
continuous curving, Fig. 1(h). We arrive at a discrete vertex
with a finite number of flat facets approximating the cone
shape. Each facet maps to a point on the unit sphere, which
are joined together by great arcs, each of length equal in
size to the abrupt rotation of normals about the fold lines, to
give a polygonal spherical image [1]. A shallow vertex also
gives way to a planar image but where the great arcs become

approximately straight and equal in scope to the rotation
vectors along the fold lines. A vector diagram of the latter
centered on the vertex but superposed onto the spherical im-
age, Fig. 1(i), expresses equivalence in vector lengths and their
relative inclinations but rotated altogether in plan-view by 90◦.
There is, thus, no difference in using this set of rotation vec-
tors to construct the same image by adding them nose-to-tail
moving around the vertex, which is eminently simpler than
the original mapping technique.

These two schemes were proposed by Farmer and Calla-
dine [2], whose work inspires the first object of this article: the
developable cone, or “d-Cone,” in Fig. 2. They confirmed the
already known proportions of d-Cone shape by reinterpreting
Gauss’s theorem in the context of small displacements, viz.,
rotations; they also record that a curved “crease” forms, rather
than a point underneath the applied point force, which pre-
scribes cylindrical displacements over part of the disk, rather
than conical: we return to this point at the end.

Beforehand, and thirdly, the length of each rotation vector
measures the local deformation in the fold line, whatever the
intended analogy for continuous curving, which is a sepa-
rate, diverse topic. For example, linear torsional springs are a
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FIG. 2. A developable cone, or d-Cone. (a) Thin circular disk made of a paper card, simply supported close to its edge on a circular
rim, indents conically under a central point force while buckling upwards and lifting off over around one-third of the circumference (white
double arrow). (b) Deformation regimes: uniform conical indentation into page (black outline), everywhere supported on the rim; detached
extent (double arrow) whose majority (light gray outlined sector) curves in the opposite sense to indenting, connected on both sides by narrow
sectors managing the curvature transition. (c) Folded, faceted approximation of (a) via mountain fold line (dashed) and valley fold lines (solid).
(d) Formal symmetrical planform geometry of (c): angular extent of detached area prescribed by two facet angles, β. Assuming the disk to
be supported on its circumference initially, the three highlighted points are the eventual (and only) points of support during indentation (from
[14]).

common proxy for elastic curving, whose effective stiffness is
approximated by assuming the usual quadratic energetic form
and comparing its expression to the continuum strain energy
form undergoing the same global deformation [3,4]; but such
stiffness ultimately depends on the width between fold lines,
which approaches, again, a singular condition at the apex in
the conical case (folding also creates a residual, or “rest”
angle of folding, which further complicates the constitutive
behavior).

Thinking purely, however, in deformation terms (and not
in terms of stiffness or energy stored), the total length of the
vectors, i.e., the peripheral arc-length of the image, rather
than its areal size as originally surmised, quantifies the total
deformation. Furthermore, the greater the number of facets,
the higher the polygonal order and the smaller the individual
rotation vectors become, before approaching a smooth outline
in the limit of the continuous case; the areas of their corre-
sponding spherical images should therefore converge for the
same level of deformation.

In light of these geometrical ideas alone, our focus now
turns to predicting the proportions of shape of a d-Cone
and, later, its counterpart, the “e-Cone.” Both of them form
by lifting off, or detaching, from their supports during
loading, where the detachment extent has been determined
before using deformed equilibrium models that, neverthe-
less, must reconcile to the singular properties of any conical
vertex—discussed in the next section; our analysis proposes
to “circumvent” such matters.

II. THE D-CONE

When the center point of a rim-supported paper disk or
any other very thin material is pushed inwards, the disk must
shrink circumferentially. This action creates in-plane com-
pression, which is meted by out-of-plane buckling initially
because of the disk being thin.

Approximately two-thirds of the disk indents to a uniform
cone impressing on the rim while the reminder gathers into
a single, elevated wave, which has lifted off the rim in the
opposite sense, altogether presenting as a developable cone,
or d-Cone [5], in Fig. 2(a). The geometrical “shortening”

across the elevated wave is tantamount to removing a narrow
sector of material, which expedites the remaining, indented
conical shape. There is no actual deletion of material and
no in-plane straining (neglecting any localized effects near
the apex, including plastic), which creates a preference for
conical bending about straight-line generators, hence the “de-
velopable” soubriquet according to Gauss’s theorem.

The shape of the d-Cone is, thus, dominated by the
indented and detached regions, and their approximate distribu-
tion is conveyed in Fig. 2(b). In-plane compression throughout
foists a nonuniform distribution of conical curvature in the
detached region, which is approximately proportional to the
height of the detached disk above the rim. Moving from the
indented region, the curvature must also change sign, which
is accomplished in “transition zones” on the detached bound-
aries. Their corresponding sectors are also shown in Fig. 2(b),
which distinguishes the remaining detached region to have
opposite-sense conical curvature compared to the indented re-
gion, and in [5], e.g., they observe narrow transitional widths
of around 20◦.

In the face of these specificities, the subtended angular ex-
tent of the detached region is remarkably consistent (detailed
momentarily) whatever the disk material (provided it is cir-
cular and supported the same), which has motivated research
efforts over the past 25 years for an explanation. Furthermore,
by unlocking the properties of a “regular” d-Cone shape in
general, it is hoped to gain more insight into related problems
expressing the same characteristic shape “motif” during ex-
treme deformation in which holes or cuts do not appear, in
problems of thin-walled buckling and crumpling.

Describing the displaced shape by means of curving across
straight-line generators simplifies the kinematics somewhat,
but their collective intersection near the apex depends on
whether it forms as a single point or a short curved crease
[2,5–7]. Either way, the introductory remarks about concen-
trated deformation persist, with the same implications for
strain energy stored and/or stress, etc., in mechanical descrip-
tions.

These “singularities” are typically circumvented in two
ways: (i) Either physically, by introducing a small hole at the
center, so that stresses or energy become concentrated but not
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FIG. 3. d-Cone vertex kinematics. (a) Side-view rotations of central valley fold line, x, and mountain fold, y. (b) Facet labels, A, . . . , D,
and three support points (filled gray circles). (c) Top: sign convention for fold-line rotation vectors: mountain fold lines point towards vertex;
valley folds, away. Bottom: vector diagram of rotations for vertex in (b). (d) Top: corresponding spherical image from sequencing rotation
vectors anticlockwise around the vertex: vectors ab, bc, . . . are relative rotations between facets A and B, B and C, . . . , denoted as γ , θ , and
φ. Areas on both sides of the junction circulate in opposite senses and must be equal in size for a developable vertex. Bottom: location of
horizontal plane (circle) and rotation vectors, x and y, from (a).

infinitely gathered—for any conical topography, including a
“generally” creased disk: see, e.g., [7] and then [8]; or (ii)
by solving analogous problems of thin strips deforming under
constraint [9], which is justified separately in [7], who argue
that the scaling laws for the geometrical dependency of the
detached extent are not affected by the asymptotic variation
of conical curvature at its apex.

Each of these approaches illuminates the d-Cone well, but
the limits of operation have to be carefully curated for a robust
equivalence of behavior. They are, nevertheless, consistent in
their predictions of detached widths: in [7], they determine a
subtended width of 138◦, whereas in [5], they find 140◦; their
experiments indicate 127◦ and 130◦, respectively, between
two lift-off points on the rim. We now offer a different ap-
proach based on interpreting the spherical image of a d-Cone
as a problem of optimal packing of its deformed state.

A “discrete” d-Cone is furnished in Fig. 2(c), where the
symmetrical vertex is clearly similar in shape and proportions
to the original continuous d-Cone. The width of the detached
portion has been set a priori by the angular separation, 2β,
of its exterior fold lines, which behave as transition zones
of infinitesimal width, shown in plan-view before folding, in
Fig. 2(d); the rotations across them then connect the upward
folding facets of the detached portion to the downward fold-
ing, rim-supported facets. Two additional fold lines admit a
viable out-of-plane motion: a central upwards mountain fold
(shown as a dashed line), to be distinct from a third valley fold
(drawn as a solid line), which bisects the indenting region.

The ability of this vertex in particular to fold rigidly as
flat facets whatever the elastic response assumed for the fold
lines conforms to theorems of Origami vertex folding from
Makewa and Kawasaki [10], namely that mountains and val-
leys differ in their totals by two, i.e., one versus three, and
that alternating facet angles sum to π radians. Motion can
also proceed as far as being flat-folded, with all facets rotated
relatively by π radians and coplanar.

Flat-folding is not an essential requirement when the limit
of displacements is moderate in view of the accuracy of planar
spherical images, and both theorems do not have to be strictly
obeyed; the layout of fold lines must, nevertheless, sensibly

correlate with the continuum shape, and will therefore feature
a mixture of mountain and valley fold lines, symmetrically
arranged.

A schematic side view of the vertex in Fig. 3(a) directly
shows the angle of inclination, x, of the center valley fold line
relative to the original horizontal plane of disk, which sets
the indented displacement to be x.1 (the dot denotes simple
multiplication) for a disk radius equal to unity, whose (unit)
significance is discussed at the end, and y for the mountain
fold line moving upwards. Although initially supported sim-
ply everywhere at its edge, the folded disk rests on three points
at the ends of the valley fold lines highlighted in Fig. 3(b).

For consistent notation, the rotations along mountain and
valley lines are distinguished by vectors pointing towards or
away from the vertex moving anticlockwise around it, which
sets the corresponding vector diagram, Fig. 3(c), where the
mountain fold-line rotation is φ, two rotations of θ for the side
valleys, and γ for the central valley line: the facets are labeled
A, . . . , D anticlockwise.

Placing the vectors nose-to-tail in the same order, we arrive
at the planar approximation of the spherical image in Fig. 3(d).
Since γ , for example, accords the rotation of facet A to B, its
vector moves from “a” to “b” on the image, and so forth.

The “bow-tie” configuration divides the image into two ar-
eas, enclosed by vectors circulating in opposite senses, hence
of opposite signs. Furthermore, because the vertex is formed
without removing a sector, cf. Fig. 1, there can be no net
area from Gauss’s theorem [2], which stipulates equal areal
portions.

This requirement therefore sets γ = φ, and then φ =
θ cos β, i.e., there is one independent kinematic variable for
this single degree-of-freedom system.

Rotation vectors corresponding to x and y are also ap-
pended to the image. Being normal to their respective fold-line
rotations, γ and φ, places them horizontally on the image,
straddling both vectors, γ to φ, and meeting them in their
respective midpoints: they emanate from an origin point cor-
responding to the horizontal plane, as shown.

Calculating the central displacement via x and y relative to
the rim support points, the following expressions from [14]
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FIG. 4. More detailed d-Cone vertex. (a) Fold-line pattern (same legend as previous figure): transition zones remain as single fold lines,
of rotations, θ . (b) Corresponding spherical image: fishlike, with head and tail about junction; both areas are equal in size for developability.
(c) Continuum limit of (a) and (b), with infinitely many fold lines: R1 and R2 are auxiliary radii of circular arcs, for calculating equal areas of
the head and tail.

are found:

x = (φ/2) tan (β/2), y = φ tan β − x. (2)

We now surmise that the optimal packaged shape mini-
mizes the folding deformation while maximizing the inden-
tation, which loosely mimics a path of least action by the
indenting force while respecting the support constraints. We
therefore seek to minimize the ratio of the sum, φ + γ + 2θ ,
to x, which is defined to be 	d, where “d” denotes d-Cone:

	d = 2(φ + θ )

x
= 4 cos2 (β/2)

cos β tan (β/2)
(3)

after substituting for θ and x in terms of φ and β.
Differentiating with respect to β and setting equal to zero

obliges us to solve

4 sin4 (β/2) − 5 sin2 (β/2) + 1 = 0. (4)

The root according to minimal 	d is sin (β/2) = 1/2, with
a corresponding detached width, 2β = 120◦ (and 	d,min =
10.39): γ = φ, θ = 2φ, and y/x = 5 from Eq. (2): our
predicted width is already close to practical observations
(cf. ≈127◦).

To imitate the displaced shape better, more facets are
created within the original scheme; see Fig. 4(a). One obvi-
ous template for intervening fold lines are the straight-line
generators of the conical displacement field. Apart from the
uniformly curved indented region, where generators are eq-
uispaced and furnish the same rotation, their distribution is
nonuniform; furthermore, the concentrated curving in both
narrow transition regions would suggest tightly spaced gen-
erators, viz., fold lines, which also accommodate a change in
the direction of curving moving into the detached portion.

To avoid the need for extra parametrization necessary for
such details at this stage, we assume that fold lines in the latter
are also separately uniform and furnish equal rotations, γ : the
indented region rotations are declared to be φ. For the same
reason, the transition zones remain concentrated into single
fold lines, across which the direction of facet articulation
reverses instantaneously, from φ to γ towards the detached
part. The consequences of having small, finite-width zones
that, nevertheless, distribute the change in direction over more
than one fold line are discussed later.

The corresponding spherical image is shown in Fig. 4(b),
which is distinctly piscine, even though it is roughly con-
structed to express equal areas of the “head” and “tail”
regions, θ ≈ 5φ (& 5γ ), which highlights a more concen-
trated deformation in the narrow transition zones.

When the number of facets tends to infinity, the piecewise
layouts of rotation vectors approach continuous curves (ex-
cept for the transition zones). Figure 4(c), therefore, indicates
three symmetrical peripheral features: a convex circular arc at
the front, trailing back through intersecting straight lines to a
reentrant arc in the rear. Each arc is defined by an auxiliary
radius, R1 and R2, respectively, whose ratio determines the
relative area between the head and tail, momentarily.

The front arc deals with the indented conical region and
subtends 2π − 2β; the straight lines have the usual length,
θ , now split into convenient lengths p and q across their
intersection—the junction of the head and tail. For the de-
tached region, both ends of its reentrant arc connect to the
θ lines at the same inclination, thereby subtending 2β, but
where the path moving through both connections instanta-
neously reverses direction to form a spinode [12] [cf. the limit
of Fig. 4(b)].

The area of the head region is denoted as A1 and com-
prises two triangles of area (1/2)R1 p each, and a sector of
area (1/2)R2

1(2π − 2β ). For the tail, we subtract the sector
area from the sum of two larger triangles: A2 = R2q − R2

2β.
Noting that tan β is equal to p/R1 and to q/R2, the equal areas
condition is set as

A1 = A2 : R2
1 tan β + R2

1(π − β ) = R2
2 tan β − R2

2β ⇒

ρ2 = tan β − β + π

tan β − β
, (5)

where ρ = R2/R1.
The peripheral arc-length, denoted as Ld, is equal to

R1(2π − 2β ) + 2(p + q) + R2(2β ). The rotation of the in-
denting generators about the support rim takes place at right
angles to curving across them: on the spherical image, they
are lines normal to the front arc, i.e., R1, so the disk center
must also indent by an amount equal to R1 (recall: a disk of
unit radius, initially).

The new “packing” ratio of total deformation to indentation
displacement is now Ld/R1. This is still denoted as 	d and
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FIG. 5. Excess cone, or e-Cone. (a) Slit disk is opened up circumferentially by angle, ε, on a flat surface, causing the far side to buckle
upward into an elevated cone (white double arrow). (b) Facet approximation via discrete folding with two valley fold lines (θ ) and a single
mountain fold (φ). Center point behaves as a vertex with excess angle, ε, above 2π . (c) Corresponding facet labels, for constructing vector
diagram (same drawing convention as Fig. 4), hence a spherical image (d); continuum variant (e).

may be verified as the following function of β alone [after
substituting for ρ from Eq. (5)]:

	d = 2

(
(tan β + β )(tan β − β + π )1/2

(tan β − β )1/2 + tan β − β + π

)
.

(6)
Again, a minimum stems from differentiating 	d with re-

spect to β and setting equal to zero, but without a solution
in closed form. Instead, we plot the variation of 	d with β

via MATLAB [11], and we arrive at Fig. 6(a), where 	d,min =
20.46 when 2β = 106.3◦ (and ρ = 2.95): the detached width
reduces marginally compared to 120◦ from earlier.

Compared to a practical width of around 130◦, this new
result seems not as favorable. However, as noted, the actual
transition regions subtend up to, and around, 20◦ each; we are,
in fact, approaching the extent of the detached region (≈90◦)
outside of the transition regions which curves everywhere
in the same sense as their corresponding fold lines in the
spherical image. When finite-width transition zones are in-
troduced later, albeit primitively described, the total detached
width including these zones increases—along the lines of the
observed result.

III. THE E-CONE

The e-Cone in Fig. 5(a) is formed by cutting a disk radially
before opening up, as if to insert an additional sector perfectly,
thereby creating an “excess” of angle subtended at the center

50 100 150
20

22

24

50 100 150
6

7

8

FIG. 6. Predictions of packaged shape as functions of width of
detached regions, 2β. In both, 	 is the ratio of total deformation
(viz., peripheral length of image) to the level of indentation displace-
ment (d-Cone) or opening angle (e-Cone): (a) Eq. (6) for d-Cone;
(b) Eq. (8) for e-Cone. Their respective minima (solid circles) occur
when 2β = 106.3◦ and 142.5◦.

point. The disk is no longer supported on a rim but sits on
the horizontal plane, forcing any displacements upward. Cir-
cumferential compression is now induced by increasing the
opening angle, with part of the disk buckling above the hor-
izontal plane, and symmetrically with respect to the opening
sector. Again, a thin disk foists singly directed curving about
radiating generator lines.

The e-Cone is not the antithesis of a d-Cone, rather, as
the author purports in [14], it is the conjugate form of a
p-Cone (“p” for “pyramidal”), which is simply either cone in
Figs. 1(a) and 1(b): when the removed sector angle equals the
opening angle of the e-Cone, these features superpose to our
d-Cone precisely. Of course, the removed and opening sector
angles can be different, as originally proposed in [13]; and
the relative proportions of shape, expressed as a function of
this difference and obtained from a modified spherical image
in [14], correlate well with solving the more sophisticated
conical elastica in [13].

Careful experiments also performed in [13] determine a
consistent angular width of 180◦ ± 5◦ of the region detached
between a pair of radial lines on the flat surface. It is also
apparent from the photographic data in Fig. 3 in [13] that ap-
proximately 120◦ of the elevated region (measured informally
by the author) is curved in one sense, suggesting transition
zones around 30◦ wide, which is slightly larger compared to a
d-Cone. A finite-element analysis in [14] of the same experi-
ment suggests a clearly discernible detached width of around
120◦ but without formally distinguishing, or measuring, the
width of any transition zones. Nevertheless, we maintain zero-
width transition zones, with a discussion at the end.

The simplest vertex approximation is given in Fig. 5(b),
and the planform in Fig. 5(c) shows four facets, A, . . . , D,
bounded by three fold lines straddling a prospective detached
width of 2β, and the opening sector angle, ε. Facets A and B
rotate in-plane to yield ε but only feature at the origin of the
spherical image: C and D fold out-of-plane by a relative angle
of φ, denoted as the rotation vector, cd, in Fig. 5(d); the valley
rotations are, again, θ and thus as vectors ac and bd, which
now close our spherical image.

From Gauss’s theorem, the area of the image must equal
ε, which is strictly negative when the rotation vectors in the
image circulate in the opposite sense compared to the sign
convention (but not essential for now). The level of folding
deformation is simply 2θ + φ, with cos β = φ/2θ from the
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FIG. 7. (a) Effect of finite-width transition zone between elevated region (dashed fold lines) and the rest (e.g., d-Cone, solid fold lines).
Rotations along the transition fold lines (dot-dashed) vary from one boundary rotation, φ, to the next, γ , which results in a discrete cusp; or a
continuum cusp in the limit of infinitely many fold lines. (b) Top: original image from Fig. 4(c) for d-Cone: head, transition, and tail regions
linked by AB, BC, CD, and DA, of nominal lengths. For finite-width transition zones, BC and DA become curved as B′C′ and D′A′, bottom,
leading to a smaller arc-length, A′B′, corresponding to the indented region, thus larger detached width (including transition zones) overall.
(c) Same adjustment process for e-Cone: top, original; bottom, incorporating finite-width transition zones as O′C′ and O′D′, giving a smaller
cusp angle at O′ and hence a larger detached width.

image geometry, and the area of the image is φθ sin β, equal
to ε.

For an equivalent statement of geometrical packing, we
assume that the optimal shape is least folded for a given
opening angle (or, indeed, opening arc-width equal to 1ε,
the same, presuming a disk of unit radius, as usual). But
since the opening angle is itself related in areal terms to the
other rotations, we should normalize the area of the spherical
image, say, to unity, which resets the original calculation:
1 = φθ sin β/ε, which is tantamount to rescaling the fold-line
rotations to θ/

√
ε and φ/

√
ε.

We therefore seek to minimize the peripheral length of the
now rescaled image, which we define to be 	e,min, i.e.,

	e = 2(θ/
√

ε) + φ/
√

ε =
√

2(1 + cos β )√
sin β cos β

(7)

after substituting for ε, etc. Differentiating with respect to
β and setting equal to zero now obliges solving 2 cos β2 +
cos β − 1 = 0, which returns cos β = 1/2 and a detached ex-
tent subtending 120◦ (and 	e,min = 3.22).

Again, the image is refined by subdividing the detached
region into many more equal facets, equally folded, while
keeping the two valley folds. The limiting outcome for a
uniformly conical shape is shown in Fig. 5(e), where the φ

rotation vector is replaced by a circular arc of radius, R1,
connected to each θ line tangentially and subtending 2β, cf.,
Fig. 4(c).

Calculating the area enclosed, we find 2 × (1/2)R1θ −
(1/2)R2

1(2β ) = ε, which is rescaled to unity area, hence
(R1/

√
ε)(θ/

√
ε) − (R1/

√
ε)2β = 1. The edges of the spher-

ical image are correspondingly rescaled by 1/
√

ε and thus we

seek to minimize the new peripheral length:

	e = 2(θ/
√

ε) + 2(R1/
√

ε)2β = 2(tan β + β )√
tan β − β

. (8)

Because there is no compact solution from setting
∂	e/∂β = 0, the variation of 	e with β is plotted in Fig. 6(b),
which shows a minimum for 2β = 142.5◦ (and 	e,min =
6.42).

IV. DISCUSSION

Our predictions of the detached extent in both conical
motifs are plausible given our simplistic geometrical approach
when compared to results from deformed equilibrium analy-
sis: recall 138◦ for the d-Cone and 180◦ for the e-Cone; we
predict, respectively, 106◦ and 143◦ (and 120◦ for both, from
our simplest kinematical models).

We improved our “discrete” spherical images for both, to
account for continuously shaped conical regions, but the tran-
sition zones always had infinitesimal width. If, instead, they
had finite width, we would expect the total detached width,
including the transition zones, to increase, potentially in line
with known results and measurements.

For example, Fig. 7(a) shows a transition zone spanning
a mountain fold-line rotation of φ and a valley rotation of
γ over some width of disk, which is subdivided into facets.
The rotations along their fold lines appeal to some continuous
deformation by reducing in size before switching direction
and then increasing.

These rotation vectors form a primitive cusp in the rele-
vant part of the spherical image, which tend to continuous
curves locally on either side of the cusp apex (when they were
straight lines before): importantly, the curves do not have local
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points of inflexion moving from φ to the apex, and then from
the apex to γ . A new spherical image of the d-Cone, Fig. 7(b),
therefore replaces the original straight θ lines, AD and BC,
with concave curves, A′D′ and B′C′.

This modification, however, introduces a subtended angle
between their end points irrespective of the precise variation
of fold-line rotation vectors in between, which must be “lost”
elsewhere in the head and tail parts compared to original
image, in order to accord a net sum of 2π for the exterior
angles moving around the image; and, on satisfying equal
head and tail areas from Gauss’s theorem, it is most likely that
both the original head and tail now subtend reduced angles.
Now that the rim-supported portion is smaller, the detached
width comprising the original, but now smaller, conical lifting
region as well as the finite transition zones, must increase. The
same argument also applies to the e-Cone; see Fig. 7(c).

This approach, of course, increases the parametrization
required, which makes solving for optimally packaged shapes
commensurately more difficult. Furthermore, as noted, the
shape of the transition zones and the detached widths in gen-
eral cannot be uniformly curved in practice because their bent
shapes also sustain in-plane compressive forces.

Ultimately, any governing equation of coupled equilibrium
expresses a kinematic variation in terms of a transverse dis-
placement coordinate or the plate curvature itself, e.g., as in
the conical elastica in [13]. Recasting such behavior in the
context of the Gauss mapping may help to furnish a more

accurate spherical and, hence, packaged result, and is part of
ongoing study.

There are two other final comments. Farmer and Calladine
[2] addressed the curved crease that forms underneath the
point-load by discretizing the crease into a sequence of indi-
vidual d-Cones sharing rotational properties along the crease,
for a modest increase in the accuracy of the proportions of
shape (recall that they assumed a nominal detached extent).
We may do the same here, for a nontrivial amount of working.

Finally, our fold lines all have the same unit length: this
will not be so in the case of other noncircular planform
shapes, e.g., the two types of fold line of the square planform
in [2] have a length ratio of

√
2, or when the load is no

longer applied symmetrically, as trialled in [9]. The relative
performance between fold-lines is therefore established per
(their) unit length, in much the same way that moments and
in-plane forces in continuum plates are unitary quantities; the
indentation displacement is calculated appropriately.

In closing, employing Gauss’s spherical image has brought
a challenging problem of deformed equilibrium to heel in
kinematical terms alone, with reasonable success. As an
immediate extension of our approach, we shall shortly quan-
tify the number of “truncated-cones” that form when a flat
plate, intending to form as a d-Cone, suffers additional load-
ing constraint, as studied recently in [15]. This study shows,
prospectively, how straightforward our method can be ex-
tended to systems with a network of conical defects.
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