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Connecting the branches of multistable non-Euclidean origami by crease stretching
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Non-Euclidean origami is a promising technique for designing multistable deployable structures folded from
nonplanar developable surfaces. The impossibility of flat foldability inherent to non-Euclidean origami results
in two disconnected solution branches each with the same angular deficiency but opposite handedness. We
show that these regions can be connected via “crease stretching,” wherein the creases exhibit extensibility in
addition to torsional stiffness. We further reveal that crease stretching acts as an energy storage method capable
of passive deployment and control. Specifically, we show that in a Miura-Ori system with a single stretchable
crease, this is achieved via two unique, easy to realize, equilibrium folding pathways for a certain wide set of
parameters. In particular, we demonstrate that this connection mostly preserves the stable states of the non-
Euclidean system, while resulting in a third stable state enabled only by the interaction of crease torsion and
stretching. Finally, we show that this simplified model can be used as an efficient and robust tool for inverse
design of multistable origami based on closed-form predictions that yield the system parameters required to
attain multiple, desired stable shapes. This facilitates the implementation of multistable origami for applications
in architecture materials, robotics, and deployable structures.
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I. INTRODUCTION

Origami is the ancient Japanese art of paper folding. The
simple algebraic kinematics of origami-inspired systems gives
rise to its characteristic reconfigurability, which has resulted
in numerous applications in robotic locomotion [1–4], meta-
material architecture [5], compact deployable structures such
as bridges and stadium covers [6], reconfigurable wheels [7],
and—notably—simple yet robust inverse shape design algo-
rithms [8–11]. Classical origami assumes that shape change
stems from folding of an infinitely thin surface involving no
deformation or change in strain energy [12]. Consequently,
engineering systems inspired by origami formalism theoreti-
cally behave as mechanisms, which by definition do not resist
displacement along their degrees of freedom. However, physi-
cal embodiments of origami [13] do in fact show resistance to
displacement, either due to torsional stiffness [14] or active el-
ements used to achieve desired kinematic configurations [15].
The former typically shows a single stable shape, while the
latter can achieve several configurations at the cost of complex
actuation systems and control.

Engineers have investigated the potential of origami with
multiple energetic minima, or multistable origami, to add
load-bearing capacity and pathway configurability without
the need for continuous actuation and complex control. One
approach takes advantage of hidden degrees of freedom due
to facet bending [16–19]. However, this excludes the uti-
lization of functional materials such as semiconductors (e.g.,
photovoltaics or transistors) that cannot cope with the large
facet strains experienced during bending.

*aarrieta@purdue.edu

On the contrary, a second approach assumes rigid facets
while relying on elastic bending moments via crease torsion to
produce multistability [20–22]. Waitukaitis et al. have shown
that crease torsion alone can achieve up to five stable con-
figurations for a four-faceted origami system [23]. However,
two key drawbacks remain: (1) the folding paths have multiple
solutions that overlap at the flat state [24], and (2) inverse
design is difficult due to the coexisting solutions (pathway de-
generacy) and the complex multidimensional problem of fine-
tuning the crease stiffness to match a desired state [25–27].

Non-Euclidean origami shows promise to address some of
these challenges. This class of origami is still folded from
developable, zero Gaussian curvature sheets, but instead of
subtending an angle of 2π about a particular vertex, as is the
case for traditional origami [Fig. 1(a)(i)], it is folded from
some angular deficiency of less than 2π (a cone [28,29])
or some angular excess of greater than 2π [an E-cone [30],
Fig. 1(a)(ii)]. Non-Euclidean origami circumvents the path-
way degeneracy of traditional origami because it always
results in two separate folding regimes when folded from a
cone, no matter how many creases are added [28,31]. Intu-
itively, this is because the two regions represent two mirrored
cones [Figs. 1(a)(iii), 1(a)(iv), and 1(b)]. The kinematics of
non-Euclidean origami preserve the ability to be described by
simple algebraic equations [32–34] and, in many instances,
has succeeded in passively preventing misfolding [29,35,36].
This comes at the cost of effectively halving the possible
design space.

Resilin, a multipurpose biopolymer commonly found in
insect wings [37–40] serves as an inspiration to expand this
design space while enabling multistability. Resilin assigns
mountain or valley folds to origamilike insect wings [41,42]
and serves as an energy storage device, for example, in the
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FIG. 1. (a) Origami can be folded from different surfaces of var-
ied angular deficiency (β). (i) When β < 0, we have angular excess,
and an e-Cone is observed. (ii) When β = 0, we are folding from
a flat plane (traditional origami). (iii) When β > 0, we are folding
from a cone. (iv) There always exists another unique cone with the
same β > 0. (b) The two mirrored cones create two disconnected
kinematically admissible pathways. (i) The first pathway’s facets are
ordered clockwise as ρi increases (ρ1 → ρ2 → ρ3 → ρ4) and are
folded from cone 1, named ϕI,1. (ii) The second pathway’s facets
are ordered counter-clockwise as ρi increases, and are folded from
cone 2, named ϕI,2.

Rove Beetle [43] and the Earwig [44]. However, the Earwig
wing is unique in that the energy is stored via stretching in the
creases in addition to crease torsion. This crease stretching or
“spring origami” has been shown to explain the bistability and
curved creases displayed by the Earwig wing [45], opening up
a vast design space for origami-based systems that localize all
flexibility to the folds.

In this paper, we show that crease stretching can con-
nect the oppositely-handed folding regimes of non-Euclidean
origami without relying on facet deformation, while retaining
the benefit of simple pathway control and straightforward
inverse design. This is achieved by establishing a tractable
analytical method applied to the well-known Miura-Ori unit.
We begin with the Miura-Ori folded from the two possible
non-Euclidean cones, then relax the rigid crease assumption of
classical origami by allowing them to stretch while maintain-
ing infinite facet rigidity. By folding the manifold representing
the kinematic space into the energetic space, we can show
that inherent symmetries directly predict the existence of a

minimum of two, and usually three stable configurations. Fur-
thermore, through derivation of the folding paths, our model
allows us to show that crease stretching does not add degen-
eracy. The analytically predicted configurations and folding
paths accurately match benchtop experiments. Our results
show that the stable states from the purely non-Euclidean
approach are mostly preserved, while adding a third. Finally,
we show how the model is simple enough to be used in inverse
design calculations, yet robust enough to be confirmed by
experiments.

II. ALTERNATIVE MODELS FOR CREASE STRETCHING

We begin with a discussion of alternative models of flexible
creases in origami. For sufficiently thin sheets, a straight-
forward approach is to neglect the effect of stretching, and
to assume that the energetics of crease bending are domi-
nated by torsional deformations. Models based on symmetric
Elastica curves make use of rotational springs at curve in-
tersection [46–49], while others ignore the bulk and focus
on a single nonlinear [50,51] or linear [52–56] spring whose
constants are based on material models. However, we cannot
discount crease extensibility during bending because (1) we
employ thick creases in this work as thin creases are difficult
to manufacture using fused deposition modeling (FDM) 3D
printing and (2) we know that kinematically the angular ma-
terial must be able to stretch to accommodate the transition
between non-Euclidean cones. A second approach is to create
beamlike models which has been achieved using finite ele-
ment methods [57–59], or hyperelastic material models [60].
While highly descriptive and accurate, these beamlike mod-
els are computationally expensive and difficult to perform
inverse on.

The F-cone model which entails a cone with at least one
fold in it [61] is the closest analytical model that can account
for both torsion and stretching. Notably, F-cones remains
bistable, even when part of the central fold is removed [62],
a fact that we leverage in our experiments. Nevertheless, the
deformation process is still rather complex to model, requiring
numerical approximations [63], which makes this approach
cumbersome for inverse design.

“Spring origami” offers a computationally simple yet pow-
erful model where the crease is represented by a combination
of a rotational and extensional spring [45]. Rojas et al. have
used it to model 3D printable multistable grippers [64] and the
reconfiguration of temperature sensitive shape memory poly-
mers [65]. Due to its ability to capture both the torsion and
stretching of a system with the minimum possible complexity,
we choose to use “spring origami” throughout this work.

III. PROBLEM DEFINITION

Non-Euclidean origami refers to a 2D surface with sector
angles ρi subtending an angle of 2π + ε about the vertex [29],
where ε is the angular excess. Equivalently, the surface can be
folded from sectors with a subtending angle of 2π − β [45],
where β is the angular deficit. In general, β = −ε, and we will
use β throughout, since pathway disconnection occurs only in
systems with angular deficit [28]. We choose to examine a
Miura-Ori unit, an origami fold pattern originally developed
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FIG. 2. (a) Non-Euclidean origami with an angular deficiency
has two disconnected pathways, each represented by an oppositely
handed cone. When a rotational spring is added, two disconnected
stable states form. (b) The energy landscape for path/cone 1 and sta-
ble state/local minimum S1. (c) The energy landscape for path/cone
2 and stable state/local minimum S2.

for folding membranes in space mechanisms [66], given the
extensive attention it has received in the literature and its
universal applications. For a symmetric Miura-Ori unit, one
additional geometric parameter γ [5] is required to define
the symmetric facets ρ1 = ρ4 [shown in Fig. 2(a)(i)]. Using
spherical trigonometry techniques (developed in Ref. [67])
for the basic case of a non-Euclidean system without crease
stretching we can write the kinematics (see derivation details
in Supplemental Material (SM) A.3.5 [68]) as

ϕI,n(α) = 2 tan−1

[
sin α

− cot(γ + β/2) sin γ − cos γ cos α

]
+ 2π (n − 1), (1)

with n = 1 or n = 2, where ϕ and α are the dihedral angles
defined in Fig. 4(a). Notice, that Eq. (1) results in two folding
pathways: ϕI,1(α) (left) and ϕI,2(α) (right), plotted in Fig. 2(a)
as Eq. (1) with γ = 3π/4 and β = 10◦. This matches prior
work establishing that for β > 0 two disconnected pathways
always exist [28]. The disconnected pathways can be ab-
stracted as two “oppositely handed” cones. For path 1, when
viewed with the vertex at the top, ρi cyclically increases in
the clockwise direction around the directrix [Fig. 2(a)(i)],
whereas for path 2, ρi cyclically increases in the counterclock-
wise direction around the directrix [Fig. 2(a)(ii)].

We consider the addition of a rotational spring between
facets ρ2 and ρ3, with an equilibrium angle θ0 = 79.76◦ which
reveals two stable states S1 and S2. The equilibrium angle α0,1

FIG. 3. The valid parameter space for this analysis is highlighted
by the shaded area. There are two boundaries: the upper boundary
corresponds to η = 0, and the lower boundary simplifies the kine-
matic analysis. The point at β = 10◦ and γ = 3π

4 is used throughout
this study.

for stable state S1 on pathway 1 can be calculated using

α0,1 = cos−1

[
cot γ sin η√

cos2 η + cot2(θ0/2)

]

− tan−1

[
cot(θ0/2)

cos η

]
, (2)

and the equilibrium angle α0,2 for stable state S2 on pathway
2 can be calculated as

α0,2 = 2π − cos−1

[
cot γ sin η√

cos2 η + cot2(θ0/2)

]

− tan−1

[
cot(θ0/2)

cos η

]
. (3)

Equations (2) and (3) are derived by using spherical
trigonometry and the harmonic identity to locate the coordi-
nates where the gradient of the energy is zero as detailed in
SM B.3 [68]. Notice, however, that in Figs. 2(b) and 2(c)
the two stable states lie on two different pathways. Thus,
these two stable states could never be physically realized on
the same rigid system. These disconnected pathways (i.e.,
disjointed sets) are an intrinsic characteristic of n-fold, non-
Euclidean origami with an angular deficiency [28]. In the
following, we establish a method to connect these disjointed
regions in a physical system while retaining bistability by
allowing crease stretching.

IV. PARAMETER SPACE

We first define the derived parameter η, which is equiv-
alently the facet angle subtending ρ2, and the facet angle
subtending ρ3 [Fig. 3(a)]. We define that in the flat state, η,
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FIG. 4. (a) We treat the stretchable crease as a torsional and extensional spring with stiffness kT and kE . (b) The 2 degrees of freedom, ϕ

and α, completely define the kinematic space. (c) If all of the dihedral edges are unit length, then all endpoints lie on a sphere. The spring kE

acts over distance x, which is the chord from point C to point D, and the spring kT acts about angle θ which is the angle defined by �CFD
about point F . The parameter g is useful in establishing the kinematic bounds, and it is equal to arc FC = FD. (d) Not all ϕ-α pairs are valid.
When g = 0 the facets intersect, and when g = π/2 the extensional spring clips through the facets, both of which are physically impossible.
(e) We can fold the α-ϕ kinematic space into x-θ -ϕ space to simplify the energetic analysis.

γ , and β lie in a plane [see Fig. 3(b) for definition of γ and
β and Fig. 3(c) for definition of η]. Thus, they are explicitly
related by

2η + 2γ + β = 2π. (4)

We introduce parametric bounds on our system, by first
enforcing that η > 0, implying that facets ρ2 and ρ3 will
always exist. Using Eq. (4), this definition is equivalent to the
statement

γ < π − β/2. (5)

To allow for the space folding technique employed in
Sec. VI, we impose that the kinematic space always form a
closed region using the two kinematic boundaries we establish
in Sec. V (see SM A.4.1 [68] for details) resulting in the
additional restriction that

γ > 3π/4 − β/4. (6)

Finally, to further simplify our analysis (see SM A.3.3 [68]
for full justification), we restrict β and γ to the domains

0 < β < π/2 and π/2 < γ < π. (7)

The four constraints given by Eqs. (5)–(7) form a closed
region represented by the shaded area in Fig. 3. The geometric
parameters used throughout this article are β = 10◦ and γ =
3π/4 [Fig. 3(c)].

V. KINEMATICS AND ENERGETICS

The kinematic analysis of a stretchable crease unit requires
the definition of two independent degrees of freedom ϕ and
α [Fig. 4(a)]. This effectively creates a cut at ρ2 and ρ3.
Allowing ϕ and α to both be members of the open set (0, 2π )
provides all possible configurations of the system.

To represent a flexible crease [the material between ρ2 and
ρ3 in Fig. 4(a)], we use a rotational spring of stiffness kT with
equilibrium angle θ0 and an extensional spring of stiffness
kE with equilibrium distance x0 [Fig. 4(b)], which act on θ

and x, respectively [Fig. 4(c)]. We define θ to be the angle
subtended by the spherical arc CD from point F, while we
define x as the Euclidean distance between points C and D.
Finally, we assume the restoring force from the stretchable
crease to be of a significantly higher order of magnitude than
the potential due to gravity allowing us to ignore the effect of
mass in the facets (ρi). We further assume quasistatic loading
which implies symmetric bending moments on points C and
D [Fig. 4(c)], and effectively excludes asymmetric folding
modes. The resulting energetics are captured by

U = 1
2 (kE [x(α, ϕ) − x0]2 + kT [θ (α, ϕ) − θ0]2). (8)

Interestingly, assuming rigid facets and lumped springs
impose two kinematic constraints on the system. These two
constraints can be described by the parameter g = FC =
FD [Fig. 4(c)]. The first constraint is that facets ρ2 and
ρ3 cannot intersect, corresponding to x = 0, or g = 0 in
Fig. 4(d). Equivalently, this boundary is the kinematic space
of a non-Euclidean system without crease stretching, and thus
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is directly defined by Eq. (1). We refer to this as the “intersect
boundary,” ϕI . The second constraint is g = π/2, which cor-
responds to when facets ρ2 and ρ3 are parallel to each other,
rendering impossible the placement of a rotational spring. We
refer to this as ϕS , for “spring boundary,” and it is defined by
(see SM A.3.4 [68] for this derivation)

ϕS (α) = π − 2 tan−1

(
tan(γ + β/2) sin γ − cos γ cos α

sin α

)
.

(9)
We plot Eqs. (1) and (9) in α-ϕ space [Fig. 4(d)] and show

that they always form a closed region, given the parameter
limits outlined in Fig. 3 (see SM A.4 [68] for details).

VI. STABILITY ANALYSIS

Transforming the kinematics from α-ϕ to x-θ coordinates
simplifies the stability analysis because the energetics of the
problem, as defined in Eq. (8), are in x and θ . However,
x-θ coordinates do not provide a one-to-one mapping to α-ϕ
coordinates as described in SM A.5 [68]. This motivates our
choices to use x-θ -ϕ coordinates to represent the system,
which effectively folds α-ϕ space into three dimensions, as
shown in Fig. 4(e), and provides a one-to-one mapping to α-ϕ
space. To characterize this surface, we can write a level curve
f (x, θ, ϕ) = 0, using the spherical law of sines, as detailed in
SM A.7 [68], yielding

f (x, θ, ϕ) = sin(θ/2)

sin γ
− sin(ϕ/2)

sin
(
η + sin−1

[
x

2 sin(θ/2)

]) = 0.

(10)
Prior work has established that energy minima, and thus

stable states, occur when the gradient of energy (∇U ) and
the gradient of the kinematic space (∇ f ) point in the same
direction [69]. Using the dot product, this statement can be
equivalently written as

∇U · ∇ f = |∇U ||∇ f |, (11)

where the gradient operator is defined in x-θ -ϕ coordinates.
Applying this definition of the gradient to Eqs. (8) and (10)
yields ∇U and ∇ f as

∇U = [kE (x − x0), kT (θ − θ0), 0] (12)

and

∇ f =
[
∂ f

∂x
,
∂ f

∂θ
,
∂ f

∂ϕ

]
. (13)

Notice that Eq. (12) establishes that the energy gradient
is always a 2D vector, and Eq. (13) reveals that kinematic
gradient is, in general, a 3D vector. Therefore, the two vectors
point in the same direction only when the kinematic vector
degenerates into a 2D vector in the x-θ plane. Inspection of
Eq. (13) reveals that this collapse occurs when ∂ f /∂ϕ = 0.
Our analysis in SM B.1.2 [68] shows that ∂ f /∂ϕ = 0 occurs
when ϕ = π . We can visually establish in Fig. 5(a) that this
stable state (T3) indeed occurs within the plane ϕ = π in
x-θ -ϕ space, and in Fig. 5(b) on the line ϕ = π in α-ϕ space.

To uncover the other stable states, we reexamine Eq. (11)
and determine that ∇ f = 0 or ∇U = 0 also satisfy this ex-
pression. We show in SM B.1.3 [68] that ∇ f is never zero and
from inspection of Eq. (12) we observe that is ∇U = 0 when

FIG. 5. (a) Our model predicts three stable states, two of which
result from the global minima (T1, T2) and one of which is a local
minimum of the balance of crease torsion and stretching (T3). We
can prove mathematically that T3 only occurs along the plane ϕ = π ,
and that T1 and T2 occur twice along the line x = x0, θ = θ0. (b) This
model is verified experimentally by setting our demonstrator to states
T1, T2, and T3. (c) We compare the non-Euclidean case without
crease stretching from Fig. 2 (dashed line being ϕI,1, solid line being
ϕI,2, S1 being the stable state along ϕI,1, and S2 being the stable state
along ϕI,2) to the non-Euclidean case with crease stretching. We note
that S1 and S2 become T1 and T2, and a third state emerges, T3 at
the dotted line ϕ = π .

x = x0 and θ = θ0. We reveal in SM A.5 [68] that this occurs
exactly twice. To give a sense of this proof, we begin with
the fact that Fig. 4(d) represents the complete kinematic space
of the Miura-Ori system, with α and ϕ as our two degrees
of freedom. Using Napier’s analogies, we show that within
this closed region, the inverse sine function produces two
valid α-ϕ pairs for every pair of x0 and θ0, with the notable
exception of x0 and θ0 values which produce a stable state at
ϕ = π , i.e., the flat folded configuration. Figure 5(a) provides
a visual intuition for why this is true: the solid line, which rep-
resents a given (x0, θ0), intersects the surface f twice (recall
that the surface f is ϕ-α space folded into x-θ space), at T1
and T2, and is symmetric about ϕ = π . This method used to
obtain (α1, ϕ1) and (α2, ϕ2) for T1 and T2, respectively, in SM
A.5 [68] yields the following conditions:

ϕ1 = 2 sin−1

[
sin θ0

2

sin γ
sin

(
η + sin−1

[
x0

2 sin θ0
2

])]
, (14)

and

ϕ2 = 2π − ϕ1, (15)
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TABLE I. Degrees of freedom values and stability conditions
predicted by our model for the three stable states for a system
with parameters γ = 3π/4, β = 10◦, x0 = 0.25, θ0 = 1.39, and
kE/kT = 103.

State x θ α ϕ ∇ U, ∇ f

T1 0.250 1.39 1.10 π/2 ∇U = 0
T2 0.250 1.39 3.01 3π/2 ∇U = 0
T3 0.258 3.74 3.57 π ∇U/|∇U | = ∇ f /|∇ f |

with

α1,2 = 2 tan−1

[
−cos

(
1
2 [γ ± η]

)
cos

(
1
2 [γ ∓ η]

) tan

(
ϕ1

4
− θ0

4

)]
. (16)

To obtain state T3, we write U as a function of α, holding
ϕ constant at π and setting ∂U/∂α = 0 (SM B.2 [68]). Note
that this requires choosing a ratio of kE/kT . We chose 103

because it is close to the range considered in Ref. [45] for
which the predictions obtained with our model reveal the
parameter values for the three stable states, as summarized in
Table I.

The predicted parameter values by our closed-form so-
lutions enable the design of the experimental demonstrator,
shown in Fig. 5(b). In this demonstrator, we observe the sym-
metry of states T1 and T2 about ϕ = π which have identical
(x, θ ) values. Additionally, the third stable state (T3), is found
at ϕ = π . These experimental observations match closely the
theoretical model predictions in Table I.

We now compare the stable states found by strict non-
Euclidean origami [Fig. 2(a)] to the stable states for an
equivalent system with the addition of crease stretching
[Fig. 5(c)]. Note that the shaded region in Fig. 5(c) represents
the kinematic space for crease stretching whereas the solid
lines represents the kinematic space of strict non-Euclidean
origami. Without crease stretching, we observe two discon-
nected stable states, S1 and S2. In contrast, allowing the
crease to stretch connects the states via the shaded region (T1
and T2) and introduces an additional, kinematically accessi-
ble, third stable state (T3). Consequently, crease stretching
connects the otherwise disjointed two stable states, i.e., S1
and S2.

VII. FOLDING PATHWAYS

Figure 5(b) showed that the three stable states have no
kinematic obstacles between them. Here, we elucidate the
two equilibrium folding pathways by which these states are
connected using the principle of virtual work (SM C [68]).
This approach reveals that there are two possible equilibrium
pathways, one for each degree of freedom. One pathway cor-
responds to ∂U

∂α
= 0. A solution to this equation fixes points O

and A and applies two vertical downward forces, Fϕ , at B and
E [Fig. 6(a)(i)]. We define this to be the ϕ path because ϕ is our
degree of freedom. The energy along this pathway is shown in
Fig. 6(b). Notice that the endpoints of this path are T1 and
T2, the two stable states established earlier. The other path
corresponds to ∂U

∂ϕ
= 0. This pathway requires fixing points

O, A, B, and E, and applying two vertical forces Fα at C and

FIG. 6. (a) Stable states T1, T2, and T3 are connected by two
main pathways (i) the ϕ path where ϕ is the only DOF, where when a
+Fϕ is applied results in system folding from T1 to EQ and EQ to T2,
and (ii) the α path where α is the only DOF, which when a positive
Fα is applied results in folding from EQ to T3. (b) Energy landscape
along the ϕ path, showing local maximum at EQ and local minima at
T1 and T2. (c) The energy landscape along the α path, showing local
minima at EQ and T3.

D, see Fig. 4(c) for the definition of points A-E and O. We
define this to be the α path [Fig. 6(a)(ii)] because α is our
degree of freedom. The energy along this pathway is shown in
Fig. 6(c). The full energy landscape for the entire kinematic
space is shown in Fig. 7(a).

Notice that in Fig. 6(c), state T3 is not connected directly
to states T1 or T2. Instead, its endpoint is an intermediate
saddle point EQ. Figure 6(a) summarizes how T1, T2, T3,
and EQ are connected by the α path and the ϕ path. For
instance, if we desire to move from state T1 to state T2, then
we would apply a positive Fϕ to the system with the boundary
conditions of the ϕ path. Application of a positive Fϕ past
state T2, results in deflection back to state S2 upon release
(see video S1). Figure 6(a) also indicates that to access state
T3 from T1 requires the application of a positive Fϕ under
the boundary conditions of the ϕ path until the system is
at the saddle point, EQ. Then, by switching a positive Fα

with the boundary conditions of the α pathway, the system
reaches state T3. Continuing to apply a positive Fα and subse-
quent release results in self-equilibrating deflection into state
T3 (see video S2). For a given transition from one state to
another, Fig. 6(c) can be read by starting at the initial state,
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FIG. 7. Folding pathways, resulting stable states, and normalized
strain energy choosing ϕ0,1 (value of ϕ at T1) and x0 as design
objectives and θ0 as our design variable. (a) For the design objective
of ϕ0,1 = π/2 and x0 = 0.25 inverse design results in θ0 = 1.39.
(b) The same design objective is also achieved using θ0 = 2π − 1.39.
By choosing (a) or (b), we can control whether the two stable states
have α values in the open interval: (a) (0, π ) or (b) (π, 2π ).

and then applying ±Fα or ±Fϕ until the desired final state is
reached.

VIII. INVERSE DESIGN

We now shift to the ultimate focus of this paper: to in-
versely design a spring origami Miura-Ori unit. We begin with
a justification of our choice of design objective. Since there
are a small number of elastomeric materials available for our
manufacturing process (FDM 3D printing), we relate kE and
kT at a ratio of kE/kT = 103, as before, and keep it fixed. We
have also shown that choosing the shape of either T1 or T2
[(ϕT 1, αT 1) or (ϕT 2, αT 2)] implies defining the other state’s
shape given their 2π symmetry in ϕ [see Eqs. (15) and (16)].
Therefore, the full range of available system parameters
are

γ , β, x0, θ0 and (ϕT 1 or ϕT 2 or αT 1 or αT 2). (17)

To perform inverse design, we can fix any of the four
system parameters from Eq. (17) as design targets, leaving the
fifth parameter free as our design parameter. We illustrate this
process, setting the values of γ , β, x0, and ϕT 1 as our design
targets, which are outlined in Table II, and then calculating the
θ0 that achieves these desired kinematic configurations.

Before detailing the calculation of θ0, we first justify
our choice of design targets. We set γ = 3π/4 to sim-
plify the kinematics, and β = 10◦ to remain in the shaded

TABLE II. We can fix the four parameters γ , β, x0, and ϕT 1 as
design targets and show that there are two symmetric values of θ0

that achieve these design targets. All units are in radians.

γ β x0 ϕT 1 θ0(γ , β, x0, ϕT 1)

3π/4 10◦ 0.25 π/2 1.39
3π/4 10◦ 0.25 π/2 2π − 1.39

region of Fig. 3(c). We select ϕ as our design parame-
ter over α since all of its facets are connected to standard
origami linkages, so linking the units kinematically to an
origami string [70], or an origami metamaterial [5] would
be a simple task. We set ϕ = π/2 to further simplify anal-
ysis. We choose x0 as the second design objective and keep
it at a relatively low value of 1/4 of the radius of the
sphere, as limitations from the herein employed fabrication
method imposes restrictions on manufacturing larger x0 val-
ues. However, freer choice of manufacturing processes would
allow for the selection of θ0 as design target instead of
parameter. Now we turn out attention to explicitly deriv-
ing the θ0 required to achieve a given γ -β-ϕ0,1-x0 quartet.
As detailed in SM A.8 [68], the spherical law of sines
yields

θ0(x0, ϕ0,1) = 2 sin−1

(
x0

2

√
A2 + 1

A

)
(18a)

or

2π − 2 sin−1

(
x0

2

√
A2 + 1

A

)
, (18b)

where

A = sin η
2
x0

sin ϕ0,1

2 sin γ − cos η
. (19)

Notice that Eq. (18) reveals there are two possible θ0 values
that satisfy our desired ϕ0,1 and x0, where the first applies for
θ0 ∈ (0, π ) and the second for θ0 ∈ (π, 2π ). This is summa-
rized in Table II.

To understand the physical difference between these two
values of θ0, we choose a representative design point of
ϕ0,1 = π/2 and x = 0.25 for simplicity. Using Eq. (18a) we
obtain the value θ0 = 1.39, and using Eq. (18b) we obtain
the value θ0 = 2π − 1.39, both of which satisfy our design
requirement. Figure 7(a) shows what the stable states and the
folding pathways look like for θ0 = 1.39. Recall that θ0 =
1.39 and x = 0.25 were the parameters used in the preceding
kinematic analysis, and that stable states, T1, T2, and T3,
were indeed at ϕ = π/2, ϕ = 3π/2 and ϕ = π , as shown
in Fig. 5(c), showcasing the predictive power of the inverse
design. Figure 7(b) demonstrates the impact of the alterna-
tive choice of θ0 = 2π − 1.39. Notice that T1 and T2 switch
are now located on the right-hand path, while T3 now lies
on the left-hand path. From this, we can conclude that if
θ0 ∈ (0, π ) [Eq. (18a)] then the two symmetric stable states
will have α ∈ (0, π ), whereas if we chose the θ0 ∈ (π, 2π )
[Eq. (18b)] we will have that the two symmetric stable states
have α ∈ (π, 2π ).

IX. CONCLUSION

We show via analysis and experiments a simplified tech-
nique of modeling Miura-Ori units with stretchable creases.
Our analysis is based on a tractable model enabling the
closed-form prediction of the stable state and folding paths of
four-vertex, non-Euclidean origami units with crease stretch-
ing. The derived model can accurately predict almost all of
the observed behavior of a physical system. The model also
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enables an inverse design technique that gives two symmetric
solutions for a desired shape. In theoretical terms, this is
accomplished by connecting the disconnected regimes of non-
Euclidean origami via crease stretching. This work provides
an analytical model to access the design space of multistable
origami, and lays the framework to allow for efficient inverse
design of desired shapes based on accessible closed-form
solutions, the stability of which does not require actuation
systems or facet deformation.
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