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Rescaling invariance and anomalous energy transport in a small vertical column of grains
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It is well known that energy dissipation and finite size can deeply affect the dynamics of granular matter,
often making usual hydrodynamic approaches problematic. Here we report on the experimental investigation
of a small model system, made of ten beads constrained into a 1D geometry by a narrow vertical pipe and
shaken at the base by a piston excited by a periodic wave. Recording the beads motion with a high frame
rate camera allows to investigate in detail the microscopic dynamics and test hydrodynamic and kinetic models.
Varying the energy, we explore different regimes from fully fluidized to the edge of condensation, observing good
hydrodynamic behavior down to the edge of fluidization, despite the small system size. Density and temperature
fields for different system energies can be collapsed by suitable space and time rescaling, and the expected
constitutive equation holds very well when the particle diameter is considered. At the same time, the balance
between dissipated and fed energy is not well described by commonly adopted dependence due to the up-down
symmetry breaking. Our observations, supported by the measured particle velocity distributions, show a different
phenomenological temperature dependence, which yields equation solutions in agreement with experimental
results.
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I. INTRODUCTION

Granular matter can display a variety of behaviors [1,2],
from quasisolid to fluidlike states, for which effective descrip-
tions exist in a limited number of regimes. At the same time it
is also a paradigmatic representation of a dissipative system
far from equilibrium and as such it is often explored as a
model system. In the absence of external forces, grain motion,
even if initially present, eventually comes to an end because
of the inelastic and frictional interparticle collisions. Other-
wise it can be sustained by continuous energy supply. Among
many others, a main issue is whether and within which limits
such situations can be described by hydrodynamics, where
that granularity disappears and the system state is defined by
continuous fields in terms of local averages of quantities like
velocity, granular temperature, and density.

Hydrodynamic descriptions of granular flow have been
developed with some success (see, e.g., the reviews in [3,4]).
The advantages of such a description being evident, it can
fail for several reasons. Among them, besides the discrete
nature of the system components, there is the energy dissipa-
tion due to intergrain collisions and friction that can generate
strong gradients and space-velocity correlations and lead to
clusterization [5–8]. To this respect it is critical the way in
which energy is fed [8], since it strongly influences dynamics
through the way energy is redistributed [6]. A homogeneous
fluidized state can also become unstable with respect to small
density perturbations and evolve so that a dilute granular fluid
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coexists with much denser solidlike clusters [9]. To address
such situations it is often necessary to introduce more complex
quantities, like variable viscosity, additive diffusive terms, etc.
[4], making applications problematic in several circumstances
and stimulating the formulation of computational methods
based on effective interaction terms, like, e.g., smoothed-
particle hydrodynamics [10–12].

Granular hydrodynamics can represent a problem even in
one dimension, as shown in the seminal work by Li and
Kadanoff [6] where a system can end in a static state because
grains clusterize far from the energy source. One-dimensional
systems are important also for the understanding of granular
hydrodynamics in higher dimension, as stressed by Sela and
Goldhrisch [7]. In addition, 1D and quasi-1D granular systems
represent simplified situations to investigate phenomena, like,
e.g., wave transmission [13–16]. Their properties can be of
some relevance in the field of active matter, where one dimen-
sional systems are often considered [17–23], and interesting
for applications, as for instance in granular dampers [24,25].

Most work on granular hydrodynamics is based on calcula-
tions and numerical simulations, with sometimes disagreeing
conclusions. 1D hydrodynamics has been studied analytically
under various conditions and different ways of feeding energy,
generally for well fluidized, and large systems [7,26–31],
stimulating a number of simulations [5–8,27,31–45]. There
are very few experimental works that, rather than verifying
hydrodynamic behavior, are generally mainly focused on col-
lective dynamics and specific phenomena, like inversions or
Leidenfrost effects, among them [35,46–51].

Far from giving a general description, our work aims
at testing hydrodynamics experimentally in the simple case
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TABLE I. Values of temperatures characterizing the piston mo-
tion in the experiments considered here.

Set S 1 2 3 4 5 6 7

T0 (mm/s ×102)2 30.22 28.52 22.20 16.67 14.21 9.86 4.82
λ (mm) 70.8 69.1 62.6 57.0 54.5 50.1 44.9
τ (s × 10−2) 8.85 8.84 7.99 7.62 7.45 7.14 6.77

of small 1D systems in a statistically stationary state. As
remarked above, similar systems have been the subject of sev-
eral studies from the theoretical and numerical point of view,
but very few experimental instances can be found. Despite the
unavoidable limits of the experimental conditions, this work
aims at broadening the knowledge of the field by providing an
experimental demonstration that even a small system of grains
is very well described in terms of continuous hydrodynamic
density and temperature fields with well defined properties.

In the following, Sec. II is devoted to describe the exper-
iment and its parameters, anticipating that the field profiles
observed for different system energies can all be overlapped
by suitable time and space rescaling. Measured hydrodynamic
fields are shown in Sec. III, where a state equation of the
Van der Waals type is successfully tested. In Sec. IV, energy
dissipation and current are experimentally measured, finding
that the latter does not agree with what is resulting from its
expression, usually adopted in terms of field. On the base of
experimental observations a different expression for the tem-
perature dependence is formulated, which is also connected
with the asymmetry induced by gravity in the velocity distri-
bution of the grains. In Sec. V, this expression is employed in
the hydrodynamic equations, yielding solutions in agreement
with the observed fields. Final considerations are contained in
Sec. VI, while more experimental and procedural details can
be found in the Supplemental Material [52].

II. EXPERIMENTAL PARAMETERS AND RESCALING

We have investigated a set of N=10 identical steel beads
of diameter d = 4 mm, restitution coefficient ε � 0.92,
constrained to move in a vertical pipe (Fig. S1 in the Supple-
mental Material [52]). The energy is supplied to the system
by an oscillating piston that hits the lowest grain vertically,
and gravity prevents reaching absorbing states with collapsed
grains. Changing the amount of fed energy allows to explore
different regimes. The piston is driven sinusoidally at a fre-
quency f = 30 Hz, and the grain motion is recorded by a
video camera at 480 fps and digital images are processed to
reconstruct the trajectories of the center of mass of each bead
[52]. Collisions being substantially central, spin motion has
not been taken into account. In the following, lengths and
times will be converted from pixel and frames into millimeters
and seconds, and the grain mass will be taken adimensional
and set equal to one (experimental and data processing details
are available in the Supplemental Material [52]).

Here we report on a series of seven experiments in
which the piston amplitude varies from A = 2.90 mm to
A = 1.15 mm, with corresponding driving temperatures T0 =
(2π f A)2 reported in Table I. This choice of parameters allows

to explore the behavior of the system from well fluidized to
almost collapsed states.

In hydrodynamics, generic (e.g., dimensional) considera-
tions usually allow one to identify several length and time
scales characterizing the system, such that different systems
may display the same dynamics after suitable rescaling of
the fields. This expectation has been extended to granular
systems„ but it is difficult to prove on a general foot due to
the huge number of possible granular regimes. For specific
systems like that at hand, characteristic scales have been in-
troduced in theoretical approaches [31,32,42].

A first important attainment of the present work is to show
that fields observed at different T0 can be collapsed to a same
profile if the finite size of the particles is taken into account in
a suitable way. There are different relevant scales in the sys-
tem. In the present case, being the supplied energy the varying
parameter, the relevant space and time scales (remind that
m = 1) are related to the source temperature T0, and without
loss of generality can be taken, respectively, proportional to
λ = T0/g and τ = √

λ/g [26,31]. However, experimental data
show that in the present case, this choice does not produce a
good field collapse, which instead, is obtained rescaling by

λ = T0/g + Nd, (1)

which also implicitly modifies τ . Such dependence appears
natural since, taking two bead columns at rest made of dif-
ferent number N with different diameter d (identical in each
column), they can be made to look the same by measuring
space in units of length Nd . We test the validity of this ex-
pression in the following by considering the rescaled fields.
Notice that τ = λ/

√
T0 is also a possible definition. The two

choices for τ , respectively inertial and ballistic, coincide only
for d = 0, but in the present case the second choice performs
worse.

III. HYDRODYNAMIC DESCRIPTION AND FIELDS

Derivation of hydrodynamic equations for granular flow
has been performed in different ways, situations, and dimen-
sions (see, e.g., [2] and Refs. therein). In their general form
they are akin to those for true fluids but also account for the
energy dissipated in collisions. Naming z the only coordinate,
they have the form

∂tρ = −∂z(ρv), (2)

ρ ∂t u = −ρu∂zu − ρg + ∂zP, (3)

ρ ∂t T = −ρu∂zT − ∂zJ − P∂zu − W, (4)

where u(z, t ) and ρ(z, t ) are the velocity and density fields,
T (z, t ) and P(z, t ) temperature and pressure, and g the grav-
ity acceleration. These equations, respectively, describe mass
conservation, momentum conservation (Euler equation), and
energy balance. Here W is the rate of energy density dissipated
in collisions and J the energy current through the system. In
the stationary state, the first equation is trivially satisfied, and
the others dry to

∂zP − ρg = 0, (5)

∂zJ − W = 0, (6)
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FIG. 1. Density (top) and temperature (bottom) profiles rescaled
by the characteristic scales λ and τ . Strong bead localization is
visible at low energy.

corresponding respectively to the Stevino’s law and to a con-
tinuity equation for the energy density. Suitable boundary
conditions and constitutive relations are necessary to make
the theory closed. Both ingredients are unknown in general.
A main outcome of our study is the proposal of constitutive
relations for pressure, energy current, and dissipation rate.

In order to experimentally verify Eqs. (5) and (6), local
stationary fields ρ(z), v(z), and T (z) have been evaluated
from the video recordings (see the Supplemental Material
[52]). Figure 1 shows the densities ρ (top) and temperature
T (bottom) fields for the different sets considered. The main
panels report the rescaled quantities, ρ → ρλ, T → T τ 2/λ2,
as functions of the rescaled height z → z/λ. A good sim-
ilarity is obtained for most of the cases: the fields appear
rather smooth for sets of higher energy, while granularity
becomes visible for decreasing T0, especially in sets S6 and
S7. Density is very constant in the system bulk, displaying
rather well equispaced relative maxima with symmetric shape
in less fluidized systems, where increases are also close to
the piston because of the low bead kinetic energy. Rescaled
temperatures decay about linearly far enough from the piston,
displaying a common pattern in regions of increasing size for
increasing set energy, a sign that rescaling of hydrodynamics

FIG. 2. Main panel: Test of Van der Waals-Tonks gas expression
for pressure, Pd (Eq. 5), vs the Stevino’s law. Inset: The same, using
P(z) = ρ(z)T (z) insted of Pd .

holds also for this granular systems if particle diameter is
suitably considered and system is fluid enough. Nonrescaled
densities and temperatures are plotted for comparison in the
inset of the respective figures, showing real spatial extension
and temperatures of the systems.

An important point concerns the system boundaries where
particular conditions act. On one side there is the energy
source which affects the dynamics of the bottom particle, and
consequently, the fields in that region. On the other hand,
the top particle is free to jump and could deserve a separate
ballistic dynamical description [26], but in the present case
it does not show particular anomalies. It appears that the
piston motion affects some quantities. For instance, density
and temperature vanish approaching z = 0 (Fig. 1), signaling
a region of rarefaction, and one can expect hydrodynamics to
not hold in that region. However, it must be noticed that other
quantities seem unaffected, like pressure (Fig. 2).

IV. CONSTITUTIVE EQUATIONS

From a variety of arguments (see, e.g., [7,26,53]) one ex-
pects that in dilute situations the pressure P follows P(z) =
ρ(z)T (z), namely it is proportional to the “internal” energy,
like in a perfect gas. However, as anticipated, the finite diam-
eter of the beads represents an important issue that must be
considered, like in the Van der Waals equation. An instance
where it happens is represented by the 1D Tonks gas of hard
rods [54], where pressure has the expression

Pd (z) = P(z)

1 − ρ(z)
ρc

, (7)

with ρc = N
Nd = 1

d . A similar expression has been derived for
a 1D model granular system [39]. The main panel of Fig. 2
shows this quantity vs PS = g

∫ ∞
z ρ(z)dz, as suggested by

Eq. (5). Both quantities are rescaled according to τ 2/λ. It
is seen that pressure behaves smoothly and follows a linear
trend in more energetic systems, while in low energy sys-
tems display granularity, reflecting in large fluctuations which,
however, do not change the average behavior. Notice that
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FIG. 3. Comparison of the cumulated dissipated energy rate
Wc = ∫

W dz from Eq. (8) with the energy current J (see text).

since the quantities on the two axes have the same dimension,
the slope of the curves, which turns out to be � 10−2, do
not depend on T0 even without rescaling. The importance
of accounting for the finite diameter is demonstrated in the
inset of Fig. 2, where P(z) = ρ(z)T (z) is plotted instead of Pd

resulting in a different slope for each set.
Slightly different formulations can be found for the explicit

expressions of W and J in Eq. (6). From kinematic argu-
ments one expects [6,31] W = C1(1 − ε2)ρ2T 3/2, where C1 is
an adimensional constant. This expression neglects velocity-
position correlations, which have been observed to invalidate
it in some simulations [55]. Moreover, it has to suitably mod-
ify it to account for the finite particle diameter. Following the
derivation, it is easy to see that the modified expression reads

W = C1(1 − ε2)
ρ2T 3/2

1 − ρd
, (8)

similarly to other cases.
We have tested the expression (8) by considering an ex-

plicit microscopic measure of the energy current [56], which
has its simple justification also in considering ρT as a kinetic
charge and multiplying it with its velocity v, as usual:

J (z) = C2ρ(z)〈v3(z)〉. (9)

Evaluation of the constants C1 and C2 requires a detailed
description of the kinetics and the related statistics, and is
strongly dependent on a series of assumptions. Here we only
adopt arbitrary values when necessary to compare different
quantities. To avoid the noise consequent to differentiation, we
have integrated Eq. (6) with the boundary condition J (∞) =
0. Moreover, being unknown whether J can actually be ex-
pressed in terms of fields, we have considered nonrescaled
quantities. The results for all the experimental sets are shown
in Fig. 3, where Wc = ∫ z

∞ W (z′)dz′. Apart from a multiplica-
tive constant, the two quantities look to display rather close
behavior far enough from the bottom. This is especially true
for more energetic sets, where the curves are closer in a wider
range, down near the energy source, indicating that the expres-
sion for W in terms of fields taking into account the particle
size, works to a good extent. The values of C2/C1 employed to

FIG. 4. Probability distribution of the velocity field for the set S1.

make the two quantities comparably match range from ≈1.1
for S1 to ≈3.8 for S7.

Constitutive expressions relating the current J with the
fields have been obtained in various circumstances. A natural
expression for small gradients is

J = κ
∂T

∂z
+ μ

∂ρ

∂z
(10)

with κ � μ ∝ T
1
2 . We checked that this expression does not

work in the present case, as can also be easily seen by consid-
ering that, far enough from the piston, T � 1 − const · z and
ρ � const yield J ≈ (1 − const · z)

1
2 , well different from the

curves in Fig. 3.
Expression (10) can be obtained by simple arguments [26].

More refined derivations based on a Chapman-Enskog expan-
sion [2,56,57], which aims at expressing the local probability
distribution of velocity (PDV) in terms of the other fields by
expanding small fluctuations, around a homogeneous solu-
tion, in terms of powers of the fields gradients. To find explicit
expressions for the resulting coefficients, the PDV is then
usually expressed in terms of polynomials that can account
only for not too large perturbations of the Gauss-Maxwell
distribution. Moreover, polynomials are generally taken as
functions of v2, assuming a symmetrical PDV in force of
the homogeneity and isotropy. The present one is, of course,
not the case. Gravity and the way of supplying energy break
isotropy, enforcing a strong and permanent asymmetry of the
PDV, as shown in Fig. 3 where, in order to maintain the energy
balance, the third moment of velocity looks persistent almost
everywhere.

This is confirmed by Fig. 4, where the local PDV p(z, v)
evaluated from experimental data of set S1 is shown. Large
asymmetries are seen. As can be expected from the behavior
of J , they decrease toward the top of the column, but it can be
verified that the velocity distributions are not Gaussian for any
of the particle, even in almost symmetrical cases. This feature
is shared by all the experimental sets, including low energy
ones where asymmetry is weaker. It is also seen that close
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to the bottom the distribution is bimodal, a feature that could
be spuriously due to the proximity of the piston, as already
observed in different experiments [47].

V. PHENOMENOLOGICAL DESCRIPTION

These last observations make problematic the description
of the system in terms of usual hydrodynamics fields ρ, u,

and T . Starting from a Gaussian PDV, asymmetries can be
accounted in some cases by additional fields, like for instance
in [7]. However this is not always possible, like for instance
in the presence of shear [4]. A different approach consists
in considering the possibility that, despite the “abnormal”
PDV, current could be expressed in terms of the usual fields,
although not in an immediate way. In this perspective it is
helpful to observe that as far as J � Wc, then J ≈ T

5
2 . In

fact, one can see that, at least far enough from the bottom,
from Fig. 1 one can assume dT/dz � const, and hence Wc =∫

W dz = ∫
W dT dz

dT ≈ T
5
2 .

This looks weird at first sight since from J ∝ ρ < v3 > and
ρ � const, one would expect J ≈ T

3
2 . This implicitly assumes

a linear dependence of the exponents characterizing different
moments, < vq >∝ T

q
2 , which is not the case here. Notice

that J is close to Wc in a wide range of z that increases down
to z ≈ 5 mm in most energetic sets, implying a determinate,
although nonlinear, dependence between the exponents of dif-
ferent moments of the PDV for a wide range of temperatures.
This can be surprising since in Fig. 4 PDV looks to change
substantially in this range. To test whether J ≈ T 5/2 is a rea-
sonable guess, we use it in the hydrodynamic equations where,
for such heuristic argument, we neglect the excluded volume.
We also move to the Lagrangian frame where equations take
a simpler form. After rescaling by λ and τ (with d = 0),
transforming to the variable y = ∫ z

0 ρ(z′)dz′ yields [31]

ρT = (1 − y), (11)

ρ
∂J

∂y
= W. (12)

Taking J ∝ ρT
5
2 and W ∝ ρ2T

3
2 , eliminating ρ through

Eq. (11) yields

∂ (1 − y)T
3
2

∂y
= C(1 − y)T

1
2 , (13)

where C is some proportionality constant. It is straightforward
to see that from the boundary condition T (1) = 0, it follows
T ∝ (1 − y) and consequently, from Eq. (11), ρ(y) ∝ const.
These solutions qualitatively agree well with the experimental
observations. It can be worth mentioning that in [35] some re-
sults from simulations with identical N and ε, and f = 20 Hz,
also show a linearly decaying temperature [see Fig. 5(b) and
therein]. Density is seen to decrease from the bottom up
[Fig. 5(a)], but with a trend to become more uniform for
increasing T0.

In order to compare our results with what is expected from
usual approaches [58] It can be worth remarking that slightly
different equations can be derived, depending on the form of

FIG. 5. Experimentally observed density and temperature fields
(set S1), compared with the solutions of usual stationary equa-
tion (14), and the alternative form (13) (fields are expressed in the
Lagrangian coordinate and multiplied by arbitrary constants to ease
the comparison).

thermal conductivity we have considered the equation [30,31]

∂ (1 − y)T
1
2

∂y
= 	2(1 − y)T

1
2 , (14)

whose solutions, with the boundary condition dT/dy = 0 at
y = 1, can be expressed through the modified Bessel function
of the first kind I0(x) as

T (y) = I2
0 (	(1 − y))

I2
0 (	)

.

Here 	 = N
√

π (1−ε2 )
2 , which in our case is � 3.47. The re-

sulting field profiles are reported in Fig. 5 together with the
solutions of Eq. (13) and those observed experimentally for
set S1, confirming that the usual field dependence of the
energy current does not account for our observations, which
are instead reproduced by the proposed form.

VI. DISCUSSION AND CONCLUSIONS

The results reported here demonstrate that gravity is an
efficient energy redistributor, but also a symmetry breaking
factor which produces persistent asymmetry of the velocity
probability function in the stationary state, that we have mea-
sured experimentally. Such asymmetry can be expected to also
persist in higher dimension, and in larger systems, since it
is essential to sustain the upward energy flux, and it should
indeed increase because of the increasing dissipation. On the
other hand it had already been shown that hydrodynamic
description must include asymmetry even in the absence of
symmetry breaking [7].

The energy flux measured in the system is different from
what is expected by usual theories. Adopting a phenomeno-
logical expression derived from observations, we have found
solutions of the hydrodynamic equations in agreement with
the experimental results.
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A standard constitutive equation that accounts for the finite
bead diameter has been observed to be well verified (in aver-
age even in systems at the edge of condensation). While this
had been predicted by some granular theories, it had not yet
been experimentally observed. Finally, experiments show that
many quantities can be rescaled by a characteristic length tied
to Nd . This result and the finite diameter correction in the con-
stitutive equation, as in other quantities, are expected to also
hold for larger and higher dimensional similar systems, i.e.,

stacks of beads shaken from the bottom under gravity, pro-
vided that—in the directions perpendicular to the gravity—
there are no inhomogeneities or instabilities such as convec-
tion, etc. On the contrary, the expression adopted for the flux
energy and the observed fields could be specific of the partic-
ular system investigated, and different in larger and higher di-
mensional systems. Nevertheless, they bring about the lack of
theory for systems like the one considered here, and the neces-
sity of considering odd moments of the velocity distribution.
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