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Controlling the coarsening dynamics of ferrogranular networks by means of a vertical magnetic field
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We are exploring in experiments the aggregation process in a shaken granular mixture of glass and magnetized
steel beads, filled in a horizontal vessel, after the shaking amplitude is suddenly decreased. Then the magnetized
beads form a transient network that coarsens in time into compact clusters, resembling a viscoelastic phase
separation [Tanaka, J. Phys.: Condens. Matter 12, R207 (2000)], where attached beads represent the slow phase.
Here we investigate how a homogeneous magnetic field oriented in vertical direction impedes the emergence
and growth of the networks. With increasing field amplitude this phase is replaced by a fluctuating arrangement
of repelling, isolated steel beads. The experimental results are compared with those of computer simulations.
Coarse-grained molecular dynamics confirms the impact of an applied magnetic field on the structural transitions
and allows us to investigate long-time regimes and magnetic response not yet accessible in the experiment. It
turns out that an applied magnetic field has different impacts, depending on it strength. It can be used either
to slow down the dynamics of the structural transitions without changing the type of the resulting phases and
only affecting the amount and sizes of clusters, or to fully impede the formation of network-like and compact
aggregates of steel beads.

DOI: 10.1103/PhysRevE.108.054905

I. INTRODUCTION

In a recent comment several “reincarnations of the phase
separation problem” have been picked from the latest sci-
entific literature [1]. One of the mechanisms highlighted by
the authors is viscoelastic phase separation (VPS), proposed
by Tanaka [2,3] for dynamically asymmetric mixtures, con-
taining a fast and a slow component. Examples comprise
suspensions of polymers in a much less viscous solvent, like
water [4], or even biological cells [5,6]. The driving forces for
the VPS are the differences in timescales of the constituents,
commonly not taken into account in the standard models of
phase separation [7–9]. The question arises of whether differ-
ences in timescales are also important if the slow phase just
emerges during the transition.

This is the case for a granular mixture of glass and magne-
tized steel beads shaken in a horizontal vessel. After a sudden
quench of the shaker amplitude, permanently magnetized steel
beads “self-assemble” to dimers, or longer chains with a mo-
bility, i.e., granular temperature, significantly lower than the
surrounding gas of magnetic and glass spheres [10,11]. For
a shallow quench soon compact crystallites of magnetized
beads emerge [10]. In contrast, for a deep quench, the dif-
ference in mobility gives rise to the formation of transient
networks, as shown in Fig. 1, which are coarsening in time
to more compact clusters [12]. We have compared this tran-
sition with the morphology of VPS, comprising an initial
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phase (here, chains), an elastic phase (governed by the elastic
networks), and a hydrodynamic phase (made up by compact
clusters) [12]. Whether this similarity is just a coincidence is
yet not clear, because the model of VPS lacks so far universal
features to be tested in the experiment.

To shed more light on the nature of the transition one would
like to control the mobility of the different constituents prone
to phase separation [13], “yet opportunities to manipulate it
are surprisingly subtle and complex” [1]. In a first attempt the
impact of an in-plain magnetic field onto phase separation of
the ferrogranulate was studied in experiments and simulations
[14]. Breaking the isotropy of the plain the resulting granular
networks resembled those familiar from magnetorheological
fluids [15,16] and standard [17,18] and inverse ferrofluids
[19–21]. In contrast, in the present study, we preserve the
isotropy of the system by means of an external field oriented
orthogonally to the horizontal vessel. In this way the mobility
of the jumping and rolling magnetized spheres is reduced.
However, this is payed by additional complexity, namely
the competition of dipolar attraction for horizontally aligned
dipoles (known from the zero-field case), and a repulsion of
dipoles oriented mutually in parallel to the applied field.

The magnetized steel beads utilized in the experiment
are multidomain magnetic particles. In contrast to dipolar
hard spheres—a standard model for single-domain magnetic
nanoparticles—these spheres are also magnetically suscepti-
ble and have been termed susceptible dipolar hard spheres
[14]. This feature has been found crucial to explain the for-
mation of clusters different from chains [12]. This additional
susceptibility, however, is rather difficult to model in com-
puter simulations. Previously, we showed that as a simple
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FIG. 1. Assembly of magnetized steel spheres: (a) in experiment;
(b) in simulations. In (a) magnetic beads have dark solid color, and
glass beads are transparent. In (b) the orientation of the magnetiza-
tion is indicated by hemispheres of black and gray color.

approach one can use the combination of a single dipole and
a central attraction [12]. An additional central attraction be-
tween the magnetic dipolar particles, in so-called Stockmayer
fluids, results in a gas-liquid phase transition with particles
forming droplet-like compact aggregates [22–26], instead of a
familiar self-assembling into loose linear or branched clusters
[27–33]. Even though a lot is known about phase behavior
of Stockmayer fluids in bulk, the influence of a nonmagnetic
component and geometrical constraints is still not analyzed
in detail. In this study we employ this model and show that
it can represent ferrogranulates fairly well even if an external
magnetic field is applied.

This paper contains an experimental (Sec. II) and a numer-
ical (Sec. III) part. In Sec. II A, we present the experimental
setup, the materials used, the measurement protocol, and data
extraction. In Sec. II B we present and discuss the results of
the measurements, analyzing the structural evolution of the
system. Next, in Sec. III A the simulation protocol is detailed.
This is followed by the numerical results in Sec. III B. The
paper ends with the summary of the main findings, given in
Sec. IV.

II. EXPERIMENT

First we present the experimental methods (Sec. II A),
which are followed by a report and discussion of the exper-
imental results (Sec. II B).

FIG. 2. Sketch of the experimental setup.

A. Experimental methods

In this section we describe the experimental setup, materi-
als, measurement protocol, and data extraction.

1. Experimental setup

Our experimental setup is sketched in Fig. 2. An open
vessel (width × length × height = 200 × 285 × 230 mm3)
is mounted on top of a vibration exciter (Brüel & Kjær,
type 4808) connected via an amplifier (Brüel & Kjær, type
2712) to a signal generator (Agilent, type 33120A). The latter
generates a voltage which is sinusoidally varying in time, the
amplitude and frequency of which can be controlled via a bus
(GPIB) by a personal computer.

To reduce the magnetic stray field of the electromagnetic
shaker the vessel is fixed via a hollow brass rod (diameter
20 mm) and a bearing and is situated 535 mm above the
flange of the exciter. By previous measurements we could
demonstrate that in this distance the stray field is comparable
to the earth magnetic field [12].

A water-cooled Helmholtz pair of coils (marked blue in
Fig. 2) serves to generate a magnetic induction B oriented
orthogonal to the horizontal vessel. Each coil is connected
to a current source (eurotest LAB/SL) controlled via GPIB
by the computer. The applied magnetic induction B is
recorded in the center of the coils by means of a Hall
probe (Lakeshore, MMT-6J02-VH) connected to a teslameter
(Lakeshore, Gaussmeter 450). Increasing the current from
0.00 A in 9 steps of 1.00 A yields the inductions

Bn = 0.231

[
mT

A

]
× n × 1.00 [A] − 0.058 [mT], (1)

with n = {0, 1, . . . , 8}. The negative offset, B0 = −0.058 mT,
is introduced to take into account the earth magnetic field.
During the experiments we record the acceleration amplitude
� with an acceleration sensor (Brüel & Kjaer, type 4509
B002), which is mounted beneath the vessel.
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TABLE I. Material properties of the utilized spheres.

Material Steel Glass

Supplier ISOMetall Sigmund Lindner
Type DIN 1.3505 G10 P*
Radius (mm) 1.5 2.0
Precision (µm) ±9.75 ±20
Mass (g) 0.108 0.084
Remanent moment mr

(10−4Am2) 1.8

2. Spheres

Following Blair and Kudrolli [10] we use a mixture of steel
and glass spheres. Their diameters and properties are listed in
Table I. The steel spheres are magnetized in an electromagnet.
For this purpose the spheres are inserted in a hexagonal grid
of holes, as shown in Fig. 3, which are drilled in a plastic disk.
The grid is closed by a lid, and then inserted in a 20 mm wide
gap in between the cylindrical pole shoes (diameter 150 mm)
of an electromagnet. In this way each sphere is magnetized by
the same induction. The induction in the gap is increased from
zero to 500 mT, and after one minute decreased to zero again.
As shown in Ref. [12], the dipole moment of the spheres
almost saturates at 500 mT. From the magnetization curve of
the steel spheres (see Fig. 6 in Ref. [12]) we can estimate the
dipole moment of a steel sphere in the applied induction B to

�m(B) = a · �B + �mr, (2)

where a = 3.27 × 10−2 Am2 T−1 is determined by the sus-
ceptibility of the steel, and mr is the remanent dipole moment
(cf. Table I) at B = 0.0 mT [34,35].

The filling fraction φ of both types of spheres is defined via

φ = N
Ahex

Avessel
= N

2
√

3 r2
sphere

Avessel
, (3)

where N counts the number of spheres, Ahex captures the
area of the regular hexagon around a sphere of radius rsphere,
and Avessel = 5.7 × 104 mm2. In this way φ becomes 1 for a
hexagonal close packing in 2D [10] (note that there is a typo

FIG. 3. Hexagonal grid of holes filled by steel spheres. The di-
ameter of the disk is 150 mm; its thickness, including a lid, is 20 mm.

in Eq. (3) of Ref. [12]). For all measurements reported here we
selected Ng = 473 glass spheres and Ns = 841 steel spheres,
which yields for both types of spheres an area filling fraction
of φg = φs = 0.115.

3. Measurement protocol

Each series of measurements is performed in the following
way. First, the acceleration amplitude is switched at t = −60 s
to �gas = 3.3 g, which is sufficient to generate a homoge-
neous granular gas. At tB = −5.0 s the magnetic induction
is switched from B0 to a selected value Bn, given by (1). At
tq = 0 s, when the field had ample time for its buildup, the
acceleration is quenched to �q = 1.8 g and the evolution of
the pattern is recorded with a CCD camera for 120 s. To obtain
reliable statistics, this sequence is repeated 50 times for each
selected induction Bn.

4. Image processing and data extraction

In order to be able to analyze the networks of steel spheres
we apply the following image processing and data extraction
procedure to the recorded frames. First, a trapezoid correc-
tion is applied to the images, followed by a binarization.
For a proper detection of all spheres, the binarization thresh-
old needs to be increased in steps. These binary images are
then processed with tools from the computer vision software
OpenCV [36] which yields the contour and coordinates of the
spheres. Next, for the identification of the networks, neigh-
boring spheres have to be recognized. In order to do this, the
center-to-center distance of each pair of spheres is compared
with their diameter, 2rsphere. The topology of the networks is
reduced to a graph (see, e.g., Fig. 13 of Ref. [12]) by means
of the software package networkX [37] based on the script
language Python [38].

B. Experimental results and discussion

Here we present the experimental results, starting with a
visual inspection of the structures of the networks of magnetic
beads (Sec. II B 1) followed by their formal analysis based
on the distributions and averages of the number of neighbors
(Sec. II B 2).

1. Evolution of the structures

Figure 4 presents an overview of the evolution of the net-
works of magnetic beads for three representative times [left
to right: columns (a) to (c)] and three representative magnetic
fields [top to bottom: rows (1) to (3)]. For minimal magnetic
induction, B0, panel (a1) displays emerging chains and small
clusters already 5 s after the quench, which have developed
to larger networks after 25 s (b1). During the next 75 s this
process continues more slowly which yields a network per-
colating from the left to right of the vessel, and some more
compact clusters (c1). At intermediate magnetic induction,
B4, we observe after 5 s (a2) smaller chains, when compared
with (a1); at 25 s (b2) the chains are less compact, and at
100 s (c2) the clusters are less extended, when compared with
(c1). Obviously B delays the evolution from chains, via net-
works, to clusters. This becomes even more evident at a large
magnetic induction, B8. In panel (a3) we see only individual
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(a1) (b1) (c1) 

(a2) (b2) (c2) 

(a3) (b3) (c3) 

FIG. 4. Examples of configuration snapshots for B0 (1), B4 (2),
and B8 (3) at 5 s (a), 25 s (b), and 100 s (c) after the quench. See also
the related movies B0.mp4, B4.mp4, and B7.mp4 that we have made
available [45].

steel spheres, which can hardly develop networks (b3). Those
appear only very late (c3). Inspecting panel (c3) more care-
fully, we can discriminate besides the clusters a large number
of individual steel spheres. Apparently this phase coexists
with the clusters. Let us now analyze the pattern evolution by
means of network quantities.

2. Number of neighbors

The topology of the clusters formed by the magnetic beads
can be represented as a network, in which each bead corre-
sponds to a node and the close contact connections between
pairs of beads are represented by edges. Thus, in this de-
scription the number of edges of each node—often addressed
as its degree, k—represents the number of neighbors of the
corresponding bead. A fundamental property of a network
is its distribution of degrees, which in our case can help to
identify the dominant structures in the system. In a chainlike
structure beads have two neighbors, k = 2, except those at the
chain ends, which have only one, k = 1. In a two-dimensional
system k is limited geometrically to 6, corresponding to a
hexagonal close packing. In the following, we define the frac-
tion of nodes with degree k, Fk , as

Fk = nk

NS
, k = {0, 1, . . . , 6}, (4)

FIG. 5. Time evolution of Fk (4). The magnetic induction B is
kept constant in each run, but increases from B0 (a) via B4 (b) to B8

(c). The legend in panel (a) applies to the three plots.

where nk is the number of steel spheres with k neighbors and
NS is the total number of steel spheres in the system. Thus,
this parameter represents the probability of a magnetic bead
to have a number of neighbors k.

The time evolution of the different fractions Fk is plotted in
Fig. 5 for the same selected values of magnetic induction that
were presented in Fig. 4. For minimal field, B0 [panel (a)],
one sees a drastic decay of F0 (blue ◦), and F1 (orange ×),
which represent isolated beads and loose edges of chains,
respectively. F2 (green pentagons), F3 (red squares), and F4

(purple triangles), corresponding to linear chains and inter-
mediate compact cluster regions, are first increasing and later
slowly decreasing, when highly compact clusters, captured
by F5 (brown crosses) and F6 (pink solid circles), become
prominent. The situation is similar for intermediate magnetic
induction, B4, as displayed in Fig. 5(b). However, in this case
F0 decays more slowly. Figure 5(c) presents the evolution of
the node degrees at maximum applied induction, B8. Isolated
steel spheres are now the dominant phase throughout the
whole sampled time interval, and F0 decays almost linearly
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FIG. 6. Relative frequency of the number of neighbors versus
the applied magnetic induction B, recorded 25 s after the quench.
For clarity, panel (a) displays only F0 (red), F1 (orange), and F2

(black). Panel (b) is devoted to F3 (green), F4 (blue), F5 (purple),
and F6 (gray). To guide the eyes the evolution of the different frac-
tions with B have been fitted by the function (dotted line) Fk (B) =
a{1 + exp[−b(B + Bc )]}−1, where a scales the amplitude, b is the
growth rate, and Bc an offset.

at a low rate. The decay of F1 is even weaker, whereas con-
tributions of F2 to F6, capturing chains, loose networks, and
compact clusters, are also very slowly increasing.

In order to better visualize the effects of the induction on
the formation of aggregates, we present in Fig. 6 the fractions
Fk observed at time t = 25 s as a function of Bn. It represents
a “vertical cut” through Fig. 5 at a time that corresponds to
the central column [(b1)–(b3)] in Fig. 4. This time roughly
signals the end of the fast early variations of Fk observed at
low and moderate inductions. To ease the visualization, the
results are split into panel (a), which shows the evolution for
k = {0, 1, 2}, and panel (b), for k = {3, . . . , 6}. The fraction
which is most prominently increasing with B is F0 (red) as
shown in (a). This is in agreement with the visual inspection
of the snapshots displayed in Fig. 4 [central row: (a2), (b2),
(c2)], indicating that with increasing B more and more steel
spheres remain disconnected. F1 (orange), characterizing the
fraction of dimers and chain ends, is only slightly increasing.
The black bars mark F2, characteristic for beads embedded
in chains and rings. This fraction is diminishing with B, in-
dicating that beads which are part of in-plane head-to-tail
dipolar configurations, have more difficulties to form with
increasing B.

Figure 6(b) displays a prominent decay of all fractions
for k > 2 with increasing B. This is in agreement with the
inhibition of the cluster growth produced by B. A particularly
characteristic fraction is F6 (marked in gray), which decays

FIG. 7. Temporal evolution of the mean degree of the nodes for
different applied magnetic inductions Bn, as listed in Table II. To not
overload the graphs, for t > 20 s only every 4th data point has been
plotted.

by a factor of 43 to F6(B6) = 1 × 10−3, indicating that for
Ns = 841 less than one sphere has six neighbors, on average.

A compact overview of the complex network evolution can
be gained from the mean number of neighbors, k̄, that we can
define as

k̄ =
∑6

k=0 knk

NS
=

6∑
k=0

kFk . (5)

The evolution of k̄(t, B) is plotted in Fig. 7. Consistently
with the observations for Fk , for minimal induction, B0, one
can discriminate two regimes. In the initial regime, which
lasts about 25 s, we observe a fast increase of k̄, which is
correlated with the formation of chains in Fig. 4. After that,
the clusters evolve to form more compact structures, making
k̄ to increase more slowly. Those two regimes are the parts
of a similar process but are characterized by quantitatively
different dynamics. Indeed, the temporal evolution of k̄ can
well be fitted by a common function for both regimes. It is the
sigmoidal growth function

k̄(t ) = k̄ini + k̄gro

⎛
⎝1 − 1

1 + (
t

t1/2

)p

⎞
⎠, (6)

that describes diverse limited growth processes in nature
[39]. Here, k̄ini denotes an offset, already present at t < 0 s,
which characterizes short time contacts during the collisions
of spheres. The maximal growth is marked by k̄gro. Moreover,
t1/2 denotes the half-value period when k̄(t1/2) = 1

2 (k̄gro − k̄ini ),
and p is a scaling exponent, which captures the curvature of
the graph. Only for B8 the gradual increase does not provide
enough data for a reliable fit. The fitting parameters are listed
in Table II.

The curves in Fig. 7 show that with higher fields the growth
of k̄ becomes increasingly slower. Consequently, the fits by
(6) yield slightly lower values for k̄gro (Table II, 4th column).
The retardation of the network evolution is most prominently
captured by the half-value period t1/2(B), as marked in Fig. 8
by blue circles. The first slow, then rapid increase of t1/2(B)
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TABLE II. The table displays Bn according to (1). A fit of (6) to
the data for the mean degree of a node k, as displayed in Fig. 7, yields
the parameters displayed in columns 3 to 6.

Bn (mT) kini kgro t1/2 (s) p

B0 −0.058 0.84 2.57 9.64 1.37
B1 0.174 0.84 2.58 9.97 1.32
B2 0.405 0.79 2.66 12.37 1.23
B3 0.636 0.77 2.70 16.63 1.13
B4 0.867 0.76 2.65 23.65 1.26
B5 1.099 0.71 2.81 44.03 1.30
B6 1.330 0.70 2.41 54.14 1.49
B7 1.561 0.67 2.12 81.92 1.94
B8 1.793

can be well described by an exponential function

t1/2(B) = t1 exp

(
B

Be

)
+ t2, (7)

with t1 = (5.7 ± 2.5) s, Be = (0.59 ± 0.07) mT, and the off-
set t2 = (1.9 ± 4.3) s. Note that (7) predicts t1/2 = 1 h for an
induction of B = 3.8 mT, only.

So far, we could show that the coarsening dynamics of
ferrogranular networks in a plane can well be characterized by
the mean number of neighbors, k̄(t, B). This order parameter
exhibits a sigmoidal growth (6) that slows down considerably
with growing magnetic induction perpendicular to the plane.

III. COMPUTER SIMULATIONS

Experimental results evidence the impact of an applied
magnetic field on the structural transformations in a shaken
ferrogranulate mixture, particularly in the first and the second
dynamic regimes. It is, however, not feasible to elucidate
quantitatively in experiments the long-time behavior as it is
not possible to fully exclude finite-size effects. Simulations,
in contrast, allow us to avoid the aforementioned limitations,
albeit in a simpler, more coarse-grained model. Below, we first
introduce such a model and the simulation protocol; next, we

FIG. 8. Half-value period t1/2(B) for experimental (blue circles)
and numerical (green diamonds) data, as displayed in Tables II and
III, respectively. The solid line marks a fit by (7).

discuss the findings and focus on two main points: first, we
justify why the model is applicable for the systems investi-
gated in experiments; second, we analyze the orientations of
particle magnetization and the system magnetic response dur-
ing the structural transformations. The latter adds an insight
that experimentally is not yet accessible.

A. Simulation protocol

We employ Langevin dynamics simulations [12,14], treat-
ing ferrogranulate as a two-component mixture. Simulations
are performed with the ESPResSo 4.1.4 simulation pack-
age. The glass component is represented by purely repulsive
spheres with diameter σg, interacting via the Weeks-Chandler-
Andersen potential:

uWCA =
{

uLJ(ri j ) − uLJ(rcut ), ri j < rcut,

0, ri j � rcut,
(8)

where |�ri j | = ri j is the modulus vector between centers of
spheres i and j, and uLJ is a standard Lennard-Jones potential,
given by (9), with the depth of its well ε,

uLJ = −4ε

[(
σg

ri j

)12

−
(

σg

ri j

)6
]
. (9)

By taking rcut = 21/6σg, the potential (8) becomes purely
repulsive. The second component is a classical Stockmayer
system in which two particles i and j, with identical diameters
σm, interact via an attractive uLJ, represented by (9) with σg

being replaced by σm. Additionally, particles i and j possess
magnetic moments �mi and �mj that are interacting via the
dipole-dipole potential

udd
i j = − μ0

4π

[
3

( �mi · �ri j )( �mj · �ri j )

r5
i j

− �mi · �mj

r3
i j

]
, (10)

where μ0 is the magnetic permeability of vacuum. In this way
we build a minimal phenomenological representation of the
magnetic interaction of the steel beads, which have a perma-
nent dipole moment and are as well magnetically susceptible
[12].

The trajectories of all particles are obtained by solving
Langevin equations in quasi-2D: particle centers are con-
strained to one plane, but rotations are allowed in all three
dimensions. The system in simulations is made pseudoin-
finite via lateral periodic boundaries. The thermal noise of
the Langevin thermostat in simulations serves to model the
effects of the mechanical shaker; thus, the experimental shak-
ing amplitude corresponds to the system temperature. As a
result, in simulations, the quenching is performed by a sudden
decrease of the system temperature. The Weeks-Chandler-
Andersen potential is used to model as well the repulsion
between glass and magnetic beads with an effective diameter
σ = (σm + σg)/2 and rcut = 21/6 σ accordingly. In both cases
the energy scale of the potential is set to unity.

In simulations, similarly to the experiment described above
(cf. Table I), area fractions of magnetic and glass spheres were
φm = 0.1 and φg = 0.1 with dimensionless diameters σg = 4
and σm = 3. The dimensionless temperature before quenching
is T1 = 5, and after quenching, T2 = 0.5. The conventional
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TABLE III. The table displays in the magnetic inductions B∗
n ,

impressed in the simulations together with the parameters obtained
by a fit of (6) (short-time regime) to the numerical data of k(t ),
displayed in Fig. 10.

B∗
n (s.u.) kini kgro t∗

1/2 (s.u.) p∗

B∗
0 0.0 0.4 1.72 12.34 0.81

B∗
1 0.1 0.38 1.81 14.19 0.72

B∗
2 0.2 0.39 1.74 14.94 0.76

B∗
3 0.3 0.39 1.63 15.32 0.83

B∗
4 0.4 0.4 1.57 21.85 0.81

B∗
5 0.5 0.4 1.37 27.25 0.87

B∗
6 0.6 0.39 1.3 55.47 0.76

B∗
7 0.7 0.38 0.97 96.46 0.93

B∗
8 0.8 0.36 0.36 106.52 1.77

measure of the strength of the dipole-dipole interaction be-
comes then λ = m2

i /T1σ
3
m = 5. We chose ε = 0.5 for the

strength of the isotropic attraction, as it provided the closest
structural resemblance to the experiment in the previous stud-
ies [12,14]. These values were obtained by placing Nm = 814,
Ng = 458 spheres in a square simulation box with side length
of L = 240.

First, the beads are randomly placed within the simulation
box and the system is equilibrated at a temperature, T1, which
is sufficiently high to maintain a gaslike state. For the gas
phase, simulation runs consisted of 12 × 104 integrations at
T1 with a simulation time step of δt1 = 0.005.

Second, we perform a quenching process by abruptly re-
ducing the temperature to its final value, T2, and switching
on the external field perpendicular to the layer of particles.
The magnetic field applied in the simulations is denoted as
�B∗
n, where ∗ is used to distinguish it from the experimental

one and underline its dimensionless nature (cf. Table III). The
applied field introduces a new interaction in the simulation
model, represented by the Zeeman potential acting on each
magnetized particle i according to its corresponding dipole,
�mi, via

uz
i = −μ0( �mi · �B∗

n ). (11)

In this work we investigate the range of the field strength B∗
n =

| �B∗
n| ∈ [0, 0.8] for eight different dimensionless field values

with equal intervals of 0.1, for which we observe behaviors
qualitatively comparable to the ones found in experiments.
Note that here we do not aim at any quantitative description of
the experiment; rather we focus on the qualitative trends and
the avoidance of the finite-size effects caused by the vessel
walls in the experiment.

Long-range magnetic interactions were calculated, using
the dipolar P3M algorithm with dipolar layer correction
[40,41].

After quenching the time step is fixed to δt2 = 0.0005.
Performing several preparatory runs in a zero magnetic field, it
was found that there are three characteristic regimes: the first
two that are related to the same process are the initial one,
where the observables are changing rapidly and the transfor-
mation from the gas phase to self-assembled chains occurs,
and the intermediate regime, in which the networks are evolv-

 

(a1) (b1) (c1) 

(a2) (b2) (c2) 

(a3) (b3) (c3) 

FIG. 9. Simulation snapshots corresponding to three different
times of our simulation, which are, from left to right, (a) initial t =
17 s.u., (b) intermediate t = 48 s.u., and (c) long time (the very last
configuration saved). The applied external magnetic field is increased
(from top to bottom). Horizontally, (a1), (b1), (c1) | �B∗

0| = 0.0; (a2),
(b2), (c2) | �B∗

5| = 0.5; (a3), (b3), (c3) | �B∗
8| = 0.8 in simulation units.

Vertically, (a1), (a2), (a3)—shortly after quenching that matches the
initial regime; (b1), (b2), (b3)—the last snapshot of the intermediate
regime; (c1), (c2), (c3)—the last time instance of the simulation. See
also the related movies Hz 0.0.mpg, Hz 0.5.mpg, and Hz 0.8.mpg
that we have made available [45].

ing; finally, there is the long-time regime, in which clusters
merge. Based on these observations we changed the frequency
of sampling. During the first 4 × 105 integrations, we record
the configurations every 104 steps. This allows us to resolve
fast dynamics in the initial and intermediate regimes. After
that, during the last 12 × 106 integrations, we only record
every 106 steps.

B. Numerical results and discussion

Analogously to the discussion of the experimental results,
we present here the numerical results, starting with a visual
inspection of the structures of the networks of magnetic beads
(Sec. III B 1). This is followed by their formal analysis based
on the averages of the number of neighbors (Sec. III B 2).
Finally, we extend the analysis by studying the magnetization
along the z axis (Sec. III B 3).

1. Evolution of the structures

We start the discussion of the numerical results by visual
inspection of the simulation snapshots displayed in Fig. 9 for
three different values of | �B∗

n| and for three different times:
initial (a), intermediate (b), and long time (c).
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FIG. 10. Mean degree of a node versus simulation time for differ-
ent applied magnetic fields B∗

n , listed in Table III. The symbols mark
the data estimated from the simulation results. The solid (dashed)
lines indicate fits by (6) for t ∈ [5, 195] (t ∈ [744, 6244]).

Each of the three rows in Fig. 9 corresponds to a certain
value of the magnetic induction, namely B∗

0, B∗
5, and B∗

8 in
simulation units (s.u.). Hence, in the first row (1) without
an applied field, many clusters form rapidly, showing time-
dependent merging with subsequent formation of compact
islands, connected by linear segments. By taking a closer look,
the orientation of the magnetic dipoles of the particles can
be unveiled since the north (south) of the dipoles have been
marked black (brown).

In the remainder of Fig. 9 the system undergoes a temporal
evolution, which is different from the one observed in the first
row in zero fields and investigated before [12]. For a moderate
field of B∗

5, displayed in Fig. 9, panels (a2)–(c2), the size
of the emerging structures is diminished, and many solitary
magnetic beads remain. This tendency is clearly reinforced
at the highest value of | �B∗

8| = 0.8, as shown in Fig. 9, panels
(a3)–(c3). Here, no compact clusters are found even for the
last simulation configuration, presented in Fig. 9, panel (c3).

After confirming similarities for the pattern evolution of
ferrogranulate under the influence of an applied magnetic
field in the simulations and experiments, we proceed with a
comparison of the main observables in order to justify the
choice of the model parameters and obtain an extra insight
in the magnetic response.

2. Number of neighbors

First, we calculate the mean number of nearest neighbors,
k̄, of each magnetic particle, and plot them as functions of
time in Fig. 10. This is done for each value of the magnetic
induction considered in the simulations. Different colors and
shapes of the symbols correspond to different intensities of an
applied external field, as detailed in Table III. Unless specified
otherwise, the size of the symbols in simulations corresponds
to the largest error bars.

The plots in Fig. 10 are directly comparable to the exper-
imental findings in Fig. 7. Looking at k̄(t ), we can clearly
discern two qualitatively different processes. The first process
is characterized by the first and the second time regimes, that
corresponds to simulation times below 2 × 102 and is the
same as in the experiment, shown in Fig. 7. It is qualitatively

similar for all values of B∗
n. Namely, the short and interme-

diate time behavior is well characterized by the sigmoidal
growth function (6), already describing successfully the ex-
periment. The values obtained from the fits are collected in
Table III.

If we compare the fitting parameters to those found in the
experiment and provided in Table II, we find the numerical
ones to be consistently lower, albeit with the same qualitative
behavior. The lower values of kini and kgro can be attributed
to the finite-size effects present in the experiment. As for the
differences in the values of t∗

1/2, they simply indicate the scal-
ing factor between simulation and experimental time units.
On the other hand, the proximity of the exponents, found in
numerical (p∗) and in experimental (p) data, underline a full
qualitative agreement between both approaches and suggest
that the mean number of neighbors each magnetic particle has
rapidly decreases with the growth of an applied magnetic field.
The similar pattern evolution is reconfirmed when inspecting
the half-value period t1/2(B) as plotted in Fig. 8. This means
that regardless of coarse-graining of magnetic interactions, the
simulation approach reproduces the short-time growth of k̄
accurately.

For long times the sigmoidal growth of k̄(t ) deviates
considerably from the predictions of (6) when fitted to the
short-time regime. As an ad hoc approach we fit the numer-
ical data by (6) but restrict the data to the long-time regime.
Even though the results (marked in Fig. 10 by dashed lines)
appear at a first glance reasonable, the strongly varying fitting
parameters (see Table IV) suggest that (6) has in the long-time
regime no predictive power. While k̄ini, k̄gro, and p∗ scatter
considerably, t∗

1/2 appears only mildly affected by B∗. This
may be interpreted in this way, that once the magnetized beads
have formed head-to-tail chains and clusters, their coarsen-
ing is hardly affected by B∗. Inspecting this evolution more
carefully for different values of the applied field, we see that
for B∗

n < 0.5, the growth is fast with no signs of saturation.
Once B∗

n > 0.6, the convexity of k̄ changes and the growth
becomes notably slower. All in all, the long-time regime dif-
fers considerably from the initial and intermediate ones, and
may characterize a physically different evolution process, like
the hydrodynamic regime in VPS.

Even though we cannot directly compare the third time
regime to the experiment, an excellent agreement for the val-
ues of k̄ in experiment and simulation in the first two regimes
reassures the predictive potential of the simulation approach.
This is at least true for the coarsening dynamics of a symmet-
ric mixture of steel and glass beads, namely φg = φs = 0.1.

This justifies exploring, just in silico, the impact of an
asymmetric mixture, because the experiments are rather te-
dious. Keeping the total filling fraction to φ = φg + φs = 0.2,
we have simulated the coarsening for an enriched (φs = 0.15),
a symmetric (φs = 0.10 = φg), and a depleted (φs = 0.05)
mixture of magnetized steel and glass beads, as shown in
Fig. 11. Here, k̄(t ) is plotted for three representative values
of the magnetic induction, namely B∗

0 (a), B∗
5 (b), and B∗

8 (c).
In each case, the magnetically enriched mixture (full circles)
has the highest value for k̄, then follows the symmetric mix-
ture (half-filled circles), and eventually the magnetic depleted
mixture (open circles). The solid lines in Fig. 11 mark fits
by (6) in the short-time regime, with the fitting parameters
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FIG. 11. Mean degree of a node versus simulation time, for the
total filling fraction φ = 0.2 with φs = 0.05 and φg = 0.15 (filled
circles), three different mixtures with depleted, symmetric, and en-
riched magnetic content, and (a) B∗

0, (b) B∗
5, (c) B∗

8. Fits by (6) for
t ∈ [5, 195] (t ∈ [744, 11744]) are indicated by solid (dashed) lines.
The fitting parameters for the short (long) regime are given in Table V
(Table VI).

presented in Table V. For B∗
0 the absolute growth, k̄gro, as

well as the growth exponent, p∗, hardly depend on φs. In
contrast, the half-value time, t∗

1/2, increases considerably with
decreasing magnetic filling fraction φs, in accordance with the
reduced probability to meet another steel bead. The situation
is similar for B∗

5. For B∗
8 we observe a drastic increase of t∗

1/2

with decreasing φs, but k̄∗
gro and p∗ vary considerably. At those

high inductions one has to be cautious with the validity of
the phenomenological Eq. (6), as we have seen already in
the experiment (cf. Fig. 7). To summarize, in the short-time
regime, the scaling of k̄∗(B∗, φ) is met fairly well by the
phenomenological growth function (6) for all three mixtures
studied.

Let us now turn to the long-time regime, displayed on the
right of Fig. 11. Once again, the numerical results deviate
considerably from the predictions of (6), when fitted to the
short-time regime. Table VI displays the strongly varying fit-
ting parameters. As in the short-time regime, a decrease of the
magnetic fraction is lowering k̄ considerably. This becomes
most prominent in Fig. 11(c).

At this point, it can safely be said that the simulation model
is capable of capturing the dynamics of structural transforma-
tions and can be used not only to analyze long-time behavior,
and mixtures so far not available experimentally. The same is
true for order parameters different from the mean number of
neighbors k̄.

FIG. 12. Magnetization along z versus the simulation time for the
different values of the impressed field B∗

n (Table III). The solid lines
indicate fits by the bi-logistic growth function (12).

3. Magnetization

One of those order parameters is the magnetization of
the total system, i.e., the projection of the system magnetic
moment onto the field direction, Mz. Its time dependence is
plotted in Fig. 12, where the values are normalized by the
saturation magnetization Ms of the system.

Here, similarly to Fig. 10, we observe two distinct pro-
cesses characterized by three time regimes. The fact that the
ranges, corresponding to each of them, coincide for k̄ and
Mz/Ms evidences that structural transformations and changes
in the magnetic response are synchronous.

Immediately after the quench, while the particles have
yet not agglomerated, the system gets rapidly magnetized,
particularly if the field is high. However, as time passes,
the formation of clusters inevitably leads to the reduction
of Mz/Ms, as the neighboring particles in clusters assume
head-to-tail orientations in the plane, i.e., orthogonal to an
applied field. Eventually Mz/Ms ≡ M̂z saturates at 	2

i=0M̂i(B).
For simplicity the relaxation of the magnetization is captured
by a bi-logistic growth [42] (here decay) function

M̂z = M̂0 + M̂1

1 + e− ln 81

t1

(t−tm1 )
+ M̂2

1 + e− ln 81

t2

(t−tm2 )
. (12)

Here ki (i = 1, 2) denotes the coefficient of the ith growth
function, 
ti the characteristic duration for a growth (decay)
from 10% to 90%, and tmi the time when the midpoint is
reached by the ith growth trajectory. The fits by (12) are
marked in Fig. 12 by solid lines.

In the long-time regime, interestingly enough, the magne-
tization does not change anymore. However, this saturation
level depends on the value of the applied induction B∗.

This means that the further growth of clusters, character-
ized by an increase of k̄(t ) (cf. Fig. 10), is not accompanied
by the orientation changes in the particle magnetic moments.
Thus, if there is no gain in Zeeman energy (11), one would ex-
pect the structural transformations to occur through a different
mechanism.

In order to look closer at the initial response of the system
to an applied magnetic field and zoom in on the initial reaction
of the system on the applied field in Fig. 12, we calculated the
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FIG. 13. The initial decay rate for the magnetization, αM =
∂Mz/∂t , versus the magnetic induction B∗

n .

time derivatives of the magnetization, αM = ∂Mz/∂t , using
the first three data points. The error bars related to numerical
differentiation are provided by vertical lines.

Judging from the rate with which the magnetization of
the system decays with growing applied magnetic field, αM ,
shown in Fig. 13, we observe that initially the rate of decay
becomes more negative, but once an external magnetic field
reaches B∗

3 (Table III), the decay rate reaches its minimum,
and starts increasing again.

The value of B∗
3 can be considered the highest if we split

the dependencies of k̄(t ) in Fig. 10 into two groups: first
the clusters keep growing in time very rapidly, B∗

0–B∗
3; then,

clearly, the growth slows down, just after the highest decay
rate of Mz/Ms, B∗

4–B∗
6. This means, there is a critical value of

an applied magnetic field such that for fields below this value
the interparticle magnetic interactions manage to overpower
Zeeman torques and keep particle magnetization mainly ori-
ented in-plane; for higher fields the structural transformations
are instead governed by B∗.

Bringing Figs. 12 and 13 together, one can conclude that
both short-time response and the long-time evolution of the
system are the results from a competition between Zeeman
and dipolar forces, and depending on the one that dominates
initially, the dynamics of the evolution changes from network-
cluster-type behavior to a steel bead gas with small aggregates
with vanishing magnetic moment.

IV. CONCLUSION

In this work we investigated a shaken mixture of glass
and magnetized steel beads under the influence of an applied
magnetic field, aligned perpendicular to the plane in which the
particles are moving.

In the experiment, we reconfirmed a pattern evolution from
chains to networks and more compact clusters, with a mor-
phology similar to viscoelastic phase separation (VPS). Here
the glass beads represent the fast phase, where the slow phase
is formed by the steel beads, as soon they attach to each other.
This pattern evolution is changed thoroughly by a vertically
applied magnetic field, resulting in a third phase of solitary
magnetic beads, as reflected by the large fraction of beads
with zero number of neighbors. A convenient order parameter
is the average number of neighbors. It shows for zero field
a sigmoidal growth with apparent saturation. With increasing
field its growth is more and more delayed. This is reflected by
an exponential increase of the half-value period, i.e., the time

span at which half of the growth took place. The mechanism
behind is the dipole-dipole repulsion of magnetized beads,
which delays and eventually stops the cluster growth. Instead
a phase of well-separated magnetic spheres emerges, which
resembles a vortex glass [43,44].

In a simplistic coarse-grained simulation model, the time-
dependent structural evolution was found to be in a qualitative
agreement with the experiment for any value of the applied
field. Particularly the average number of neighbors shows the
same sigmoidal growth as found in the experiment. Moreover,
the half-value periods of experiment and simulation increase
exponentially with the field. As a result, the numerical ap-
proach was used to describe the long-time behavior. Here, for
t > 200 simulation units a crossover to a different sigmoidal
scaling regime was observed. It is particularly pronounced for
the systems with more magnetic beads. Computer simulations
were as well employed to analyze the magnetic properties
of the system. The simulations revealed that in the first and
the second time regimes, accessible both in simulation and
experiment, the structural transformations tended to optimize
dipolar interactions. Once the field is applied, immediately
after quenching, all particles align with the applied field,
providing the highest magnetization. After that, with the pas-
sage of time, the system’s magnetization follows a bi-logistic
model, experiencing decay before eventually reaching satura-
tion.

This change of behavior denotes a new time regime. In the
long-time regime, accessible only in simulations, we observed
that for low fields, whose values are presumably dependent on
the magnetic particle concentration, the clusters keep grow-
ing, but the magnetization along the field direction only slowly
decreases with time; for intermediate field values the growth
of clusters is hindered and there is a strong competition be-
tween Zeeman and interparticle energies; finally, if the fields
are high it seems that magnetization starts saturating as the
only phase that remains is a magnetic particle gas; very few
clusters that are found in this regime tend to have a vanishing
dipole moment.

To conclude, by means of a magnetic field applied perpen-
dicular to the plane of ferrogranulate one can very accurately
control not only the morphology of the self-assembling clus-
ters, but also the rate of evolution of the latter.

TABLE IV. The table displays the magnetic inductions B∗
n , im-

pressed in the simulations, together with the parameters obtained by
a fit of (6) (long-time regime) to the numerical data of k(t ), displayed
in Fig. 7.

B∗
n (s.u.) kini kgro t∗

1/2 (s.u.) p∗

B∗
0 0.0 1.86 3.00 5175.3 0.70

B∗
1 0.1 1.77 3.00 4467.6 0.69

B∗
2 0.2 2.19 1.49 3373.5 1.39

B∗
3 0.3 1.65 2.91 7176.0 0.58

B∗
4 0.4 2.03 1.09 3714.9 1.52

B∗
5 0.5 1.81 1.03 5619.4 1.26

B∗
6 0.6 1.62 0.42 4007.4 1.90

B∗
7 0.7 1.12 3.00 2665812.8 0.33

B∗
8 0.8 0.00 1.15 103.2 0.72
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TABLE V. The table displays the magnetic inductions B∗
n , and the

filling fractions used in the simulations, together with the parameters
obtained by a fit of (6) to the short-time regime t ∈ [5, 195] of the
numerical data of k(t ), displayed on the left-hand side of Fig. 11.

t∗
1/2

B∗
n φg φs kini kgro (s.u.) p∗

B∗
0 0.05 0.15 0.56 1.76 8.5 0.8

0.10 0.10 0.40 1.73 12.1 0.82
0.15 0.05 0.19 1.76 30.92 0.75

B∗
5 0.05 0.15 0.57 1.35 11.6 1.0

0.10 0.10 0.40 1.32 26.52 0.89
0.15 0.05 0.22 1.17 158.4 0.81

B∗
8 0.05 0.15 0.55 0.81 39.6 0.99

0.10 0.10 0.36 0.35 107.01 1.76
0.15 0.05 0.08 0.49 574.02 37.37
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APPENDIX

Tables IV–VI contain parameters obtained by fitting k̄ in
Figs. 7 and 11 using Eq. (6).
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