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Evolution of force networks during stick-slip motion of an intruder in a granular material:
Topological measures extracted from experimental data
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In quasi-two-dimensional experiments with photoelastic particles confined to an annular region, an intruder
constrained to move in a circular path halfway between the annular walls experiences stick-slip dynamics. We
discuss the response of the granular medium to the driven intruder, focusing on the evolution of the force
network during sticking periods. Because the available experimental data do not include precise information
about individual contact forces, we use an approach developed in our previous work [Basak et al., J. Eng. Mech.
147, 04021100 (2021)] based on networks constructed from measurements of the integrated strain magnitude on
each particle. These networks are analyzed using topological measures based on persistence diagrams, revealing
that force networks evolve smoothly but in a nontrivial manner throughout each sticking period, even though the
intruder and granular particles are stationary. Characteristic features of persistence diagrams show identifiable
slip precursors. In particular, the number of generators describing the structure and complexity of force networks
increases consistently before slips. Key features of the dynamics are similar for granular materials composed
of disks or pentagons, but some details are consistently different. In particular, we find significantly larger
fluctuations of the measures computed based on persistence diagrams and, therefore, of the underlying networks,
for systems of pentagonal particles.

DOI: 10.1103/PhysRevE.108.054903

I. INTRODUCTION

Stick-slip motion, characterized by intermittent yielding of
a system subject to steadily increasing applied shear stresses,
occurs in a plethora of systems, from metallic glasses to tec-
tonic plates, and has been explored extensively; see [1,2] for
reviews. During the last two decades, significant attention has

*kondic@njit.edu

been paid to the possible connections between the microstruc-
ture of a system experiencing stick-slip dynamics and the
global intermittent behavior. Studies of granular matter have
considered the statics and dynamics of individual particles,
including the possible existence of slip precursors that might
inform predictions of upcoming large events [3–20].

Stress fields in granular materials are generally charac-
terized by the concentration of stress on chains of particles
known as “force chains.” In this paper, we follow a more
general approach, and instead of force chains we consider
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force networks as a whole. We show that topological measures
based on persistence diagrams describing the force networks
reveal nontrivial dynamics even when the intruder remains
essentially stationary as the external force on it is increased
during a sticking period. We analyze experimental data by
first extracting force networks from each experimental image,
processing them to obtain persistence measures, and then con-
sidering how those measures change during sticking events.

In the last few decades, a significant body of work on
forces measured in experiments on granular materials has
been conducted using photoelastic particles [20–28]. Pho-
toelastic particles’ optical properties depend on the strains
induced by applied boundary stresses, and high-resolution
images of the strain fields in individual particles can be used to
extract individual contact forces. One technical but important
issue, however, is that the resolution required for direct infer-
ence of the contact forces is not easily achieved. In addition,
inference of a force and torque balanced network of contact
forces requires solving a computationally demanding inverse
problem, so in practice, it is usually employed only for rather
small systems. Finally, the applicability of such methods has
been largely limited to circular particles, although strides have
been made recently for ellipsoidal ones [29].

There are, however, other approaches to the quantification
of stresses at the particle scale. A commonly implemented one
is the so-called “G2” method. Forces applied to a photoelastic
particle lead to the formation of intensity fringes when the
particle is viewed through crossed polarizers. It turns out
that the sum of the normal force magnitudes on a particle is
approximately proportional to the integrated gradient squared
of the observed intensity signal. (See Ref. [30] for a review
of photoelasticity.) This approach applies even to noncircular
particles [31,32] and is much less computationally demand-
ing than solving for individual contact forces. The result is
an assignment of a stress magnitude to each particle, which
preserves key features of the contact force data [33]. An even
simpler approach might be to measure correlations and topo-
logical features directly from photoelastic images of the full
system, without attempting to identify individual particles or
stresses.

In previous works, we carried out a direct analysis of
photoelastic images to provide a basic understanding of the
structure of force networks in systems exposed to impact [34]
or shear [35]. Though these studies provided useful insights,
they suffered from the limitations imposed by low experi-
mental resolution and associated artifacts. Motivated by this
observation, we have started exploring the possibility that
force networks constructed from G2 information can yield
similar quantitative and qualitative insights to networks con-
structed from exactly known particle-particle contact forces.
In our recent work, Ref. [33], we made progress by showing
that statistical measures of networks produced from simu-
lation data with either interparticle contact forces (FC) or
the total normal force magnitude on each particle (FP) yield
consistent results (if the normal force on a particle j due
to contact with another particle i is �Fi, then FP j = ∑

i | �Fi|,
where the sum goes over all contacts of particle j). In the
present work, we construct these FP networks from exper-
imental gradient (G2) data and analyze their evolution. We
find that certain measures derived from persistence diagrams

FIG. 1. Schematic of the experimental setup. An intruder is at-
tached to a torsion spring (shown in blue), connected to a stepper
motor rotating at a fixed rate ω, that provides the driving force.
Granular particles are shown in green.

exhibit trends that indicate nontrivial restructuring of the force
network during a sticking event and may aid in identifying
signals of impending slip events.

The rest of this paper is structured as follows. In Sec. II
we discuss the methods: first, experimental ones (where more
detailed information can be found in previously published
work focusing on the same system [28,36,37]), then the image
processing methods used to extract FP networks, and finally
the persistent homology-based methods that we employ to
quantify the static and dynamic properties of the observed net-
works. In Sec. III we describe the application of these methods
to experimental data obtained from an intruder moving in an
intermittent fashion through an annular domain containing
photoelastic particles: first, disks and then pentagons. Sec-
tion IV is devoted to the summary and conclusions.

II. METHODS

A. Experiments

A bidisperse mixture of quasi-two-dimensional (2D) disks
or regular pentagons compose the granular medium through
which an intruding particle is pushed by a spring; see Fig. 1.
The number ratio of large to small particles is approximately
10:11 for both the disk packing and the pentagon packing.
The diameters of the small and large disks, respectively, are
dDs = 1.280 ± 0.003 cm and dDl = 1.602 ± 0.003 cm. The
diameters of the circumscribing circles of the small and large
regular pentagons, respectively, are dPs = 1.211 ± 0.001 cm
and dPl = 1.605 ± 0.001 cm (close to the radii of the disks).
The interparticle contact friction coefficient for all particles
is μ = 0.7 ± 0.1, and the basal friction coefficient between
particles and the glass base of the annulus (see below) is
μBF = 0.25 ± 0.05. We note that the typical horizontal forces
applied to the intruder are on the order of Newtons, whereas
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the weight of a particle is on the order of 0.01 N. This sug-
gests that basal friction does not play an important role in
the dynamics of strongly stressed particles, though it may
be important for particles that lie outside the dominant force
network at any given time.

The granular medium is confined to a fixed-volume annular
cell with a radial width W ≈ 14dDs between the inner and
outer circular boundaries with radii of 11.2 cm and 29.0 cm,
respectively. Each boundary has a layer of ribbed rubber that
prevents particles from slipping at the walls. The intruding
particle, a cylinder with diameter D = dDl, is suspended from
a cantilever into the quasi-2D annular channel at a fixed radius
halfway between the annulus walls. One end of a torque spring
(κ = 0.4 Nm/rad) in the central axis of the system is rotated
at a low, fixed rate ω = 0.12 rad/s, and the other end is cou-
pled to the intruder. Slowly driving the spring-loaded intruder
through the medium at high packing fractions results in stick-
slip dynamics [28]; the medium exhibits sticking periods of
quasistatic [38] stress increase interspersed with intermittent
stress-relieving slip events. During these relatively rapid slip
events, the medium plastically deforms and the intruder slides
until a stable configuration of particles stops it, initiating a
new sticking period [39,40].

Load cells in the cantilever that holds the intruder measure
forces corresponding to the force exerted by the granular
medium on the intruder in the azimuthal direction. Two
cameras above the system visualize intruder and particle dy-
namics (via standard unfiltered photography) and photoelastic
stresses within the granular medium (via dark-field polar-
iscope imaging). We start collecting data, discussed further
below, after the intruder has already traveled four full rev-
olutions around the annulus, ensuring that we are observing
statistical steady states. The images are recorded at the rate of
50 images/second.

Further details of the experimental data acquisition, along
with analyses of intruder and particle dynamics, can be found
in Ref. [41]. Readers are also directed to Ref. [37] for a
discussion of the dependence of the results on system size.

B. Image processing

We record white-light (particle tracking) and photoelastic
(stress-measurement) images in the experiments as described
in Sec. II A and use these images to quantify force networks.
The outline of our approach is as follows: We first find the
average gradient-square (G2) of the intensity of transmitted
light for each particle. Then we convert G2 for each par-
ticle to the magnitude of the normal force acting on each
particle using independent calibration results (as mentioned
in the introduction, while in principle G2 measures particle
strain, which then could be related to particle stress, it has
been shown that this measure describes well the sum of the
magnitudes of the normal forces acting on a particle, and
this is what we are using here [32]). Last, we create a force
network. Specifically, for each experimental image, we use
the following image-analysis protocol.

The squares of the intensity gradient values are calcu-
lated at each pixel location of a given photoelastic image.
[See Fig. 2(a) and animations [42].] The centers and orien-
tations of tracked particles are found from the corresponding

FIG. 2. (a) Photoelastic image of the annulus packed with disks.
(b) Enlargement of the outlined region of (a) showing the details
of the photoelastic signal. (c) Processed image of the configuration
from (a) showing force magnitude per particle. (d) Resulting force
network. Color bars in (c) and (d) show the forces normalized by
the current value of the intruder force. (Note that some particles, in
particular the ones close to the intruder, exceed the range shown
on the color bar; we choose a maximum of 0.5 for visualization
purposes.)

white-light image to identify the pixels inside a particle.
The gradient-squared values of the pixels inside the particles
are then averaged over the area of the particle, resulting in
the average G2 per particle. To avoid the experimental er-
rors due to diffraction from particle edges, we decrease the
area of selected pixels by 5%, removing a band of pixels
from a particle’s boundary before calculating the average
G2. For small particles, the width of the band is about
2 pixels.

The G2 per particle is then converted to the force magni-
tude measured in Newtons using a calibration curve obtained
from an independent single disk experiment in which the
disk is biaxially loaded by a controlled force; the calibration
curve is shown in Fig. 3. We use a third-degree polynomial
fit to convert G2 per particle to the force magnitude. The
considered force range covers the forces experienced by pho-
toelastic particles in our main experiments. Figure 2(c) and
(movie 2) [42] illustrate the final result. Some aspects of
these results, in particular the ones related to the scaling of
the sample-averaged G2 signal with the intruder force, are
discussed below in Sec. III A. We note that the use of the
calibration curve implicitly assumes that the G2 information
is independent of the number of contacts, which for our main
experiments is typically more than two.

We determine whether disks with radii ri and r j are in
contact by checking whether the distance between the centers
of the two disks is less than 1.05(ri + r j ), accounting for
experimental uncertainties in the tracked particle positions.
We have confirmed that adding 5% of the particle radius
is sufficient for ensuring that very few contacts are missed
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FIG. 3. G2
s data from a single disk experiment while pushing a

disk against the intruder, which is held in place. The horizontal axis
shows the total force applied on a particle, which is twice the applied
force in these experiments. Error bars show the standard deviation,
and the calibration curve (in red) is the best cubic fit to the data.

(estimated less than 0.1%), while the added distance is
sufficiently small so that the number of artificial contacts
produced is insignificant for all practical purposes. In the
case of pentagons, we determine contacts by detecting
overlaps between each pair of particles using the SHAPELY
package [43]. We input the particle vertices into SHAPELY
from the tracked particle positions and orientations after
scaling the pentagon apothem by 1.05. Again, we have
checked that this increase in particle size allows the
detection of ≈99.9% of contacts and does not produce
artificial ones.

To construct a force network, we assign to each particle
the force magnitude obtained from the G2 calibration curve,
and then, for each pair of particles pi and p j in contact,
assign to the edge vi, j joining their centers the minimum of
the two force magnitudes, following the approach described
in Ref. [33]. Note that within the presently implemented ap-
proach, the nodes of the networks are the particle centers and
the edges are the lines connecting centers of the particles
in contact. Figure 2(d) shows a force network obtained by
this procedure; see also (movie 3) [42] for an animation.
Figures 2(c) and 2(d) are normalized by the current value of
the intruder force, as discussed in more detail in Sec. III.

C. Computational topology

The outcome of the approach described in the preceding
section is a series of force networks that we analyze using
tools based on persistent homology, which is a discipline of
computational topology; see [44]. In particular, we obtain
persistence diagrams (PDs) that encode the main features of
the underlying networks while at the same time providing
significant data reduction. Furthermore, and perhaps most
importantly in the present context, once a contact network
is given, PDs are known to be stable with respect to small
perturbations of the input data. We refer the reader to our
earlier works [33,45] describing PDs and their properties in
some detail. Here we provide only the outline of the approach
and the computations carried out.

The PDs considered in the present work are computed
by considering the structure of the force network’s structure
exceeding any given force threshold and keeping track of the
appearance (birth) and disappearance (death) of features (parts
of the network) as we decrease the threshold. A PD is a col-
lection of points with coordinates that encode birth and death
thresholds of the components (or loops) present in the force
network. In two spatial dimensions, the topological structures
of interest are connected components (roughly corresponding
to “force chains” in the case of strong forces) and loops or
cycles. All PDs reported in the present work are computed
using the GUDHI library [46].

Given the computed PDs, we proceed by considering two
separate sets of measures. One of them, total persistence (TP),
is simply the sum of the distances of the points (generators) in
the PDs from the diagonal. A landscape analogy may help
clarify the physical meaning of TP: each generator corre-
sponds to a peak in the force landscape, and the TP measures
the sum over generators of the height of the peak above the
highest saddle point, connecting it to a higher peak. Note
that there is always one generator on the horizontal axis,
corresponding to the highest peak in the network. Similar
but more elaborate analogies could be produced for the case
of loops. TP accounts for the fact that the points that are
further away from the diagonal carry more importance; the
points close to the diagonal have similar birth and death co-
ordinates, meaning that they persist only over a small range
of force values and therefore may not be significant. This
fact is particularly relevant for the experimental data con-
sidered in the present work, which include some degree of
experimental inaccuracy. Furthermore, experimental limita-
tions motivate us to exclude from consideration the generators
that are very close to the diagonal; more precisely, we will
not consider the generators whose distance to the diagonal
is less than 0.1 N, the estimated precision of the photoe-
lastic analysis of the force magnitude on a particle in our
experiments.

The other measure we use quantifies differences (dis-
tances) between two PDs. The computations are again carried
out using the GUDHI library [46]. The distance between two
PDs is computed as the minimum of the sum of all distances
by which the points from one PD need to be translated to
match the ones in the other PD. If the diagrams have dif-
ferent numbers of points, then the extra points are mapped
(vertically) to the diagonal. Various norms could be used for
computing this distance, and in the present work, we consider
two: the Wasserstein distance, W2, which is essentially the
L2 norm, and the bottleneck distance, which is the L∞ norm.
See [47] for more details. Note that any measures associated
with component PDs are indicated with “0,” while measures
associated with loop PDs are indicated with “1.”

III. RESULTS

We are now ready to discuss the results of our analysis of
force networks. In Sec. III A we present time series results
that illustrate a close correlation between intruder dynamics
and evolving networks. Similarly to the rest of the discussion
in this section, we focus on the stick phase of the intruder
dynamics, particularly the evolution of force networks during
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FIG. 4. Example of (a) the intruder velocity and (b) the force
on the intruder showing a small part of the analyzed data set. The
full set involves hundreds of slip events. The dashed red line denotes
the threshold value used to define the beginning and the end of slip
events, as described in the text. Red dots show the beginning and end
of the particular stick period, which is more detailed in the Figs. 8
and 9.

periods when the granular system is essentially stationary (but
the force on the intruder is progressively increasing). We then
discuss time-averaged results to reach a general understand-
ing of the force network’s statics and dynamics during large
numbers (hundreds) of stick periods. Results for disks are
presented in Sec. III B. The results for pentagons are given in
Sec. III C (time series) and Sec. III D (time-averaged results).
For disks, we mostly focus on the particle volume fraction of
φ = 0.77; the discussion refers to this volume fraction unless
otherwise specified. In addition, we show more limited results
for φ = 0.75 and φ = 0.72. The volume fractions considered
for pentagons are φ = 0.65 and φ = 0.61; φ = 0.65 is as-
sumed unless otherwise specified. The largest values of φ

for each particle geometry (disks and pentagons) are close
to the maximum possible one in the considered experiments;
for even slightly larger φ, there is a significant likelihood of
out-of-plane buckling during stick periods.

A. Examples of time-dependent results for disks

Figure 4 illustrates the stick-slip dynamics of the intruder.
Figure 4(a) shows a short sample of the intruder velocity
in the azimuthal (θ ) direction. Full data sets involve several
hundred stick-slip events, allowing for statistical analysis of
the intruder’s dynamics and the force networks. Figure 4(b)
shows the time-dependent force on the intruder due to loading
by the torsional spring; this force is used for the normalization
of the particle forces, as described in Sec. II.

Before proceeding with the precise definition of slip events
and discussion of topological measures describing the force
networks, we digress briefly to comment on one aspect of
the experimental results related to the normalization men-
tioned above that may not be obvious. Supplemental movie
2 [42] has already illustrated an overall decrease in the force
magnitude during sticking periods. Figure 5 presents the time
series for total G2 (summed up over all particles), both without
[Fig. 5(a)] and with [Fig. 5(b)] normalization by the intruder

FIG. 5. G2 signal for the data shown in Fig. 4, without (a) and
with (b) normalization by the intruder force shown in Fig. 4(b).

force. Focusing on the stick periods, we note that the unnor-
malized G2 signal becomes stronger, as expected due to the
continuously increasing load on the intruder. The normalized
G2 signal [Fig. 5(b)], however, decreases during stick peri-
ods, showing that the integral of G2 over all of the particles
increases at a slower rate than the force on the intruder [48].
Further research will be needed to quantify more precisely the
factors that determine which part of the force on the intruder
transfers to the granular particles in the form that leads to
photoelastic response, and which is balanced by the forces not
captured by photoelasticity, such as frictional forces between
the particles and the substrate.

In the present work, slip events are defined by using a
threshold value of vt = 0.04 rad/s [28] for the intruder’s speed
v as follows: (1) a slip starts at image i if vi−1 < vt , vi > vt ,
and the average speed between images i and i + 50 exceeds vt

and (2) a slip lasts until the mean speed in images j to j + 2
drops below vt , in which case j + 2 is defined as the end of the
slip. This definition is used to avoid misidentifying small fluc-
tuations in the experimental data as slips, and, in particular,
to avoid identifying oscillations in the intruder speed, which
typically occur just before slips start, as separate slip events.

FIG. 6. Persistence diagrams (PDs) corresponding to one ex-
perimental image at �θ = 0, from the stick period denoted in
Fig. 4: (a) components, B0, (b) loops, B1. Note that the forces
used are normalized by the intruder force; blue points are inside
of the “band” that is not considered due to experimental noise
(see the text for a full description of how this band is defined).
Animations showing all PDs for the considered stick period are
available [42].
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FIG. 7. Generators for the B0 persistence diagram (red dots) and
the corresponding force network at �θ = 0 for the period shown
in Fig. 4. Color bar shows the (nondimensional) force magnitude.
Animations are available [42].

In Sec. II we describe how the forces on the particles and
resulting force networks are defined and how the measures
based on PDs are computed. Figure 6 shows an example of
resulting PDs for components [Fig. 6(a)] and loops [Fig. 6(b)],
where all forces have been normalized by the intruder force.
This figure also illustrates (in blue) the points within the band
of 0.1 N that are removed from further analysis, as discussed
in Sec. II. PDs are computed for each experimental image;
animations are available [42].

To illustrate the connection between the generators shown
in PDs and the corresponding networks, Fig. 7 shows an ex-
ample of a network with particles associated with generators
in PDs shown as red circles. The particles associated with the
generators are identified simply by searching for particles that
are assigned a force magnitude value that is within numerical
precision of the birth coordinate of a generator in the PD. This
procedure is reasonably accurate, almost always allowing the
identification of the relevant particles. [For 300 figures, we
identified (manually) only two cases when this procedure was
not accurate in the sense that more than a single particle was
connected to the same generator.]

Figure 8 shows the results of persistence computations
for the particular stick period denoted in Fig. 4; animations
of the resulting PDs are available [42]. In this figure, we
introduce most of the quantities that will be considered later
in Secs. III B and III D: intruder’s velocity [Fig. 8(a)] and
force [Fig. 8(b)] on the intruder in the azimuthal direction,
number of generators, NG, and total persistence, TP, for com-
ponents [Figs. 8(c) and 8(d)] and loops [Figs. 8(e) and 8(f)],
and Wasserstein distances, W2β0 and W2β1, for components
[Fig. 8(g)] and loops [Fig. 8(h)]. Figure 8(b) serves to remind
us that, during a stick, the force on the intruder is a linearly
increasing function of the drive angle; recall that this force
is used to normalize all the results involving forces on the
particles. This figure also introduces some of the features of
the results that will be discussed later in a more complete fash-
ion: a slow increase of the number of generators [Figs. 8(c)

FIG. 8. Time series of the considered measures during the stick
period marked by red dots in Fig. 4: intruder’s speed (a) and force
(b) in the azimuthal direction, NG0 (c), TP0 (d), NG1 (e), TP1 (f),
W2β0 (g), W2β1 (h). See the text for a description of plotted quanti-
ties. The value �θ = 0 indicates the time when a slip event starts.

and 8(e)], and significant activity in the measures describ-
ing dynamics of the networks [Figs. 8(g) and 8(h)]. Even
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FIG. 9. Time series of the considered measures for the part of the
data set shown in Fig. 4. (a) NG0, (b)TP0, (c)NG1, (d) TP1, (e) W2β0,
and (f) W2β1.

though the system is in a stick period, the force networks are
not static.

Figure 9 shows the same set of quantities plotted in Fig. 8
but now for the data set shown in Fig. 4, therefore showing
a few slip events. We observe that the topological measures
accurately follow the intruder dynamics, as expected based
on the previous results obtained using simulation data [49].

FIG. 10. Cumulative number of stick periods, NE , with a duration
larger than the angular distance, �θ , to the upcoming slip event
(occurring at �θ = 0).

However, there is significant variability of the considered
measures during the stick phases, and we therefore proceed by
carrying out time-averaging of the results over a large number
of stick periods. The results of this analysis are discussed next.

B. Disks: Full data sets

The full data set for a given volume fraction includes
hundreds of stick-slip events. To analyze this data, we start
by considering the behavior of various measures during a
stick period as a function of the time to the next slip event
(quantified here by the angle, �θ , of the drive shaft, where
�θ = 0 corresponds to the upcoming slip). Figure 10 shows
the number of stick periods with a duration greater than �θ ;
clearly, the number of stick periods decreases for larger (in
absolute value terms) �θ , since some of the stick periods are
shorter than the �θ range considered. We note the presence of
a significant number of rather short stick periods; we have car-
ried out the following analysis both including and excluding
these short periods and obtained similar results. For brevity,
here we will discuss only the results obtained by including all
stick periods, even if they are very short.

Figure 11 shows the distribution of spring forces at which
slips happen for three available volume fractions of φ =
0.72, 0.75, and 0.77. We observe wide distributions, partic-

FIG. 11. Distribution of the force on the intruder at which slips
occur for three available volume fractions.
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FIG. 12. Persistence-derived measures averaged over all stick
periods (a), (b) TP and the number of generators for components;
(c), (d) TP and generators for loops; (e), (f) ratio of Bk to W2 for
components and loops. Red lines show the averages, and blue lines
their standard error.

ularly for φ = 0.77, suggesting that the spring force is not a
good predictor of the time of upcoming slip, as expected.

We proceed by discussing averages over all stick periods
as a function of �θ , focusing on φ = 0.77 only. Figure 12
shows the results. To help their interpretation, it is important
to remember that the forces used for computing PDs and
resulting measures are normalized by the current value of
the intruder force; therefore a constant mean value of the
shown quantities would suggest that the force network simply
scales linearly with the intruder force. This is. however. not
what we observe, and therefore we conclude that the force
networks evolve in a nontrivial way even during stick periods
when particles are essentially stationary. Note that we include
only the experimental data from the times when the force
on the intruder is larger than 0.1 N; this restriction prevents
normalizing by a very small intruder force that may occur
during slips.

The main finding illustrated by Figs. 12(b) and 12(d) is a
continuous monotonic increase of the number of generators,
NG, for components and loops. This finding indicates an in-
crease in the complexity of the considered networks as the
upcoming slip is approached: to use the landscape analogy

FIG. 13. Number of broken contacts and average broken force
(averaged over all stick periods).

mentioned in Sec. II, the number of peaks in the force land-
scape increases. This trend is not influenced by the width of
the band of generators close to the diagonal that is excluded:
we have verified that when the width of the band is halved,
the trend remains the same. The trends for TP are less clear
than the ones for the number of generators. In the case of
components [Fig. 12(a)], we see an essentially constant mean
value, suggesting that the force networks become smoother as
the slip is approached. (Since the number of generators grows,
constant TP implies that the generators move closer to the
diagonal on average. Using the landscape analogy, the average
height of the peaks in the force network decreases.) Regarding
loops [Fig. 12(c)], the fact that the number of generators
and TP grow at a similar relative rate suggests that at least
on average the strength of the normalized forces leading to
loops remains constant. We have confirmed that smaller vol-
ume fractions (φ = 0.75 and 0.72) lead to consistent results
(figures not shown for brevity).

Figures 12(e) and 12(f) provide a different measure char-
acterizing force networks. Here we plot the ratio of two
distances (discussed in Sec. II) that describe the changes in
the force network from one image to the next: Bkβ0 measures
the largest distance only, while W2β0 is the square root of the
sum of the squares of all distances in the matching. If there
is a single significant change, then this ratio is close to unity.
If the ratio is much smaller than unity, that means that there
are differences between the networks on a scale comparable to
the largest one. From Figs. 12(e) and 12(f) we see that for both
components and loops, this ratio is significant (0.5–0.65) suffi-
ciently far from the upcoming slip. This means that for most of
the stick duration, there is a single change in the network that
carries a lot of weight; closer to the upcoming slip, however,
the ratios (for both components and loops) decrease, showing
that closer to the slip there are more changes in the force
network, and therefore the dominance of one single change
weakens, as expected based on the previous works exploring
slip precursors [3–19].

We next discuss whether the precursors mentioned above
could be related to broken contacts between the particles. Fig-
ure 13(a) plots the number of broken contacts, Bc, defined as
the number of contacts that break between consecutive images
(without accounting for newly formed contacts), in the same
format as used in Fig. 12. For completeness, Fig. 13(b) plots
also the average broken force. The main observation is that
neither Bc, nor the “broken force” magnitude increase close to
the upcoming slips, at least on average. We conclude that the
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FIG. 14. Ratio of the standard deviation (σ ) to the average (μ)
of (a) NG0, (b) NG1 for disks. N count stick events; each point in the
plot corresponds to a separate stick event.

precursors to slip may develop even without breaking physical
contacts between the particles.

We have also explored whether there is a correlation be-
tween NG and/or TP and the quantities such as stick duration,
or consequent slip size, but were not able to extract any mean-
ingful results (figures not shown for brevity). It remains to
be seen whether the inability of the current results to predict
upcoming slip size is due to the type of analysis carried out
here, or whether such information is not available. Further
work will be needed to answer this question and to clarify
the generality and consequences of our findings.

Figure 14 shows the ratio of the standard deviation to
the average number of generators during each stick period.
More precisely, for each stick period, we compute the mean
number of generators, μ, and the standard deviation, σ , us-
ing the information from all the images corresponding to
a stick period. Therefore, here we focus on variability dur-
ing each stick, in contrast to the results shown in Fig. 12,
which focus on the average over many sticks. The σ/μ

ratio is reasonably small (<0.1) for most of the stick pe-
riods, showing that, while the number of generators varies
considerably between stick periods, during any given stick
period, the number of generators (and therefore at least
some features of the force network itself) does not change

FIG. 15. Example of (a) intruder’s velocity and (b) force on the
intruder showing a small part of the analyzed data set for pentagons,
φ = 0.65. Red dots show the beginning and the end of a particular
stick period that we consider in more detail in Figs. 16 and 17.

FIG. 16. Persistence diagrams (PDs) corresponding to the exper-
imental image at �θ = 0 from the stick period denoted in Fig. 15
(animations of all PDs corresponding to this stick period are available
[42]. (a) Components, B0; (b) loops, B1.

much. We will see below that this finding does not apply to
pentagons.

C. Examples of time-dependent results for pentagons

In this section we show examples of the results obtained
using pentagon-shaped particles, focusing on the features
that are different from those obtained for disks. Figure 15
illustrates the stick-slip dynamics of the intruder using a small
portion of the full pentagon data set for φ = 0.65 (the largest
value with which the present experiments could be carried
out). We again mark by red dots the beginning and end of a
particular stick period that will be considered in more detail
next.

Figure 16 shows sample PDs for the considered stick (an-
imations are available [42]). The computed networks with
superimposed particles corresponding to generators in the
PDs are shown in Fig. 17. This figure illustrates one signif-
icant difference between disks and pentagons: for values of
φ that result in stick-slip dynamics, pentagon-based systems
form an open channel (except immediately in front of the
intruder). As the intruder advances, the pentagons in front of
it support forces that resist the intruder’s motion and move

FIG. 17. Generators for a PD and corresponding network at
�θ = 0 for the period shown in Fig. 15. Color bar shows the (nondi-
mensional) force magnitude. Animations are available [42].
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FIG. 18. Pentagons: Cumulative number of stick periods, NE ,
with an angular duration larger than �θ , where �θ = 0 corresponds
to the initiation of the upcoming slip event. Note that the larger values
of NE for pentagons compared to disks (see Fig. 10) is due to the set
of data analyzed for pentagons being larger: the number of sticks per
unit time is comparable for the considered systems.

aside when the system slips. For disks, on the other hand,
packing densities that yield similarly long open channels al-
low for continuous motion of the intruder with only occasional
clogging events; stick-slip motion is observed only at higher φ

where the open channel behind the intruder is rather short, as
can be seen in Fig. 7(a). We note that the formation of the open
channel has been discussed in the literature already, and the
reader is directed to Refs. [41,50–52] and references therein
for further discussion. We emphasize that the configuration
shown in Fig. 17 occurs during the steady-state part of the
intruder’s dynamics: by the time shown in the figure, the in-
truder has already traveled more than four revolutions around
the annulus.

The time series of the results for pentagons are similar
to the ones for disks, so we avoid showing corresponding
figures for brevity. The main observation is that all consid-
ered measures shown in Figs. 8 and 9 can be computed for
pentagons despite the different particle shape. We expect that
this finding is a consequence of the stability of persistence
diagrams to small perturbations, once the contact network is
known.

D. Pentagons: Full data sets

Figure 18 shows the number of stick periods longer than
a given duration, with behavior similar to that seen for the
disks. Figure 19 shows the distribution of the force on the
intruder for pentagons at which slips occur for φ = 0.65
and 0.61. Similarly, for disks, the peak of the distribution
moves to a lower force value as φ is decreased. Again, the
spread of values prevents the use of force on the intruder as
a precursor for the upcoming slip, as is usual in stick-slip
dynamics.

We proceed by briefly discussing the measures averaged
over many sticking periods. Figure 20 shows the results for
total persistence, the number of generators, and the ratio of
distances (see similar results for disks, Fig. 12). One differ-
ence between disks and pentagons can be seen in the behavior
of the number of generators, NG: while for disks we always

FIG. 19. Distribution of the force on the intruder at which slip
occurs for different volume fractions.

observe a monotonic increase, for pentagons an increase is
found only close to the upcoming slips (for small absolute val-
ues of �θ ). The results for the ratio of distances [Figs. 20(e)
and 20(f)] are similar to those for disks, suggesting once again
the presence of slip precursors.

Figure 21 illustrates yet another difference between pen-
tagons and disks: here we plot the ratio of the standard

FIG. 20. Persistence-derived measures averaged over all stick
periods: (a), (b) TP and number of generators for components; (c),
(d) TP and number of generators for loops; (e), (f) ratio of Bk to W2

for components and loops.
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FIG. 21. Ratio of the standard deviation, σ , to the average, μ, for
pentagons. (a) NG0. (b)NG1. (See Fig. 14 for disks and the caption of
Fig. 18 regarding the range of N .)

deviation to the average value of the number of generators.
Comparing with Fig. 14, we find that the variability of the
number of generators is significantly larger for pentagons.
This indicates that during a typical stick, the networks vary
much more for pentagons than for disks. Such an observation
can be easily obtained using persistence analysis, while it may
be difficult to reach by considering the force networks directly.

IV. CONCLUSIONS

In the present paper we illustrate an approach to analyzing
stress networks in granular systems that does not require the
resolution of individual contact forces. Networks based on
the G2 averaged over a particle (known to describe accurately
the sum of the magnitudes of the particle’s normal contact
forces) are readily obtained from experimental images and
provide useful information when analyzed using tools of per-
sistent homology. We hope that the approach outlined here
will be useful to researchers exploring other granular systems
for which the sum of the magnitudes of the normal contact
forces is available via photoelasticity or some other means.

We find that the quantification of the considered networks
leads to measures that precisely identify stick and slip periods
of an intruder traveling in a medium containing photoelastic
particles. The implemented measures show that force net-
works evolve even when the intruder is essentially stationary.
This conclusion applies even when the considered force net-
work is scaled by the current value of the intruder’s force.
The evolution in the stick phase typically involves a gradual
increase in the number of generators in persistence diagrams,
corresponding roughly to the formation of more elaborate
networks with an increased number of components and loops.
We find that the changes of the networks during a single
stick period are significantly smaller for disks in comparison
to pentagons. More generally, however, we do not find any
dramatic differences between the stick-slip dynamics or force
network properties for disks and pentagons.

Dynamic measures obtained by computing distances be-
tween consecutive persistence diagrams show that as a slip
approaches there are more and more changes in the force
network. While this finding is not necessarily surprising (pre-
cursors to slip events have been discussed extensively in the
literature already), we find it encouraging to see that such
information can be extracted directly from consideration of
the force networks. We therefore hope that further analysis
of force networks for systems experiencing intermittent dy-
namics will prove useful in the continuing quest for novel
approaches to the prediction of large events.
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