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Faraday waves on a nematic liquid crystal, and its coupling with Marangoni
convection about the thermal phase transition
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Using a linear hydrodynamic theory, we demonstrate that Faraday waves occur in liquid crystalline fluids. The
use of already experimentally known material parameters of a N-(4-methoxybenzylidene)-4-butylaniline liquid
crystal allows us to confirm and realize the predictions of this theory. It provides the critical wave number and
necessary driving acceleration at instability wave onset. Additionally, these observables experience an abrupt
change originated by Marangoni convection due to the temperature gradient at the isotropic-nematic phase
transition temperature. Correspondingly, the Marangoni number versus temperature also shows a sharp change
in the transition temperature.
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I. INTRODUCTION

Faraday waves arise at interfaces of fluids with air in a
vessel that holds it and performs vertical motion [1,2]. It
manifests in Newtonian [2–4] and complex fluids [5–16] as
stationary symmetric patterns. This so-called parametric wave
appears in experiments that include ferrofluids [6–8], elec-
trolytes [3], polymeric [9–12], and micellar solutions [13–15].
There is no experimental observation of the Faraday instabil-
ity on thermotropic liquid crystals. A theoretical prediction
of its existence in liquid crystalline fluids of Smectic A type
is found in Ref. [17]. Reference [13] provides a comprehen-
sive experiment on filamentous fd virus suspension, which
describes a Faraday wave in lyotropic liquid crystals during
an isotropic-nematic phase change due to nematogen density
variation at the interface. Reference [18] made a theoretical
prediction on the effect of an isotropic-nematic phase change
on the Faraday instability due to a temperature gradient. To
our knowledge, there are no other reports on the study of this
instability in liquid crystals. Liquid crystalline fluids present
other interesting dynamical instabilities phenomena. One of
these is Marangoni flow driven by surface tension variations.
Since surface tension depends on temperature and chemi-
cal composition at the interface of a fluid, Marangoni flow
may originate from gradients on both these thermodynamic
variables. Those gradients produce Marangoni stresses at the
interface. Therefore, there are viscous stresses due to fluid
motion to counterbalance it. Marangoni flows induced by the
temperature gradient of surface tension are called thermo-
capillary flows. In contrast, chemical composition gradients
upon temperature change lead to Rayleigh-Benard convec-
tion (thermal volume buoyancy-driven convection). However,
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Marangoni convection on thin liquid films is dominant over
the Rayleigh-Benard convection owing to the predominance
of thermocapillary forces at the interface over buoyancy
volumetric effects [19]. The first experimental investigation
of Marangoni flow in a quiescence droplet of nematic liquid
crystal (NLC) deposited on a glass substrate revealed capillary
waves due to surface viscosity originating from the Marangoni
instability [20]. More recently, Rayleigh-Benard convection
under magnetic fields on homeotropic NLC was researched
experimentally in Ref. [21] for an NLC layer heated from
below. Meanwhile, experiments on a layer of thermally equi-
librated NLC with an exposed surface to air when heated from
the air side with a laser beam develop Marangoni flow [22]. In
this case, there is a mass transfer from the area of incident
radiation radially outwards. In these experiments [22], the
measured observables are the lateral in-plane hydrodynamic
velocity at the nematic interface and the height of the interface
deformation as a function of laser intensity. In Ref. [23], Choi
and Takezoe exposed the free surface of an NLC film to laser
light heating and observed circular flow formation triggered
by Marangoni flow. Similar experiments by Shvetsov et al.
[24] revealed light-induced umbilical defects on the free sur-
face of NLC due to temperature gradient. They also found
that absorption of light changes the nematic director field.
Other experimental works by Roh et al. [25] showed that the
presence of surfactants at the interface may change the orien-
tation of the nematic director. They conducted experiments
to understand the effects of a fluid flow at the interface of
an aqueous solvent with solute surfactants in solution and a
NLC to reorient the director parameter of NLC. Thus, this
study identified the timescales at which surfactant concentra-
tion variation at the interface (a sign of Marangoni stresses)
reaches a steady state through the orientation of the easy axis
of the NLC at an isothermal condition. Reference [26] studied
the Marangoni effect on the hydrodynamic flow velocity ex-
perimentally near the isotropic-nematic phase transition of an
NLC. They found that the velocity flow direction depends on
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the material coating the cell substrate that holds the nematic
layer. They concluded that the flow direction gets reversed in
the nematic phase compared to the isotropic phase. From the
practical viewpoint, the Marangoni instability may make its
use in inkjet printing patterns of liquid crystalline polymers
feasible [27]. The Marangoni flow has also been comprehen-
sively studied theoretically by Rey [28–30] for models of
interfaces between isotropic surfactant solutions and NLCs
with homeotropic boundary conditions and when subjected
to temperature gradients [31]. The application of this theory
to study the onset of thermocapillary and elongational waves
induced by thermal fluctuations at the interface containing
insoluble surfactants was performed by Ref. [32]. On the
other hand, Popa-Nita and Oswald [33] developed a com-
pletely different theoretical approach based on the Landau-de
Gennes free energy method to describe the capillary waves
originating from thermal fluctuations at the interface of a
ternary mixture of liquid crystal, colloid, and impurities. They
considered two boundary conditions for the nematic director,
homeotropic or variable orientation, to predict the disper-
sion relation of the thermal waves. Their results qualitatively
confirmed Germano and Schmid’s [34] molecular dynamics
simulations on the thermal waves at the interface of isotropic
nematics of a model of bulk ellipsoids with pairwise interac-
tion of the Weeks-Chandler-Andersen type. References [35]
and [36], respectively, are theoretical studies of Marangoni
and Rayleigh-Benard, convection on homeotropic NLCs us-
ing a model of Gaussian light absorption at the nematic free
surface. Finally, Refs. [37–41] make the theoretical prediction
of different pattern formations at interfaces of NLC due to
temperature gradient. Unlike all these studies of instability
phenomena described above, only two theoretical calculations
[17,18] and one experiment [13] reported the study of the
Faraday instability in liquid crystalline fluids.

The present paper will study the Marangoni effect on the
Faraday instability on nematic liquids. For isotropic fluids,
previous studies of Faraday ripples in noncrystalline fluids
by other authors [42,43] considered a rise in temperature
without fluids experiencing a thermal phase transition. Such
a temperature variation leads to particle flow at the inter-
face (Marangoni effect). Investigation of Marangoni flow
in isotropic fluids goes back to the ’70s [42–45]. How-
ever, experiments and theoretical studies of the Faraday and
Marangoni instabilities on liquid crystalline fluids still need
to be included. This paper reports our modeling of the Fara-
day instability of a thermotropic NLC that experiences a
thermal phase transition to an isotropic state for a realistic
N-(4-methoxybenzylidene)-4-butylaniline (MBBA) nematic.
The materials parameters of MBBA, surface tension, Leslie
viscosities, and heat transport coefficients are well-known
observables during its change from the nematic to its isotropic
phase as a function of temperature [20,46,47]. Therefore, our
modeling of this liquid crystal with the linear theory of Kumar
and Tuckerman [48] does not contain free parameters. On the
other hand, this linear theory has found excellent agreement
with experiments on predicting the onset of Faraday waves in
electrolytes [3], complex fluids [10,49], and computer simu-
lations [50].

In our model of NLC with a free surface described in
Sec. II, we consider the liquid crystal director to be in the same

direction as an applied external magnetic field and parallel to
the liquid crystal air interface. Therefore, the nematic director
never changes orientation when this system is under a tem-
perature gradient. Consequently, the more general Q-tensor
theory (which accurately considers the director’s orientation)
is unnecessary to describe this system’s hydrodynamics. A
second reason is that the Leslie-Ericksen theory we use in
this paper explains quantitatively the measured observables in
the experiments of Refs. [22,46]. Thus, in Sec. II we adapt
the linear theory [46,48] to thermotropic liquid crystals. Here,
we include the heat diffusion equation for the temperature
variation that considers heat transfer normal to the interface
in a typical experimental setup. This way, the Marangoni
effect appears in the linear hydrodynamic theory. Sections III
and IV refer to two crucial magnetic field configurations.
Sections V refers to our predictions on the necessary critical
acceleration of the vessel for the onset of the instability and
its corresponding wave number. During the phase transition,
Marangoni effects manifest on both parameters, which experi-
ence a significant change for larger temperature gradients. We
determine typical frequencies of oscillations and fluid depth
effects on both critical parameters during the thermal phase
transition. At the onset, the primary frequency is half the
driving excitation one. We end Sec. VI with a conclusion.

II. PHYSICAL FORMULATION OF THE PROBLEM. CASE
OF APPLIED MAGNETIC FIELD PARALLEL TO THE

WAVE VECTOR ORIENTED ALONG THE x AXIS.
NEMATIC DIRECTOR PARALLEL TO INTERFACE

In this section, we describe the hydrodynamic equation and
its boundary conditions for a NLC layer with a free surface in
contact with air. The equilibrium fluid under gravity follows
an applied external vertical acceleration. Additionally, this
system experiences a temperature gradient which induces a
variation in the nematic surface tension with temperature.
Therefore, the elastic in-plane elongational deformation of
the interface appears as a Marangoni effect. Such an effect
leads to the balance of tangential forces in both the inter-
face and the vertical direction. A flat equilibrium interface
of infinite lateral extension resides at z = 0, and a slab of
nematic fluid occupies the space −L � z � 0. Above the free
surface z > 0, there is air. At the interface reside mobile ne-
matogens with their average orientation given by the nematic
order parameter remaining firmly clamped in the direction
of the external magnetic field. For this reason, there are no
orientational fluctuations of the nematic director. The ves-
sel with nematic liquid is under vertical acceleration g(t ) =
g − a cos (ωt ), where g is the gravitational acceleration. The
reference frame moves with the container of fluid, where a is
the external driving acceleration, and the oscillation frequency
is ω. A static external magnetic field H = Bμ0

−1êx orients
the director n of the nematogens in the êx direction. μ0 =
4π × 10−7 N/A2 is the permeability of free space. B is the
magnetic induction. Due to symmetry in the spatial directions
êx and êy, we may assume the surface wave propagates in the
êx direction with wave vector k, thus coordinate y is ignored.
A constitutive equation for the viscous stress tensor [46,47]
relates the hydrodynamic velocity of the nematic liquid v with
its bulk shear viscosities η2, η1, and η′ [47], through

σ ′ = η′n(n · E · n)n+2η2E+2(η1−η2)[(nn · E)+(nn · E)T].
(1)
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The viscosities η1, η2, η′ were measured in Ref. [46] for
MBBA and their interpolations as a function of temperature.
In Eq. (1), the unit vector director of the nematic molecules
is given by n = (1, 0, 0) = êx. E = [(∇v) + (∇v)T]/2 is the
symmetric rate of strain tensor for linear and shear strain de-
formation without rigid body rotations. T stands for transpose.
The velocity satisfies the linearized Navier-Stokes equa-
tion [46],

ρ
∂v
∂t

= ∇ · σ, (2)

where the total force per unit area acting on a fluid element
is σ = −pI − σ ′ + σr + zρg(t )êzêz, with êz the unit vector
along the z axis and (I)β,δ = 1 if β = δ and 0 otherwise.
p is the hydrostatic fluid pressure, with ρ being the den-
sity. The solution of Eq. (2) supplemented with appropriate
boundary conditions yields the components vz and vx of the
velocity of deformation of the free surface on the nematic
liquid. The elastic deformation of the interface occurs in the
perpendicular and transversal in-plane directions. The elas-
tic parameters associated with it are the surface tension γ

and the in-plane longitudinal elastic constant ε for in-plane
deformations. Their relationship occurs through the stress
tensor σ r , whose components provide the boundary condi-
tions specified below. The normal deformation of the interface
produces its elevation ζ (x, t ). Such a normal stress jump
across the nematic interface does not contribute to the in-
plane longitudinal Marangoni stress and consequently to ε.
Thus, tangential surface stresses are balanced by the viscous
stresses of the fluid motion given by σ ′. To specify the notation
in this paper, note that ε appears in the literature in two
different but equivalent ways; one form is ε = S(∂γ /∂S)T

with S the local surface [51,52], T is the temperature. In
contrast, the second way is ε = −
0(∂γ /∂
)T with 
 the
in-plane spatially inhomogeneous concentration of insoluble
molecules (nematogens) and 
0 its homogenous equilibrium
value. Molecules are nematogens at the interface, whose
number is constant but, at instability, get inhomogeneously
distributed. They are insoluble and mobile at the interface.
According to the chain rule, ε = S(∂S/∂
)−1(∂γ /∂
), where

 = c0/S with c0 the proportionality constant, whose units
can be molecules’ moles per area or moles per length. There-
fore, the surface S can be an effective area per mole or per
molecule. Thus, ∂S/∂
 = −c0


−2, and from the above rela-
tion yields ε = −
0(∂γ /∂
)T .

Because the liquid is kept under a vertical temperature
gradient that produces a Marangoni instability [42], the tem-
perature variations in the liquid are described by the linearized
heat diffusion equation:

∂t T = Avz + α∇2T . (3)

T is the local temperature variation concerning a refer-
ence state defined by T0 = Az + T00, with T00 an arbitrarily
fixed temperature. The vertical gradient temperature per unit
length A varies for each experimental temperature while
keeping a fixed fluid thickness. It is A < 0 [53] for heating
from the air side towards the bulk fluid [42]. Its value fol-
lows from the conditions at the bottom z = −L where T0 =
273.15 K and at the interface z = 0, where T0 = Texp is the
input experimental temperature. Thus, T00 = Texp from which

A = −(T00 − 273.15)/L [43]. α is the anisotropic thermal
diffusivity. Its value for the nematic MBBA is in Ref. [20], and
it turns out to be larger along the long molecular axis than its
normal value. It is negligibly small on the order of 10−7 m2/s.
Therefore, its value does not contribute to the Faraday wave
appreciably. For frequencies much less than the first sound
frequency of the liquid, the incompressibility condition holds:

∇ · v = 0. (4)

The conservation equations of momentum Eq. (2), energy
Eq. (3), and mass Eq. (4) are subjected to the boundary condi-
tions at z = −L of no slip,

v = 0, (5)

and no penetration:

∂zvz = 0. (6)

At the interface z = 0, the boundary conditions are the total
normal and tangential stresses (forces per unit area) which
satisfy the balance equations

σzz = 0,

σxz = 0,

σyz = 0. (7)

However, the normal restoring surface (s) force f s
z , also

termed the Laplace term, is the mean surface tension at the
given temperature γ (T, 
)[42]:

σ r
zz = f s

z = γ (T, 
)∂2
x ζ (x). (8)

ζ is the normal displacement of the interface from its equilib-
rium position. Additionally, the interface experiences elastic
deformations arising from tangential shear and dilational sur-
face viscosities [43]. The tangential surface (s) forces per unit
area of dilational elasticity are [42]

σ r
xz = f s

x = ∂xγ (T, 
),

σ r
yz = 0. (9)

The kinematic conditions are as follows because the dis-
placement ζ is small compared with the wavelength:

∂tζ = vz, at z = 0

∂tξ = vx, (10)

where ξ is the in-plane interface deformation.
To take into account the temperature and nematogen con-

centration gradients (spatial inhomogeneity) at the interface
leading to Marangoni flow, we assume, as in Refs. [42,45],
that γ is a linear function of temperature and molecule con-
centration,

γ (T, 
) = γ0 − γ1(T − Tr ) − γ2(
 − 
r ), (11)

with γ1 = −∂T γ (T, 
), γ2 = −∂
γ (T, 
). γ0, Tr, 
r are ref-
erence values, whereas γ (T, 
) and γ1 are experimentally
known [46]. We note that the right-hand side (RHS) term
∂xγ (T, 
) of Eqs. (9) is written in the literature [32,52] as
ε∂2

x ξ for isothermal condition. Demonstrating their equality
uses the diffusion equation of adsorbed insoluble molecules
(nematogens) at the interface, owing to their mobility. The
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dynamics of molecule concentration satisfies the linearized
equation about the equilibrium state 
0 [45,54,55]:

∂t
 + 
0(∂xvx ) = D∂2
x 
. (12)

The first term on the left-hand side (LHS) of the above
equation is for the temporal change rate of concentration. The
second term is the advected flux due to the interfacial flux of
molecules. The term on the RHS is the diffusion of molecules
with single-particle diffusion coefficient D, whose value is
usually minimal. From the discussion above γ2 = −∂γ /∂
,
and by taking partial derivation ∂x of Eq. (11) yields ∂xγ =
−γ1∂xT − (ε/
0)∂x
. Approximating D ≈ 0, the diffusion
equation reduces with the kinematic condition ∂tξ = vx at
z = 0 to ∂t [
 + 
0∂xξ ] = 0. Its solution is 
 + 
0∂xξ =
const. By getting 
, its x derivative yields ∂x
 = −
0∂

2
x ξ ,

from which it results ∂xγ = −γ1∂xT + ε∂2
x ξ . Solutions to

Eq. (3) consider a Dirichlet boundary condition of a thermally
insulated interface ∂zT = 0 at z = 0 [42,43]. In the rest of
the paper, we will use Eqs. (1)–(11) to calculate the Faraday
instability in the NLC with a free surface exposed to air and
under an external acceleration while the interface experiences
a temperature gradient. In their experiments, Roh et al. [25]
considered the interfacial mobility of a flowing aqueous solu-
tion of insoluble surfactants on a NLC. Such a system consists
of solvent water with dispersed solute surfactants. A given
concentration of surfactant adsorbs to the interface with an
NLC. A flow parallel to the interface acts on the surfactant
solution side. In the absence of flow, an appropriate model
to account for the interfacial elasticity of the insoluble solute
surfactants adsorbed at the interface with the NLC was pro-
posed by Rey [28,32]. Neglecting interface bending modes,
according to Refs. [32,52], the generalization of the zz, xy
components of the boundary conditions for σ r become

σ r
zz = f s

z = [γ (T, 
) + W ]∂2
x ζ (x) + λ∂3

x ξ (x),

σ r
xz = f s

x = − λ∂3
x ζ + ∂xγ (T, 
). (13)

Here, W is the anchoring energy of the NLC. λ represents
the magnitude of coupling of in-plane deformation ξ of the
interface with the perpendicular deformation ζ . In what fol-
lows, we provide the dispersion relations of the generated
parametric instability, including this generalized form of the
stresses. However, the numerical results presented below in
Sec. V for the Faraday wave do not include W and λ.

A. Solution of hydrodynamic equations

In this section, we solve the Navier-Stokes Eq. (2) with the
help of the boundary conditions for the perpendicular velocity
component vz to the interface. Because of its time variation,
it relates to the interface height profile deformation ζ . The
applied time-dependent vertical forcing g(t ) on the fluid al-
lows a Floquet expansion of the velocity in terms of temporal
modes, which leads to a recurrence relation for the interface
deformation ζ (t ). It is easiest to solve Eqs. (1)–(12) by using
a Fourier transformation of each space-dependent function of
the form F ( f (x, z, t )) = ∫

dxe−ikx f (x, z, t ) = f̃ (k, z, t ), i =√−1, with the property F (∂m
x f (x, z, t )) = (ik)m f̃ (k, z, t ) in

the case of wave vector k along the x axis. From the boundary
condition at the interface z = 0, the shear stress must satisfy

the balance equation σxz = 0 which together with Eqs. (13) for
σ r

zz, and that of σ r
xz, all transformed to Fourier space, yields a

relationship for the velocity component ṽz as(
∂2

z − k2
)
∂t ṽz = ν1

(
∂2

z − k2
)(

∂2
z − k2

)̃
vz − ν ′k2∂2

z ṽz, (14)

where ν ′ = η′/ρ, ν1 = η1/ρ and ν2 = η2/ρ are the kinetic
viscosities.

Since the forcing g(t ) is a periodic function with period
2π/ω, we can use a Floquet expansion of space- and time-
dependent functions of the type [48]

f̃ (k, z, t ) =
∞∑

n=−∞
f̃n(k, z)eμnt , (15)

with μn = s + i(n + β )ω, s and β being real valued. This
representation allows obtaining the harmonic solutions (Hr)
of Eq. (14) with β = 0 and subharmonic ones (Sh) with
β = 1/2. Since f̃ are real valued, then f̃ ∗

n = f̃−n for Hr and
the relation holds f̃ ∗

n−1 = f̃−n for Sh, were ∗ means complex
conjugate.

Using the Floquet expansion in Eq. (14), we arrive at the
ordinary differential equation for the velocity modes ṽzn ,{

∂4
z + bn∂

2
z + cn

}
ṽzn = 0, (16)

where

bn = −
[
μn

ν1
+ k2

(
2 + ν ′

ν1

)]
and cn = k2

[
k2 + μn

ν1

]
.

(17)

The solution of Eq. (16) is

ṽzn = Ancoshz
√

m1 + Bnsinhz
√

m1

+ Cncoshz
√

m2 + Dnsinhz
√

m2, (18)

where m1 = m+ and m2 = m− are the two solutions of
the quadratic equation m2 + bnm + cn = 0. The unknown
constants An, Bn,Cn, and Dn are determined below from
Eqs. (1)–(6), including Eqs. (10) and (12). First, the solution
of Eq. (3) for the temperature is also expressed in terms of
Floquet components:


̃n = 
0∂z̃vzn

μn + k2D . (19)

Note that the Floquet expansion of Eq. (15) permits the
solution of Eq. (3) of the temperature{

∂2
z − a2

n

}
T̃n = −A

α
ṽzn , (20)

where an =
√

k2 + μn/α. Further, we eliminate vx in the sec-
ond of Eqs. (13) by taking ∂xσxz = ∂x f (s)

x after which, using
a Fourier transformation and Floquet expansion, results in the
new boundary condition at z = 0:

−η1
(
∂2

z + k2
)
ṽzn= −λk4ζ̃n − γ1k2[Aζ̃n − T̃n] + γ2k2
̃n.

(21)

On the other hand, the pressure p at z = 0 is −p + ρg(t )ζ +
2η2∂zvz = [γ (T, 
) + W ]∂2

x ζ + λ∂3
x ξ . From Eq. (2), it is cal-

culated ρ∂t∂x êx · v = ∇∂x êx · σ , in which we substitute p.
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A Fourier-Floquet transformation leads to the new boundary
condition at z = 0,

{(μn + 3ν1k2 + ν ′k2)∂z − ν1∂
3
z }ṽzn

+ kω2
0 ζ̃n + λ

ρ
ik5̃ξn = ak2

2

(̃
ζn+1 + ζ̃n−1

)
, (22)

with ω2
0 = gk + [γ (T, 
) + W ]k3/ρ. Notice that the Euler

formula for cos(ωt ) yields ζ̃n+1 = ζ̃neiωt , ζ̃n−1 = ζ̃ne−iωt .

Finally, the four unknown constants An, · · · , Dn are de-
rived from the four Eqs. (5), (6), (20), and (21). After that,
the determined An, · · · , Dn are replaced in Eq. (22), which is
satisfied by ṽzn yielding the recurrence relation for ζ̃n,

Dnζ̃n = a(̃ζn+1 + ζ̃n−1), (23)

with

k

2
Dn(k, μn) = ω2

0 + 1

kμn
{√cn[�nrn + �nsn − (�nsn + �nrn)coshL

√
m1coshL

√
m2]

+ (�nsnm2 + �nrnm1)sinhL
√

m1sinhL
√

m2 + √
cnμn pn[sncoshL

√
m2 − rncoshL

√
m1]

+ √
cnm1μnk2(m1 − m2)[Rnqn + (Qn + bnqn)μnν1]sinhL

√
m1coshL

√
m2

+ k2μn[
√

cnm2sn(Qn + qnm2) − √
m1rn(qncn + Qnm2)]coshL

√
m1sinhL

√
m2}/

{Pn[
√

m1coshL
√

m1sinhL
√

m2 − √
m2coshL

√
m2sinhL

√
m1]

+ k2√cn(bnqn − 2Qn)[coshL
√

m1coshL
√

m2 − 1] + k2(2cnqn − bnQn)sinhL
√

m1sinhL
√

m2

+ pn[
√

m2sinhL
√

m1 − √
m1sinhL

√
m2]}. (24)

Other quantities appearing in Eq. (24) are defined in the Supplemental Material [56]. Equation (24) depends on the Marangoni
number of temperature gradient MT = γ1l2

c A/(η1α), and the particles’ concentration gradient M
 = γ2
0lc/(η1D), with lc a
system characteristic length scale. The semi-infinite limit L → ∞ of Eq. (24) for a NLC corresponds to sech(Lan) → 0 and
tanh(Lan) → 1, thus

k

2
D(∞)

n (k, μn) = ω2
0 + 1

kμn

{
−�nsn(

√
cn−m2)−�nrn(

√
cn−m1) + √

cnm1μnk2(m1 − m2)

[
Rn

Aγ1

αρ
+

(
Qn + bn

Aγ1

αρ

)
μnν1

]

+ μnk2

[√
cnm2sn

(
Qn + Aγ1

αρ
m2

)
− √

m1rn

(
cn

Aγ1

αρ
+ Qnm2

)]}/{
Pn(

√
m1 − √

m2)

+ k2

[
Aγ1

αρ
(
√

cnbn + 2cn) − (2
√

cn + bn)Qn

]}
. (25)

III. APPLIED MAGNETIC FIELD PARALLEL TO THE
WAVE VECTOR ORIENTED ALONG THE y AXIS.

NEMATIC DIRECTOR PARALLEL TO THE INTERFACE

In this case, the nematic director is in the direction n = êy,
and the magnetic field is parallel to the director. The balance
equation σyz = 0 implies that the director is perpendicular
both to the velocity field v = vxêx + vzêz and the wave vector
kêy. Therefore, there is no coupling between the director and
the velocity, and the hydrodynamic equations for the free in-
terface are the same as that of a Newtonian liquid with one vis-
cosity η = η1 = η2, ν = η/ρ. In this case, Eqs. (24) and (25)
do not change; however, now ν ′ = 0 and therefore bn = −2k2

− μn/ν. In this way, the solution to Eq. (16) has the two roots:
m1 = k2 + μn/ν and m2 = k2.

IV. MAGNETIC FIELD PARALLEL TO z AXIS. NEMATIC
DIRECTOR PERPENDICULAR TO THE INTERFACE

Now the nematic director is n = êz. z = ζ (x, t ) [46].
Therefore, there is symmetry in the plane xy. Thus,
from Eq. (1), σ ′

xz = η1(∂zvx + ∂xvz ) = 0 and σ ′
yz = η1(∂zvy +

∂yvz ) = 0. However, the condition σzx = 0 leads to vy = 0
again. Thus, following the same procedure as in Sec. I,

two oscillation modes appear to fulfill the same characteris-
tic Eq. (16) despite the boundary condition Eq. (13) being
different from the ones in Secs. I and II above. In this
case, the boundary condition is −p + ρg(t )ζ + (η′ + 4η1 −
2η2)∂zvz = γ (T, 
)∂2

z ζ + λ∂3
z ξ . Using these facts and per-

forming the procedure described in Sec. I, the same recurrence
relation of Eq. (23) results.

V. RESULTS

In this section, a numerical analysis of Eqs. (23) and (24)
provide the values of the critical acceleration ac and wave
number kc at the parametric instability onset. For the ne-
matic liquid MBBA, all the material parameters are known
experimentally [20,46,57]. Thus, Eqs. (23) and (24) do not
contain unknown free parameters. It is interesting to re-
search the effect of temperature gradient on the Faraday
wave as accounted for by the Marangoni number MT =
γ1l2

c A/(η1α) [42,43]. A is the temperature gradient concerning
the base state, namely, A = −(T00 − 273.15)/L, the tem-
perature increment from liquid-air free sruface towards the
bottom. The critical acceleration and wave number are the
minimum threshold values they acquire at the onset of the
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FIG. 1. Calculated critical parameters: kc (a) and ac (b) as a
function of the MBBA nematic-isotropic transition temperature dif-
ference �T = T − Tc of a subharmonic wave. External frequency
ω = 20π Hz circles symbol ◦ with H||k, triangle symbol � for
H ⊥ k in the nematic phase. Layer thickness used L = 0.0045 m.
The same properties kc, ac in the isotropic phase are depicted with
square symbol �. Filled-black symbols include Marangoni convec-
tion MT = γ1l2

c A/(η1α) due to temperature gradient. Grey symbols
(online red and blue cyan colors) do not include the Marangoni effect
MT = 0. Used material data of MBBA as cited in Ref. [18].

instability for given forcing g(t ). This kc = |k| is the eigenvec-
tor magnitude obtained from Eq. (23) for an n = 22 number
of nodes and parameter s = 0 [48]. To numerically determine
kc from Eq. (23), we used the material properties of MBBA
as cited by Ref. [18]. These include the experimental values
of the viscosities η1, η2, η

′, the surface tension γ as a function
of temperature [46,57] about the transition temperature from
nematic to isotropic phase, namely, Tc ≈ 318 K. There are
also the thermal diffusivity values α from the experiments
of Urbach et al. [20]. As a working hypothesis, the density
of liquid crystal is constant: ρ = 1.03881 × 103 Kg/m3. Fig-
ure 1 shows the plots of kc, Fig. 1(a), and ac, Fig. 1(b), as a
function of temperature for frequency ω = 20π Hz and for a
liquid layer thickness, L = 0.0045 m.

In this plot, all generated waves are of subharmonic types.
Black-filled symbols represent solutions of Eqs. (23) and (24)
with the effect of a temperature gradient, that is, MT �= 0. For
comparison purposes, in this plot are also those values without
temperature variation, MT = 0 calculated from Eq. (3) of the
Supplemental Material [56]. Their values are in red and cyan

FIG. 2. The calculated Marangoni number MT = γ1l2
c A/(η1α)

versus temperature difference �T = T − Tc about the critical tem-
perature Tc = 388 K for MMBA liquid crystal. In the nematic phase,
the heat thermal diffusivity is anisotropic, being α|| for its measure-
ment along the optical molecular axis (filled-black circle symbol,
red color online) and perpendicular to it, α⊥ shadow (cyan color
online), circle symbol. The nematic liquid with depth L = 0.0045 m.
The isotropic case is for �T = T − Tc � 0 K. lc = √

γ /ρg is the
capillary length. The temperature gradient A values are tabulated in
Supplemental Material [56]. Used data for α||, α⊥ of MBBA as cited
in Ref. [18]. Note that α scale as 10−7 m2/s.

color-filled symbols. More specifically, circles represent when
the magnetic field orients the nematic director in the direction
parallel to the wave vector H||k. Triangles represent a system
where the magnetic field orients the director perpendicular to
the wave vector H ⊥ k. In this last case, it is true that η =
η1 = η2 and η′ = 0. The liquid behaves as a simple isotropic
Newtonian liquid with a single viscosity since the director is
perpendicular to the local optic axis (see Sec. III). A different
study in Ref. [18] assumed a constant temperature gradient A,
which is different from the present paper, where it is a varying
quantity. This fact resides in the experimental data that fixes
a given temperature at the liquid-air interface. That is, in the
experiments, at the bottom of the layer T = 273 K and varies
up to the interface where it reaches the desired temperature
T0 �= 0. According to Fig. 1, the effect of temperature gradient
on the threshold values ac is insignificant for the case H||k.
However, as the nematic-isotropic transition temperature is
reached, namely, −2 K < �T = T − Tc < 0 K, there is a
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FIG. 3. Subharmonic’s threshold wave number kc (a) and ac-
celeration ac (b) versus temperature of MBBA nematic liquid with
depth L = 0.0025 m and forcing frequency ω = 20π Hz. Black-
filled symbols include Marangoni convection MT = γ1l2

c A/(η1α)
whereas shadow symbols without it (cyan and red color symbols
online).

significant change in kc for T − Tc > 0 K where there is a
steep change of its magnitude of about 75% in this isotropic
phase concerning its last value in the nematic phase.

However, the system with H ⊥ k (symbol �), Fig. 1(b),
shows that when a temperature gradient is non-negligible,
MT �= 0, the overall strength of ac drops in the nematic
phase �T = T − Tc < 0 K in comparison to the case with
MT = 0. In contrast, the magnitudes of their corresponding
wave numbers kc are in the reverse order, respectively; see
Fig. 1(a).

Approaching the critical temperature from the nematic
phase, −2 K < �T = T − Tc < 0 K, and case MT �= 0, kc

drops below its value when MT = 0. In the same tempera-
ture range, the threshold acceleration ac starts experiencing a
sharp increase, reaching a maximum value of about �T =
T − Tc ≈ 1 K for MT �= 0. After that, the temperature dif-
ference �T = T − Tc > 0 K crosses towards the isotropic
phase, where ac oscillates and finally increases monotonously
for higher temperatures �T = T − Tc � 4 K. Summarizing,
when temperature gradients are absent, MT = 0, both ac

(and kc) of the instability wave show almost constant values
from the nematic to the isotropic phase, with a slight de-
crease (increase) in its slope toward the isotropic phase and

FIG. 4. Subharmonic’s threshold wave number kc (a) and ac-
celeration ac (b) versus temperature of MBBA nematic liquid with
depth L = 0.0045 m and forcing frequency ω = 120π Hz. Black-
filled symbols include Marangoni convection MT = γ1l2

c A/(η1α)
whereas shadow symbols without it (cyan and red color symbols
online)—same materials parameters of Fig. 1.

further. Equation (24) does not explicitly contain the
Marangoni number. MT = γ1l2

c A/(η1α) [42,43]. This fact al-
lows us to define the characteristic length lc differently. One
form is to define it as lc = √

(γ /ρg). Thus, Alc = −�T (s)

represents the temperature change from the base state (bottom
of the layer) up to height lc towards the interface. Note that
Urbach et al. [20] measures two thermal conductivity values
α in the nematic phase: one for heat propagation along the
molecular optical axis α|| whereas another is perpendicular to
it, α⊥. Numerically, any of these two values of α are used
in solving Eqs. (23) and (24), and they do not lead to any
different results of the calculated acceleration ac(kc, ω), which
is insensitive to the anisotropy of α. Similarly, the Marangoni
number MT = γ1l2

c A/(η1α) does not experience any change
with either value of the anisotropic α as depicted in
Fig. 2.

Figure 2 plots the calculated Marangoni number MT as a
function of the gradient in temperature difference �T = T −
Tc across the nematic-isotropic phase transition of MBBA
liquid crystal. Here lc is the capillary length

√
(γ /ρg). We

observed that the Marangoni number experiences a significant
change in the nematic phase, where it goes from a −2.5 × 103

value in the range of temperatures −10 K < �T = T − Tc <

−2 K and shows a steep increase in −2 K < �T = T − Tc
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FIG. 5. Subharmonic’s threshold wave number kc (a) and ac-
celeration ac (b) versus temperature of MBBA nematic liquid with
depth L = 0.0025 m and forcing frequency ω = 120π Hz. Black-
filled symbols •, �, � include Marangoni flow MT = γ1l2

c A/(η1α)
whereas shadow symbol without it (cyan and red color symbols
online). Dashed lines are guides to the eyes—the same material
parameters as Fig. 1.

< 0 K. After the critical transition temperature, MT drops to
−6 × 103 and increases monotonously in the isotropic phase
as the temperature increases.

Figure 3 shows the critical wave number kc, Fig. 3(a),
and acceleration ac, Fig. 3(b), of excited Faraday instability.
The nematic layer of depth L = 0.0025 m is almost half the
size used in Fig. 1. The forcing frequency is ω = 20π Hz,
and the use of the same material parameters as in Fig. 1
for the nematic MBBA. Reducing to half the layer thickness
from L = 0.0045 m, Fig. 1, to L = 0.0025 m has the effect
of increasing the strength of the threshold values of kc, ac, as
seen in Fig. 3 versus Fig. 1. Also, their values near the critical
temperature are more pronounced than in Fig. 1 of a thicker
layer. There is still continuous evolution on these dynamical
parameters from the nematic to isotropic phase remaining
almost constant for MT = 0 and case of H||k. Nonetheless,
in the case MT �= 0 that includes temperature gradient, and
with the condition H ⊥ k, the parameters kc, ac show sharp
changes in the phase transition.

Figures 4 and 5 depict the effect of a higher frequency ω =
120π Hz on the Faraday instability critical wave number and
acceleration as a function of temperature for a thicker layer

FIG. 6. Subharmonic acceleration ac versus liquid layer thick-
ness L at forcing frequency ω = 60π Hz while taking into account
the temperature gradient given by the Marangoni number MT =
γ1l2

c A/(η1α). Symbol • is for MBBA nematic liquid at �T = T −
Tc = −2 K, whereas the red-filled triangle corresponds to isotropic
phase at �T = T − Tc = 2 K. In the same plot, symbols ◦ and �
results from a semi-infinite layer L → ∞. Inset depicts threshold
wave number kc versus L.

than in Figs. 1 and 3, and a layer of thickness L = 0.0045 m
for Fig. 4 and L = 0.0045 m for Fig. 5.

The material parameters of MBBA liquid crystal are the
same as in Fig 1. Increasing the excitation frequency ω in-
creases the magnitudes of ac, kc concerning their values for
ω = 20π Hz. However, we notice a notorious difference in
the values of ac, kc between the cases H||k and H ⊥ k when
there is Marangoni flow MT �= 0. In the latter case, kc becomes
nonmonotonous and discontinuous at the critical temperature
with a high value after Tc = 388 K, whereas ac increases
steeply about �T = T − Tc ≈ 1 K in the nematic phase, then
following a minimum in the Isotropic phase and increasing for
higher temperatures. Figure 5 shows that the discontinuity in
the values of ac, kc is more critical for reduced layer size and
more significant frequencies than Figs. 1 and 3.

Figure 6 depicts the critical acceleration of subharmonic
waves as a function of average liquid layer thickness L for
the forcing frequency ω = 60π Hz. In this case, advected
Marangoni flow is present due to temperature gradient at
T − Tc = −2 K in the nematic phase of MBBA liquid crystal
(symbol •). In the isotropic phase at �T = T − Tc = 2 K, the
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same property is plotted with the symbol red-filled triangle.
The same properties are calculated in the limit of the semi-
infinite layer L → ∞. The results are in ◦ and � symbols.
As a summary of Figs. 1–6, the linear hydrodynamic theory
Eq. (21) can capture the differences between the unstable sur-
face wave generated on a nematic’s surface and the isotropic
phase of the liquid crystal.

VI. CONCLUSION

We demonstrated that a hydrodynamic description of Fara-
day instability in nematic liquid crystalline fluids is possible,
Eqs. (23) and (24). This fact is confirmed through Fig. 1,
where the threshold critical wave number kc and acceleration
ac at instability onset were calculated using known material

parameters of MBBA nematic liquid and without free param-
eters in Eq. (24). These observables are amenable to being
measured experimentally. We have shown in Fig. 1 that due
to the temperature gradient, the Marangoni flow drives a more
significant change in the threshold values of kc and ac close
to the critical isotropic-nematic phase transition temperature
than when it is not present. Its effect is more critical when the
magnetic field orients the nematogen molecules of the liquid
in a perpendicular direction than parallel to the wave vector.
Interestingly, the Marangoni number of temperature gradient
also shows a considerable variation near the isotropic-nematic
phase transition temperature, see Fig. 2. Reducing the liquid
layer thickness or increasing the shaker forcing frequency still
emphasized these abrupt changes on kc and ac at the phase
transition temperature, as can be seen in Figs. 3–6.
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