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Liquid crystal elastomer self-oscillator with embedded light source
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Light sources that switch periodically over time have a wide range of application value in life and engineering,
and generally require additional controller to periodically switch circuits to achieve periodic lighting. In this
paper, a self-oscillating spring oscillator based on optically responsive liquid crystal elastomer (LCE) fiber is
constructed, which consists of a embedded light source and a LCE fiber. The spring oscillator can oscillate
autonomously to achieve periodic switching of the light source. On the basis of the well-established dynamic
LCE model, a nonlinear dynamic model is proposed and its dynamic behavior is studied. Numerical calculations
demonstrate that the spring oscillator presents two motion regimes, namely the self-oscillation regime and the
static regime. The self-oscillation of spring oscillator is maintained by the energy competition between light
energy and damping dissipation. Furthermore, the critical conditions for triggering self-oscillation are also
investigated in detail, as well as the key system parameters that affect its frequency and amplitude. Different from
the existing abundant self-oscillating systems, this self-oscillating structure with simple structure and convenient
fabrication does not require complex controller to obtain periodic lighting, and it is expected to provide more
diversified design ideas for soft robots and sensors.
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I. INTRODUCTION

Self-sustained oscillation refers to the continuous and pe-
riodic self-oscillation that occur on its own in the absence of
external excitations [1–5]. Self-oscillation has properties and
characteristics that other motions do not possess. During the
self-oscillation, the system can harvest energy directly from
a constant environment to maintain its periodic movement
[6–9]. Self-oscillation generally has good robustness [10–12].
The period and amplitude of self-oscillation generally depend
on the inherent parameters of the system, and are independent
of the initial conditions. This self-oscillation phenomenon has
a wide range of promising applications in robotics [13–15],
biology [12,16], energy absorption [17,18], and machinery
[19,20].

In recent years, an increasing number of self-oscillating
systems have been made from different stimuli-responsive
materials, including thermally responsive polymer materials
[21], ion gels [22], hydrogels [23,24], dielectric elastomers
[25], etc. Furthermore, on the basis of diverse active materials,
there are many self-sustained motion modes. For instances,
rolling [21], swinging [26,27], rotating [28,29], contracting
[30,31], buckling [32–34], jumping [35,36], curving [37], and
even synchronized motion of several coupled self-oscillators
[38] have been established.

Among the many active materials, liquid crystal elastomers
(LCEs) are advanced bidirectional memory deformable ma-
terial synthesized from anisotropic rodlike liquid crystal
molecules and stretchable long-chain polymers [19,39–41].
When this material is stimulated by light [19], electric field
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[42], magnetic field [43], temperature [44], etc., the liquid
crystal monomer molecules rotate and deform [45,46], which,
from a macro perspective, is the LCE material undergoing
rotational deformation. Under a variety of different stimuli,
light excitation has the advantages of easy control, high pre-
cision, environmental friendliness, and sustainability [47,48].
With these advantages, optically responsive LCE materials
have been widely studied [48–55].

At present, although many self-oscillating systems have
been established, the multifunctional demand for different
applications is increasing, and with the growing number of
studies for LCE-based optically fueled self-oscillation sys-
tems [56–59], we also need to build more systems to cope
with complex and potential applications in the future. Espe-
cially, light sources that switch periodically over time have a
wide range of application value in life and engineering, and
generally require additional controller to periodically switch
circuits to achieve periodic lighting. In this paper, we cre-
atively build a spring oscillator composed of LCE fibers to
achieve periodic lighting, based on the contraction-expansion
self-oscillation of LCE under shading. This system has the
advantages of spontaneous periodic lighting, simple structure,
and convenient operation, and is expected to broaden the de-
sign ideas in soft robotics, energy harvesters, micromachines,
and other fields [60,61].

The paper is structured as follows. First, the correspond-
ing theoretical models and calculation formulas are given in
Sec. II. Then, the time history curves and the correspond-
ing phase diagrams for the two motion modes are given in
Sec. III. The solution method is also given. Then, in Sec. IV,
the influences of several system parameters on the amplitude
and frequency of self-oscillation are extensively studied, and
the triggering conditions for self-oscillation under different
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FIG. 1. Schematic diagram of spring oscillator containing optically responsive LCE fiber, inextensible fiber, shading sleeve, and light
source: (a) reference state, (b) initial state, and (c) current state. In self-oscillating state, coupling between light-driven contraction of LCE
fiber and its motion can trigger self-oscillation of light source.

system parameters are described. Finally, the conclusions are
drawn in Sec. V.

II. THEORETICAL MODEL AND FORMULATION

This section proposes a theoretical model of a self-
oscillating spring oscillator, including an established particle
dynamics model and a dynamic LCE model [46]. The main
contents include the dynamics of light source, the tension
of the LCE fiber, the evolution of the volume fraction of
cis-isomer in the LCE fiber, the nondimensionalization, and
the solution methods of the differential governing equations
with variable coefficients.

A. Dynamics of a self-oscillating light source

Figure 1 depicts the self-oscillating spring oscillator, which
consists of an optically responsive LCE fiber, an inextensi-
ble fiber, a shading sleeve, and a light source. As shown in
Fig. 1(a), the original length of the LCE fiber in the refer-
ence state is L0. The mass of the LCE fiber is assumed to
be much smaller than the mass of the light source m, and
thus it is neglected for simplicity. In the reference state, the
photosensitive molecules such as azobenzene molecules in
the LCE fiber are oriented along the fiber axis [19,62–64].
Being a well-known phenomenon, the LCE fiber will contract
in illumination (wavelength less than 400 nm) due to the
transformation of azobenzene liquid crystal molecules from
a straight trans state to a bent cis state, while the light-driven
contraction will recover in darkness due to the transformation
of azobenzene liquid crystal molecules from a bent cis state to
a straight trans state [19,62–64].

Initially, the light source is located at position O1 with
an initial velocity of zero. The distance between O1 and the
end of the shading sleeve is denoted by the shadow length
Lshading, as shown in Fig. 1(b). Assuming that the diameter of
the fiber is much smaller than the characteristic penetration
depth of light, the LCE fiber can only contract longitudinally
under illumination due to the transformation of azobenzene
liquid crystal molecules from a straight trans state to a bent
cis state. In contrast, in nonilluminated areas, the light-driven

contraction of fiber is recovered due to the transformation of
azobenzene liquid crystal molecules from a bent cis state to a
straight trans state. For simplicity, we assume that the LCE
fiber length is much smaller than the distance between the
light source and the fiber, and thus all parts of nonshielded
LCE fibers are exposed to the same light intensity I0. Affected
by gravity, the light source initially moves downwards from
static state, the LCE fiber is illuminated, causing the LCE fiber
to partially contract, increasing the tension of the fiber, and
slowing down and rebounding the mass. Then, the light source
moves upwards and enters the sleeve area. Subsequently, the
LCE fibers return to the nonilluminated state and thus the ten-
sion of the fiber decreases. Afterwards, the light source moves
downwards and illuminates the LCE fiber again. Finally, the
light source oscillates continuously and periodically.

The mass is subjected to the tension Fs from LCE fiber,
and damping force Fd from the air and gravity. Consider-
ing the velocity of light source is small, it is assumed that
the air-damping force Fd is proportional to the velocity of
the light source, which is always in the opposite direction
to the velocity. According to Newtonian mechanics, the fol-
lowing governing equation holds at any moment during the
self-oscillation of the light source:

mü(t ) = mg − Fs(t ) − cu̇(t ), (1)

where u(t ) is the displacement of the light source, g is the
gravitational acceleration, c is the damping coefficient, u̇ and
ü indicate the velocity du(t )

dt and acceleration d2u(t )
dt2 of the light

source, respectively.
For the sake of simplicity, the damping force and the

viscosity of the fiber are ignored in this work. For small
deformation of the LCE fiber, it is assumed that the tension
is proportional to the elastic strain εe,

Fs(t ) = EAεe, (2)

where E is the elastic modulus of LCE fiber, and A is the
cross-sectional area of LCE fiber. In Eq. (2), the elastic mod-
ulus is assumed to be independent of whether it is illuminated
or not, and the cross-sectional area A is assumed to remain
constant when subjected to tension for small deformation of
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LCE fiber. It is worth noting that the elastic strain εe in LCE
fiber is uniform due to that the tension of the fiber Fs(t ) is
uniform, while both the total strain εtot and the light-driven
contraction εL are nonuniform. To analyze the nonuniform
deformation of LCE fiber, we introduce the Lagrange arc
coordinate system X in the reference state and the Eulerian
arc coordinate system x in the current state. During the self-
oscillation, the instantaneous position of a material point in
the LCE fiber can be described as x = x(X, t ). For simplicity,
the elastic strain of LCE fiber εe under small deformation can
be assumed as a linear combination of the total strain εtot

and the light-driven contraction εL, εe = εtot − εL; thus, the
tension can be rewritten as

Fs(t ) = EA(εtot − εL), (3)

where εL is assumed to be a linear function of the volume
fraction of cis-isomers ϕ(X, t ). Considering that the volume
fraction of azobenzene is assumed to be far less than 1, the
light-driven contraction strain εL(X, t ) is assumed to be pro-
portional to the small cis-isomer volume fraction φ(t ),

εL(X, t ) = −C0ϕ(X, t ), (4)

where C0 is the contraction coefficient. For simplicity, the
total strain is defined as εtot (X, t ) = λ(X, t ) − 1, where the
deformation gradient λ(X, t ) is defined as λ(X, t ) = dx(X,t )

dX .
Thus, Eq. (3) can be rewritten as

Fs(t ) = EA[λ(X, t ) − 1 + C0ϕ(X, t )]. (5)

To obtain the instantaneous position x of the LCE fiber at
any time, by integrating both sides of Eq. (5) from 0 to L0, we
can obtain

Fs(t ) = EA

L0

[
u(t ) +

∫ L0

0
C0ϕ(X, t )dX

]
. (6)

From Eq. (5), λ(X, t ) can be represented by Fs(t )

λ(X, t ) = Fs(t )

EA
+ 1 − C0ϕ(X, t ). (7)

Combining Eqs. (3), (6), and (7), we can get

dx(X, t )

=
[

1

L0

(
u(t ) +

∫ L0

0
C0ϕ(X, t )dX

)
+ 1 − C0ϕ(X, t )

]
dX.

(8)

Integrating both sides of the above formula from 0 to X ,
we can get

x(X, t )

= X

L0

[
u(t ) +

∫ L0

0
C0ϕ(X, t )dX

]
+ X−

∫ X

0
C0ϕ(X, t )dX .

(9)

B. Dynamic LCE model of the fiber

We can make use of the dynamic LCE model proposed
by Finkelmann et al. [64] to calculate the volume fraction
of cis-isomers in the LCE fiber. In Eq. (4), ϕ(X, t ) generally
relies on thermal excitation from trans to cis, thermally driven
relaxation from cis to trans, and light-driven isomerization.

The thermal excitation from trans to cis is usually negligible
relative to the light-driven excitation. In this paper, we use
the following control equation to describe the evolution of the
volume fraction of cis-isomers:

∂ϕ(X, t )

∂t
= η0I0(X, t )[1 − ϕ(X, t )] − T −1

0 ϕ(X, t ), (10)

where η0 is the light absorption constant and T0 is the thermal
relaxation time from cis to trans.

C. Nondimensionalization

For convenience, we define the following dimensionless
parameters:

t̃ = t

T0
, F̃s = FST 2

0

mL0
, X̃ = X

L0
, ũ = u

L0
,

b̃ = b

L0
, x̃ = x

L0
, L̃shading = Lshading

L0
,

c̃ = cT0

m
, g̃ = gT 2

0

L0
, Ẽ = EAT 2

0

mL0
,

and Ĩ (x) = T0η0I (x). Equation (1) can be expressed as

˜̈u = g̃ − Ẽ

[
ũ(t̃ ) +

∫ 1

0
C0ϕ(X̃ , t̃ )

]
− c̃ ˜̇u0. (11)

Equation (9) can be expressed as

x̃(X̃ , t̃ ) = X̃

[
ũ(t̃ ) +

∫ 1

0
C0ϕ(X̃ , t̃ )dX̃

]

−
∫ X̃

0
C0ϕ(X̃ , t̃ )dX̃ + X̃ . (12)

Equation (10) can be expressed as

∂ϕ(X̃ , t̃ )

∂ t̃
= Ĩ (X̃ , t̃ )[1 − ϕ(X̃ , t̃ )] − ϕ(X̃ , t̃ ). (13)

Equation (6) can be expressed as

F̃s(t̃ ) = Ẽ

[
ũ(t̃ ) +

∫ 1

0
C0ϕ(X̃ , t̃ )

]
. (14)

Equation (11) is the dynamic equation of the system,
Eq. (12) controls the current position of each material point,
and Eq. (13) represents the volume fraction of cis-isomers in
the LCE fiber. The calculated value of x̃ from Eq. (12) can be
used to determine whether the material point of the LCE fiber
is in illumination or darkness. Equations (11) and (13) govern
the self-oscillation of this system. To solve these complex
differential equations with variable coefficients, the Runge-
Kutta method is used and numerical calculation is carried out
in MATLAB software. For the volume fraction φi according to
the illumination time of the LCE material at ti time, the current
tension of the LCE fiber F̃si can be determined by Eq. (14).
Given the initial conditions, iterating through Eq. (12) to
determine the current position x̃i(X̃ , t̃i ) and estimate the light
intensity Ĩ (X̃ , t̃i ), then from Eq. (13), the volume fraction φi

can be calculated, and ũ, ˜̇u0 can be calculated. Thus, for given
parameters C0, Ĩ0, Ẽ , c̃, b̃, L̃shading, and g̃, iterative calculations
can be performed to obtain the dynamics of the self-oscillation
of this system.
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TABLE I. Material properties and geometric parameters.

Parameter Definition Value Unit

C0 Contraction coefficient 0–0.12
c Damping coefficient 0–0.01 kg/s
b Illumination length 0–0.7 m
E Elastic modulus of LCE fiber 0–5 MPa
A Cross-sectional area of LCE fiber 0–2 mm2

T0 Thermal relaxation time 0–0.2 s
L0 Original length of LCE fiber 1 m
g Gravitational acceleration 0–20 m/s2

m Mass of light source 0–0.1 kg
η0 Light-absorption constant 0.0003 m2/(s W)
I0 Light intensity 0∼20 kW/m2

III. TWO MOTION REGIMES AND MECHANISM
OF SELF-OSCILLATION

In this section, by solving the governing Eqs. (11) and (13),
we first present two typical motion regimes, which are distin-
guished as the static regime and the self-oscillation regime.
Next, the corresponding mechanism of the self-oscillation of
light source is elucidated in detail.

A. Two motion regimes

To investigate the properties of self-oscillating light source
suspended by LCE fiber, it is necessary to determine the typi-
cal values of dimensionless parameters in the model. Typical
material properties and geometric parameters are presented
in Table I [8,63,64]. The corresponding dimensionless pa-
rameters are also listed in Table II. In the following, these
parameter values are used to study the self-oscillation of light
source.

Figure 2 depicts the two typical motion regimes of the
light source suspended by a LCE fiber, i.e., the self-oscillation
regime [Fig. 2(a)] and the static regime [Fig. 2(c)]. In the com-
putation, we set Ẽ = 4, Ĩ = 0.1, g̃ = 0.1, C0 = 0.1, b̃ = 0.5,
and L̃shading = 0. By numerically solving the governing equa-
tions (12) and (13), we can obtain the time history curve and
the limit cycle of the suspended light source. For c̃ = 0.05,
the light source eventually developed into self-oscillation un-
der the action of gravity and tension of the LCE fiber, as
shown in Fig. 2(a) [65], and the phase trajectory evolves in
the phase plane to form a limit cycle, as shown in Fig. 2(b).
For c̃ = 0.15, the light source vibrates up and down under
the action of gravity and tension of the LCE fiber, and then
quickly develops into a static regime due to system damping,
as shown in Fig. 2(c). Figure 2(d) shows the phase trajectory
corresponding to the static regime, which is ultimately main-
tained at a static point in Fig. 2(d).

TABLE II. Dimensionless parameters.

Parameter Ĩ c̃ g̃ C0 Ẽ b̃ L̃shading

Value 0–1 0–0.05 0–0.5 0–0.12 0–5 0–0.7 0–0.1

FIG. 2. Two motion regimes of light source suspended by LCE
fiber: (a), (b) Self-oscillation regime (c̃ = 0.05); (c), (d) static regime
(c̃ = 0.15). The other dimensionless parameters are Ẽ = 4, Ĩ = 0.1,
g̃ = 0.1, C0 = 0.1, b̃ = 0.5, L̃shading = 0. Video 1 present two motion
regimes. See Supplemental Material for videos associated some of
the figures [65].

B. Mechanism of self-oscillation

To elucidate the mechanism of self-oscillation of the sus-
pended light source, Figs. 3(a)–3(c) present the time history
curves of several key physical quantities for Ẽ = 4, Ĩ = 0.1,
g̃ = 0.1, C0 = 0.1, b̃ = 0.5, L̃shading = 0, and c̃ = 0.05. The
volume fraction of cis-isomers, displacement, and tension of
the fiber of the self-oscillating suspended light source all vary
periodically with time. Figure 3(d) describes the variation of
the tension of the fiber with displacement. The yellow-shaded
areas in Fig. 3(a) indicate that the LCE fiber is exposed to illu-
mination. In Fig. 3(a), when the material point moves into the

FIG. 3. Mechanism of self-oscillation of suspended light source.
(a) Variation of volume fraction of cis-isomers in with time; (b)
dependence between displacement of self-oscillating suspended light
source and time; (c) dependence between tension and time; and
(d) dependence between tension and displacement. Parameters are
set as Ẽ = 4, Ĩ = 0.1, g̃ = 0.1, C0 = 0.1, b̃ = 0.5, L̃shading = 0, and
c̃ = 0.05.
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FIG. 4. Snapshots of self-oscillating suspended light source in
one cycle shown in Figs. 2(a) and 2(b). Suspended light source
exhibits continuous periodic self-oscillating due to periodic change
in light-driven contraction of LCE fiber.

illumination, φ gradually increases with time and approaches
a limit value, while φ gradually decreases in the darkness.
Both ũ and F̃ exhibit periodic behavior due to the periodic
variation in the volume fraction of cis-isomers φ, as shown in
Figs. 3(b) and 3(c). In Fig. 3(d), the closed region enclosed by
the tension and displacement represents the energy loss of the
light source that compensates for the damping dissipation to
maintain the periodic self-oscillation of the system, which can
be further understood from Fig. 4. Given this self-oscillation
mechanism, it is possible to keep the system maintaining sta-
ble self-oscillation when we set parameters that allow the net
work invested in the system to balance the energy dissipated
by the damping.

IV. EFFECTS OF SYSTEM PARAMETERS
ON THE SELF-OSCILLATION

In the above self-oscillating mechanical model, there are
seven dimensionless system parameters, including C0, Ĩ , c̃, Ẽ ,
b̃, L̃shading, and g̃. This section examines in detail the influ-
ences of these system parameters on the triggering conditions,
frequency, and amplitude of the self-oscillation. The dimen-
sionless self-oscillation frequency and amplitude are denoted
by f and A, respectively.

A. Effect of the elastic modulus

Figure 5 and Video 2 [65] describe the effect of elastic
modulus on the self-oscillating light source. Figure 5(a) plots
the limit cycles corresponding to different elastic moduli. The

FIG. 5. Effect of elastic modulus on self-oscillating light source,
for C0 = 0.1, Ĩ = 0.1, c̃ = 0.05, b̃ = 0.5, L̃shading = 0, and g̃ = 0.1.
(a) Limit cycles. (b) Frequency and amplitude. Critical elastic mod-
ulus for triggering self-oscillation is about Ẽ = 2.6. With increase of
elastic modulus, amplitude and frequency show upward trend.

critical elastic modulus for triggering the self-oscillation of
the light source is approximately Ẽ = 2.6. In other words, for
Ẽ < 2.6, the system is static, while for Ẽ > 2.6, the system
eventually evolves into a self-oscillating state. Figure 5(b)
provides the frequency and amplitude of self-oscillation as
functions of the elastic modulus Ẽ . As Ẽ increases, the
amplitude tends to rise and the frequency also shows an up-
ward trend. With the increase of Ẽ , LCE fiber with higher
elastic modulus is more suitable for converting light energy
into mechanical energy. Increasing the elastic modulus of
LCE material can simultaneously increase the frequency and
amplitude of the system to adapt to different engineering
applications.

B. Effect of the light intensity

Figure 6 and Video 3 [65] describe the effect of light inten-
sity on the self-oscillating light source. Figure 6(a) plots the
limit cycles corresponding to different light intensities. The
critical value of light intensity to trigger the self-oscillation
of the light source is approximately Ĩ = 0.054. That is, for
Ĩ < 0.054, the system exhibits static state, while for Ĩ >

0.054, the system exhibits self-oscillating state. Figure 6(b)
provides the dependences between frequency and amplitude
of self-oscillation and light intensity Ĩ . With the increasing Ĩ ,

FIG. 6. Effect of light intensity on self-oscillating light source,
for C0 = 0.1, Ẽ = 4, c̃ = 0.05, b̃ = 0.5, L̃shading = 0, and g̃ = 0.1.
(a) Limit cycles. (b) Frequency and amplitude. Critical light intensity
that triggers self-oscillation is approximately Ĩ = 0.054. With in-
crease of light intensity, amplitude tends to increase, while frequency
remains almost constant.

054702-5



YONG YU, FAN YANG, YUNTONG DAI, AND KAI LI PHYSICAL REVIEW E 108, 054702 (2023)

FIG. 7. Effect of gravitational acceleration on self-oscillating
light source, for Ẽ = 4, Ĩ = 0.1, c̃ = 0.05, b̃ = 0.5, L̃shading = 0,
and C0 = 0.1. (a) Limit cycles. (b) Frequency and amplitude. There
exists critical gravitational acceleration, approximately g̃ = 0.174,
to trigger self-oscillation. As gravitational acceleration increases,
amplitude shows decreasing trend, while frequency does not change.

the amplitude tends to increase, while the frequency remains
almost constant. The energy absorbed by the system increases
as Ĩ increases, so the amplitude increases, while the frequency
is almost unchanged. This is the result of the conversion of
light energy into mechanical energy. We can adapt to different
complex scenes by changing the light intensity.

C. Effect of the gravitational acceleration

Figure 7 and Video 4 [65] describe the effect of gravi-
tational acceleration on the self-oscillating light source. The
limit cycles corresponding to different gravitational accel-
erations are plotted in Fig. 7(a). There exists a critical
gravitational acceleration, approximately g̃ = 0.174, to trig-
ger the self-oscillation of the light source. This means that
for g̃ > 0.174, the system is static, while for g̃ < 0.174,
the system eventually evolves into a self-oscillating state.
Figure 7(b) presents the variations of frequency and amplitude
of self-oscillation with gravitational acceleration g̃. When g̃
is increased, the amplitude shows a decreasing trend, while
the frequency does not change. The larger the gravitational
acceleration, the lower the equilibrium position; the fewer
fibers there will be in the illumination area, the less work
will be done by the fiber, and consequently the input energy is
reduced during self-oscillation.

D. Effect of the damping coefficient

Figure 8 and Video 5 [65] describe the effect of damping
coefficient on the self-oscillating light source. Figure 8(a)
plots the limit cycles corresponding to different damp-
ing coefficients. The damping coefficient for triggering the
self-oscillation of the light source has a critical value of ap-
proximately c̃ = 0.118. To put it another way, for c̃ > 0.118,
the system is in static regime, while for c̃ < 0.118, the sys-
tem is in self-oscillation regime. Figure 8(b) provides the
frequency and amplitude of self-oscillation as functions of the
damping coefficient c̃. With the increase of c̃, the amplitude
presents a decreasing trend, while the frequency does not
change. When c̃ > 0.118, the input energy is not sufficient to
compensate for the damping dissipation; the system appears
static. An appropriate reduction in the damping coefficient

FIG. 8. Effect of damping coefficient on self-oscillating light
source, for Ẽ = 4, Ĩ = 0.1, b̃ = 0.5, L̃shading = 0, C0 = 0.1, and
g̃ = 0.1. (a) Limit cycles. (b) Frequency and amplitude. Damping
coefficient for triggering self-oscillation has critical value of approx-
imately c̃ = 0.118. With increase of damping coefficient, amplitude
presents decreasing trend, while frequency does not change.

can improve the efficiency of converting light energy into
mechanical energy.

E. Effect of the contraction coefficient

Figure 9 and Video 6 [65] describe the effect of contraction
coefficient on the self-oscillating light source. The limit cycles
corresponding to different contraction coefficients are given in
Fig. 9(a). The critical value of contraction coefficient to trigger
the self-oscillation of the light source is approximately C0 =
0.057. In other words, for C0 < 0.057, the system is static,
while for C0 > 0.057, the system eventually evolves into self-
oscillation. Figure 9(b) demonstrates how the frequency and
amplitude of self-oscillation vary with the contraction coef-
ficient C0. As C0 increases, there is a clear upward trend in
amplitude, while the frequency does not change. Equation (4)
provides a basis for the fact that with the increase of C0, the
light-driven contraction increases; therefore, the amplitude of
self-oscillation increases. Increasing the contraction coeffi-
cient of LCE materials can improve the conversion efficiency
of light energy to mechanical energy.

FIG. 9. Effect of contraction coefficient on self-oscillating light
source, for Ẽ = 4, Ĩ = 0.1, c̃ = 0.05, b̃ = 0.5, L̃shading = 0, and g̃ =
0.1. (a) Limit cycles. (b) Frequency and amplitude. Critical value
of contraction coefficient to trigger self-oscillation is approximately
C0 = 0.057. When contraction coefficient is increased, there is clear
upward trend in amplitude, while frequency does not change.
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FIG. 10. Effect of illumination length on self-oscillating light
source, for Ẽ = 4, Ĩ = 0.1, C0 = 0.1, c = 0.2, L̃shading = 0, and
g̃= 0.1. (a) Limit cycles. (b) Frequency and amplitude. Presence of
critical illumination length that triggers self-oscillation is approxi-
mately b̃ = 0.03. As illumination length increases, both amplitude
and frequency remain constant.

F. Effect of the illumination length

Figure 10 and Video 7 [65] describe the effect of illumina-
tion length on the self-oscillating light source. Figure 10(a)
plots the limit cycles corresponding to different illumina-
tion lengths. The critical illumination length triggering the
self-oscillation of the light source is approximately b̃ = 0.03.
That is to say, for b̃ < 0.03, the system exhibits static state,
while for b̃ > 0.03, the system eventually evolves into a
self-oscillating state. The dependences between frequency
and amplitude of self-oscillation and illumination length b̃
are given in Fig. 10(b). With the increase of b̃, both am-
plitude and frequency remain constant. As the illumination
length increases, the illumination length meets the system’s
demand for light, and the amplitude and frequency of the
self-oscillating light source remain unchanged. We can reduce
the illumination length so as to improve the utilization rate of
LCE materials.

G. Effect of the shading length

Figure 11 and Video 8 [65] describe the effect of shad-
ing length on the self-oscillating light source. Figure 11(a)
plots the limit cycles corresponding to different shading
lengths. The two critical shading lengths that trigger the
self-oscillation of the suspended light source are approx-
imately L̃shading = −0.005 and L̃shading = 0.05. This means
that for L̃shading < −0.005 and L̃shading > 0.05, the system is
static, while for −0.005 < L̃shading < 0.05, the system even-
tually develops into self-oscillation. Figure 11(b) provides
the frequency and amplitude of self-oscillation as functions
of shading length L̃shading. As L̃shading increases, the ampli-
tude shows a trend of rise first and then decrease, while the
frequency is almost constant. Therefore, in practice, proper
adjustment of the shadow length is one of the effective mea-
sures to improve the self-oscillation amplitude.

FIG. 11. Effect of shading length on self-oscillating light source,
for Ẽ = 4, Ĩ = 0.1, c̃ = 0.05, b̃ = 0.5, C0 = 0.1, and g̃ = 0.1. (a)
Limit cycles. (b) Frequency and amplitude. There are two critical
shading lengths for triggering self-oscillation, which are approx-
imately L̃shading = −0.005 and L̃shading = 0.05. With increase of
shading length, amplitude shows trend of rise first and then decrease,
while frequency is almost constant.

V. CONCLUSIONS

Light source based on periodic switching has a wide range
of applications in life and engineering. This paper creatively
proposes a self-oscillating spring oscillator to achieving pe-
riodic lighting without additional controller, which consists
of a LCE fiber, an inextensible fiber, a shading sleeve, and
a light source. Considering the established particle dynamics
model and the dynamic LCE model, the governing equation
of the self-oscillating spring oscillator is established and the
self-oscillation under steady-state illumination are studied.
Numerical calculations demonstrate that the amplitude and
frequency of the self-oscillation are influenced by multiple
system parameters. Increasing the system parameters, includ-
ing C0, Ĩ , and Ẽ , can improve the amplitude. However, C0

and Ĩ cause the frequency to be constant, and Ẽ makes the
frequency go upward. With the increases of g̃ and c̃, the ampli-
tude decreases, while g̃ and c̃ cause the frequency to constant.
The increase of b̃ makes both amplitude and frequency con-
stant. With the increases of L̃shading, the amplitude increases
first and then decreases, and the frequency remains constant.
The self-oscillating spring oscillator constructed in the current
paper has the advantages of simple structure, easy preparation,
and strong operability, which have great application prospects
in the fields of soft robotics, micromachines, and sensors.
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